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Abstract: The Firefly Algorithm is a nature-inspired optimization algorithm that has been shown to be 
effective for solving a variety of problems. In this paper, we study the Firefly Algorithm for the IEEE 3-bus 
network coordination problem. We examine the impact of key parameters on the algorithm's performance, 
including generation number, population size, absorption coefficient, and randomization parameter. The 
results showed that increasing the generation number improves the quality of the solution, but the benefits 
decrease at a certain point. Feasibility also improves with higher generations, but a balance between solution 
quality and feasibility becomes apparent at very high generations. Objective function evaluations and 
computation time increase linearly with the number of generations. Larger population sizes yield better 
solution quality and feasibility, but a balance is observed at very high population sizes. The randomization 
parameter has a modest influence on the results, but extreme values can impact solution quality, feasibility, 
and computation time. The absorption coefficient, on the other hand, has a significant impact on convergence 
and quality. The study offers guidance for parameter optimization and adaptive techniques. 
 
Keywords: Optimization algorithms, Firefly algorithm, Parameters setting, Directional overcurrent relays, 
MATLAB. 

 

1 Introduction 

Optimization involves selecting the optimal solution from a set of alternatives. Nature-inspired metaheuristic 
algorithms, particularly those based on swarm intelligence, have gained significant attention in the past decade for their 
ability to address complex optimization problems effectively [1]. Metaheuristic algorithms require of setting the values 
of several algorithm components and parameters. These parameters values have great impact on performance and 
efficacy of the algorithm [2,3]. Therefore, it is essential to investigate the algorithm parameters influence on the 
performance of the developed metaheuristic algorithms [4]. 

The Firefly algorithm (FA) is a popular metaheuristic algorithm in the field of swarm intelligence optimization. It has 
demonstrated impressive search capabilities when applied to various optimization problems [5]. The algorithm emulates 
the social behavior of fireflies by incorporating their flashing patterns and attraction characteristics [6,7]. It is known for 
its ease of comprehension and implementation. However, researches indicated that it has a tendency to premature 
convergence. To address this issue, scholars recommend relaxing the constraint of keeping the algorithm's parameters 
constant [8]. 

The Firefly algorithm's performance is influenced by several parameters, including the number of generations, 
population size, randomization parameter (α), and absorption coefficient (γ). The α parameter controls the level of 
randomness and diversity in the solutions generated [1]. The γ parameter plays an essential role in determining the 
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variations of attractiveness and the convergence speed of the algorithm [7,9]. The number of fireflies corresponds to the 
population size, and a larger population enhances the algorithm's exploration capability. However, this also results in 
increased computational time [10–12]. The number of generations determines the total iterations of the algorithm. 
Increasing the number of generations allows for a longer exploration time, enabling the algorithm to converge towards 
the optimal solution. However, excessively large numbers of generations can lead to longer computational times 
without significant improvements in performance [13]. 

In [14], the authors analyzed the impact of key parameters on the Firefly Algorithm's performance. They investigated 
the randomization parameter, absorption coefficient, and population size using benchmark functions. Optimal values for 
the absorption coefficient and randomization parameter were identified, emphasizing the importance of parameter 
selection. Increasing the population size improved solution quality, but with longer computation time. Authors suggest 
reasonable ranges for the randomization parameter ([0.1, 0.2]) and optimal values for the absorption coefficient ([1, 
30]). For simpler problems, a smaller population size (20 to 40) is suitable, while more complex problems may require a 
population size not exceeding 50. 

In [15], the Firefly Algorithm was analyzed for performance and success rate using benchmark functions, leading to 
parameter selection guidelines. Optimal parameter sets were identified for different functions, highlighting the balance 
between exploration and exploitation. The algorithm was evaluated on four benchmark functions, revealing the 
importance of selecting a suitable number of fireflies. Functions with single minima perform well, while those with 
multiple minima pose challenges. The algorithm's convergence and dynamic behavior were analyzed, providing 
qualitative guidelines for parameter selection. Results indicate better performance with a small number of fireflies and 
lower parameter values.  

The effectiveness of a genetic algorithm (GA) for parameter identification in an E. coli fed-batch cultivation process 
was examined by the authors of [4] in relation to the effect of population size. They examined populations with fixed 
generations and chromosome counts ranging from 5 to 200. The results showed that 100 chromosomes for 200 
generations was the ideal population size for accurate parameter estimation in a manageable amount of time. Beyond 
100 individuals, there was no improvement in solution accuracy, but there was a significant increase in computation 
time. This emphasizes the importance of choosing an appropriate population size in GA-based parameter identification 
problems in order to balance solution quality and computational efficiency. 

The directional overcurrent relays (DOCRs) coordination problem in power system protection is a complex 
optimization problem, which can be highly constrained, nonlinear, and non-convex [16]. In this paper, Firefly 
Algorithm is applied to solve this problem in the IEEE 3-bus network. The aim of the study is to determine how various 
algorithmic factors, such as the population size, absorption coefficient, generation number and randomization 
parameter, affect the algorithm's performance.  

The main contributions of this paper are summarized as follows: 

• Investigate the application of the Firefly Algorithm for solving the coordination problem in the IEEE 3-bus 
network.  

• Analyze the effect of the algorithm parameters on the performance of the Firefly Algorithm.  

• Comprehensive analysis of the Firefly Algorithm's performance, considering solution quality, feasibility, 
computational effort, and efficiency. 

The rest of this paper is organized as follows. Section 2 provides a comprehensive explanation of the Firefly Algorithm, 
including its working principles and its parameters, along with an analysis of how these parameters influence the 
algorithm's performance. The directional overcurrent relay coordination problem is described in Section 3 along with its 
related formulations. In Section 4, the results obtained from applying the Firefly Algorithm to the IEEE 3-bus system 
are presented and analyzed, examining the impact of algorithm parameters on its performance. Finally, Section 5 
concludes the study by summarizing the main findings and contributions. It also highlights possible directions for future 
research. 

2 Firefly Algorithm 

The Firefly Algorithm (FA) was initially developed by Xin She Yang at Cambridge University in late 2007 and 2008. It 
draws inspiration from the flashing patterns and behavior exhibited by fireflies [1]. The algorithm fundamentally relies 
on three idealized rules, which are as follows: 

• Fireflies are unisex so that one firefly will be attracted to other fireflies regardless of their gender. 
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• The brightness of a firefly is influenced or determined by the landscape of the objective function to be optimized.  

• The attractiveness of a firefly is proportional to its brightness and they both decrease with distance (r) as shown in 
Equation (1). Consequently, when two fireflies are compared, the one with lower brightness will move towards the 
brighter firefly. If there is no firefly brighter than a particular one, it will move randomly within the search space  
[7,17–19]. 

𝐼 ∝ 	 $
%&

                                              (1) 

Equation (2) describes the relationship between light intensity and distance (r) when light passes through a medium with 
a light absorption coefficient γ [8]. 

𝐼 = 	 𝐼(	𝑒*+%
&                                       (2) 

where I0 represents the source's light intensity. The brightness, β, can also be expressed as in Equation (3). 

𝛽 =	𝛽(	𝑒*+%
&                                       (3) 

where 𝛽( is the attractiveness at r equal to 0, which is the maximum attractiveness that a firefly can have. The distance 
between any two Fireflies i and j whose positions are xi and xj is given by the Cartesian distance as follows: 

𝑟.,0 = 1∑ (𝑥.,5 − 𝑥0,5)89
5:$ 	                               (4) 

where, D is the number of dimensions, 𝑥.,5 refers to the m-th component of the spatial coordinate of the i-th firefly, 
while 𝑥0,5 refers to the m-th component of the spatial coordinate of the j-th firefly [20]. The movement of the i-th firefly 
towards more attractive j-th firefly is calculated as: 

𝑥.;<= = 		 𝑥.>?@ +	𝛽(	𝑒*+%
&B𝑥.>?@ − 𝑥0C + 	𝛼	(𝑟𝑎𝑛𝑑 − 0.5)	           (5) 

Here, he first term represents the current location of the i-th firefly. The second term represents the attraction exerted by 
one firefly on another. The third term, involving the parameter α, introduces randomization into the movement of the 
firefly. This randomization is achieved using the random number generator Rand. The new position of the i-th firefly is 
denoted as 𝑥.;<=, while 𝑥.>?@ represents its previous position [6].  

The pseudo-code in Fig. 1 illustrates the structure of the standard firefly algorithm. As can be seen, the algorithm 
consists of the following components: a firefly representation, an initialization (line 3), a moving operator (line 8), and 
an objective function (lines 4 and 10).  

Firefly Algorithm 
1.   Initialize FA: number of fireflies (n), generation number of FA 

(nGer), absorption coefficient (γ), initial attractiveness (β0), and the 
randomness strength (α). 

2. Objective function f(x),              x = (x1, ..., xD)T 
3.  Generate initial population of fireflies xi (i = 1, 2, ..., n) 
4.  Light intensity Ii at xi is determined by f(xi) 
5. while (t< nGer) 
6. for i =1: n all n fireflies 
7. for j =1: i all n fireflies 
8. if (Ij > Ii),  

Move firefly i towards j in D-dimension; end if 
9. Attractiveness varies with distance r via 𝑒*+%& 
10. Evaluate new solutions and update light intensity 
11. end for j 
12. end for i 
13. Rank the fireflies and find the current best 
14 t = t + 1 
15. end while 
16.  Postprocess results and visualization 

Fig. 1: Pseudo code of the firefly algorithm. 
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The movement of the entire population of solutions in the Firefly Algorithm is influenced by two factors. Firstly, it 
depends on where the global best solution, which is the most comprehensively ideal solution thus far, is located. 
Secondly, it is also influenced by the positions of local better (brighter) solutions within the neighborhood (as indicated 
in line 13 of the algorithm). In addition, a termination condition is necessary to ensure the appropriate termination of the 
Firefly Algorithm (line 5). The algorithm incorporates a criterion, referred to as the maximum number of generations 
(nGen), which stops the algorithm once it reaches the specified maximum number of generations or iterations. This 
criterion helps determine when the algorithm should cease its iterations [21–23]. 

The optimization algorithm begins by assigning an initial solution to each agent in a population. These agents represent 
fireflies in a firefly swarm. The algorithm then proceeds iteratively, updating the positions of the fireflies based on their 
light intensity and their proximity to other fireflies. If the light intensity of a firefly, represented by agent i, is lower than 
the light intensity of another firefly, represented by agent j at position 𝑥0, then firefly i moves towards firefly j. The 
objective is for the fireflies to converge towards the brightest light source, which represents the optimal solution to the 
optimization problem. The fitness values of the fireflies are used to rank them, with higher fitness indicating better 
solutions. If a firefly discovers a better solution than the current global best solution, the global best is updated 
accordingly. The movement of each firefly is influenced by a randomization parameter α, which is a random number 
uniformly distributed between 0 and 1. This parameter introduces randomness into the movement of the fireflies, 
allowing exploration of the solution space. The algorithm continues iterating and updating the positions of the fireflies 
until convergence is achieved, aiming to find the optimal solution to the optimization problem [24,25]. The main steps 
in the firefly algorithm are depicted in Fig. 2. 

In the Firefly Algorithm, the selection of parameters plays a crucial role in achieving good performance. Two important 
parameters are γ in Equation (3) and the α in Equation (5). The algorithm typically does not consider the knowledge or 
information gained by the fireflies during the search when selecting these parameters. However, the effectiveness of the 
search process and the quality of the solution found are greatly influenced by the correct selection of these parameters. 
Consequently, it is important to carefully choose appropriate values for γ and α  [26,27]. In this work, the authors 
investigated the effects of varying γ and α, as well as the number of generations and fireflies, on the algorithm's 
performance. The study attempts to obtain an understanding of how parameter settings affect the algorithm's efficacy 
and adjust them accordingly by examining these aspects. The effect of each parameter on the Firefly Algorithm's 
performance will be discussed in the sections that follow. 

 
Fig. 2: Working of the firefly algorithm. 

2.1 Effect of Randomization Parameter (α) 

The α parameter controls the algorithm's level of randomness and, to some extent, the variety of possible solutions [1]. 
A higher α value results in more random movements, facilitating exploration of the solution space. Conversely, a lower 
α value promotes exploitation of already promising areas by reducing randomness [28]. The effect of α on algorithm 
performance is dependent on the problem's characteristics and the stage of the search process. Initially, a higher α value 
 
may aid in escaping local optima, while a lower α value towards the end of the search can refine the solutions found. 

Initial Population 
Generation

Objective Function 
Evaluation of all Fireflies

Update Attractiveness of all 
Fireflies and Define their 

Rank

Update Attractiveness of all 
Fireflies

Rank them and Update the 
Position

Repeated till maximum iteration
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Adjusting α during the search process can lead to improved exploration-exploitation balance. 

2.2 Effect of Absorption coefficient (γ) 

The γ parameter in FA determines the rate at which the light intensity diminishes with distance. A higher γ value 
implies faster absorption of light intensity. The effect of γ on algorithm performance is twofold. A lower γ value allows 
fireflies to retain their brightness over longer distances, promoting exploration of the solution space. On the other hand, 
a higher γ value leads to more rapid decay of light intensity, encouraging fireflies to converge towards brighter regions 
and exploit the best solutions. The choice of γ depends on the problem at hand, and striking the right balance is 
important for achieving optimal performance.  

It can be deduced that a constant light absorption coefficient γ [9] gives rise to two distinct scenarios with limited 
outcomes: 

• When γ approaches 0: In this scenario, the attractiveness of other fireflies becomes constant, implying that every 
firefly can be seen by all the others. In this case, the FA behaves similarly to a classical Particle Swarm 
Optimization (PSO) algorithm. The movement of fireflies is solely determined by the positions and velocities of 
other fireflies, without any decay or diminishing effect on their attractiveness. This can lead to a more global 
exploration of the solution space, as fireflies are not influenced by the decay of light intensity with distance. 

• When γ approaches ∞: In this situation, the attractiveness between fireflies becomes negligible and tends towards 
zero. Fireflies are unable to determine the direction of movement based on the attractiveness of other fireflies, 
resulting in random flight behavior. Essentially, the FA becomes a pure random search algorithm, where fireflies 
move randomly without any specific guidance from their interactions. As a result, the algorithm loses its ability to 
exploit information from other fireflies and relies solely on chance encounters for exploration. 

As can be seen, the parameter γ plays an essential role in defining the variations of attractiveness in the FA. Its value 
significantly impacts the convergence speed of the algorithm [7]. 

2.3 Effect of Number of Fireflies/Population Size (n) 

The convergence of any nature-inspired optimization algorithm is significantly impacted by the size of the population it 
operates on. The number of fireflies represents the size of the population within the algorithm. A larger number of 
fireflies enhances the exploration capability of the algorithm by covering a larger portion of the solution space. With 
more fireflies, there is a higher chance of finding better solutions and escaping local optima. However, increasing the 
number of fireflies also raises the computational time of the algorithm. It is vital to strike a balance between the 
population size and computational resources [10,11,29]. Hence, this study also examines the influence of changing 
population sizes on the efficiency of the Firefly Algorithm. 

2.4 Effect of Number of Generations (nGer) 

The number of generations determines how many iterations or steps the algorithm will take during the search process. 
Increasing the number of generations allows for a longer exploration time, giving the algorithm more opportunities to 
converge towards the optimal solution. However, a very large number of generations may lead to excessive 
computational time without significant improvements in performance. The computational efforts and performance of an 
algorithm are largely determined by the number of iterations required to achieve an optimal solution with a given 
accuracy. A superior algorithm should aim to minimize computation and iterations, resulting in more efficient 
performance [13,30]. The choice of the number of generations depends on the complexity of the problem, the 
convergence characteristics of the algorithm, and the available computational resources [31].  

3 Coordination Problem of Directional Overcurrent Relays (DOCRs) 

Protective relays have a vital role in maintaining the reliability of the electric power supply by quickly detecting faults, 
isolating the faulty parts, and keeping the unaffected sections in service, ensuring the continuity of power supply [32]. 
Overcurrent protection is the primary protection of the power distribution systems. In interconnected systems, the 
directional overcurrent protection is used to avoid the disconnection of unnecessary parts due to fault currents flowing 
in both directions. Non-directional overcurrent relays are unable to fulfill this purpose, which is why directional 
overcurrent relays (DOCRs) are utilized [33].  

 
Coordinating protective devices within a protection system is an essential process to ensure the robustness and 
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reliability of a power system [34]. The primary objective of relay coordination is to effectively protect the power system 
against abnormal conditions. By promptly disconnecting faulty sections, the coordination ensures the uninterrupted 
operation of the healthy sections, thereby guaranteeing the continued service and reliability of the power system [35]. It 
can be shortly defined as: “the quality of selectivity among protective devices” [36]. Therefore, accurate relay 
coordination ensures the proper selection of primary relays responsible for clearing faults within their designated zones 
[37,38]. Backup relays, on the other hand, are designed to respond to faults outside their designated zones and are 
activated only if the primary relays exceed the permissible time delay. This time delay is referred to as the coordination 
time interval (CTI) [39]. The relays must be properly coordinated so that there is no misoperation. Also, to not lead to 
unnecessary tripping of breakers and the isolation of sections of the power system that are not actually faulted. This 
may be accomplished by appropriately determining the operating time of the relays [40,41]. The DOCRs have two 
settings, the time multiplier setting (TMS) and the plug setting (PS) [42]. The operating time of the relay is directly 
impacted by these factors [43]. The total operating time of the DOCRs should be minimized to reduce power network 
interruption. To ensure that the selectivity study is valid, the specified CTI between the primary and backup protections 
must be maintained [44]. However, the DOCR coordination problem is formulated as an optimization problem. The 
goal is to reduce the total operating time of the relays within the system for various fault scenarios. This optimization 
process considers multiple constraints and boundary limits, including relay settings and selectivity constraints. The goal 
is to achieve an optimal coordination scheme that ensures effective protection while handling these constraints [45–47].  

The coordination problem is recognized as a complex optimization problem with multiple constraints, nonlinearity, and 
non-convexity. However, it can be formulated as a linear programming problem. In this formulation, the time multiplier 
setting of the relays is treated as the control variable, while the plug setting is considered a fixed value within 
predefined boundaries [48]. Alternatively, the coordination problem can be formulated as a nonlinear programming 
problem by considering both the time multiplier setting and plug setting as decision variables. These variables can be 
either continuous or discrete in nature. However, the inclusion of discrete settings introduces additional complexity to 
the problem since it restricts the number of feasible solutions that can be explored [49]. 

Researchers typically divide their studies on solving the coordination problem of DOCRs into two main subjects. The first 
one involves modeling the DOCRs coordination problem to be solved using optimization algorithms. The second one 
focuses on optimizing the developed model for the DOCRs coordination problem. To achieve optimal coordination of 
DOCRs, several steps are typically taken. Firstly, the specifications of each component in the system, such as the network 
type, network topology, and fault location, are identified. Secondly, a load flow analysis is performed to determine the 
maximum load current that the protected zone can handle. The third step involves identifying all relay pairs involved in the 
coordination process to ensure proper selectivity and minimize disruptions. Next, the smallest severe faults are identified 
through short-circuit analysis, which is essential for setting the relay plug settings within permissible limits. Finally, an 
optimization method is applied to determine the optimum relay settings for effective coordination [50–52]. The following 
sections describe the formulation of the coordination of DOCRs as an optimization problem.  

3.1 Objective Function Formulation 

The purpose of DOCRs coordination is to detect the failure in a minimum time. To achieve this, authors of this study 
have utilized objective function aims for minimizing the total operating times of all primary DOCRs in the system. The 
objective function is presented by the following equation: 

𝑂𝐹 = min∑ 𝑇.;
.:$ 	                                    (6) 

where, n is the number of primary relays in the network; T represents the operating time of the i-th primary relay. The 
operating time of the DOCRs for all objective functions is determined using Equation (7), as specified in both IEC/BS 
and ANSI/IEEE standards. In this equation, the pickup current (IP) and short-circuit current (Isc) are known quantities. 

𝑇 = 	𝑇𝑀𝑆	 S T

(UVWXY)
Z*$

+ 	𝛿\	                               (7) 

𝑃𝑆 =	 ^_
`ab

	                                         (8) 

where, α,β and γ are scalar quantities vary depending on the type of characteristics utilized for DOCRs. In this article, 
the IEC standard inverse type is used where α = 0.02, β = 0.14 and 𝛿 = 0. TMS is the time multiplier setting of the relay, 
Isc is the fault current flowing through the relay, and PS is the plug setting of the relay. In general, the plug setting 
represents the ratio of the pickup current (IP) to the current transformer ratio (CTR). 
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3.2 Constraints Formulation 

The minimization of the objective function is subjected to various sets of constraints. One set of these constraints 
concerns the relay characteristic, and the other set is concerned with assuring selectivity. The following sections outline 
each type of constraint and how the authors address them. 

3.2.1 Relay Settings Constraints 

The constraints related to the relay characteristics, such as relay operation time, TMS, and PS, are important 
considerations in the design and operation of relay systems. These parameters are essential for achieving effective 
coordination and protection of electrical systems. 

The protective relaying system is designed to operate within a predefined time range, where it has a specific threshold 
time for initiating the tripping action. Moreover, there exists a maximum time limit that imposes a restriction on the 
duration for which the relaying system can remain operational [53,54]. The bounds on the operation time of relays 
could be stated as: 

𝑇.,5.; ≤ 	𝑇. 	≤ 	𝑇.,5de	                                (9) 

where the superscripts "min" and "max" represent the minimum and maximum values of the corresponding variables, 
respectively, while 𝑇.	 denotes the operation time of relay i. The maximum time is determined by the critical clearing 
time and the allowable thermal limit of the protected equipment, while the minimum time is influenced by the relay's 
manufacturing specifications [55]. 

To achieve an optimal setting result for TMS, it is necessary to determine its upper and lower bounds. The limitations of 
TMS can be defined as follows: 

𝑇𝑀𝑆.,5.; ≤ 𝑇𝑀𝑆. ≤ 	𝑇𝑀𝑆.,5de	                                (10) 

where TMSi,jik and TMSi,jlm are the minimum and maximum values of TMS of the ith relay, respectively. TMSi,jlm 
represents the maximum allowable value that can be set for the relay. Setting TMS too high may result in delayed or 
ineffective operation during fault conditions, while TMSi,jik signifies the minimum acceptable value that can be set for 
the relay. Setting TMS too low may lead to unnecessary tripping or improper coordination with upstream relays. The 
relay manufacturer provides the minimum and maximum values for the TMS of the relays. [49,56]. 

The PS value determines the current level at which a protective relay triggers its operation. It serves as an indicator of 
the relay's sensitivity towards detecting faults. The PS value is established by considering factors such as the minimum 
fault current, the desired level of protection, and the full load current. Accurate setting of the PS is vital to prevent 
unnecessary tripping or failure to trip during a fault. The definition of the PS parameter is as follows: 

𝑃𝑆.,5.; ≤ 	𝑃𝑆. 	≤ 	𝑃𝑆.,5de		                                 (11) 

where PSi,jik and PSi,jlm are the minimum and maximum values of PS of the ith relay, respectively. PSi,jik represents 
the lowest current level at which the relay will operate. It should be set to a value that is equal to or greater than the 
maximum overload current. This ensures that the relay is sensitive enough to detect and respond to fault conditions 
where the current exceeds the maximum overload level. It is defined as in the following equation: 

𝑃𝑆.,5.; =
opq∗^stu,vwx

`abs
		                                           (12)	

where OLF stands for the overload factor, which is dependent on the protected element, Ii*z,jlm is the maximum load 
current.  

The maximum value, PSi,jlm, represents the highest current level at which the relay will still operate. It should be set to 
the minimum fault current or less. This ensures that the relay will activate and initiate the appropriate protection 
measures whenever a fault current exceeds the specified threshold. Setting the maximum value lower than the minimum 
fault current may result in the relay failing to detect and respond to lower magnitude faults, potentially leading to 
inadequate protection. On the other hand, setting the maximum value lower than the minimum fault current may cause 
false tripping and unnecessary interruptions in normal operation. PSi,jlm is determined as follows [53,57]: 

𝑃𝑆.,5de =
8^st{,vs|

}`abs
			                                                (13)	

where Ii*~,jik is the minimum fault current that must be detected by that relay. 
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3.2.2 Relay Settings Constraints 
In order to ensure a reliable protection system, it is common practice for each primary protection to have its own backup 
protection. This ensures that if the primary protection fails, the backup scheme can intervene and provide the necessary 
protection. To facilitate proper coordination between these protection schemes, a predefined coordination time interval 
(CTI) is established. The CTI represents the time delay between the initiation of the primary protection scheme and the 
backup scheme being activated. This is important to comply with the selectivity requirement of the primary and backup 
relays [47]. The following equation represents the coordination constraint: 

𝑇0,� 	− 𝑇.,� 	≥ 	𝐶𝑇𝐼		                                                   (14) 

where T�,� and Ti,� are the operating times of backup relay (Rj) and primary relay (Ri), respectively, for fault at k, and 
CTI is the coordination time interval (also known as the minimum allowable discrimination margin between Ri and Rj) 
given to the i-th primary relay. 

3.3 Constraint Handling Technique 

To handle the constrained functions, the penalty method is used in this paper. This method involves augmenting the 
objective function with a penalty term to discourage infeasible solutions that violate the constraints. In the case of the 
DOCRs coordination problem, both the relay coordination constraints and the relay characteristic constraints are 
incorporated into the objective function using the penalty method, as depicted in Equation (15). If any of the constraints 
are violated, a penalty value is added to the objective function. Given that the objective function is of the minimization 
type, a large penalty factor is utilized. 

𝑂𝐹 = min∑ 𝑇.;
.:$ +	∑ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦	(𝑘)5

�:$ 	                           (15) 

where m is the number of relay pairs, the penalty term penalty (k) is given by the following equation: 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦	(𝑘) = 	 �0							𝑖𝑓(𝑇0,� 	− 𝑇.,� 	≥ 	𝐶𝑇𝐼	)	
𝜕																														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	                           (16) 

where 𝜕 is the penalty factor for penalty method to make the value of the objective function more significant during 
minimization [58]. 

4 Numerical Experiments 

In this study, the coordination problem of the IEEE 3-bus network is solved using the Firefly Algorithm. The objective 
is to demonstrate the impact of changing the parameters of the FA on its performance. Specifically, the study focuses on 
analyzing the effects of varying the number of generations, the number of fireflies (population size), the absorption 
coefficient (γ), and the randomization parameter (α) on the algorithm's performance. 

The study intends to assess their impact on the convergence, solution quality, and computing efficiency of the algorithm 
by systematically changing these parameters and carrying out tests. The algorithm's total number of iterations is 
determined by the number of generations, allowing for a longer exploration period. The size of the population, or the 
number of fireflies, has an impact on the algorithm's ability to explore and the variety of solutions produced. The rate of 
light intensity decrease is determined by the absorption coefficient, which also affects firefly attraction. The level of 
randomness in firefly movements is controlled by the randomization parameter. 

The study aims to demonstrate how different parameter settings affect the FA's ability to find high-quality solutions for 
the IEEE 3-bus network DOCRs coordination problem through comparative analysis and performance evaluation. By 
analyzing the effects of these parameters, the study aims to improve the FA and provide suggestions for selecting 
suitable parameter values for similar coordination problems in power systems. The results were achieved through the 
development of a precise simulation program using MATLAB software. 

Fig. 3 depicts the IEEE 3-bus network configuration which consists of three buses, three power generators, three 
branches, and six DOCRs. This network serves as the test case for evaluating the performance of the Firefly Algorithm 
in solving the coordination problem associated with this specific power system configuration.  
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Fig. 3: IEEE 3-bus Network. 

In this case, the coordination problem is expressed as a non-linear programming problem, where the pickup setting  and 
time multiplier setting are considered as design variables within the range of [1.5, 5.0] and [0.1, 1.1] respectively, both 
represented as continuous values. Tables 1 and 2 present the results of three-phase short circuits and the current 
transformer ratio (CTR) of the relays in the IEEE 3-bus system respectively. The problem is subjected to 30 constraints, 
including 6 inequality conditions for minimum and maximum operating times, 6 inequality conditions for selectivity 
criteria, and 6 side constraints for both TMS and PS. 

Table 1: Three-phase short circuit current for IEEE 3-bus network. 
P/B Paris Primary Relay Short-circuit current (A) Backup Relay Short-circuit current (A) 

1 1 1978.90 5 175.00 
2 2 1525.70 4 545.00 
3 3 1683.90 1 617.22 
4 4 1815.40 6 466.17 
5 5 1499.66 3 384.00 
6 6 1766.30 2 145.34 

Table 2: Three-phase short circuit current for IEEE 3-bus network. 
Relay Number CTR 

1,4 300/5 
2,3,5 200/5 

6 400/5 

4.1 Effect of Changing Number of Generations  

The study initially examines the impact of varying the number of generations on the performance of the FA. The 
objective is to evaluate the effectiveness of the FA across different generations. A range of generation values, ranging 
from 100 to 2000 with an increment of 100, is considered. The number of fireflies in the algorithm is kept constant at 
20, the absorption coefficient is set to 1, and the randomization parameter is set to 0.2. 

The study assesses the performance of the FA based on several criteria: 

• Solution quality: The objective function value is used as a measure of the quality of the obtained solutions. Lower 
objective function values indicate better solutions. 

• Feasibility of solutions: The number of constraint violations is counted to evaluate the feasibility of the solutions. A 
lower number of violations indicates more feasible solutions. 

• Number of objective function evaluations: The study considers the number of times the objective function is 
evaluated during the algorithm's execution. This metric reflects the computational effort required by the algorithm. 

• Computation time: The elapsed time needed to execute the FA. It provides insights into the algorithm's efficiency 
and computational speed. 

By comparing these metrics across the different numbers of generations, the study aims to determine the optimal 
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number of generations that leads to improved solution quality, increased feasibility, reduced computational effort, and 
reasonable computation time.   

Table 3: Simulation results for different number of generations.  
Criteria/Number 
of Generations 100 200 300 400 500 600 700 800 900 1000 

Objective function 
value 1.8605 1.8246 1.7247 1.7242 1.7242 1.6889 1.6509 1.632 1.4528 1.4052 

Number of 
violations 1 0 0 0 0 1 1 2 0 1 

Number of 
objection function 

evaluations 
2020 4020 6020 8020 10020 12020 14020 16020 18020 20020 

Computation time 4.9482826 5.382310 5.499888 5.669091 5.798593 6.012650 6.183932 6.341228 6.532285 6.780342 
Criteria/Number 
of Generations 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 

Objective function 
value 1.4052 1.4015 1.4015 1.3974 1.3879 1.3879 1.3879 1.3758 1.3758 1.3758 

Number of 
violations 2 2 1 1 2 2 1 3 2 2 

Number of 
objection function 

evaluations 
22020 24020 26020 28020 30020 32020 34020 36020 38020 40020 

Computation time 7.0222451 7.270984 7.603479 7.931434 8.244370 8.538376 8.858966 9.164575 9.457850 9.943240 

Table 3 presents the results obtained for various criteria at different numbers of generations in the FA. It is shown that 
as the number of generations increases, the objective function value generally decreases. This indicates that with more 
generations, the algorithm is able to converge towards better solutions. However, after a certain point (around 1600 
generations), the objective function value seems to reach a plateau, indicating that further rising the number of 
generations does not significantly improve the solution quality. It is also shown that the number of constraint violations 
varies with the number of generations. At lower generations (100, 200), there is one violation, but as the number of 
generations increases, the algorithm produces feasible solutions with zero violations. However, there is a slight increase 
in violations at higher generations (1700, 1800,1900), indicating a potential balance between solution quality and 
feasibility. Also, the number of objective function evaluations increases linearly with the number of generations. This is 
expected as each generation involves evaluating the objective function for all individuals in the population. 
Computation time generally increases with the number of generations, indicating that more iterations require more 
computational resources. However, the increase in computation time is not proportional to the number of generations, 
indicating that the algorithm may reach a point of diminishing returns in terms of computational efficiency. The results 
indicate that increasing the number of generations in the FA can lead to improved solution quality and feasibility. 
However, there is a balance to be struck, as very high numbers of generations may not significantly improve the results 
but would increase the computational time. It is shown that from the results at number of generation equal to 900 is the 
best because it gives less objective function value with no violations.  

The analysis reveals several key findings: 

• It is observed that as the number of generations increases, the objective function value decreases as demonstrated in 
Fig. 4. This indicates that with more generations, the algorithm converges towards better solutions. However, after 
reaching around 1600 generations, the objective function value stabilizes, indicating that further increasing the 
number of generations does not significantly enhance the solution quality. 

• The number of constraint violations varies with the number of generations. At lower generations (100, 200), there 
is one violation, but as the number of generations increases, the algorithm consistently produces feasible solutions 
with zero violations as shown in Fig. 5. However, a slight increase in violations is observed in higher generations 
(1700, 1800, 1900), indicating a potential balance between solution quality and feasibility. 
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Fig. 4: Effect of changing number of generations on the objective function value. 

 
Fig. 5: Effect of changing number of generations on the number of violations. 

• The number of objective function evaluations increases linearly with the number of generations as illustrated in 
Fig. 6. This is expected since each generation involves evaluating the objective function for all individuals in the 
population. 

• The computations conducted in this paper were executed on a computer system equipped with a 1.8 GHz Intel Core 
i3 processor and 8 GB of RAM. The authors developed the source code using Matlab, version 2021a. As shown in 
Fig. 7, the results of the study demonstrate a linear relationship between the number of generations and 
computation time. The computation time increases along with the number of generations, indicating the need for 
more computational resources to carry out more iterations. This result illustrates that as the number of generations 
increases, the algorithm's computational efficiency decreases. 
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Fig. 6: Effect of changing number of generations on the number of objective function evaluation. 

 
Fig. 7: Effect of changing number of generations on the computation time. 

In conclusion, the results demonstrated that increasing the number of generations in the FA can lead to improved 
solution quality and feasibility. However, a balance must be struck, as excessively high numbers of generations may not 
significantly enhance the results but would increase the computational time. It is clear from the results that 900 
generations produce the best results because they produce a lower objective function value with no violation of the 
constraints. 

4.2 Effect of Changing the Population Size  

This section presents an analysis of the influence of population size on the performance of the FA. The objective is to 
evaluate the efficiency of the FA under different population sizes. To investigate this effect, a range of values for the 
number of fireflies is considered, ranging from 10 to 200 with a step size of 10. The remaining parameters of the 
algorithm are kept constant, with the number of generations set to 900 (determined from the previous analysis), the 
absorption coefficient set to 1, and the randomization parameter set to 0.2. Table 4 provides the results obtained for 
different criteria at varying population sizes in the FA. The analysis reveals several key findings: 
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• The objective function value decreases as the number of fireflies increases as illustrated in Fig. 8. This indicates 
that a larger population size enables the algorithm to explore the solution space more effectively, leading to 
improved solutions. However, there is a slight increase in the objective function value at the number of fireflies 90, 
160, 190 and 200, indicating that very large population sizes may not necessarily lead to further improvement. 

 
Fig. 8: Effect of changing population size on the objective function value. 

• For a smaller population size of 10 fireflies, there were 2 constraint violations. However, by increasing the 
population size to 20 fireflies, the number of violations decreased to 0. This suggests that with a larger population, 
the algorithm was able to generate feasible solutions without any constraint violations. As the population size 
further increased from 30 to 200 fireflies, the number of violations ranged between 1 and 
3. There was a slight increase in violations at population sizes of 130, 140, 160, and 180, reaching a peak of 3 
violations as demonstrated in Fig. 9.  

Table 4: Simulation results for different numbers of fireflies.  
Criteria/Number 

of Fireflies 10 20 30 40 50 60 70 80 90 100 

Objective function 
value 1.4781 1.4528 1.4093 1.3872 1.3921 1.3998 1.3847 1.3796 1.4129 1.4073 

Number of 
violations 2 0 1 1 1 2 1 1 2 2 

Number of 
objection function 

evaluations 
9010 18020 27030 36040 45050 54060 63070 72080 81090 90100 

Computation time 45.089 45.33124 45.64397 45.98139 46.40564 46.87077 47.42224 47.94415 48.74911 49.51412 
Criteria/Number 

of Fireflies 110 120 130 140 150 160 170 180 190 200 

Objective function 
value 1.3971 1.3919 1.3907 1.3913 1.3912 1.4021 1.3832 1.3881 1.4691 1.4025 

Number of 
violations 2 1 2 3 1 1 3 2 2 1 

Number of 
objection function 

evaluations 
99110 108120 117130 126140 135150 144160 153170 162180 171190 180200 

Computation time 50.225843 52.58907 53.35569 54.36403 55.46911 56.42490 57.53044 58.51649 60.79457 61.93083 
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Fig. 9: Effect of changing population size on the number of violations. 

• The results demonstrate that increasing the population size generally improves the feasibility of solutions, as 
evidenced by the reduction in violations from 2 to 0 when transitioning from 10 to 20 fireflies. However, at larger 
population sizes, there is a potential balance between solution quality and feasibility. This is evident from the slight 
increase in violations observed at population sizes of 130, 140, 160, and 180, reaching a peak of 3 violations. 
Therefore, selecting an optimal population size requires careful consideration of balancing solution quality and 
feasibility to achieve the desired results. 

• As the population size increased from 10 to 200 fireflies, the number of objective function evaluations followed a 
linear relation as shown in Fig. 10. Specifically, the number of evaluations progressively increased in increments of 
9010, reflecting the number of individuals in the population. For instance, with 10 fireflies, there were 9010 
evaluations, and with 20 fireflies, the number of evaluations doubled to 18020. This linear relationship continued as 
the population size increased, with each additional 10 fireflies resulting in an additional 9010 evaluations. 
Consequently, at a population size of 200 fireflies, the algorithm required 180200 evaluations. These results 
indicate that the number of objective function evaluations is directly proportional to the population size in the FA. 
Therefore, larger population sizes demand more computational resources and increase the computational effort 
needed to obtain solutions. 

 
Fig. 10: Effect of changing population size on the number of function evaluation. 
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Fig. 11: Effect of changing population size on the computation time. 

• It was found that the computing time increased together with the number of fireflies, as shown in Fig. 11. The 
computation time exhibited only minor changes at smaller population numbers (10 to 80 fireflies). A progressive 
increase in computation time was seen as the population size increased beginning at 80 fireflies. As the population 
became larger than 100 fireflies, this increase in computing time became more evident. For instance, the 
computation required 45.09 seconds when there were 10 fireflies. The computation took 61.93 seconds when there 
were 200 fireflies in the population. This shows that carrying out the process of optimization requires more time 
and computational resources when population numbers are bigger. It also demonstrated that, depending on a 
number of variables, including the complexity of the optimization issue and the way the method is implemented, 
the relationship between population size and computing time might not be strictly linear. However, the relation 
indicates that longer calculation times are associated with larger populations in the FA. Therefore, it is essential to 
take into account the balance between computation time and solution quality while using the FA.  

Changing the population size in the FA has been studied, and the results provide some significant observations. As seen 
by the reduction of constraint violations from 2 to 0 when going from 10 to 20 fireflies, increasing the population size 
generally makes solutions more feasible. The minor increase in violations that is seen at higher population sizes (30 to 
200 fireflies) indicates a possible balance between solution quality and its feasibility. A greater population size may 
enable a better exploration of the solution space and the finding of improved solutions, as the objective function value 
normally decreases as the number of fireflies grows. However, there is a slight increase in the objective function value 
at certain population sizes (90, 160, 190, and 200), indicating that very large population sizes may not necessarily lead 
to further improvements and could potentially hinder the algorithm's performance. Additionally, there is a linear 
relationship between the amount of objective function evaluations and population size, with an increase of 9010 
evaluations for every additional 10 fireflies. This demonstrates the correlation between population size and computing 
effort, with larger populations requiring more time and resources to solve problems. Additionally, the computation time 
grows with the number of fireflies, particularly after 100 fireflies, indicating the increasing computing power needed for 
larger population sizes. Choosing an optimal population size requires consideration of calculation time and solution 
quality. In order to choose the best population size in the FA, it is necessary to strike a balance between time 
constraints, computing efficiency, and solution quality. The results indicate that growing population size generally 
enhances the feasibility and quality of the solutions, but that there are decreasing returns at a certain level. 

4.3 Effect of Changing the Randomization Parameter (α) 

In this section, the authors examine the impact of varying the randomization parameter on the performance of the FA. 
The objective is to assess the efficiency of the FA using different values of α. To investigate this effect, a range of α 
values from 0.1 to 0.9 with a step size of 0.1 is explored. The other parameters of the algorithm are held constant: the 
number of generations is set to 900, the number of fireflies is set to 20 (as determined from the previous analysis), and  
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the absorption coefficient is set to 1. The results obtained for various criteria at different α values are summarized in 
Table 5. The criteria considered include the objective function value, number of violations, number of objective 
function evaluations, and computation time. The analysis reveals several key findings: 

Table 5: Simulation results for different values of randomization parameter.  
Criteria/Value of 

randomization 
parameter. 

0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Objective function 
value 1.4022 1.4528 1.4274 1.6041 1.7807 1.7716 766231855.3 1.7694 1.8441 

Number of 
violations 3 0 0 1 1 0 2 2 2 

Number of 
objection function 

evaluations 
18020 18020 18020 18020 18020 18020 18020 18020 18020 

Computation time 87.87 88.07 88.32 88.59 88.78 88.93 89.083 89.4325 90 
 

• The objective function value varies with different values of α. It is evident that the best objective function value is 
achieved when α is set to 0.3. This indicates that a moderate level of randomization contributes to improving the 
solution quality. The objective function value gradually increases as α deviates from 0.3 as shown in Fig. 12. When 
α is set to 0.7, an extremely large objective function value of 766231855.3 is obtained, suggesting that this value of 
α adversely affects the algorithm's performance. Deviating too much from this optimal value (e.g., α = 0.1 or α = 
0.9) leads to higher objective function values, indicating that excessive or insufficient randomization may impact 
the algorithm's performance. 

 
Fig. 12: Effect of changing randomization parameter on the objective function value. 

• The number of violations indicates the extent to which the solutions generated by the FA satisfy the problem's 
constraints for different values of the α. Fig. 13 visually shows the effect of changing α on the algorithm's 
performance. When α is set to 0.2 and 0.3, the FA produces solutions with zero violations, indicating that it 
successfully maintains constraint satisfaction. These values of α strike a balance between exploration and 
exploitation, allowing the algorithm to effectively explore the solution space while handling to the constraints.  

For α values of 0.4 and 0.5, we observed one violation in each case. This indicates that a slight increase in α may 
introduce some balance between solution quality and constraint satisfaction, resulting in a single violation. At α = 0.6, 
the FA once again generates solutions without violating any constraints, indicating its ability to find feasible solutions 
while exploring the search space. However, as α increases to 0.7, 0.8, and 0.9, we observed two violations for each 
value. This indicates that higher values of α may lead to a decrease in constraint satisfaction, indicating a shift towards 
more exploratory behavior that sacrifices adherence to constraints. However, the number of violations reveals that the 
FA performs well in terms of constraint satisfaction for most α values, with zero or a limited number of violations. 
However, an increase in α beyond a certain threshold (around 0.7) negatively affects the algorithm's ability to generate 
feasible solutions, leading to an increased number of violations. 
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Fig. 13: Effect of changing randomization parameter on the violations number. 

• The number of objective function evaluations measures the computational effort needed by the FA to search for 
optimal solutions for different values of α. Fig. 14 provides a visual representation of the relationship between α 
and the number of objective function evaluations. Across all values of α, the number of objective function 
evaluations remains constant at 18,020. This indicates that the FA searches the solution space with the same 
number of evaluations regardless of the randomization parameter. Therefore, the number of objective function 
evaluations remains stable throughout the analysis, indicating that the computational effort required by the FA is 
independent on the randomization parameter.  

 
Fig. 14: Effect of changing randomization parameter on the number of objective function evaluations. 

• The computation time represents the amount of time required by the FA to complete its execution for different 
values of the α. Fig. 15 provides a visual representation of the relationship between α and computation time. From 
the results, it can be observed that the computation time increases gradually as the value of α increases. This 
indicates that higher values of α require more computational resources and time for the FA to converge to a 
solution. However, the computation time of the FA gradually increases with higher values of the randomization 
parameter α. Therefore, when selecting α, it is important to consider the balance between solution quality and 
computational efficiency, as higher α values may lead to longer computation times. 
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Fig. 15: Effect of changing Randomization Parameter on the computation time. 

According to the analysis of the effects of changing the randomization parameter on the Firefly Algorithm's 
performance, setting the randomization parameter to 0.3 yields the best results in terms of objective function value and 
feasibility (number of violations). This shows that a moderate level of randomness strikes a balance between 
exploration and exploitation, allowing the algorithm to progress toward better solutions while meeting the set of 
constraints. Across a range of values, the quantity of objective function evaluations and computation time remain 
largely constant. 

4.4 Effect of Changing the Absorption Coefficient (γ) 

This section investigates the impact of modifying the absorption factor on the performance of the FA. The objective is 
to evaluate how the algorithm performs under different γ values. To analyze this effect, a range of γ values from 0.0001 
to 100, covering multiple orders of magnitude, is examined. The remaining parameters of the algorithm are kept 
constant, with the number of generations set to 900, the number of fireflies set to 20, and the randomization parameter 
set to 0.3 based on the previous analysis. The results obtained for various performance criteria at different γ values are 
summarized in Table 6. These criteria provide insights into the overall performance of the algorithm, its handling of 
constraints, the efficiency of its computations, and the quality of its solutions. 

Table 6: Simulation results for different values of absorption coefficient.  
Criteria/Value of absorption 
coefficient 0,0001 0.001 0.01 0.1 1 10 100 

Objective function value 1.4731 1.5103 1.7787 1.6834 1.4274 2.1706 2.1706 
Number of violations 2 0 2 2 0 2 2 
Number of objection function 
evaluations 18020 18020 18020 18020 18020 18020 18020 

Computation time 95.24 95.48 95.68 95.84 96.45 96.69 96.92 

• The objective function value shows variation with different γ values. When using lower γ values (0.0001 and 
0.001), the objective function value increases, indicating poorer solution quality. However, as γ increases, the 
objective function value decreases and reaches its minimum at γ = 1 (1.4274). Subsequently, for higher γ values (10 
and 100), the objective function value starts to increase again. A visual representation of the relationship between γ 
and the objective function values can be observed in Fig. 16. This indicates the existence of an optimal absorption 
factor range that leads to better solution quality, while extreme γ values may negatively impact the algorithm's 
performance. Based on the results, the FA performs well in terms of optimizing the objective function for this 
problem when the absorption factor is set to 1, resulting in the lowest objective function value. However, the 
optimal absorption factor may vary for different problems, as the objective function value is specific to each 
problem. 

• The number of violations indicates the extent to which the solutions generated by the FA satisfy the problem's 
constraints for different values of the γ. The number of violations varies with different γ values. Fig. 17 visually 
illustrates the effect of changing γ on the number of violations. At γ = 0.0001 and γ = 0.01, there are two violations,  
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indicating that the FA is not able to produce feasible solutions that satisfy all the problem constraints. This 
indicates that very small values of γ may impact the algorithm's ability to maintain constraint satisfaction. 
However, at γ = 0.001, γ = 0.1, and γ = 1, there are zero violations, indicating that the algorithm successfully 
generates feasible solutions without violating any constraints. This indicates that these values of γ allow the 
algorithm to effectively explore the solution space while maintaining constraint satisfaction. As the absorption 
factor increases further (γ = 10 and γ = 100), the number of violations increases again to two. This indicates that 
higher values of γ may lead to a decrease in constraint satisfaction, potentially indicating a shift towards more 
exploratory behavior in the algorithm that sacrifices constraint adherence. It can be concluded that γ values in the 
range of 0.001 to 1 result in feasible solutions with zero violations, indicating better constraint satisfaction. 
Extreme values of γ (very small or very large) may lead to an increased number of violations. 

 
Fig. 16: Effect of changing absorption coefficient on the objective function value. 

 
Fig. 17: Effect of changing absorption coefficient on the violations number. 

• The number of objective function evaluations in the FA remains constant at 18020 for all values of the absorption 
factor (γ). This shows that the algorithm requires the same number of objective function evaluations regardless of 
the specific absorption factor chosen. This observation is visually represented in Fig. 18, which demonstrates the 
consistent relationship between γ and the number of objective function evaluations. The constant number of 
evaluations implies that the absorption factor does not directly influence the computational effort involved in 
evaluating the objective function. 
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Fig. 18: Effect of changing absorption coefficient on the number of objective function evaluations. 

• For various values of γ, the computation time—which shows the algorithm's computational effectiveness—was 
investigated. The results indicated that the computation time somewhat increases when the absorption factor 
increases from 0.0001 to 1. The rise is still modest and fits within a constrained range. The computation time is 
very consistent above an absorption value of 1, indicating that further raising the absorption factor has little effect 
on the amount of computation required to evaluate the objective function. Fig. 19 provides a visual representation 
of the relationship between the γ and the computation time. 

In conclusion, setting the absorption coefficient to γ = 1 in the FA leads to improved solution quality and constraint 
satisfaction. The algorithm exhibits consistent computational efficiency across different absorption factor values, 
enabling reliable comparisons and practical implementation. However, it is important to consider the specific problem 
domain and adjust the absorption factor accordingly for optimal performance. 

 
Fig. 19: Effect of changing absorption coefficient on the computation time. 

5 Conclusions and Future Works 

In this study, authors applied the Firefly Algorithm to address the coordination problem of the IEEE 3-bus network. The 
objective of this study was to analyze the effect of key parameters, namely the number of generations, population size, 
absorption coefficient, and randomization parameter, on the algorithm's performance. Through extensive 
experimentation and performance evaluation, the study demonstrates the effects of these parameters on solution quality, 
feasibility, computational effort, and efficiency. The analysis of the number of generations revealed that increasing this 
parameter led to improved solution quality, as evidenced by a decrease in the objective function value. However, 
beyond a certain threshold (around 1600 generations), further increasing the number of generations did not significantly 
enhance the solution quality. Feasibility of solutions also improved with higher numbers of generations, with zero 
constraint violations observed for larger generation values. Nonetheless, a slight increase in violations at very high 
generation values suggests a balance between solution quality and feasibility. Moreover, the number of objective 
function evaluations and computation time exhibited a linear relationship with the number of generations, highlighting 
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the need for increased computational resources as the iterations progressed. Regarding the population size, the results 
indicated that larger populations generally resulted in better solution quality, as reflected by a decrease in the objective 
function value. Feasibility also improved with larger population sizes, accompanied by a reduction in constraint 
violations. However, a slight increase in violations was seen at very large population sizes, indicating a possible balance 
between solution quality and feasibility. The number of objective function evaluations increased proportionally with 
population size, as did computation time, underscoring the demand for increased computational resources with larger 
populations. The randomization parameter exerted a noticeable but less significant influence on the algorithm's 
performance compared to the number of generations and population size. Modulating α did not yield significant 
changes in solution quality, feasibility, or computation time. However, slight variations were observed, including a 
decrease in the objective function value and an increase in constraint violations at extreme α values. These results show 
that a moderate α value within the explored range is preferable. Finally, the absorption coefficient emerged as an 
important factor impacting the algorithm's convergence and solution quality. Lower γ values expedited convergence but 
could lead to suboptimal solutions, while higher γ values fostered exploration but demanded increased computational 
effort. Fine-tuning γ represents a potential avenue for enhancing the algorithm's performance. This study 
comprehensively investigated the effects of key parameters in the FA for solving the coordination problem of the IEEE 
3-bus network. Further research could focus on refining these parameters and exploring adaptive techniques to achieve 
optimal performance in coordination problems for power systems. 
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