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Abstract

This Thesis is mainly concerned with the effective interaction and its relation

to sound phenomena in dilute neutral Fermi systems, which comprise nucleonic

matter, 3He in Vycor glass, and 3He–4He mixtures.

Following a brief, but comprehensive, description of the basic ingredients of the

formalism, including the systems of interest, the input potential, and the Galitskii–

Migdal–Feynman (GMF) T–matrix, a general expression for the expansion of the

input NN potential, which is nonlocal, noncentral, and state–dependent, is derived

in terms of the two nucleon eigenstates (channels). This, in turn, is used as an input

to derive the full equations for the state–dependent T–matrix, hence the effective

interaction and the corresponding (proper) self–energy; whereas the simpler central

case is obtained by simply switching off the state dependence. In addition, the

orthogonality and the completeness properties of the T–matrices are derived for

the first time.

The various sound modes in these systems are then studied. The corresponding

equations are obtained starting from the traditional approach of the induced density

fluctuations. Especial attention is devoted to the intimate relation between sound

propagation and such quantities as the static structure factor and the acoustic

impedance. In particular, a complementary expansive framework is established

which links this microscopic study with macroscopic manifestations, thereby laying

the ground for various applications whose basic input is the T–matrix.

Finally, the Thesis concludes with a summary and a list of some open problems for

future work.
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CHAPTER ONE

I N T R O D U C T I O N



Chapter 1

Introduction

1.1 Statement of the Problem

The central theme of this work is twofold: First, the effective interaction in

dilute neutral Fermi systems; and, secondly, the role it plays in shedding some light

on sound phenomena in these systems.

More precisely, a general expression for the effective interaction in these

systems will be derived in terms of the Galitskii–Migdal–Feynman (GMF) T–

matrix
[

1− 5
]

, starting with a noncentral input two–body potential, from which

the simpler central–potential equations can be obtained at once as a special case.

This T–matrix will then be used to compute the proper self–energy. In passing,

new derivations concerning the orthogonality and completeness of the T–matrix

will be presented. The general theoretical framework thereby obtained lends itself

naturally to a variety of applications, including the study of sound propagation in

these systems, which will be examined here rather cursorily in the hope of laying

2
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the ground for more thorough future studies. In particular, it will be attempted to

understand within a unified picture such quantities and phenomena as the static

structure factor, the acoustic impedance, the various sound modes, and so forth.

Needless to say, the present work lies in the general line of the age–old problem

of establishing a link between the microscopic and the macroscopic. To be

specific, attention here is confined to dilute neutral Fermi systems. The key

qualifiers just mentioned will be elaborated presently.

1.2 General Background

Table 1 lists the three basic dilute neutral Fermi systems with which this

Thesis is concerned.

System Elementary Constituents

Nucleonic Matter Nucleons

3He in Vycor Glass 3He Quasiparticles

3He–HeII Mixtures 3He Quasiparticles

Table 1: The basic dilute neutral Fermi systems of interest.

First, they are all many–fermionic systems since the elementary constituent

in each case is a spin–half particle/excitation (quasiparticle)
[

6
]

. In nucleonic mat-
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ter this elementary constituent is the nucleon (neutron or proton): If the numbers

of neutrons and protons are equal, the system is called nuclear matter proper ; if

they are not, it is nucleonic matter. Occasionally, in astrophysics, one is inter-

ested in neutron matter which consists purely of neutrons
[

7, 8
]

. It should be added

that the nucleon is the elementary constituent in nucleonic matter provided that

the energy range considered ≤ 300 MeV; i.e., in the low–energy nonrelativistic

limit
[

8− 11
]

– otherwise other excitations should be taken into account, includ-

ing the pion condensate
[

12, 13
]

. As for the other two systems, the elementary

constituent is, of course, the 3He atom/quasiparticle. In this respect, it should be

noted that, at temperatures less than the Fermi degeneracy temperature (≃ 0.6

K at zero pressure), the predominant excitations in dilute 3He–HeII mixtures are

the 3He quasiparticles, the Bose–excitations (phonons and rotons) being negligibly

small
[

14
]

.

Secondly, the above systems are all neutral, since the Coulomb interaction in

nucleonic matter is switched off, and since 3He is neutral.

Finally, these systems are all dilute and low–dense, in the sense that the average

interparticle spacing exceeds the interaction range
[

15− 17
]

. While this is clear for

nucleonic matter and dilute 3He–HeII mixtures, it is interesting to note that the

intricate network of capillaries in Vycor glass seems to suppress the 3He interparticle

correlations. This, in turn, renders the 3He liquid dilute
[

18
]

, although in ordinary

circumstances this system is strongly interacting and extremely dense
[

3
]

.
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The implication, then, is that an independent–pair model is ideally valid for

these systems, the many–body medium being incorporated into the picture in

some average sense (for example, through an effective interaction and an effective

mass)
[

5, 19
]

.

A most suitable framework which fits the foregoing considerations to a large

extent is the GMF T–matrix formalism which is amazingly rich in content. Not

only does it take into account the scattering of pairs inside the Fermi sea, in ad-

dition to particle–particle scattering outside the sea (thereby surpassing its main

competitor in this field, the Brueckner–Bethe–Goldstone formalism
[

20
]

), but also

it represents a generalized scattering amplitude that encompasses the environment;

i.e., the pressure and temperature. The key point here is that this is essentially a

low–dense formalism; its application to strongly interacting systems, such as liquid

3He is, in principle, dubious, to say the least. Further, in the latter systems it should

be complemented by a suitable formalism which embraces long–range correlations

[

1− 5, 21
]

.

Mathematically speaking, the GMF T–matrix is an integral equation which

represents an infinite number of binary (hole–hole and particle–particle) collisions

inside and outside the vacuum (in the quantum–field–theoretic language)
[

4
]

.

Diagrammatically, it is simply a series expansion that sums the so–called ladder

diagrams (Fig.1)
[

1− 5, 19, 22
]

:

Fig.1: The diagrammatic representation of the GMF T–matrix .
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The wavy line represents the nonrelativistic two–body potential, which is a ba-

sic input in the formalism
[

3, 23
]

. In the low–density, low–energy limit, this is clearly

an excellent representation of the interaction of the system
[

7, 15− 17, 24
]

, which is

usually extracted by well-known methods from both scattering– and bound–state

data
[

7− 11, 16, 24, 25
]

. In view of the overall complexity of microscopic formalisms,

this is often simulated by a suitable simplified analytical model – e.g., the pure

hard–core potential, a Herzfield potential (a hard core plus a square attractive well

outside), the pure boundary condition model (which may be expressed as the lim-

iting form of a local interaction given by the sum of a repulsive unit–step function

and an attractive delta function), and so forth
[

26
]

.

For the above systems, the general features of the input potential are essentially

the same – namely,

(i) a short–range repulsive part, which arises from the Pauli exclusion principle in

atomic systems, including 3He, and from the exchange of quarks in nucleonic

matter (or of vector mesons in the traditional meson–theoretic approach);
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(ii) a long–range attractive part which, in helium, arises from the relatively weak

Van der Waals forces (or, in quantum–field–theoretic terminology, from

the exchange of long–wavelength phonons) and from one–pion exchange in

nucleonic systems;

(iii) a minimum in between representing the equilibrium separation of the inter-

acting pair
[

8, 25, 27, 28
]

.

As is well–known, however, there exist fundamental differences between He–He

and NN potentials. The former, interhelium potential is purely central
[

28
]

; this

remains the case even in dilute 3He–HeII mixtures, although it should be modified

there so as to include the induced effects of the He “ether–background”
[

29
]

, as will

be elaborated in Chapter Two. Conversely, the NN potential is a state–dependent

noncentral potential; it depends not only on the relative separation of the interact-

ing nucleons, but also on their relative angular momentum as well as their spins,

isospins and relative orientation. Its overall form is restricted by symmetry princi-

ples dictated by certain conservation laws
[

8, 25, 30− 32
]

.

Our strategy in this work, as will be seen in Chapter Two, is to derive all

our results for the most general NN potential, so that on switching off the state–

dependence, in all its ramifications, the corresponding results for the central case

are immediately restored.
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1.3 Motivation

This Thesis is inspired, in the first place, by the new–old problem in the

many–fermionic theory – namely, the derivation of the macroscopic properties of

the system from the properties of its microscopic constituents. This, of course, is

the fundamental problem in statistical mechanics and many–body theory
[

33
]

. The

emphasis here is on the effective interaction in momentum space, whose inverse

Fourier transform yields its counterpart in real space, and which constitutes the

basic input for computing the (proper) self–energy. In its turn, this is the basic

quantity from which the bulk and thermodynamic properties of the system are

derived – including its effective mass, compressibility, and so forth
[

5, 19, 34, 35
]

.

An attempt is also made in this work to link the effective interaction derived with

sound modes and phenomena in view of the longstanding interest in their bizarre

properties
[

14
]

.

The present work is further motivated by the recent renewed interest in di-

lute Fermi systems, especially those listed in Table 1
[

18, 36− 38
]

. That this is the

case in nucleonic matter is evident from the sustained interest in the astrophysi-

cal applications of the system
[

25, 39− 41
]

, including the implications of possible

pairing and enhanced ordering in general
[

5, 12, 21
]

. That this is also clear in liq-

uid helium–3 can be detected in the intriguing possibility of obtaining a realistic,

dilute 3He system in Vycor glass, as well as the ever–renewed interest in detecting

a new ordered phase
[

18
]

, based either on molecular
[

42
]

or Cooper pairing
[

43
]

, in

dilute 3He–He II mixtures. While such a state has so far proved to be elusive, the
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quest is definitely still on
[

44
]

. In short, then, there is still enough exciting physics

in these systems to make them so appealing as both theoretical and experimental

laboratories, so to speak.

A yet third motivation is the rich physics involved in the sound phenomena

occurring in these systems. True, much has already been done in this domain

[

45, 46
]

; but there is still much more that needs further illumination, especially

regarding the relation of the various sound modes and properties to the effective

interaction of the system and bringing together the various aspects involved in a

unified whole.

Finally, the present work is motivated by the loopholes and lacunas in the T–

matrix theory, insofar as the properties of the matrix itself are concerned, such as

completeness and orthogonality. The aim here is to illuminate these loopholes.

1.4 Synopsis of the Thesis

The structure of this Thesis should by now be quite clear. Following the

present introductory chapter, there comes Chapter Two which is concerned with

all the mathematical aspects of the GMF T–matrix just mentioned. In particular,

the full equations for the state–dependent T–matrix and the corresponding (proper)

self–energy are derived meticulously in such a manner as to be reduced immediately

to their counterparts in 3He–systems on switching off the state–dependence of the
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input potential. The chapter is concluded with the derivation of the orthogonality

and completeness properties of the T–matrix.

Next, in Chapter Three, it is attempted to shed some light on the foregoing

sound phenomena, with especial emphasis on the unifying themes. This is meant

to be a preliminary attempt, which can be pursued further in future work.

Other extensions and elaborations are among the open problems reserved for

the concluding chapter of this Thesis, Chapter Four.
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CHAPTER TWO

THE EFFECTIVE INTERACTION



Chapter 2

The Effective Interaction

This Chapter is devoted to the mathematical aspects of the effective interaction

described qualitatively in Chapter One. We begin, in Section 2.1, with the two–body

NN potential expansion in terms of the two–nucleon eigenstates. The corresponding

T–matrix expansion is then derived in Section 2.2. The effective interaction thereby

obtained is used, in Section 2.3, to compute the (proper) self–energy. In Section

2.4, novel derivations concerning the orthogonality and completeness of the GMF

T–matrix are presented. Throughout, the relevant expressions for the central (say,

He–He) potential are obtained as especial cases by simply switching off the state-

dependence. Finally, some concluding remarks round up this Chapter in Section 2.5.

12
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2.1 The Input Potential

The NN potential, then, will be taken as the starting point. A realistic NN

potential is, of course, state-dependent. It may be nonlocal, with spin–orbit and (or)

tensor components. Its general form must conserve the total angular momentum J,

its projection MJ (the third component), the total spin S, the total isospin T, its

projection MT (charge), and parity
[

31, 32, 47
]

.

The set of quantum numbers JST are constants of motion. Together with L ,

the orbital angular momentum, which, of course, is not conserved, these define a set

of orthonormal eigenstates or channels of the two–nucleon system, |LSJT 〉
[

23, 47
]

.

It is convenient to express the potential by a relative–partial wave expansion

in terms of these channels.

Our complete set is given by

|LSJMJ ;TMT 〉 ≡ |LSJT 〉 = |LSJMJ〉|12 1
2TMT 〉

=
∑

MLMS

〈LSMLMS|LSJMJ〉|LML〉 |12 1
2SMS〉 |12 1

2TMT 〉. (2.1)

This simply defines a two–nucleon state in which the total orbital angular momen-

tum L of the two nucleons, with projection ML, couples to their total spin S, with

projectionMS, to give a total angular momentum J, with projectionMJ , and a total

isospin T, with projection MT , where |LML〉 is the relative orbital angular momen-

tum state; |12 1
2SMS〉 is the two–nucleon spin state; |12 1

2TMT 〉 is the two–nucleon
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isospin state, and 〈LSMLMS|LSJMJ〉 are the relevant Clebsh–Gordan (CG) coef-

ficients
[

31, 47, 48
]

.

The total angular momentum function is defined by
[

9, 31, 47
]

〈r̂|LSJMJ〉 ≡ YLSJ
MJ

(r̂) =
∑

MLMS

〈LSMLMS|LSJMJ〉YLML
(r̂) |12 1

2SMS〉, (2.2)

where YLML
(r̂) is the spherical harmonic function, such that

〈r̂l|LML〉 = YLML
(r̂)δlL.

Our set can be expressed in terms of a new function, defined as:

〈r̂|LSJMJ ;TMT 〉 ≡ 〈r̂|LSJT 〉 = YLSJ
MJ

(r̂)|12 1
2TMT 〉 ≡ YLSJT

MJMT
(r̂) ≡ YLα

MJMT
(r̂). (2.3)

Throughout this Chapter the set SJT will be denoted by α, although it will occa-

sionally also appear explicitly .

Let us , first, expand the matrix elements of the potential in relative coordinates

by partial–wave decomposition, in terms of the |LSJT 〉 channels:

〈~r|V |~r′〉 = 〈r̂|〈r|V |r′〉|r̂′〉

≡ 〈r̂|V (r, r′)|r̂′〉. (2.4)
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On inserting the closure relation of the complete set |Lα〉,

∑

Lα

|Lα〉〈Lα| = 1; (2.5)

or, equivalently,

∑

Lα

MMT

|LSJMJ〉〈LSJMJ |TMT 〉〈TMT | = 1, (2.6)

Eq.(2.4) becomes

〈r̂|V (r, r′)|r̂′〉 =
∑

LL′α

〈r̂|Lα〉〈Lα|V (r, r′)|L′α〉〈L′α|r̂′〉

=
∑

LL′α

MJMT

〈r̂|LSJMJ〉|12 1
2TMT 〉 V α

LL′(r, r′) 〈12 1
2TMT |〈L′SJMJ |r̂′〉

=
∑

LL′α

MJMT

YLα

MJMT
(r̂) V α

LL′(r, r′) YL′α

MJMT
(r̂′)†. (2.7)

Hence,

V (~r, ~r′) =
∑

LL′α

MJMT

YLα

MJMT
(r̂) V α

LL′(r, r′) YL′α

MJMT
(r̂′)†, (2.8)

where

V α
LL′(r, r′) = 〈Lα|V (r, r′)|L′α〉

=
∫ ∫

dr̂dr̂′ 〈Lα|r̂〉 〈r̂|V (r, r′)|r̂′〉 〈r̂′|L′α〉

=
∫ ∫

dr̂dr̂′ YLα

MJMT
(r̂)† 〈~r|V |~r′〉 YL′α

MJMT
(r̂′). (2.9)
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Now,

V =
∑

LL′α

|Lα〉〈Lα|V |L′α〉〈L′α|

=
∑

LL′α

∫ ∫

d~rd~r′ |Lα〉〈Lα|~r〉 〈~r|V |~r′〉 〈~r′|L′α〉〈L′α|

=
∑

LL′α

∫ ∫

d~rd~r′ |Lα〉〈Lα|~r〉 V (~r, ~r′) 〈~r′|L′α〉〈L′α|,

where we have used

∫

d~r|~r〉〈~r| = 1, (2.10)

together with Eq.(2.5).

Accordingly,

〈~p|V |~p′〉 =
∑

LL′α

∫ ∫

d~rd~r′〈~p|Lα〉〈Lα|~r〉 V (~r, ~r′) 〈~r′|L′α〉〈L′α|~p′〉. (2.11)

The state vector |~a〉 can be written as:

|~a〉 =
∑

l

|âl〉|al〉; (2.12)

and

〈p̂l|Lα〉 = YLα

MJMT
(p̂)δlL. (2.13)



17

Equation (2.11) then takes the form

〈~p|V |~p′〉 =
∑

LL′α

∑

ll′

∫ ∫

d~rd~r′ 〈p̂l|Lα〉〈Lα|r̂l〉 〈pl|rl〉 V (~r, ~r′)

×〈r̂′l′|L′α〉〈L′α|p̂′l′〉 〈r′l′|p′l′〉

=
∑

LL′α

MJMT

∫ ∫

d~rd~r′YLα

MJMT
(p̂) 〈pL|rL〉 YLα

MJMT
(r̂)† 〈~r|V |~r′〉

×YL′α

MJMT
(r̂′) 〈r′L′|p′L′〉 YL′α

MJMT
(p̂′)†. (2.14)

But 〈~p|~r〉 can be written as:

〈~p|~r〉 =
∑

l

〈pl|rl〉〈p̂l|r̂l〉

=
∑

LMLl

〈pl|rl〉〈p̂l|LML〉〈LML|r̂l〉

=
∑

LML

〈pL|rL〉YLML
(p̂)Y∗

LML
(r̂). (2.15)

Invoking Euler’s expansion
[

50, 51
]

,

〈~p|~r〉 ≡ ei~p.~r = 4π
∑

LML

iLjL(pr)YLML
(p̂)Y∗

LML
(r̂), (2.16)

we then obtain

〈pL|rL〉 = 4πiLjL(pr). (2.17)
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Equation (2.14) now reads

〈~p|V |~p′〉 = (4π)2
∑

LL′α

MJMT

∫ ∫

r2dr r′
2
dr′iL−L′YLα

MJMT
(p̂)jL(pr)V

α
LL′(r, r′)jL′(p′r′)

×YL′α

MJMT
(p̂′)†, (2.18)

which is the Fourier–Bessel transform of V α
LL′(r, r′) given by Eq.(2.9).

Thus,

V (~p, ~p′) = 4π
∑

LL′α

MJMT

iL−L′ YLα

MJMT
(p̂) V α

LL′(p, p′) YL′α

MJMT
(p̂′)†, (2.19)

where

V α
LL′(p, p′) = 4π

∫ ∫

r2dr r′
2
dr′ jL(pr) V

α
LL′(r, r′) jL′(p′r′)

= 4π
∫ ∫

r2dr r′
2
dr′ jL(pr)jL′(p′r′)

∫ ∫

dr̂dr̂′ YLα

MJMT
(r̂)†

×V (~r, ~r′) YL′α

MJMT
(r̂′). (2.20)

Next let us examine the case where the potential is local; i.e.,

V (~r, ~r′) = V (~r)δ(~r − ~r′). (2.21)

Then,

V α
LL′(r, r′) =

∫ ∫

dr̂dr̂′ YLα

MJMT
(r̂)† V (~r)δ(~r − ~r′) YL′α

MJMT
(r̂′). (2.22)
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But
[

49, 50
]

δ(~r − ~r′) =
1

r2
δ(r − r′)δ(r̂ − r̂′). (2.23)

Thus,

V α
LL′(r, r′) =

∫ ∫

dr̂dr̂′ 〈Lα|r̂〉 V (~r) 〈r̂′|L′α〉 1

r2
δ(r − r′)δ(r̂ − r̂′)

=
∫

dr̂ 〈Lα|V (~r)|L′α〉 |r̂〉〈r̂| 1

r2
δ(r − r′)

= 〈Lα|V (~r)|L′α〉 1

r2
δ(r − r′), (2.24)

where the Kronecker–delta property and the completeness of the set |r̂〉 have been

used.

Hence, Eq.(2.20) becomes

V α
LL′(p, p′) = 4π

∫ ∫

r2dr r′
2
dr′ jL(pr)jL′(p′r′)

1

r2
δ(r − r′)〈Lα|V (~r)|L′α〉

= 4π
∫

r2dr jL(pr) jL′(p′r) 〈Lα|V (~r)|L′α〉, (2.25)

where

〈Lα|V (~r)|L′α〉 is a matrix element of V (~r) . For, say, Reid’s potential
[

32
]

V (~r) = VC(r) + VLS(r)~L.~S + VT (r)Ŝ12, (2.26)
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this is given by

〈Lα|V (~r)|L′α〉 = V α
c (r)〈Lα|L′α〉+ V α

LS(r)〈Lα|~L.~S|L′α〉+ V α
T (r)〈Lα|Ŝ12|L′α〉, (2.27)

where ~r is the relative separation vector of the two nucleons. V α
c (r), V α

LS(r),

and V α
T (r) are the central , spin–orbit, and tensor central parts of the potential,

respectively, pertaining to the channel α. Further, Ŝ12 and ~L.~S are the tensor

and spin–orbit operators; these will be defined later.

If the potential is purely central, as for the case of the He–He interaction, only

the first term in Eq.(2.27) is needed; so we write

〈Lα|V (~r)|L′α〉 = V α
c (r)〈LSJT |L′SJT 〉

= V α
c (r)

∑

MLMS

∑

M′

L

∫

dr̂ 〈LSJM |LSMLMS〉〈L′SM ′
LMS |L′SJMJ〉

×〈12 1
2SMS |12 1

2SMS〉〈12 1
2TMT |12 1

2TMT 〉 Y∗
LML

(r̂)YL′M ′
L
(r̂)

= V α
c (r)

∑

MLMS

〈LSJM |LSMLMS〉〈LSMLMS |LSJMJ〉δLL′δMLM
′
L

= V α
c (r)δLL′ = V (r)δLL′ ; (2.28)

and Eq.(2.25) then reads

V α
L (p, p′) = VL(p, p

′) = 4π
∫

r2drjL(pr)V (r)jL(p
′r). (2.29)
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Therefore Eq.(2.19), which gives the matrix elements of V, takes the form

V (~p, ~p′) = 4π
∑

LL′α

MJMT

iL−L′YLα

MJMT
(p̂) V α

LL′(p, p′) YL′α

MJMT
(p̂′)†

= 4π
∑

Lα

〈p̂|Lα〉 VL(p, p′)〈Lα|p̂′〉

= 4π
∑

LML

〈p̂|LML〉〈LML|p̂′〉 VL(p, p′)

= 4π
∑

LML

YLML
(p̂)Y∗

LML
(p̂′)VL(p, p

′). (2.30)

Finally, we get

V (~p, ~p′) = 4π
∑

L

(2L+ 1)PL(p̂.p̂′)VL(p, p
′), (2.31)

where the following relations have been used
[

49, 50
]

:

∑

ML

YLML
(p̂)Y∗

LML
(p̂′) =

2L+ 1

4π
PL(p̂.p̂′); (2.32)

∑

LML

|LML〉〈LML| = 1; (2.33)

∑

Lα

|Lα〉〈Lα| = 1. (2.34)

It is obvious from Eqs.(2.36,2.39) below that the presence of the spin–orbit and

tensor operators in the NN potential couples channels of different angular momen-

tum. These two operators are non-operative for spin–singlet states (S=0), as well

as for spin–triplet states with J=L, and the 3P0 state, since ~L.~S and Ŝ12 are both
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zero in these cases. However, they are operative between triplet states (S=1) with

J = L ± 1. Further, only states (channels) with the same parity will be admixed,

these being constrained by the parity rule (−)L.

For uncoupled states; i.e., all states except spin–triplet states with J = L± 1,

the interaction can be replaced by an effective central potential, and the momentum

matrix elements are obtainable from Eq.(2.31). But for coupled channels, it is

necessary to calculate the matrix elements < ~L.~S > and < Ŝ12 >, which are not

zero in these states.

The operator ~L.~S is given by
[

8, 31, 48
]

:

J2 =
[

~L+ ~S
]2

= L2 + S2 + 2~L.~S ; (2.35)

so that

~L.~S =
1

2
[J(J + 1)− L(L+ 1)− S(S + 1)], (2.36)

where

~J ≡ the total angular momentum operator of the two–nucleon system;

~L ≡ the corresponding orbital angular momentum operator;

~S ≡ the total spin operator;

and

~S = 1
2
~σ; ~σ ≡ the Pauli spin operator.

Thus,
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< ~L.~S >≡ 〈LSJT |~L.~S|L′SJT 〉 = 〈L1JT |~L.~S|L′1JT 〉;

or

< ~L.~S >=



















0 S = 0
0 L 6= L′

J − 1 L = L′ = J − 1
−J − 2 L = L′ = J + 1,

(2.37)

where we have used the orthonormality of the set |LSJT 〉, Eq.(2.28):

〈L1JT |L′1JT 〉 = δLL′ . (2.38)

In its turn, the operator Ŝ12 is the standard tensor operator defined by
[

31, 48, 51
]

:

Ŝ12 = 3( ~σ1.r̂)( ~σ2.r̂)− ~σ1. ~σ2

= 2
[

3

r2
(~S.r̂)2 − ~S2

]

, (2.39)

where

~S =
1

2
( ~σ1 + ~σ2); (2.40)

2S2 = (3 + ~σ1. ~σ2). (2.41)

Thus,

< Ŝ12 > = 〈L1JT |Ŝ12|L′1JT 〉 =
∫

dΩYL1JT

MMT
(Ω)†Ŝ12YL′1JT

MMT
(Ω), (2.42)
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where
∫

dΩ stands for integration over the solid angle, as well as for the summation

over the spins and isospins. The matrix elements < Ŝ12 > can then be readily

computed. These are given in Table 2 below.

L
L′ J+1 J J-1

J+1 −2(J+2)
2J+1

0 +
6
√

J(J+1)

2J+1

J 0 +2 0

J-1 +
6
√

J(J+1)

2J+1
0 −2(J−1)

2J+1

Table 2: Matrix elements of the tensor operator Ŝ12.

2.2 The Galitskii-Migdal-Feynman T–Matrix

The GMF T–matrix integral equation, already defined physically and dia-

grammatically in Section 1.2, is given, in the relative–momentum representation,

by
[

2− 5
]

:

T (~p, ~p′; s, ~P ) = u(~p− ~p′) −
∫ d~k

(2π)3
u(~p− ~k)

[

Q(~k, ~P )go(k, s)−Q(~k, ~P )go(k, s)
†
]

× T (~k, ~p′; s, ~P ). (2.43)
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We define the relative initial, intermediate, and final momenta ~p , ~k, and ~p′ in

terms of the incoming and outgoing momenta of the interacting pair, ~p1 , ~p2; ~k1 ,

~k2; and ~p′1 , ~p′2 , respectively , such that

~p ≡ 1

2
(~p1 − ~p2) ; ~k ≡ 1

2
(~k1 − ~k2) ; ~p′ ≡ 1

2
(~p′1 − ~p′2) ; (2.44)

and the average or centre of mass (cm) momentum:

~P ≡ 1

2
(~p1 + ~p2) =

1

2
(~p′1 +

~p′2) =
1

2
(~k1 + ~k2). (2.45)

Throughout this work, we shall use a system of units such that h̄ = 2m = 1;

so that µ, the reduced mass, = m/2 = 1/4 and the energy will have the dimension

[Length]−2
[

3, 52
]

. The operator u ≡ 2µV = V/2. The free two–body Green

function, the propagator go(k, s), is given by

go(k, s) = (12H◦ − s− iη)−1 = (k2 − s− iη)−1, (2.46)

where H◦ is the relative kinetic energy operator of the pair, and η is a positive

infinitesimal in the scattering region (s > 0) and zero elsewhere. Here s is the

relative total energy of the pair in the cm frame:

s = 2P◦ − P 2, (2.47)

2P◦ being the total energy of the pair; so that P 2 is the energy carried by the

cm. The operator Q(Q) is the product of particle–particle (hole–hole) occupation
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probabilities defined as:

Q ≡ θ(|~P + ~k| − kF )θ(|~P − ~k| − kF ); (2.48)

Q ≡ θ(kF − |~P + ~k|) θ(kF − |~P − ~k|), (2.49)

where θ(k) is the unit–step function.

In momentum space , the hole–occupation probability is just the Fermi–Dirac

distribution , which reduces to the unit step function at zero temperature . When

subtracted from unity , this yields the particle–occupation probability . Q(Q) is

equal to one if both particles are outside (inside) the Fermi-sea.

With the angle–averaging approximation for Q and Q , the T– matrix becomes

a function of ~p, ~p′ and the magnitude of ~P , which makes it possible to treat the

T–matrix as the two–body potential operator and to decompose it, on an equal and

symmetric footing, into relative–partial eigenwave channels. Hence,

T (~p, ~p′; s, ~P ) = 4π
∑

LL′α

MJMT

iL−L′YLα

MJMT
(p̂) T α

LL′(p, p′; s, P )YL′α

MJMT
(p̂′)†, (2.50)

where T α
LL′(p, p′; s, P ) is the relevant component of the T–matrix.

Equation (2.43) now becomes

4π
∑

LL′α

MJMT

iL−L′YLα

MJMT
(p̂)YL′α

MJMT
(p̂′)†





T α
LL′(p, p′; s, P )− uαLL′(p, p′)



=
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−(4π)2
∑

Llα

MJMT

∑

α′L′

M′

J
M′

T

∫ k2 dk dk̂

(2π)3
iL−L′

uαLl(p, k) YLα

MJMT
(p̂)Y lα

MJMT
(k̂)†

×
[

go(k, s)Q(k, P )− go(k, s)
†Q(k, P )

]

Y lα′

M′

J
M′

T

(k̂)YL′α′

M′

J
M′

T

(p̂′)†T α
lL′(k, p′; s, P ). (2.51)

Using the orthonormality of the function YLα

MJMT
; i.e.,

∫

dk̂Y lα

MJMT
(k̂)†Y l′α′

M′

J
M′

T

(k̂) =
∑

MLMS

M′

L
M′

S

〈12 1
2S

′M ′
S|12 1

2SMS〉〈12 1
2TMT |12 1

2T
′M ′

T 〉

×
∫

dk̂Y⋆
lMl

(k̂)Yl′M ′
l
(k̂)〈lSJMJ |lSMlMS〉〈l′S ′J ′M ′

J |l′S ′M ′
lM

′
S〉 = δll′δMlM

′
l
δSS′

×δMSM
′
S
δTT ′δMTM ′

T

∑

MLMS

〈lSJMJ |lSMlMS〉〈lSJ ′M ′
J |lSMlMS〉 = δii′δMiM ′

i
, (2.52)

where ii′ = JJ ′, ll′, SS ′ and TT ′, it follows that the rhs of Eq.(2.51) becomes

−4π
∑

LL′α

MJMT

YLα

MJMT
(p̂) YL′α

MJMT
(p̂′)†

∑

l

∫ k2dk

2π2
uαLl(p, k)

×
[

go(k, s)Q(k, P )− go(k, s)
†Q(k, P )

]

T α
lL′(k, p′; s, P ). (2.53)

Thus, the T–matrix partial–coupled-channels equation takes the form

T α
LL′(p, p′; s, P ) = uαLL′(p, p′) −

∑

l

∫ k2dk

2π2
uαLl(p, k)

×
[

go(k, s)Q(k, P )− go(k, s)
†Q(k, P )

]

T α
lL′(k, p′; s, P ). (2.54)
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The GMF T–matrix integral equation has thereby been reduced to a set of

(coupled) channels in the magnitudes of momenta. These channels are a complete

set of nucleonic states. Moreover, in channels where the potential state-dependence

is absent (uncoupled channels or the central case), from (2.29),

V α
LL(p, p

′) → VL(p, p
′).

Consequently,

T α
LL(p, p

′; s, P ) → TL(p, p
′; s, P ).

Thus, Eq.(2.54) is reduced to:

TL(p, p
′; s, P ) = uL(p, p

′) −
∫ k2dk

2π2
uL(p, k)

×
[

go(k, s)Q(k, P )− go(k, s)
†Q(k, P )

]

TL(k, p
′; s, P ), (2.55)

which is applicable to these uncoupled channels as well as the central-potential case.

The solution of Eqs.(2.54,2.55) represents the fully–off–shell GMF T–matrix.

In this respect, three kinds of the T–matrix may be defined. When ~p = ~p′ and

s = p2, we have the on–shell T–matrix; but when ~p 6= ~p′ and s = p2 or p′2,

we have the half–shell T–matrix. Finally, the fully-off-shell T–matrix is obtained

when neither p2 nor p′2 is equal to s. In particular, the on-energy shell T–

matrix can be used to describe the elastic scattering of pairs in the many–body
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medium. In general, in the language of formal scattering theory, one is interested

in the scattering matrix which is intimately related to the scattering amplitude or

transition probability of the system from an initial to a final state. Conservation of

flux in the scattering problem reflects the unitarity of the scattering matrix , which,

in turn, leads to its parametrization in terms of real phase shifts
[

53− 55
]

.

On the other hand, the on–energy–shell T–matrix channel T α
LL(p, p, p

2;P ) ≡

T α
L (p

2;P ) can be parametrized in terms of real effective many–body eigenphase

shifts according to
[

2− 4
]

:

T α
L (p

2;P ) = −4π

p

[

Q + Q
]−1

exp(iδαL(p;P )) sinδ
α
L(p;P ) , (2.56)

where δαL(p;P ) is the effective phase shift pertaining to the channel Lα and is

defined as the difference in phase between the asymptotic (r →∞) forms of the

perturbed and unperturbed (V=0) wave functions, such that:

tanδαL(p;P ) ≡
Im T α

L (p
2;P )

Re T α
L (p

2;P )
. (2.57)

For convenience, while the T–matrix is complex, one can define a real K–matrix

associated with the principal value of the integral in Eq.(2.43). In the bound-state

region (s < 0), where T is real, this is given by

Re T (~p, ~p′; s, ~P ) = K(~p, ~p′; s, ~P ). (2.58)
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Similarly, this real K–matrix can be parametrized in terms of δαL(p;P ). Following

Blatt and Biedenharn, we can write
[

56, 57
]

:

tanδαL(p;P ) = − p

4π
Kα

LL(p, p; s, P ) (2.59)

for uncoupled channels; and

tanδαJ±1(p;P ) = − p

4π

[

Kα
J−1,J−1(p, p; s, P ) +Kα

J+1,J+1(p, p; s, P )

∓K
α
J−1,J−1(p, p; s, P )−Kα

J+1,J+1(p, p; s, P )

cos2ǫαJ

]

(2.60)

for coupled channels, where

tan2ǫαJ =
2Kα

J−1,J+1(p, p; s, P )

Kα
J−1,J−1(p, p; s, P )−Kα

J+1,J+1(p, p; s, P )
(2.61)

is the mixing parameter that gives the the proportions into which an incoming beam

in one channel (partial wave) divides between the outgoing channels, Kα
J±1,J±1 being

the K–matrix element in the channel L(= J ± 1)α ≡ 〈J ± 1α|K|J ± 1α〉.

An alternative expression for these matrix elements is given in terms of the

barred phase shifts
[

58
]

. These are connected to the Blatt and Biedenharn phase

shifts through:

δ+ + δ− = δ+ + δ−; (2.62)

sin∆ ≡ sin(δ− − δ+) =
tan2ǫ

tan2ǫ
; (2.63)
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sin∆ ≡ sin(δ− − δ+) =
sin2ǫ

sin2ǫ
, (2.64)

where δ± ≡ δαJ±1, δ± ≡ δ
α

J±1, ǫ ≡ ǫαJ , and ǫ ≡ ǫαJ . From (2.63) and (2.64)

cos2ǫ =
sin∆

sin∆
cos2ǫ; (2.65)

sin2ǫ = sin∆sin2ǫ. (2.66)

Squaring and adding the above two equations yield:

cos22ǫ+ sin22ǫ = 1 = sin2∆(1− cos22ǫ) +
cos22ǫ sin2∆

sin2∆
; (2.67)

cos2∆ ≡ 1− sin2∆ = cos22ǫ sin2∆
(

1

sin2∆
− 1

)

= cos22ǫ sin2∆cot2∆. (2.68)

Finally, we get

tan∆ = cos2ǫ tan∆; (2.69)

δ− − δ+ = tan−1 [cos2ǫ tan(δ− − δ+)] . (2.70)
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2.3 The Proper self–Energy ∑∗(Pµ)

Diagrammatically
[

1, 4
]

, this is represented by Fig.(2) below:

Fig.2: The proper self–energy in the ladder approximation.

Mathematically,

∑∗
σ1σ

′

1

t1t
′

1

(Pµ) =
i

2µ

∫ d4k

(2π)4
G◦(k)

×
∑

σ2t2

[

−T σ1σ2;σ
′

1
σ2

t1t2; t
′

1
t2

(~p~k; ~p~k) + T σ1σ2;σ2σ
′

1

t1t2; t2t
′

1

(~p~k;~k~p)

]

, (2.71)

where Pµ is the four–dimensional vector (~P , Po) , and σi , ti are the spin and

isospin of particle i. The minus sign in the first T–term results from the closed

Fermi loop; and the two terms in the sum represent both the direct and exchange

contributions, respectively.

The relative and cm wavevectors are defined by

~q =
1

2
(~p− ~k);
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~P =
1

2
(~p+ ~k). (2.72)

The proper self–energy can then be written as:

∑∗
σ1σ

′

1

t1t
′

1

(Pµ) =
i

2µ

∫ d4k

(2π)4
Go(k)

∑

σ2t2

[

−T σ1σ2;σ
′

1
σ2

t1t2; t
′

1
t2

(~q, ~q; s, P )

−T σ1σ2;σ2σ
′

1

t1t2; t2t
′

1

(~q,−~q; s, P )
]

, (2.73)

where T σ1σ2;σ
′

1
σ′

2

t1t2; t
′

1
t′
2

(~p, ~p′; s, ~P ) is the T–matrix element in the relative momentum,

spin and isospin space of the two nucleons:

〈~pσ1σ2t1t2|T (s, ~P )|~p′σ′
1σ

′
2t

′
1t

′
2〉 ≡ 〈σ1σ2t1t2|T (~p, ~p′; s, ~P )|σ′

1σ
′
2t

′
1t

′
2〉, (2.74)

σ and t being the respective third components of the spin and isospin of a particle.

The states |σ1σ2〉 ≡ |1
2
1
2
σ1σ2〉 and |t1t2〉 ≡ |1

2
1
2
t1t2〉 are the two–particle states of

spins 1
2
1
2
with projections σ1σ2 in the spin space, and isospins 1

2
1
2
with projections

t1t2, respectively.

Defining

J σ1σ
′

1

t1t
′

1

(~q; s, P ) ≡
∑

σ2t2

[

T σ1σ2;σ
′

1
σ2

t1t2; t
′

1
t2

(~q, ~q; s, P )− T σ1σ2;σ2σ
′

1

t1t2; t2t
′

1

(~q,−~q; s, P )
]

, (2.75)

we get

∑∗
σ1σ

′

1

t1t
′

1

(Pµ) = − i

2µ

∫ d4k

(2π)4
Go(k)J σ1σ

′

1

t1t
′

1

(~q; s, P ). (2.76)
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In relative–partial waves, the T–matrix is written as:

T σ1σ2;σ
′

1
σ′

2

t1t2; t
′

1
t′
2

(~p, ~p′; s, ~P ) = 4π
∑

LL′αα′

MJM′

J

MTM′

T

iL−L′

T α
LL′(p, p′; s, P )

×〈12 1
2σ1σ2|〈12 1

2t1t2|YLα

MJMT
(p̂)YL′α′

M ′
J
M ′

T

†
(p̂′)|12 1

2σ
′
1σ

′
2〉|12 1

2t
′
1t

′
2〉, (2.77)

where the prescribed pairwise potential conserves J, M, S, T and MT ; conversely,

Li 6= Lf , ML 6=M ′
L , MS 6=M ′

S. Thus,

T σ1σ2;σ
′

1
σ2

t1t2; t
′

1
t2

(~p, ~p′; s, P ) = 4π
∑

LL′α

MJMT

∑

MLMS

M′

L
M′

S

iL−L′

T α
LL′(p, p′; s, P )YLML

(p̂)Y∗
L′M ′

L
(p̂′)

〈LSMLMS|LSJMJ〉〈L′SJMJ |L′SM ′
LM

′
S〉〈12 1

2σ1σ2|12 1
2SMS〉〈12 1

2SM
′
s|12 1

2σ
′
1σ2〉

〈12 1
2t1t2|12 1

2TMT 〉〈12 1
2TMT |12 1

2t
′
1t2〉. (2.78)

Substitution in Eq.(2.75) yields

J σ1σ
′

1

t1t
′

1

(~p; s, P ) = 4π
∑

LL′α

MJMT

∑

MLMS

M′

L
M′

S

∑

σ2t2

iL−L′

T α
LL′(p, p; s, P )YLML

(p̂)

〈LSMLMS|LSJMJ〉〈L′SJMJ |L′SM ′
LM

′
S〉〈12 1

2σ1σ2|12 1
2SMS〉〈12 1

2t1t2|12 1
2TMT 〉

×






Y∗

LML
(p̂)〈12 1

2SM
′
s|12 1

2σ
′
1σ2〉〈12 1

2TMT |12 1
2t

′
1t2〉

−Y∗
L′M ′

L
(−p̂)〈12 1

2SM
′
s|12 1

2σ2σ
′
1〉〈12 1

2TMT |12 1
2t2t

′
1〉




 . (2.79)
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Invoking the relations
[

31, 59, 60
]

:

i) Y∗
LML

(−p̂) = (−)LY∗
LML

(p̂); (2.80)

ii) 〈j1j2m1m2|j1j2jm〉 = (−)j1+j2−j〈j2j1m2m1|j2j1jm〉, (2.81)

we can write

i) 〈12 1
2SM

′
s|12 1

2σ2σ
′
1〉 = (−)1−S〈12 1

2SM
′
s|12 1

2σ
′
1σ2〉; (2.82)

ii) 〈12 1
2TMT |12 1

2t2t
′
1〉 = (−)1−T 〈12 1

2TMT |12 1
2t

′
1t2〉; (2.83)

so that

J σ1σ
′

1

t1t
′

1

(~p; s, P ) = 4π
∑

LL′α

iL−L′

[

1− (−)L
′−S−T+2

]

T α
LL′(p, p; s, P )

∑

MLM′

L

MJ

∑

MsM
′

s

σ2

YL′M ′
L
(p̂)Y∗

L′ML′
(p̂)〈LSMLMS|LSJMJ〉〈L′SJMJ |L′SM ′

LM
′
S〉

〈12 1
2σ1σ2|12 1

2SMS〉〈12 1
2SM

′
s|12 1

2σ
′
1σ2〉

∑

MT t2

〈12 1
2t1t2|12 1

2TMT 〉〈12 1
2TMT |12 1

2t
′
1t2〉. (2.84)

(1) Let us, first, evaluate

∑

MT t2

〈12 1
2t1t2|12 1

2TMT 〉〈12 1
2TMT |12 1

2t
′
1t2〉.

The symmetry relation of the CG coefficients,

〈j1j2m1m2|j1j2jm〉 = (−)j2+m2(
2j + 1

2j2 + 1
)1/2〈j2j −m2m|j2jj1m1〉, (2.85)
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together with orthonormality
[

31, 59, 60
]

, yield at once:

∑

MT t2

〈12 1
2t1t2|12 1

2TMT 〉〈12 1
2TMT |12 1

2t
′
1t2〉

=
∑

MT t2

(

2T + 1

2

)

〈12T − t2MT |12T 1
2t1〉〈12T − t2MT |12T 1

2t
′
1〉

=
(

2T + 1

2

)

δt1t′1 . (2.86)

(2) Secondly, we consider

∑

MLM′

L

MJ

〈LSMLMS|LSJMJ〉〈L′SJMJ |L′SM ′
LM

′
S〉YLML

(p̂)Y∗
L′M ′

L
(p̂). (2.87)

The product of the two spherical harmonics is obtained using the familiar

Clebsh–Gordan series
[

59− 61
]

:

Dj1
m′

1
m1

(w)Dj2
m′

2
m2

(w) =
∑

j3
m3m

′

3

〈j1j2m1m2|j1j2j3m3〉〈j1j2m′
1m

′
2|j1j2j3m′

3〉

×Dj3
m′

3
m3

(w). (2.88)

But

Ylm′(w) =
∑

m

Dl
mm′(w) Ylm(w); (2.89)

Yl0(w) = (
4π

2l + 1
)1/2

∑

m

Y∗
lm(w)Ylm(w). (2.90)
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It follows that

Dl
m0(w) = (

4π

2l + 1
)1/2 Y∗

lm(w). (2.91)

In Eq.(2.88), we have

j1 = L; j2 = L′; j3 = l; m′
1 = −ML; m′

2 = M ′
L; m1 = m2 = m3 = 0; j3 = l,

and m′
3 = m;

so that

DL′

M ′
L
0(w) = (

4π

2L′ + 1
)1/2 Y∗

L′M ′
L
(w); (2.92)

DL
−ML0

(w) = (
4π

2L+ 1
)1/2 Y∗

L−ML
(w) = (−)ML(

4π

2L+ 1
)1/2 YLML

(w); (2.93)

[

YL−ML
(w) = (−)MLY∗

LML
(w)

]

. (2.94)

Consequently,

YLML
(p̂)Y∗

L′M ′
L
(p̂) =

∑

lm

(−)ML

[

(2L+ 1)(2L′ + 1)

4π(2l + 1)

]1/2

Y∗
lm(p̂)

×〈LL′ −MLM
′
L|LL′lm〉〈LL′00|LL′l0〉. (2.95)

Now Eq.(2.87) becomes

∑

lm

∑

MLM′

L

MJ

(−)ML

[

(2L+ 1)(2L′ + 1)

4π(2l + 1)

]1/2

Y∗
lm(p̂)〈LL′00|LL′l0〉

〈LSMLMS|LSJMJ〉〈L′SJMJ |L′SM ′
LM

′
S〉〈LL′ −MLM

′
L|LL′lm〉. (2.96)



38

To evaluate

∑

MLM′

L

MJ

(−)ML〈LSMLMS |LSJMJ〉〈L′SJMJ |L′SM ′
LM

′
S〉〈LL′ −MLM

′
L|LL′lm〉, (2.97)

the following relation
[

59, 60
]

is used:

∑

m2m3

m12

〈j1j2m1m2|j1j2j12m12〉〈j12j3m12m3|j12j3j′m′〉〈j2j3m2m3|j2j3j23m23〉

= (−)j1+j2+j3+j′
√

(2j12 + 1)(2j23 + 1)〈j1j23m1m23|j1j23j′m′〉
{

j1 j2 j12
j3 j′ j23

}

, (2.98)

where ~ji (i = 1, 2, 3) are three different angular momenta; ~j1+~j2 = ~j12 , ~j2+~j3 = ~j23,

~j′ = ~j1 +~j23 = ~j12 +~j3; and the quantity in the braces { } is the 6j-symbol.

With the substitutions

















j1 = S j2 = L j12 = J
j3 = L′ j′ = S j23 = l

m1 =MS m2 =ML m12 =MJ

m3 =M ′
L m′ =M ′

S m23 = m

















,

together with the symmetry relations
[

31, 59, 60
]

:

a) 〈j2j1m2m1|j2j1j12m12〉 = (−)j1+j2−j12〈j1j2m1m2|j1j2j12m12〉 (2.99)

〈LSMLMS|LSJMJ〉 = (−)S+L−J〈SLMSML|SLJMJ〉; (2.100)

b) 〈j3j′m3m
′|j3j′j12m12〉 = (−)j3−m3

(

2j12 + 1

2j′ + 1

)1/2

〈j12j3m12 −m3|j12j3j′m′〉(2.101)

〈L′SM ′
LM

′
S|L′SJMJ〉 = (−)L

′−M ′
L

(

2J + 1

2S + 1

)1/2

〈JL′MJ −M ′
L|JL′SM ′

S〉;(2.102)
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c)〈j2j3m2m3|j2j3j23m23〉 = (−)j2+j3−j23〈j2j3 −m2 −m3|j2j3j23 −m23〉 (2.103)

〈LL′ −MLM
′
L|LL′lm〉 = (−)L+L′−l〈LL′ML −M ′

L|LL′l −m〉; (2.104)

and the change −M ′
L →M ′

L, Eq.(2.97) becomes

∑

MLM′

L

MJ

(−)ML〈LSMLMS|LSJMJ〉〈L′SJMJ |L′SM ′
LM

′
S〉〈LL′ −MLM

′
L|LL′lm〉

=
∑

MLM′

L

MJ

(−)m+S−J−l
(

2J + 1

2S + 1

)1/2

〈SLMSML|SLJMJ〉

×〈JL′MJM
′
L|JL′SM ′

S〉〈LL′MLM
′
L|LL′l −m〉

= (−)m+l+S−J(−)S+L+L′+S
(

2J + 1

2S + 1

)1/2

〈SlMS −m|SlSM ′
S〉

×
[

(2J + 1)(2l + 1)
]1/2

{

S L J
L′ S l

}

, (2.105)

noting that, L ,L′ , l and m = −ML +M ′
L are integers.

The function J then reads

J σ1σ
′

1

t1t
′

1

(p, s;P ) = 4π
∑

LL′α

iL−L′

[

1− (−)L
′−S−T

]

T α
LL′(p, p; s, P )

2T + 1

2
δt1t′1

×
∑

lm

(−)m+l−J+L+L′+S

√

(2L+ 1)(2L′ + 1)

4π

2J + 1

(2S + 1)1/2

{

S L J
L′ S l

}

×Y∗
lm(p̂)〈LL′00|LL′l0〉

∑

MsM
′

s

σ2

〈12 1
2σ1σ2|12 1

2SMS〉〈12 1
2SM

′
s|12 1

2σ
′
1σ2〉

×〈SlMS −m|SlSM ′
S〉. (2.106)
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(3) Thirdly, we evaluate the sum

∑

MsM
′

s

σ2

〈12 1
2σ1σ2|12 1

2SMS〉〈12 1
2SM

′
s|12 1

2σ
′
1σ2〉〈SlMS −m|SlSM ′

S〉. (2.107)

Here again the substitutions

















j1 =
1
2 j2 =

1
2 j12 = S

j3 = S j′ = l j23 =
1
2

m1 = σ1 m2 = σ2 m12 =MS

m3 =M ′
S m′ = −m m23 = σ′

1

















are used, together with the symmetry relations:

a) 〈j12j′m12m
′|j12j′j3m3〉 = (−)j12−m12

(

2j3+1
2j′+1

)1/2
〈j12j3m12 −m3|j12j3j′m′〉, (2.108)

〈SlMS −m|SlSM ′
S〉 = (−)S−MS

(

2S + 1

2l + 1

)1/2

〈SSMS −M ′
S|SSl −m〉; (2.109)

b) 〈j23j2m23m2|j23j2j3m3〉 = (−)j2+m2

(

2j3+1
2j23+1

)

1/2〈j2j3 −m2m3|j2j3j23m23〉; (2.110)

c) 〈j2j3 −m2m3|j2j3j23 +m23〉 = (−)j2+j3−j23〈j2j3 −m2 −m3|j2j3j23 −m23〉. (2.111)

From (b) and (c):

〈12 1
2σ

′
1σ2|12 1

2SM
′
S〉 = (−)

1
2+σ2

(

2S + 1

2

)1/2

〈12S − σ2M
′
S|12S 1

2σ
′
1〉

= (−)
1
2+σ2+S

(

2S + 1

2

)1/2

〈12Sσ2 −M ′
S|12S 1

2 − σ′
1〉. (2.112)
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The sum (2.107) then becomes

∑

MsM
′

s

σ2

〈12 1
2σ1σ2|12 1

2SMS〉〈12 1
2SM

′
s|12 1

2σ
′
1σ2〉〈SlMS −m|SlSM ′

S〉

=
∑

MsM
′

s

σ2

(−)S−MS+
1
2+σ2+S

(

2S + 1

2

)1/2 (2S + 1

2l + 1

)1/2

〈12 1
2σ1σ2|12 1

2SMS〉

×〈SSMS −M ′
S|SSl −m〉〈12Sσ2 −M ′

S|12S 1
2 − σ′

1〉. (2.113)

With the change of dummies:

−M ′
S →M ′

S;

(σ2 −MS) → −σ1,

where

σ1 + σ2 =MS,

we obtain

∑

MsM
′

s

σ2

〈12 1
2σ1σ2|12 1

2SMS〉〈12 1
2SM

′
s|12 1

2σ
′
1σ2〉〈SlMS −m|SlSM ′

S〉 =

(−)
1
2−σ1(−)1+S+l

[

(2S + 1)2/3

(2l + 1)1/2

]{

1/2 1/2 S
S l 1/2

}

〈12 1
2σ1 − σ′

1|12 1
2 l −m〉; (2.114)

so that

J σ1σ
′

1

t1t
′

1

(p, s;P ) = 4π
∑

LL′α

iL−L′

[

1− (−)L
′+S+T

]

T α
LL′(p, p; s, P )

2T + 1

2
δt1t′1

×
∑

lm

[

(2L+ 1)(2L′ + 1)

4π(2l + 1)

]1/2

(2J + 1) (2S + 1) 〈LL′00|LL′l0〉(−)1+m+L+L′−J
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Y∗
lm(p̂)〈12 1

2σ1 − σ′
1|12 1

2 l −m〉
{

1/2 1/2 S
S l 1/2

}{

S L J
L′ S l

}

(−)1/2−σ1 .(2.115)

Since the 6j–symbols must add vectorialy in the following ways:

then

i)

{

S L J
L′ S l

}

requires
~S + ~S = ~l;
~L′ + ~L = ~l,

which implies that l = (0, 1, 2) since S = (0, 1); and

l ≡ even ≡ (0, 2) since L+ L′ ≡ even to conserve parity of the state;

ii)

{

1/2 1/2 S
S l 1/2

}

requires ~1
2 +

~1
2 = ~l,

which implies that l = 0 , 1 only; and in order to be even, l = 0 and m = 0; i.e.,

L = L′.

Therefore,

J σ1σ
′

1

t1t
′

1

(p, s;P ) = 4π
∑

Lα

T α
LL(p, p; s, P )





1− (−)L+S+T







2T + 1

2
δt1t′1(2L+ 1)

×(2J + 1)(2S + 1)〈LL00|LL00〉 1√
4π

Y∗
00(p̂)(−)1−J+L+L

×
{

S L J
L S 0

}{

1/2 1/2 S
S 0 1/2

}

(−)1/2−σ1〈12 1
2σ1 − σ′

1|12 1
200〉. (2.116)
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From the relations
[

50, 59, 60
]

:

i) Y∗
00(p̂) =

1√
4π

; (2.117)

ii)〈j1j2m1m2|j1j2jm〉 = (−)j2−j1−m(2j + 1)1/2
(

j1 j2 j
m1 m2 −m

)

; (2.118)

iii)

(

j j 0
m −m 0

)

= (−)j−m 1√
2j + 1

; (2.119)

iv)

{

a b c
0 c b

}

= (−)a+b+c

[

1

(2b+ 1)(2c+ 1)

]1/2

, (2.120)

we get

〈LL00|LL00〉 =
(

L L 0
0 0 0

)

= (−)L
1√

2L+ 1
; (2.121)

〈12 1
2σ1 − σ′

1|12 1
200〉 =

(

1/2 1/2 0
σ1 −σ′

1 0

)

= (−)1/2−σ1
1√
2
δσ1σ′

1
. (2.122)

Since the 6j–symbols are invariant under column interchange, we can write:

{

S L J
L S 0

}

=

{

J S L
0 L S

}

= (−)J+S+L

[

1

(2L+ 1)(2S + 1)

]1/2

; (2.123)

{

1/2 1/2 S
1/2 0 1/2

}

=

{

1/2 1/2 S
0 S 1/2

}

= (−)1+S

[

1

2(2S + 1)

]1/2

. (2.124)
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Hence,

J σ1σ
′

1

t1t
′

1

(p, s, P ) = 4π
∑

Lα

T α
LL(p, p; s, P )





1− (−)L+S+T





 δσ1σ′
1
δt1t′1

×(2T + 1)(2J + 1)(2L+ 1)(2S + 1)

[

1

(2L+ 1)(2S + 1)

]1/2 [
1

2(2S + 1)

]1/2

× 1√
2L+ 1

(
1

4π
)
[

1

2

]1/2

(−)1/2−σ1(−)1/2−σ1 . (2.125)

Noting that (−)1+2σ1 = 1 , σ1 = ±1/2, we finally obtain

J σ1σ
′

1

t1t
′

1

(p, s, P )

=
∑

Lα

(2T + 1)(2J + 1)

4
T α
LL(p, p; s, P )





1− (−)L+S+T





 δσ1σ′
1
δt1t′1 . (2.126)

The above matrix element, which is diagonal in both spin and isospin spaces,

is applicable to the general case, the two–component nuclear matter, where both

isospin states T = 0, 1 must be included. Further, in the two–nucleon channels

where the potential is spin–isospin independent (uncoupled channels), V has a cen-

tral component only and Eq.(2.29) implies:

V α
LL = VL. (2.127)
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Consequently,

T α
LL → TL. (2.128)

In this case, the factor





1− (−)L+S+T





 =

{

2 L+ S + T = odd;
0 otherwise;

(2.129)

which reflects the fact that the Pauli exclusion principle restricts (L+S +T ) to be

an odd integer, such that the two–nucleon state is asymmetric under exchange of

particle coordinates. Here we have two possibilities:

i) L ≡ an odd integer; therefore T + S must be even, such that

T = 1 , S = 1 J = L− 1, L, L+ 1;
T = 0 , S = 0 J = L;

}

(2.130)

ii) L ≡ an even integer; therefore T + S must be odd, such that

T = 0 , S = 1 J = L− 1, L, L+ 1;
T = 1 , S = 0 J = L.

}

(2.131)

All these four combinations (for uncoupled channels) are needed in nuclear matter.

Thus, in this case, we have

J σ1σ
′

1

t1t
′

1

(p, s, P )

=
∑

JSTL

(2J + 1)(2T + 1)

4
T JST
LL (p, p; s, P )





1− (−)L+S+T





 δσ1σ′
1
δt1t′1
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=
∑

L odd

TL(p, p; s, P ) 2

[

(2L+ 3 + 2L+ 1 + 2L− 1) 3

4
+

(2L+ 1)

4

]

+
∑

L even

TL(p, p; s, P ) 2

[

(2L+ 3 + 2L+ 1 + 2L− 1)

4
+

(2L+ 1) 3

4

]

=
∑

L odd

5(2L+ 1) TL(p, p; s, P ) +
∑

L even

3(2L+ 1) TL(p, p; s, P )

=
∑

L





 4− (−)L





 (2L+ 1) TL(p, p; s, P ). (2.132)

Conversely, only the T = 1,MT = −1 term is required in neutron matter

Tn = 1
2
, tn = −1

2
. In this case, it is obvious that the sum in Eq.(2.86) is

∑

MT t2

〈12 1
2t1t2|12 1

2TMT 〉〈12 1
2TMT |12 1

2t
′
1t2〉

= 〈12 1
2 − 1

2 − 1
2 |12 1

21− 1〉〈12 1
2 − 1

2 − 1
2 |12 1

21− 1〉

= 1. (2.133)

This follows from the fact that the contribution from both isospin states in Eq.(2.127)

is restricted to one, since only one state is available.

Then for neutron matter:

J σ1σ
′

1

t1t
′

1

(p, s, P ) =
∑

LSJ






1− (−)L+S+1







(2J + 1)

2
T SJ1
LL (p, p; s, P ). (2.134)
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Only two combinations are needed – namely,

L = odd T = 1 , S = 1 J = L− 1, L, L+ 1;
L = even T = 1 , S = 0 J = L;

}

(2.135)

and Eq.(2.129) becomes(for uncoupled channels)

J σ1σ
′

1

t1t
′

1

(p, s, P )

=
∑

LSJ

(2J + 1)

2





1− (−)L+S+1





T SJ1
LL (p, p; s, P )

=
∑

L odd

2
(6L+ 3)

2
TL(p, p; s, P ) +

∑

L odd

TL(p, p; s, P )2
(2L+ 1)

2

=
∑

L odd

3(2L+ 1) TL(p, p; s, P ) +
∑

L even

(2L+ 1) TL(p, p; s, P )

=
∑

L





 2− (−)L





 (2L+ 1) TL(p, p; s, P ). (2.136)

We turn to the other fermionic systems considered in this work – namely,

pure liquid 3He in Vycor glass and dilute 3He–He II mixtures. These interact via a

state–independent, central potential. Besides the SJT independence, the isotopic

concept is inapplicable here. In this case, the factor
[

1− (−)L+S+T
]

, which results

originally from the combinations (−)L, (−)1−T and (−)1−S in Eq.(2.84), takes the

form:





1− (−)L+S+1





 . (2.137)
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L+ S + 1 must be odd; so that

L = odd S = 1 J = L− 1, L, L+ 1;
L = even S = 0 J = L.

}

(2.138)

Therefore,

J σ1σ
′

1

t1t
′

1

(p, s, P )

=
∑

L odd

3(2L+ 1) TL(p, p; s, P ) +
∑

L even

(2L+ 1) TL(p, p; s, P )

=
∑

L






2− (−)L





 (2L+ 1) TL(p, p; s, P ). (2.139)

One last remark is in order here concerning dilute 3He–He II mixtures. Be-

low the Fermi degeneracy temperature, where the quasiparticle picture is valid

and where the Fermi-type excitations (3He quasiparticles) dominate the Bose-type

excitations (phonons and rotons) , the effective interaction between two 3He quasi-

particles, assumed to be instantaneously fixed so that retardation effects may be

neglected, will be local with the following features
[

29, 42
]

:

Veff (r) ≈
{

V (r), r < rc;
α2V (r), r > 2rc,

(2.140)

where rc is some “effective” core radius ≈ 2.5Å, and α is the so-called volume

differential coefficient ≈0.3; it is just the relative fraction by which the volume

occupied by the 3He atom is larger than that of 4He, as a result of the greater

zero-point energy of the 3He, by virtue of its smaller mass.
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A more accurate form for this interaction has been derived in configuration

space
[

29, 62
]

. In addition, the important properties of the interaction have been

extensively discussed with especial emphasis on its binding properties
[

63
]

. For

the present purpose, however, the main point is that the relevant T–matrix in this

case is defined as that obtained between two 3He–quasiparticles; i.e., with α ≈ 0.3,

minus that obtained with two 4 He atoms instead of 3He atoms; i.e, with α = 0 in

the calculations. This definition follows from our interest in the properties of the

3He dilute mixture resulting solely from the presence of the 3He atoms (regarded

as impurities)
[

42, 63
]

.

2.4 Orthogonality and Completeness of the T–

matrices

2.4.1 Orthogonality

In operator notation, in the center–of–mass frame of the interacting pair, the

GMF T–matrix equation is given by:

TG(s, ~P ) = u − u
[

go(s)Q(~P )− go(s)
†Q(~P )

]

TG(s, ~P ). (2.141)

It is convenient to define an equivalent T–matrix, TA(z, ~P ), which is analytic in

the entire positive imaginary (upper) s-plane:

TA(s, ~P ) = u − u
[

Q(~P )−Q(~P )
]

go(s)T
A(s, ~P ). (2.142)
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On switching off the hole–hole interaction in Eq.(2.142) the Brueckner–Gammel

T–matrix is obtained:

TB(s, ~P ) = u − u Q(~P )go(s) TB(s, ~P )

= u − TB(s, ~P ) Q(~P )go(s) u. (2.143)

Further, in the absence of the many–body medium, Q = 1 and Q = 0; so that

(2.136) reduces at once to the Lippmann–Schwinger T–matrix:

t = u − ugot

= u − tgou. (2.144)

The integral equation corresponding to Eq.(2.142) has already been obtained using

the operator multiplication in the relative–momentum representation:

〈~p|AB|~p′〉 =
∫ d~k

(2π)3
〈~p|A|~k〉〈~k|B|~p′〉; (2.145)

and noting that

T (~p, ~p′; s, ~P ) = 〈~p|T (s, ~P )|~p′〉; (2.146)

〈~k|Q(~P )|~k′〉 = (2π)3δ(~k − ~k′)θ(|~k + ~P | − kF )θ(|~k − ~P | − kF )

= (2π)3δ(~k − ~k′)Q(~k, ~P ); (2.147)

〈~k|Q(~P )|~k′〉 = (2π)3δ(~k − ~k′)θ(kF − |~k + ~P |)θ(kF − |~k − ~P |)
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= (2π)3δ(~k − ~k′)Q(~k, ~P ); (2.148)

〈~k|go(s)|~k′〉 = (2π)3δ(~k − ~k′)go(~k, s) = (2π)3δ(~k − ~k′)
[

k2 − s− iη
]−1

; (2.149)

s = 2mPo − P 2 ≡ 2Po − P 2. (2.150)

Take

z = s+ iη.

Then

〈~k|go(z)|~k′〉 = (2π)3δ(~k − ~k′)go(~k, z) = (2π)3δ(~k − ~k′)
[

k2 − z
]−1

. (2.151)

Let

Γ(z, ~P ) ≡



































Q(~P )go(z)−Q(~P )go(z)
† (G)

[

Q(~P )−Q(~P )
]

go(z) (A)

Q(~P )go(z) (B)

(2.152)

and define the half–shell T–matrix:

F (~p, ~p′; ~P ) ≡ 〈~p|T (p′2 + iη; ~P |~p′〉 = T (~p, ~p′; p′2 + iη, ~P ). (2.153)

Now,

T ∗(z, ~P ) = u − u Γ(z∗, ~P ) T (z∗, ~P )

= u − T (z∗, ~P ) Γ(z∗, ~P ) u; (2.154)
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T †(z, ~P ) = u† −
[

u Γ(z, ~P ) T (z, ~P )
]†

= u − T †(z, ~P ) Γ†(z, ~P ) u. (2.155)

Since

Γ†(z, ~P ) = Γ(z∗, ~P ); (2.156)

T †(z, ~P ) = T ∗(z, ~P ) = T (z∗, ~P ), (2.157)

we have

T †(~p, ~p′; p′2 + iη, ~P ) = 〈~p|T †(p′2 + iη; ~P |~p′〉 = 〈~p|F †(~P )|~p′〉

= 〈~p′|T ∗(p′2 + iη; ~P |~p〉 = T ∗(~p′, ~p; p′2 + iη, ~P )

= T (~p′, ~p; p′2 − iη, ~P ) = F †(~p, ~p′; ~P ). (2.158)

Let us now define a generalized wave operator W:

T (z, ~P ) ≡ u W (z, ~P ), (2.159)

W (z, ~P ) ≡ 1− Γ(z, ~P )T (z, ~P ), (2.160)

such that

〈~p|W (z, ~P )|~p′〉 = 〈~p|1|~p′〉 −
∫ d~k

(2π)3
〈~p|Γ(z, ~P )|~k〉〈~k|T (z, ~P )|~p′〉; (2.161)

〈~p|Γ(z, ~P )|~k〉 = 〈~p|Q(~P )go(z)−Q(~P )g†o(z)|~k〉. (2.162)
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But

〈~p|Q(~P )go(z)|~k〉 =
∫ d~q

(2π)3
〈~p|Q(~P )|~q〉〈~q|go(z)|~k〉

= (2π)3
∫

d~q Q(~p, ~P )δ(~p− ~q) go(~q, z)δ(~q − ~k)

= (2π)3Q(~p, ~P ) go(~k, z)δ(~p− ~k); (2.163)

and

〈~p|Q(~P )g†o(z)|~k〉 = (2π)3Q(~p, ~P ) g†o(
~k, z)δ(~p− ~k). (2.164)

Thus,

〈~p|Γ(z, ~P )|~k〉 = (2π)3δ(~p− ~k)
[

Q(~p, ~P ) go(~k, z)−Q(~p, ~P )g†o(
~k, z)

]

= (2π)3δ(~p− ~k) Γ(~p; z, ~P ). (2.165)

Therefore, the full–off shell wave operator is given by

W (~p, ~p′; z, ~P ) = (2π)3δ(~p− ~p′)−
∫

d~kδ(~p− ~k)
[

Q(~p, ~P ) go(~k, z)

× Q(~p, ~P )g†o(
~k, z)

]

T (~k, ~p′; z, ~P )

= (2π)3δ(~p− ~p′) − Γ(~p; z; ~P ) T (~p, ~p′; z, ~P ). (2.166)

In the scattering region,(s > 0: the positive energy-solution), the particles
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interacting by a two–body potential are scattered outside the range of the potential,

giving scattering solutions in the many–body medium which behave asymptotically

as free states – of outgoing waves for particles and incoming waves for holes. The

corresponding eigenstates |Ψ~k(
~P )〉 in the relative–momentum representation are

related to the half–shell value of the wave operator as follows:

〈~p|Ψ~p′(
~P )〉 = Ψ~p′(~p,

~P )

= 〈~p|W (p′2 + iη, ~P )|~p′〉 = W (~p, ~p′; p′2 + iη, ~P )

= 〈~p|χ(p′2, ~P )|~p′〉 = χ(~p, ~p′; ~P );

= (2π)3δ(~p− ~p′)− Γ(~p; p′2 + iη; ~P ) F (~p, ~p′; ~P ). (2.167)

Now, the orthonormality condition is written as

〈Ψ~k(
~P )|Ψ~k′(

~P )〉 =
∫ d~p

(2π)3
〈Ψ~k(

~P )|~p〉〈~p|Ψ~k′(
~P )〉

=
∫ d~p

(2π)3
χ†(~p,~k; ~P ) χ(~p, ~k′; ~P ). (2.168)

Substituting for χ from Eq.(2.168), we obtain

∫ d~p

(2π)3
χ†(~p,~k; ~P ) χ(~p, ~k′; ~P )

=
∫ d~p

(2π)3





 (2π)3δ(~p− ~k)− Γ(~p; k2 + iη; ~P )F (~p,~k; ~P )







†
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×





 (2π)3δ(~p− ~k′) − Γ(~p; k′2 + iη; ~P )F (~p, ~k′; ~P )







= (2π)3δ(~k − ~k′)−
∫

d~p





 δ(~p− ~k′) F †(~p,~k; ~P ) Γ†(~p; k2 + iη; ~P )

+δ(~p− ~k) Γ(~p; k′2 + iη; ~P ) F (~p, ~k′; ~P )





+
∫ d~p

(2π)3
F †(~p,~k; ~P )×

Γ†(~p; k2 + iη; ~P ) Γ(~p; k′2 + iη; ~P )F (~p, ~k′; ~P ); (2.169)

or

〈Ψ~k(
~P )|Ψ~k′(

~P )〉 =

(2π)3δ(~k − ~k′)−





 F †(~k′, ~k; ~P )Γ†(~k′; k2 + iη; ~P ) + Γ(~k; k′2 + iη; ~P )F (~k, ~k′; ~P )







+
∫ d~p

(2π)3
F †(~p,~k; ~P ) Γ†(~p; k2 + iη; ~P ) Γ(~p; k′2 + iη; ~P ) F (~p, ~k′; ~P ). (2.170)

But

Γ†(~q; z; ~P ) = Γ(~q; z∗; ~P ).

Therefore, we need to evaluate integrals of the form:

∫ d~p

(2π)3
F †(~p,~k; ~P )





 Γ(~p; k2 − iη; ~P ) Γ(~p; k′2 + iη; ~P )





F (~p, ~k′; ~P ). (2.171)
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Now, u = u†. Consequently, a generalized unitarity of the T–matrix can be ex-

pressed in the following way:

T (z′, ~P )− T (z, ~P ) =
(

u− T (z′, ~P )Γ(z′, ~P ) u
)

−
(

u− u Γ(z, ~P )T (z, ~P )
)

= −T (z′, ~P )Γ(z′, ~P ) u+ u Γ(z, ~P )T (z, ~P ). (2.172)

But

u = T (z, ~P ) + u Γ(z, ~P ) T (z, ~P );

so that

T (z′, ~P )− T (z, ~P ) =

−T (z′, ~P )Γ(z′, ~P )T (z, ~P ) − T (z′, ~P )Γ(z′, ~P ) u Γ(z, ~P )T (z, ~P )

+T (z′, ~P )Γ(z, ~P )T (z, ~P ) + T (z′, ~P )Γ(z′, ~P ) u Γ(z, ~P )T (z, ~P )

= T (z′, ~P )





 Γ(z, ~P ) − Γ(z′, ~P )





T (z, ~P ). (2.173)

On using Eq. (2.146), this may be written as

T (~p, ~p′; z′; ~P )− T (~p, ~p′; z; ~P ) =

∫ d~q

(2π)3
T (~p, ~q; z′; ~P )





Γ(~q; z; ~P )− Γ(~q; z′; ~P )





T (~q, ~p′; z; ~P ). (2.174)

With

z′ = (p2 + iη)∗ = p2 − iη and z = p′2 + iη, (2.175)
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T (~p, ~p′; z′; ~P ) = T ∗(~p′, ~p; p2 + iη; ~P ) = F ∗(~p′, ~p; ~P ) = F †(~p′, ~p; ~P ); (2.176)

T (~p, ~p′; z; ~P ) = T (~p, ~p′; p′2 + iη; ~P ) = F (~p, ~p′; ~P ); (2.177)

so that

F †(~p′, ~p; ~P )− F (~p; ~p′; ~P ) =

1

(2π)3

∫

d~q F †(~q, ~p; ~P )





Γ(~q; p′2 + iη; ~P )− Γ(~q; p2 − iη; ~P )





F (~q, ~p′; ~P ). (2.178)

For both (B) and (A), Γ(z, ~P ) is of the form A(~P )g(z). In these two cases, the term

in square brackets is equal to:

A(~P )

[

1

q2 − p′2 − iη
− 1

q2 − p2 + iη

]

= A(~P )
1

q2 − p′2 − iη

1

q2 − p2 + iη
(p′2 − p2 + iη′)

= (p′2 − p2 + iη) Γ(~q; p′2 + iη; ~P ) Γ(~q; p2 − iη; ~P ). (2.179)

For (B) and (A):

Γ(~q; p′2 + iη; ~P ) − Γ(~q; p2 − iη; ~P ) =

(p′2 − p2 + iη) Γ(~q; p′2 + iη; ~P ) Γ(~q; p2 − iη; ~P ). (2.180)

It is noted that:

i) η′ −→ η ≡ an infinitesimal number;
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ii) strictly, the rhs of the above equation(s) should be divided by A(~P ) ∼ O(1) ... .

For (G):

Γ(~q; p′2 + iη; ~P ) − Γ(~q; p2 − iη; ~P ) =

Q(~P )

[

1

q2 − p′2 − iη
− 1

q2 − p2 + iη

]

− Q(~P )

[

1

q2 − p′2 + iη
− 1

q2 − p2 − iη

]

= (p′2 − p2 + iη)

(

1

q2 − p′2 − iη

)(

1

q2 − p2 + iη

)

Q(~P ) − Q(~P )(p′2 − p2 − iη)

×
(

1

q2 − p2 − iη

)(

1

q2 − p′2 + iη

)

= (p′2 − p2 + iη)





Q(~P )

(q2 − p′2 − iη)(q2 − p2 + iη)
+

Q(~P )

(q2 − p2 − iη)(q2 − p′2 + iη)





−Q(~P )
[

(p′2 − p2 + iη) + (p′2 − p2 − iη)

(q2 − p2 − iη)(q2 − p′2 + iη)

]

= (p′2 − p2 + iη)Γ(~q; p′2 + iη; ~P )Γ(~q; p2 − iη; ~P )− 2(p′2 − p2)Q(~P )

(q2 − p2 − iη)(q2 − p′2 + iη)
. (2.181)

It follows that, for (G),

∫ d~p

(2π)3
F †(~p,~k; ~P ) Γ(~p; k2 − iη; ~P ) Γ(~p; k′2 + iη; ~P ) F (~p, ~k′; ~P ) =

(

1

k′2 − k2 + iη

)

∫ d~p

(2π)3
F †(~p,~k; ~P )





Γ(~p; k′2 + iη; ~P ) − Γ(~p; k2 − iη; ~P )





F (~p, ~k′; ~P )

+
2(k′2 − k2)

k′2 − k2 + iη

∫ d~p

(2π)3
F †(~p,~k; ~P )Q(~P )F (~p, ~k′; ~P )

(p2 − k2 − iη)(p2 − k′2 + iη)

=
F †(~k′, ~k; ~P )− F (~k, ~k′; ~P )

k′2 − k2 + iη
+

2(k′2 − k2)

k′2 − k2 + iη

∫ d~p

(2π)3
F †(~p,~k; ~P )Q(~P )F (~p, ~k′; ~P )

(p2 − k2 − iη)(p2 − k′2 + iη)
.

(2.182)
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To sum up, then,

〈Ψ~k(
~P )|Ψ~k′(

~P )〉 = (2π)3δ(~k − ~k′) +
F †(~k′, ~k; ~P )− F (~k, ~k′; ~P )

k′2 − k2 + iη

−





 F †(~k′, ~k; ~P )Γ†(~k′; k2 + iη; ~P ) + Γ(~k; k′2 + iη; ~P )F (~k, ~k′; ~P )







+
2(k′2 − k2)

k′2 − k2 + iη

∫ d~p

(2π)3
F †(~p,~k; ~P )Q(~P )F (~p, ~k′; ~P )

(p2 − k2 − iη)(p2 − k′2 + iη)
. (2.183)

Clearly, the last term on the rhs of this equation reduces to zero, except for (G).
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2.4.2 Completeness

We use contour Γ defined as shown in Fig.(3):

Fig.3: The contour used in the manipulations below.

Let us also define

Fn(z) ≡
{

T (~p, ~p′; z; ~P ) : n = 0;
(z − p′2 − iη)−1 Fo(z) : n = 1,

(2.184)

∀ z is “ interior” to Γ :

Fn(z) =
1

2πi

∮

Γ
dz′

Fn(z
′)

z′ − z
. (2.185)

For n=0:

T (~p, ~p′; z; ~P ) =
1

2πi

∮

Γ
dz′

T (~p, ~p′; z′; ~P )

z′ − z
. (2.186)
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We assume bound states of the form:

lim
z→Sn

T (~p, ~p′; z; ~P ) =
Rn(~p, ~p′; ~P )

z − Sn(~P )
, (2.187)

where Sn is real (< 0).

Further, we recall that

lim
|z|→∞

T (~p, ~p′; z; ~P ) −→ u(~p− ~p′). (2.188)

Then, the rhs of Eq.(2.187) becomes:

1

2πi

∑

n

∮

Cn

dz′n
T (~p, ~p′; z′n; ~P )

z′n − z
+

1

2πi

∫

C
dz′

T (~p, ~p′; z′; ~P )

z′ − z

+
1

2πi

∫ ∞

0
ds′





T (~p, ~p′; s′ + iη; ~P )

s′ + iη − z
− T (~p, ~p′; s′ − iη; ~P )

s′ − iη − z





= −
∑

n

Rn(~p, ~p′; ~P )

Sn − z
+ u(~p− ~p′)

+
1

2πi

∫ ∞

0
ds′

T (~p, ~p′; s′ + iη; ~P ) − T (~p, ~p′; s′ − iη; ~P )

s′ − z
, (2.189)

z being interior to Γ; so that s′ − z is not singular.

Now,

T (~p′, ~p; s′ − iη; ~P ) = T †(~p′, ~p; s′ + iη; ~P ); (2.190)

T (~p, ~p′; s′ + iη; ~P ) − T †(~p′, ~p; s′ + iη; ~P ) = 2πi
∫ d3q

(2π)3

×T (~p, ~q; s+ iη; ~P )
[

Q(~q, ~P ) +Q(~q, ~P )
]

T †(~p′, ~q; s+ iη; ~P ) δ(q2 − s). (2.191)
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Therefore,

1

2πi

∫ ∞

0
ds′

T (~p, ~p′; s′ + iη; ~P ) − T †(~p′, ~p; s′ + iη; ~P )

s′ − z
=

1

2πi

∫ ∞

0
ds′

∫ d3q

(2π)3
(−2πi)

×
T (~p, ~q; s′ + iη; ~P )

[

Q(~q, ~P ) +Q(~q, ~P )
]

T †(~p′, ~q; s′ + iη; ~P )

s′ − z
δ(s− q2)

=
∫ d3q

(2π)3

T (~p, ~q; q2 + iη; ~P )
[

Q(~q, ~P ) +Q(~q, ~P )
]

T †(~p′, ~q; q2 + iη; ~P )

q2 − z

=
∫ d3q

(2π)3

F (~p, ~q; ~P )
[

Q(~q, ~P ) +Q(~q, ~P )
]

F †(~q, ~p′; ~P )

q2 − z
. (2.192)

Thus, for (G),

T (~p, ~p′; z; ~P ) = u(~p− ~p′) −
∑

n

Rn(~p, ~p′; ~P )

Sn − z

+
∫ d3q

(2π)3

F (~p, ~q; ~P )
[

Q(~q, ~P ) +Q(~q, ~P )
]

F †(~p′, ~q; ~P )

q2 − z
. (2.193)

For (B), Q = 0;

For (A), Q −→ Q−Q.

This is for n=0; but for n=1:

T (~p, ~p′; z; ~P )

z − p′2 − iη
=

1

2πi

∫

Γ
dz′

T (~p, ~p′; z′; ~P )

(z′ − z)(z′ − p′2 − iη)
=

−
∑

n

Rn(~p, ~p′; ~P )

(Sn − z)(Sn − p′2 − iη)
+

1

2πi

∫ ∞

0
ds′





T (~p, ~p′; s′ + iη; ~P )

s′ − p′2 − iη
− T (~p, ~p′; s′ − iη; ~P )

s′ − p′2 + iη





×
(

1

s′ − z

)

+
F (~p, ~q; ~P )

z − p′2 − iη

= −
∑

n

Rn(~p, ~p′; ~P )

(Sn − z)(Sn − p′2 − iη)
+
∫ d3q

(2π)3

F (~p, ~q; ~P )
[

Q(~q, ~P )−Q(~q, ~P )
]

F †(~p′, ~q; ~P )

(q2 − z)(q2 − p′2 − iη)



63

+
F (~p, ~q; ~P )

z − p′2 − iη
. (2.194)

It follows that:

T (~p, ~p′; z; ~P )− F (~p, ~p′, ~P )

z − p′2 − iη
= −

∑

n

Rn(~p, ~p′; ~P )

(Sn − z)(Sn − p′2 − iη)

+
∫ d3q

(2π)3

F (~p, ~q; ~P )
[

Q(~q, ~P ) +Q(~q, ~P )
]

F †(~p′, ~q; ~P )

(q2 − z)(q2 − p′2 − iη)
. (2.195)

2.5 Conclusion

The basic results of this Chapter are summarized in Eqs.(2.54, 2.76, 2.127,

2.184 and 2.196).

The first of these gives the explicit expression for the effective interaction which

constitutes the central theme of this Thesis.

Equation (2.76) represents the basic application of this effective interaction, as

embodied by the proper self–energy, from which the bulk and other properties of

the system can be obtained according to standard recipes
[

1, 4
]

.

For convenience, the problem has been formulated such that the general case

is derived first [Eq.(2.127)]; whereas the other simpler (purely central) cases are

obtained as especial cases at once by simply switching off the state–dependence.
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Finally, Eqs.(2.184 and 2.196) can be considered as a sort of sum rules imposed

on the effective interaction, as required by the underlying physics.
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CHAPTER THREE

SOME SOUND PHENOMENA IN DILUTE

NEUTRAL FERMI SYSTEMS



Chapter 3

Some Sound Phenomena in Dilute
Neutral Fermi Systems

The purpose of this Chapter is to explore some aspects concerning the propaga-

tion of sound in dilute neutral Fermi systems. The subject will not be explored

at length; rather it will be treated within a self-consistent framework that aims at

a new understanding of the various sound modes and related phenomena in these

systems. In Section 3.1, we shall present a general look at these modes and how

they are related to such apparently disparate quantities as the static structure fac-

tor and the acoustic impedance, among others. In Section 3.2, we shall attempt

to establish a connection between the macroscopic behavior of the system and its

microscopic properties. The Chapter is concluded with a summary and discussion

(Section 3.3).

66
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3.1 Sound Phenomena in Fermi Systems

The significance of sound propagation in a many–body quantum system stems from

the fact that it is intimately related to the excitation spectrum of the system

[

6, 38, 64− 68
]

. This topic remains one of current interest in view of its impli-

cations as a potent probe of the properties of the system. Not only does it supply

us with information about both the static and dynamic behaviour of the system

[

46, 67, 68− 70
]

; but also it provides an indirect method to measure the correla-

tions among its constituents and their distribution
[

71, 72
]

. Normal sound modes,

as well as spin and isospin sound modes, are collective quantal modes of vibrations

which are common features of Fermi systems
[

65, 73
]

. In the normal case, the total

particle density varies with space and time periodically as a consequence of an ex-

ternal periodic field or internal fluctuation of the system (free oscillations), when an

inhomogeneous particle distribution function exists, measured by the departure of

the Fermi surface from its equilibrium value. Spin and isospin waves are collective

modes of oscillations which represent a second kind of possible excitations for the

Fermi system in terms of the associated density fluctuations, which exist even in

the absence of an external perturbation
[

45, 68
]

.

At zero temperature, T=0, the system is in its ground (vacuum) state. In this

case collisions between excited quasiparticles play no role, thanks to the exclusion

principle since no empty states exist. One is, therefore, in the collisionless regime

where the mean time ν−1 is very large compared to the period of oscillation of the

mode w−1. The restoring force for these oscillations, in this regime, is the averaged
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self-consistent field of all quasiparticles which involves the coherent motion of the

system as a whole in its own self-consistent field, governed by the global interaction

between quasiparticles in response to the induced density fluctuations. In this

regime, a well–defined mode of sound propagation, called by Landau zero sound,

exists
[

6, 64, 74, 75
]

.

On the other hand, as T is raised, a number of the quasiparticles are excited

within kBT of the Fermi surface. Collisions become sufficiently frequent, so that

the mean free path is small and the relaxation collision time is short compared to

the period of oscillation; i.e,

w ≪ ν. (3.1)

In this hydrodynamic (collision–dominated) regime, the system will sustain

another mode of collective density oscillation – namely, the hydrodynamic ordinary

or first sound. The collisions act to bring a state of local thermodynamic equilibrium

– a necessary condition that provides the restoring force for the system to construct

a well defined first sound; at the same time these collisions act to disrupt thoroughly

a zero-sound mode
[

45, 64, 74
]

.

At low T, a propitious starting point is Landau’s transport equation that gov-

erns the flow of quasiparticles in the system
[

6
]

:

∂δn~k(~r, t)

∂t
+ ~v~k.▽~r



δn~k(~r, t)−
∂no

~k

∂ǫ~k

∑

~k′ ~σ′

f(~k~σ,~k′~σ′)δn~k′(~r, t)





+~F~k.~v~k
∂no

~k

∂ǫ~k
= I(δn~k(~r, t)). (3.2)
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Here δn~k(~r, t) = no
~k
(~r, t)−n~k(~r, t) ,which measures the departure of the quasiparticle–

distribution function in the state ~k~σ, n~k(~r, t), from its ground–state (equilibrium)

value, no
~k
(~r, t), as a result of the density fluctuations due to an applied external

field, or to an internal field generated when the average force on the quasiparticle

due to the others is not zero, the latter field corresponding to the free oscillations

in the system and can be approximated by a polarization potential
[

68
]

; ~v~k is the

velocity of the quasiparticle of wavevector ~k; f(~k~σ,~k′~σ′) is the effective interac-

tion, called Landau’s f–function, between two–excited quasiparticles; actually it

is the quasiparticle–quasihole (qp–qh) interaction in the long–wavelength limit, in

momentum space, as we shall see in Section 3.2
[

76, 77
]

; F~k is the force felt by the

quasiparticle; in fact, it is what the bare particle feels, under the application of the

external potential; and I(δn~k) is a collision integral taking into account the change

of δn~k due to collisions. Consider the response of the system to a scalar potential

that is periodic in space and time:

φ(~r, t) = φ(~q, w)ei(~q.~r−wt), (3.3)

which produces a force

~F~k = −i~qφ(~q, w)ei(~q.~r−wt). (3.4)

The system will respond at the same wavevector and frequency; therefore,

δn~k(~r, t) = δn~k(~q, w)e
i(~q.~r−w), (3.5)
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where φ(~q, w) and δn~k(~q, w) are the Fourier components of the φ(~r, t) and δn~k(~r, t),

respectively.

Take a given Fourier component of Eq.(3.2):

(~q.~v~k − w)δn~k − ~q.~v~k
∂no

~k

∂ǫ~k

∑

~k′~σ

f(~k~σ,~k′~σ′)δn~k′ = ~q.~v~k φ(~q, w)
∂no

~k

∂ǫ~k
. (3.6)

At low T, both ~k and ~k′ are at the Fermi surface where the quasiparticle concept

is well–defined. Hence, the f–function is only a function of the angle between ~k and

~k′ and can be expanded in Legendre polynomials. The variation δn~k is determined

by its value at the Fermi surface in the direction of ~k. We may write, suppressing

the spin dependence of f for the moment
[

73
]

,

f(~k,~k′) =
∑

L

fLPL(k̂.k̂
′) =

∑

LML

(

4π

2L+ 1

)

fLYLML
(k̂)YLML

(k̂′);

δn~k(~q, w) = −V(k̂, ~q, w)φ(~q, w)
∂no

~k

∂ǫ~k
. (3.7)

The function V(k̂, ~q, w) measures the displacement of the Fermi surface in the

direction of k̂. Taking ~q as the polar axis, and letting

~q.~v~k
qvF

= q̂.k̂ = cos θk ≡ x;
w

qvF
≡ s, (3.8)

where ~q.~v~k is the velocity of the quasiparticle of wavevector ~k in the direction of

~q and ~v~k = h̄~k/m∗ = h̄kF k̂/m
∗; so that s is the ratio of the propagation velocity
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u = w/q to the velocity of the quasiparticle at the Fermi surface vF , we obtain

(s− x)V(k̂, ~q, w) + x
∑

~k′σ′

f(~k,~k′)V(k̂′, ~q, w)
∂no

~k′

∂ǫ~k′
= x, (3.9)

and

∑

~k′ ~σ′

f(~k,~k′)V(k̂′, ~q, w)
∂no

~k′

∂ǫ~k′
=

−gΩ
(2π)3

∫

4πk′2
dk′

dǫ~k′
dǫ~k′δ(ǫ~k′ − ǫF )V(k̂′, ~q, w)

×
∑

LML

fL

2L+ 1
YLML

(k̂)YLML
(k̂′)dk̂

= −N(0)
∫

∑

LML

fL

2L+ 1
YLM L

(k̂)YLML
(k̂′)V(k̂′, ~q, w)dk̂′, (3.10)

g being the degeneracy of the momentum state, Ω the volume of the system, and

N(0) ≡
[

dn

dǫ~k

]

ǫF

=
gΩm∗kF

2π2h̄2
(3.11)

being the density of states at the Fermi surface. Equation (3.9), then, takes the

form

V(k̂, ~q, w) =
x

s− x



1 +
∫

∑

LML

FL

2L+ 1
YLML

(k̂)YLML
(k̂′)V(k̂′, ~q, w)dk̂′



 , (3.12)

where FL = N(0) fL is the dimensionless Landau parameter.

It should be remarked here that the disturbances produced in the liquid, which

travel in the form of density, spin–density, and isospin–density excitations, may in-

teract with the quasiparticles in the medium and excite qp–qh pairs, primarily single
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qp–qh pairs in the dilute case, through the exchange of virtual quanta (phonons)

which can carry momentum up to 2kF . This interaction corresponds to the induced

part of the quasiparticle interaction which is reduced to the qp–qh interaction it-

self in the long–wavelength limit
[

67, 76, 77
]

. To generalize Eq. (3.12) and include

values of ~q up to 2kF , we notice that

x

s− x

∂no
~k

∂ǫ~k
=

~q.~v~k
w − ~q.~v~k

∂no
~k

∂ǫ~k
= lim

q→0

n~k+~q − n~k
w − w~k~q + iη

= lim
q→0

∝(~k, ~q), (3.13)

where

w~k~q ≡ ǫ~k+~q − ǫ~k =
h̄2

m∗

[

q2

2
+ ~k.~q

]

is the excitation energy of the qp–qh pair, n~k is the occupation number of the state

~k, and

n~k+~q = n~k + ~q.∇~kn~k + ...

= n~k + ~q.∇~kǫ~k

(

∂n~k
∂ǫ~k

)

+ ...

= n~k + ~q.h̄~v~k
∂n~k
∂ǫ~k

+ ...

= n~k + ~q.~v~k
∂n~k
∂ǫ~k

+ ... . (3.14)

Thus, we write Eq.(3.12) in the form

∂no
~k

∂ǫ~k
V(k̂, ~q, w) =∝(~k, ~q)



1 +
∫

∑

LML

FL

2L+ 1
YLML

(k̂)YLML
(k̂′)V(k̂′, ~q, w)dk̂′



 . (3.15)
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Let us confine our attention, for the moment, to the long–wavelength limit.

Usually V(k̂, ~q, w) is separated into two components, the spin symmetric and asym-

metric modes, such that
[

64, 75
]

VS =
1

2
(V↑ + V↓) ; VA =

1

2
(V↑ − V↓), (3.16)

where S(A) and ↑(↓) stand for symmetric (asymmetric) and spin up(down) sit-

uations, respectively. In VS modes, opposite–spin orientations oscillate in phase,

whereas in VA they oscillate out of phase. This is closely related to the quasiparticle

interactions (Section 3.2). The amplitude V can be written as a sum of multipoles;

i.e.
[

78
]

,

V(k̂, ~q, w) =
∑

LML

VLML
(~q, w)YLML

(k̂). (3.17)

It follows that

∑

L’ML′



VL′M′
L
YL′M′

L
(k̂)(s− x) + x

∫

∑

L′ML′

FL′

2L′ + 1
YL′M′

L
(k̂)YL′M′

L
(k̂′)VLML

YLML
(k̂′)dk̂′



 = x;

∑

L’ML′

[

VL′M′
L
YL′M′

L
(k̂)(s− x) + x

FL′

2L′ + 1
VL′M′

L
YL′M′

L
(k̂)
]

= x. (3.18)

Multiplication by Y∗
LML

(k̂) and integration over dk̂ yield:

sVLML
−
∑

L′M′

L

< LML|x|L′M ′
L > VL′M′

L

[

1 +
FL′

2L′ + 1

]

=
∫

xY∗
LML

(k̂)dk̂, (3.19)
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where

< LML|x|L′M ′
L > =

∫

Y∗
LML

(k̂)
(

q̂.k̂
)

YL′M′

L
(k̂)dk̂. (3.20)

On using
[

49
]

cos θkYL′ML
′(k̂) =

[

(L′ −M ′
L)(L

′ +M ′
L)

(2L′ − 1)(2L′ + 1)

]1/2

YL′ − 1 ML′
(k̂)

+

[

(L′ −M ′
L + 1)(L′ +M ′

L + 1)

(2L′ + 1)(2L′ + 3)

]1/2

YL′ + 1 ML′ (k̂), (3.21)

< LML| cos θk|L′M ′
L >=

[

(L′ −M ′
L)(L

′ +M ′
L)

(2L′ − 1)(2L′ + 1)

]1/2

δL L′ − 1MLM′

L

+

[

L′ −M ′
L + 1)(L′ +M ′

L + 1)

(2L′ + 1)(2L′ + 3)

]1/2

δL L′ + 1MLM′
L
, (3.22)

we have

sVLML
− VL + 1ML

GL + 1

[

(L−ML + 1)(L+ML + 1)

(2L+ 1)(2L+ 3)

]1/2

− VL − 1ML
GL − 1

×
[

(L−ML)(L+ML)

(2L− 1)(2L+ 1)

]1/2

=

√

4π

3
δL1ML0, (3.23)

where the right term is obtained using x ≡ cos θk =
√

4π
3
Y10(k̂). For free oscillations

we put φ = 0, and

δn~k(~q, w) = −V(k̂, ~q, w)
∂no

~k

∂ǫ~k
, (3.24)
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to get

sVLML
− VL + 1ML

GL+1

[

(L−ML + 1)(L+ML + 1)

(2L+ 1)(2L+ 3)

]1/2

−VL − 1ML
GL − 1

[

(L−ML)(L+ML)

(2L− 1)(2L+ 1)

]1/2

= 0, (3.25)

where

GL = 1 +
FL

2L+ 1
. (3.26)

This result defines an infinite set of linear equations for the coupled amplitudes

VLML
grouped according to the ML quantum number, where different values of

ML are completely decoupled but each is a mixture of L’s. For ML = 0 we have

the longitudinal mode; For ML = 1 we have the transverse mode; and so forth.

Amongst these is the longitudinal symmetric mode which involves the particle–

density fluctuations (zero sound), and the longitudinal asymmetric mode (zero–spin

waves) which involves spin–density oscillations. It should be noted that the zero

sound mode amplitude VS(k̂, ~q, w) is the full solution of Eq.(3.12). Many harmonics

contribute to it; whereas only a finite number of the multipoles are considered in

the other modes since higher–order multipole distortions undergo a rapid relaxation

through collisions (collision damping)
[

6, 73
]

.

For zero sound (ML = 0,V = VS), Eq.(3.12) takes the form

(s− x)VS(x, s) = x+
x

2

∫ 1

−1
F S

L
PL(x)PL(y)VS(y, s)dy, (3.27)
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where x = ~q.k̂, y = ~q.k̂′; so that

VS(x, s) =
x

s− x

[

1 +
1

2

∫ 1

−1
RS(x, y)VS(y, s)dy

]

. (3.28)

Consider the simple case F S
L
= F S

o ; then

VS(x, s) =
x

s− x
+ A

x

s− x
= C

x

s− x
, (3.29)

A and C being constants. Substitution back in Eq.(3.28) gives

1

F S
o

=
1

2
s ln

s+ 1

s− 1
− 1 = Q1(s), (3.30)

where Q1(s) is (first–order) Legendre’s polynomial of the second kind, and the speed

of zero sound is given by uo = svF . A real solution exists so long as s > 1 or u > vF .

Since Q1(s) is an increasing function of s, it is always > 0
[

79
]

; Fo must, then, be

greater than zero, which ensures that the interaction is repulsive. On the other

hand, when x = s, V is singular; this gives rise to Landau’s damping of the zero

sound through the excitation of the qp–qh pairs, which manifests itself as a peak

in the dynamic structure factor
[

67
]

.

Consider now the other regime, the hydrodynamic, where collisional damping

acts to disturb the mean field picture, and hence zero sound; while it represents the

restoring force for first sound to propagate. Here, high–order multiple distortion

undergoes collisional damping through collisions which maintain such disturbance

at a negligibly small value. Thus, VLML
contains only the L = 0, 1 components.
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These two terms conserve the total number of particles as well as the total energy

and momentum; but they contribute nothing to I(δn~k), which makes the truncated

set L ≤ 1 converge toward the exact solution
[

78
]

. From Eq.(3.25), we have

L = 0, sVS
oo −GS

1

√

1
3
VS
1o = 0;

L = 1, sVS
1o −GS

o

√

1
3
VS
oo = 0.

(3.31)

Using Eqs.(3.26) and (3.31), it follows that

s2 =
1

3
GS

oG
S
1 =

1

3

[

1 + F S
o

]

[

1 +
F S
1

3

]

. (3.32)

But

1 +
F S
1

3
=

m∗

m
. (3.33)

Thus,

u21 =
P 2
F

3m∗m

[

1 + F S
o

]

=
k2F

3m∗m

[

1 + F S
o

]

, (3.34)

recalling that this is the usual result obtained from the compressibility definition of

first sound:

u21 =
1

κρm
= − Ω

ρm

(

∂P

∂Ω

)

S

=

(

∂P

∂ρm

)

S

, (3.35)

where P is the pressure, ρm ≡ mN
Ω

is the mass density, S is the entropy, and u1

is the first–sound velocity with which pressure waves (particle–density oscillations)

travel in Fermi systems.
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The first experimental observation of sound velocities in 3He was made by Abel

et al.
[

74, 80
]

. The measurements corresponded to an average first–sound velocity

of 187.9 m/s and an average zero–sound velocity of 194.4 m/s for a pressure of 0.32

atm, at frequencies 15.4 and 45.5 Hz, and in the temperature range 0.002-0.1 K.

If this is the case for a pure system of 3He quasiparticles, the introduction of a

small quantity of 3He atoms into He II modifies the first-sound velocity due to the

interaction of 3He with 4He and the decrease in the 4He mass density by the amount

m∗
3−m3ρ3(~r)

[

81
]

. A general formula for the velocity of first sound has been derived

by Khalatnikov, to first order in the 3He concentration x (x = N3

N
, where N3 and N

are, respectively, the number of 3He atoms and the total number of atoms per unit

volume), by thermodynamic and Galilean invariance, in the low–frequency limit;

this formula is given by
[

14, 82, 83
]

u21 = [1 + d]
∂P

∂ρ(x)
, (3.36)

where

d =
ρs
ρn

(

x

ρ(x)

∂ρ(x)

∂x

)2

=
ρs
ρn

(

∂ ln ρ(x)

∂ ln x

)2

.

Here ρ(x) is the overall concentration–dependent mass density; ρs and ρn are the

superfluid and normal 4He densities, respectively:

ρn ≃ ρ(x)
(

m∗
3

m4

)

x ;

ρ(x) = [xm3 + (1− x)m4] /Ω4(1 + αx) ,
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Ω4(1 + αx) representing the molar volume of the solution as related to that of

pure 4He. In the limit x → 0, d → 0, Eq.(3.36) reduces to the expression for the

first–sound velocity in pure 4He, as it should.

On the other hand, second sound is analogous to first sound in 3He where the

effective interactions are strong. In the hydrodynamic limit a rather complicated

equation, which also depends on thermodynamics and Galilean invariance, was

given by Khalatnikov as

m4u
2
2 = (1− fξ)



−
(

∂µ4

∂ ln ξ

)

TP

+

(

ξT

N3CP

)(

∂S

∂ ln ξ

)2

TP





[

ρn
ρs

+ f 2ξ2
]−1

, (3.37)

where ξ = n3Ω40 = x/(1 + αx); f = 1 + α − m3/m4 ≃ 0.53 at P = 0; N3, CP

are the number of 3He atoms and heat capacity at constant pressure; and µ4 is the

chemical potential of 4He.

For low concentrations (ξ ≪ 1) and, writing µ4(PTx) = µ4(PT0) − πΩ40(P ),

where π is the osmotic pressure of the solution, Eq.(3.37) can be transformed to

ρnu
2
2

∼=
(

∂π

∂ ln ξ

)

SP

. (3.38)

This last equation demonstrates the analogy between second sound in the mix-

ture and first (ordinary) sound in the quasiparticle-gas. The derivative ∂π/∂ ln ξ

can be regarded as the “osmotic bulk modulus” of the mixture
[

14, 84, 85
]

.

In this discussion it is useful to consider the density response to the density
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fluctuation operator induced by φext or the polarization potential. In the linear

response, the change in the density δρ(~q, w) is proportional to φext according to

δ < ρ(~q, w) > = χ(~q, w)φext(~q, w), (3.39)

where χ(~q, w) is the density-density response function. The importance of this

quantity stems from the fact that it is related to the dynamic structure factor,

which is a direct measure of the real transitions of the system and, hence, the

static structure factor which , in turn, provides a direct measure of the correlations

between positions and momenta. These two quantities can be easily extracted using

neutron and X-ray scattering
[

6, 80
]

.

The calculation of χ(~q, w) requires the calculation of δρ:

δ < ρ(~r, t) > =
∑

~k~σ

δn~k(~r, t)

=
∑

~k~σ

δn~k(~q, w)e
i(~q.~r−wt),

= δ < ρ(~q, w) > ei(~q.~r−wt);

δ < ρ(~q, w) > =
∑

~k~σ

δn~k(~q, w)

= −
∑

~k~σ

∂no
~k

∂ǫ~k
VS(k̂, ~q, w)φext(~q, w). (3.40)

From Eqs. (3.15) and (3.39):

χ(~q, w) = −
∑

~k~σ

∂no
~k

∂ǫ~k
VS(k̂, ~q, w)
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= −
∑

~k~σ

∝(~k, ~q)



1 +
∫

∑

LML

FL

2L+ 1
YLML

(k̂)YLML
(k̂′)VS(k̂′, ~q, w)dk̂′



. (3.41)

Particle–density fluctuations involve only theML = 0 component, which is isotropic

in the plane perpendicular to k̂. It emerges that

V(k̂, ~q, w) = VS(k̂, ~q, w) =
∑

LML

VS
LML

(~q, w)YLML
(k̂) ;

VS(x, w) =
∑

L

VS
LoYL0(k̂.q̂) =

∑

L

VS
LoYL0(x). (3.42)

From this we note that

χ(~q, w) = −
∑

~k~σ

∂no
~k

∂ǫ~k
VS(k̂, ~q, w)

= N(0)
∫

∑

L

VS
LoYL0(k̂)dk̂/4π

=
N(0)√
4π

Voo; (3.43)

and

χ(~q, w) = −
∑

~k~σ

∝(~k, ~q)

[

1 +
∫

∑

Ll

FL

2L+ 1
YLML

(k̂)YLML
(k̂′)VS

lo
Ylo(k̂

′)dk̂′
]

= −
∑

~k~σ

∝(~k, ~q)

[

1 +
∑

L

FL

2L+ 1
YLo(k̂)VS

Lo

]

. (3.44)

In the long–wavelength limit:

lim
q→0

χ(~q, w) = −
∑

~k~σ

x

s− x

∂no
~k

∂ǫ~k

[

1 +
∑

L

FL

2L+ 1
YLo(k̂)VS

Lo

]
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=

[

N(0)
1

2

∫ x

s− x
dx

(

1 +
∑

L

FL

2L+ 1
YLo(x)VS

Lo

)]

=

[

N(0)

(

Q1(s) +
1

2

∫ x

s− x
dx
∑

L

FL

2L+ 1
YLo(x)VS

Lo

)]

. (3.45)

Using
[

49
]

YLo(x) =
(

2L+ 1

4π

)1/2

PL(x);

xPL(x) =
L+ 1

2L+ 1
PL + 1(x) +

L

2L+ 1
PL − 1(x), (3.46)

we obtain

lim
q→0

χ(~q, w) = N(0)

(

Q1(s) +
1

2

∫

∑

L

FL

(4π)1/2
VS

Lo

[

L+ 1

(2L+ 1)3/2
PL + 1(x)

s− x

+
L

(2L+ 1)3/2
PL − 1(x)

s− x

]

dx

)

=

(

ψ1(s) +
∑

L

FL

(4π)1/2
VS

Lo

[

L+ 1

(2L+ 1)3/2
ψL + 1(s) +

L

(2L+ 1)3/2
ψL − 1(s)

])

, (3.47)

where
[

49
]

ψL(s) = N(0)QL(s) ;

QL(s) =
1

2

∫ PL(x)

s− x
dx ;

Q1(s) =
s

2
ln
s+ 1

s− 1
− 1 . (3.48)

This enables us to calculate the response function to all orders in L. Assume that
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only Fo 6= 0; then

lim
q→0

χ(~q, w) = ψ1(s) +
Fo

(4π)1/2
VS
ooN(0)Q1(s). (3.49)

From Eq.(3.43):

lim
q→0

χ(~q, w) =
ψ1(s)

1 + FoQ1(s)
;

lim
q→0

χ0(~q, w) = ψ1(s), (3.50)

where the superscript (0) applies for the noninteracting response function, obtained

by putting F S
L
= 0. From Eq. (3.41):

χ0(~q, w) = −
∑

~k~σ

∝0(~k, ~q) = −
∑

~k~σ

no
~k+~q

− no
~k

w − w~k~q + iη
; (3.51)

χ0(q) =
∑

~k~σ

no
~k+~q

− no
~k

ǫ~k+~q − ǫ~k + iη

=
3n

4ǫF

(

1

2
+

4k2F − q2

8kF q
ln

∣

∣

∣

∣

∣

2kF + q

2kF − q

∣

∣

∣

∣

∣

)

, (3.52)

which gives the familiar Lindhard static function, n being the number density :

n =
N

Ω

g

2

k3F
3π2

, (3.53)

and ǫF the Fermi energy such that N(0) = 3n/2ǫF .

The dynamic structure factor is obtained from the imaginary part of the re-
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sponse function
[

80
]

:

S(~q, w) =
−Imχ0(~q, w)

π

lim
q→0

S(~q, w) =
1

π

∑

~k~σ

ImV(k̂, ~q, w + iη)
∂no

~k

∂ǫ~k
; (3.54)

for longitudinal oscillations:

lim
q→0

S(~q, w) =
1

π

∑

~k~σ

ImVS(x, w + iη)
∂no

~k

∂ǫ~k

= − 1

π

N(0)

2

∫ 1

−1
dxImVS(x, w + iη). (3.55)

The static structure factor, therefore, is given by

N lim
q→0

S(~q) =
−1

π

N(0)

2

∫

dw
∫ 1

−1
dx ImVS(x, w + iη)

=
−qvF
π

N(0)

2

∫

ds
∫ 1

−1
dx ImVS(x, s+ iη) . (3.56)

With Eqs. (3.11) and (3.53):

lim
q→0

S(q) =
3

2
β
q

2kF
, (3.57)

where

β =
−2

π

∫

ds
∫ 1

−1
dx ImVS(x, w + iη). (3.58)
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Equation (3.57) represents an integral equation which can be solved numerically for

any order in FL; for the noninteracting case, FL = 0, we get

β =
−2

π

∫

ds
∫ 1

−1
dx πxδ(s− x)

= 2
∫

s ds = 1, 0 < s < 1. (3.59)

The results (3.57) and (3.59) have also been obtained from entirely different

considerations
[

80, 86
]

.

Of particular interest is the induced particle density:

δ < ρ(~r, t) > =
∑

~q~σ

δ < ρ(~q, w) > ei(~q.~r−wt),

=
∑

~q~σ

χ(~q, w)φext(~q, w)e
i(~q.~r−wt). (3.60)

χ(~q, w) represents the response to any scalar potential which does not depend on

(~q, w); for simplicity we take

φ(~r, t) = φoδ(t), (3.61)

which corresponds to an impulsive perturbation. Further, if we approximate χ(~q, w)

by χ0(~q, w), and then consider the static case, we get

δ < ρ(~r) > = φo

∑

~q~σ

χ0(q)ei(~q.~r)

= φo
gΩ

(2π)2

∫

4πq2dqχ0(q)ei(qr cos θ~r)dq̂/4π. (3.62)
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By simple analogy, this integral is similar to that obtained by Ghassib and Baskaran

in a different context
[

87
]

. We borrow the result and write

δ < ρ(~r) >=
gΩ

2

3nφo

25πǫFkF

(

sinQr

(Qr)4
− cosQr

(Qr)3

)

; Q = 2kF . (3.63)

From the above equation we see that the induced density does not go to zero

exponentially; rather it oscillates at large values of r, and behaves in the r → ∞

limit as

lim
r→∞

δ < ρ(~r) >∼ cos 2kF r

(2kF )3
. (3.64)

To see how this long–range oscillations come from, we remark that

(

∂χ0(q)

∂x

)

x=1

→ ∞; x = q/2kF . (3.65)

This logarithmic singularity is not difficult to trace: It is a consequence of the

sharpness of the Fermi surface, and is a direct reflection of the discontinuity in the

momentum distribution function at ǫ = ǫF
[

71, 88
]

. It is a general property of a

Fermi system, and is not affected by the interaction
[

89
]

. Information about n(~k)

and the singularity may be obtained from the observed S(~q, w) in elastic neutron

scattering
[

90
]

. The underlying interpretation is that the virtual excitation brought

about by the density operator ρ̂~q can excite quasiparticles up to 2kF with energy

conservation; while for q > 2kF we must supply an external energy to excite such

quasiparticles.
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An interesting quantity which is intimately related to sound propagation in

Fermi systems is the so–called acoustic impedance. This is generally defined as

the product Z ≡ ρu, where ρ is the density of the liquid and u is either uo or u1,

depending on whether we are in the low–temperature, collisionless regime or the

higher–temperature, hydrodynamic regime, respectively. Physically, it is a measure

of the sonic energy radiated into an acoustic medium by a vibrating surface (for

example, a quartz crystal). In a normal liquid this energy appears as waves of

first sound. In liquid 3He, however, this is the case only at relatively high tem-

peratures; at sufficiently low temperatures the sonic energy flows primarily as zero

sound (together with a small contribution from single–particle modes which van-

ishes altogether at elevated pressures).

To our knowledge, the only available measurements of Z for this system date

from the mid–sixties: Z was measured as a function of temperature under both the

saturated vapour pressure
[

91, 92
]

and higher pressures
[

93
]

. A thorough analysis of

these measurements was undertaken
[

94− 96
]

, following the earlier work
[

97
]

car-

ried out on the basis of Landau’s theory in connection with a calculation of thermal

boundary (Kapitza) resistance between solids and 3He. The prime reason for this

intense interest was that, prior to the first direct observation of zero sound
[

74
]

, the

acoustic–impedance measurements provided the sole experimental evidence on this

mode of sound. As T is reduced, the transition from the first- to the zero-sound

regime appears as a sharp increase in Z ( which diminishes with increasing pressure).

Curiously, however, the increase observed experimentally is somewhat larger than

accounted for theoretically, and the discrepancy has not been satisfactorily resolved
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so far
[

46
]

. This may be attributed either to the lack of accuracy in the determina-

tion of the Landau f-factors involved, or to the experimental accuracy itself, which

may be not adequate
[

94, 98
]

, or even to some other hitherto unsuspected factors

(such as the effect of 4He impurities, few as these might be)
[

99
]

.

3.2 3.2 Connection with Macroscopic Studies

The key link between the microscopic and the macroscopic is the scattering ampli-

tude of the interacting pair in the Fermi sea
[

14, 38, 100, 101
]

.

In a scattering process the quantity of interest is the transition probability

of the pair from an initial state (~k1 ~σ1, ~k2 ~σ2) to a final state (~k′1 ~σ1
′, ~k′2 ~σ2

′). At low

temperatures, the final states available are within kBT of the Fermi surface: The

four vectors(k̂1k̂2k̂
′
1k̂

′
2) nearly have kF in magnitude and practically depend only on

the relative orientation; i.e., the two angles (θ, φ), θ being the angle between the

initial wavevectors of the colliding pair (k̂1k̂2) and φ the angle formed between the

planes of the initial and final pairs of the vectors. The transition probability is

given by
[

6, 14, 38
]

:

w(θ, φ) =
2π

h̄
|ai(θ, φ)|2 , (3.66)

where ai(θ, φ) is the corresponding scattering amplitude. The scattering process

involves scattering of parallel spins as well as antiparallel spins. We denote parallel-
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spin states by | ↑↑>, which is a mixture of the two |11 > and |1−1 > triplet states,

and antiparallel–spin states by | ↑↓>= | ↓↑>, which is a mixture of the two |10 >

triplet and |00 > singlet states, represented symbolically by

| ↑↑> =
1√
2

[

|11 > +|1− 1 >

]

;

| ↑↓> =
1√
2

[

|10 > +|00 >
]

. (3.67)

It follows that

w↑↑(θ, φ) =
2π

h̄
|a↑↑

i (θ, φ)|2

=
2π

h̄
|< 11|(a θ, φ)|11 > + < 1− 1|a (θ, φ)|1− 1 >|2

=
2π

h̄
[2ao]

2 ; (3.68)

w↑↓(θ, φ) =
2π

h̄
[ao + ae]

2 , (3.69)

where o(e) stands for odd (even) angular–momentum states; spin–singlet states can

have only even L values, but the triplet state has only odd L values, so as to preserve

the asymmetry of the two–fermion state.

As emphasized in Chapter Two, the T-matrix is, in effect, a generalized scatter-

ing amplitude of the interacting pair. In both spin and isospin spaces, this matrix

may be separated into a spin or spin-isospin independent component (the direct

part) and a spin or spin–isospin dependent component ( the exchange part). The

latter exists even when the interaction is state–independent so as to satisfy the re-

quirement of asymmetry of the particle state, the Pauli principle. Suppressing the
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isospin dependence, we write :

T = TD − PσTE; (3.70)

TD = T (12, 1′2′) ~σ1 ~σ2 ; (3.71)

TE = P~k′T (12, 1
′2′) ~σ1 ~σ2 . (3.72)

D, E denotes direct and exchange parts of T; 12, 1′2′ = ~k1 ~k2, ~k
′
1
~k′2; P~k′ , and P~σ are

the momentum– and spin–exchange operators :

P~k′ |~k′1~k′2 > = |~k′2~k′1 >= ±|~k′1~k′2 >; (3.73)

Pσ|~σ1 ~σ2 > =
1

2
(1 + ~σ1. ~σ2)|~σ1 ~σ2 >= ±|σ2σ1 >, (3.74)

where +(–) in the first equation applies for even (odd) L, and in the second for

S=1(0) spin states. In terms of the total and relative, initial and final, wavevectors:

~K = ~k1 + ~k2 = ~k′1 +
~k′2; (3.75)

~k =
1

2
(~k1 − ~k2); ~k′ =

1

2
(~k′1 − ~k′2), (3.76)

=⇒

TD = T (~k,~k′; s, ~K) ~σ1 ~σ2 ; (3.77)

TE = T (~k,−~k′; s, ~K) ~σ1 ~σ2 . (3.78)
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But

TDT = TT (~k,~k
′; s, ~K) ~σ1 ~σ2 =

∑

odd L

(2L+ 1)TLPL(k̂.k̂
′) = ao;

TDS = TS(~k,~k
′; s, ~K) ~σ1 ~σ2 =

∑

evenL

(2L+ 1)TLPL(k̂.k̂
′) = ae;

TET = TT (~k,−~k′; s, ~K) ~σ1 ~σ2 =
∑

odd L

(2L+ 1)TL(−)LPL(k̂.k̂
′) = −ao;

TES = TS(~k,−~k′; s, ~K) ~σ1 ~σ2 =
∑

evenL

(2L+ 1)TL(−)LPL(k̂.k̂
′) = ae. (3.79)

From Eqs.(3.77, 3.78 and 3.79), respectively,

T ↑↑ = TDT − PσTET = 2ao;

T ↑↓ = TDT − TDS = ao + ae; (3.80)

and Eq. (3.70) becomes

T = TDT + TDS − Pσ (TET + TES)

= (ao + ae)− Pσ (ae − ao)

=
1

2
(3ao + ae) +

1

2
( ~σ1. ~σ2) (ao − ae)

=
1

2
(T ↑↑ + T ↑↓) +

1

2
( ~σ1. ~σ2) (T

↑↑ − T ↑↓) , (3.81)

which can be rewritten as:

T = T S + ( ~σ1. ~σ2) T
A, (3.82)
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where

T S ≡ 1

2
(T ↑↑ + T ↑↓) =

1

2
(3ao + ae); (3.83)

TA ≡ 1

2
(T ↑↑ − T ↑↓) =

1

2
(ao − ae) (3.84)

are the spin-symmetric and spin-asymmetric components of the T-matrix, respec-

tively.

With the above considerations, the transition probability used by Hone
[

102
]

in

terms of ai to calculate the transport coefficients can readily be rewritten in terms

of the generalized (T–matrix) amplitude; for instance, the spin-diffusion coefficient

is proportional to

w↑↓(θ, φ) =
2π

h̄
|T ↑↑(θ, φ)|2 = 2π

h̄
[ao + ae]

2

=
2π

h̄
|TDT + TDS|2 ; (3.85)

likewise, for viscosity η and thermal conductivity κ :

wη(θ, φ) = wκ(θ, φ) =
2π

h̄

∑

~σ1 ~σ2
~σ1

′ ~σ2
′

1

2

∣

∣

∣< ~σ1 ~σ2|T | ~σ1′ ~σ2′ >
∣

∣

∣

2

=
2π

h̄

1

2

[

3|ao|2 + |ae|2
]

(3.86)

An alternative approach hinges on the Landau f-function, which can be ob-

tained from the total energy of the system computed microscopically, say, within

the framework of Brueckner’s well–known theory
[

100, 101
]

.
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The Landau f–function, f(~k1, ~k2)
~σ1 ~σ2 ≡ f(~k~σ,~k′~σ′), is the key quantity in his

Fermi-liquid theory; it is defined as the second derivative of the total energy with

respect to the occupation numbers of the quasiparticle states
[

103, 104
]

:

f(~k1, ~k2)
~σ1 ~σ2 =

δ2E

δn(~k1, ~σ1)δn(~k2, ~σ2)

=
δǫ(~k1, ~σ1)

δn(~k2, ~σ2)
, (3.87)

where ǫ(~k1, ~σ1) is the energy of the quasiparticle (~k1, ~σ1). Physically, f may be

interpreted as the change in the energy of the quasiparticle (or state) (~k1, ~σ1) due

to the addition (removal) of the quasiparticles (~k2, ~σ2), or the change of the system

energy when the two excited quasiparticles (~k1, ~σ1), (~k2, ~σ2) are present or removed.

It is obvious that the removal of the quasiparticle (~k1 ~σ1), (~k2 ~σ2) will create the

quasiholes (−~k1 ~σ1,−~k2 ~σ2). Actually, the Landau function is the resulting qp–qh

interaction. Let us construct the lowest–order matrix element of the potential

connecting two qp–qh states of total momentum ~q :

< Uph >=< Φ
~k2
~k2−~q

|Vph|Φ~k1
~k1−~q

> . (3.88)

The qp–qh state is given by
[

1
]

|Φ~k
~k−~q

>= a†~ka
′†
~k−~q

|0 >, (3.89)
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where a†~ka
′†
~k−~q

are the quasiparticle and the quasihole creation operators, such that

a′†~k−~q
= a~k−~q , and |0 > is the ground state of the system. Uph can be written as :

Uph =
∑

~k1
~k2

~q

|Φ~k2
~k2−~q

>< Φ
~k2
~k2−~q

|Uph|Φ~k1
~k1−~q

>< Φ
~k1
~k1−~q

|

=
∑

~k1
~k2

~q

< Uph > a†~k2
a~k2−~qa

†
~k1−~q

a~k1 . (3.90)

In terms of the qp–qh matrix elements, < Uph > is given by

< Φ
~k2
~k2−~q

|Uph|Φ~k1
~k1−~q

>=< ~k2~k1 − ~q|V |~k1~k2 − ~q > − < ~k1 − ~q~k2|V |~k1~k2 − ~q >, (3.91)

and the associated diagrams are shown in Fig.4.

Fig.4: Lowest–order matrix elements of the qp–qh interaction.

In the limit q → 0, both the quasiparticle and the quasihole are at the Fermi

surface, and

Uph =
∑

~k1
~k2

~q

< Uph >
(

a†~k2
a~k2

) (

a†~k1
a~k1

)

=
∑

~k1
~k2

~q

< Uph > n̂~k2n̂~k1 , (3.92)
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n̂~k being the number operator. The expectation value of Uph in the ground state is

< 0|Uph|0 > =
∑

~k1
~k2

~q

< Uph > n~k2n~k1 , (3.93)

where n~k is the occupation number of the state ~k. If we take the second functional

derivative of this last equation we obtain f. The implication is that f appears as the

qp–qh interaction in the long–wavelength limit.

Bearing this in mind, one can write the proper–self energy (2.71) as:

∑∗

~σ1
(1, ko1) = − i

Ω

∑

2 ~σ2

∫ dko1
2π

Go(2ko1)

[

T (12, 12)− T (12, 21)

]

. (3.94)

In this expression the T-matrix element depends on ko1 and ko2; i.e., it is energy–

dependent. We can remove this dependence by approximating T by its on energy-

shell value, say ko1 = ǫ1 and ko2 = ǫ2. Integration of Eq.(3.94), using the contour

in the upper-half plane, and
[

1
]

Go(2ko1) ≡ θ(|2| − kF )

ko2 − k2 + iη
+

θ(kF − |2|)
ko2 + k2 − iη

≡ 1− n(2)

ko2 − k2 + iη
+

n(2)

ko2 + k2 − iη
, (3.95)

yields at once

∑∗

~σ1
(1, ǫ1) =

1

V

∑

2 ~σ2

[

T (12, 12)− T (12, 21)

]

n(2). (3.96)
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The single-quasiparticle energy is simply

ǫ(1σ1) = ǫo(1σ1) +
∑∗

~σ1
(1, ǫ1). (3.97)

The variation of the system energy from the ground-state due to one excitation

(quasiparticle) is given by

δE =
∑

1 ~σ1

ǫ(1σ1)δn(1); (3.98)

so that

E =
∑

1 ~σ1

∫

ǫ(1σ1)δn(1)

=
∑

1 ~σ1

[

ǫo(1σ1) +
∑∗

~σ1
(1, ǫ1)

]

n(1)

=
∑

1 ~σ1

ǫo(1σ1)n(1) +
1

Ω

∑

1 ~σ1

2 ~σ2

[

T (12, 12)− T (12, 21)

]

n(1)n(2), (3.99)

and the quasiparticle energy, in a modified more practical form, taking the first

derivative of E with respect to n(1), becomes :

ǫ(1σ1) = ǫo(1σ1) +
∑∗S

~σ1
(1, ǫ1) +

∑∗R

~σ1
(1, ǫ1), (3.100)

where

∑∗S

~σ1
(1, ǫ1) ≡ 1

Ω

∑

2 ~σ2

[

T (12, 12)− T (12, 21)

]

n(2);

∑∗R

~σ1
(1, ǫ1) ≡ 1

2Ω

∑

2 ~σ2

3σ3

∂

∂n(1)

[

T (23, 23)− T (23, 32)

]

n(2)n(3). (3.101)
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The first term on the rhs of Eq.(3.99) is the variation in energy due to the addition

(removal) of the quasiparticle. The second is the rearrangement energy that corre-

sponds to the change in the correlations between other quasiparticles; it takes into

account the redistribution effects in the medium and the dependence of T on the

off–energy–shell values
[

19, 46
]

. The Landau f–function is

f(1 ~σ1, 2 ~σ2) =
∂2E

∂n(1)∂n(2)

=
1

Ω





[

T (12, 12)− T (12, 21)

]

+
∑

3 ~σ3

∂

∂n(2)

[

T (13, 13)− T (13, 31)

]

n(3)

+
∑

3 ~σ3

∂

∂n(1)

[

T (23, 23)− T (23, 32)

]

n(3) +
1

2

∑

3 ~σ3

4 ~σ4

∂

∂n(1)

∂

∂n(2)

×
[

T (34, 34)− T (34, 43)

]

n(3)n(4)

)

. (3.102)

Thus, the lowest-order contribution to f is the T-matrix itself; the other terms

are associated with rearrangement effects and correspond to multipair excitations,

which are absent in the low-density limit
[

77
]

.

Alternatively, it is useful to consider another microscopic treatment based on

the Landau f-function. In the above formulation, the T–matrix appears as the

generalized scattering amplitude without any further specification. This time the

f–function will be related to T through the forward–scattering amplitude. That

amplitude in which two quasiparticles exchange momentum ~q, or equivalently, a

qp–qh pair with respective wavevectors ~k1 ± ~q
2
are scattered into the states ~k2 ± ~q

2
,

is said to be forward when the angle φ between the two planes (~k1~k2) and (~k′1
~k′2) is
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zero and ~q is very small so that the scattering is completely in the forward direction.

The Landau parameters are related to the forward–scattering amplitude according

to
[

75, 105
]

:

A(~k1, ~k2)
~σ1 ~σ2

~τ1 ~τ2 = F(~k1, ~k2)
~σ1 ~σ2

~τ1 ~τ2 −
∑

~k3 ~σ3

∫

F(~k1, ~k3)
~σ1 ~σ2

~τ1 ~τ2 A(~k3, ~k2)
~σ1 ~σ2

~τ1 ~τ2
dk̂3
4π

. (3.103)

In the general nucleonic matter case, the quasiparticle interaction, suppressing

tensor and spin–orbit forces, is parametrized by
[

106, 107
]

F(~k1, ~k2)
σ1σ2

τ1τ2 = F 1(~k1, ~k2) + F 2(~k1, ~k2) ~σ1. ~σ2 + F 3(~k1, ~k2) ~τ1.~τ2

+ F 4(~k1, ~k2) ~σ1. ~σ2 ~τ1.~τ2 ; (3.104)

and the corresponding forward–scattering amplitude
[

104, 105
]

by

A(~k1, ~k2)
~σ1 ~σ2

~τ1 ~τ2 = A 1(~k1, ~k2) + A 2(~k1, ~k2) ~σ1. ~σ2 + A 3(~k1, ~k2) ~τ1.~τ2

+A 4(~k1, ~k2) ~σ1. ~σ2 ~τ1.~τ2. (3.105)

The dimensionless T-matrix ,

T =

(

dn

dǫ~k

)

ǫF

T, (3.106)

can be parametrized accordingly. It is easy to show that, in the present case,

k = k′ = kF sin
θ

2
; and K = 2kF cos

θ

2
, (3.107)
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where we have used the condition k1 = k2 = kF , θ being the angle between ~k1 and

~k2. In this limit, all the parameters mentioned above depend on the variable θ and

can be expanded in Legendre polynomials :

F i(~k1, ~k2) =
∑

L

F i
L
PL(k̂1.k̂2) ;

A i(~k1, ~k2) =
∑

L

Ai
L
PL(k̂1.k̂2) ;

T i(~k,~k′; s, ~K) =
∑

L

T i
L
PL(k̂1.k̂2) . (3.108)

Using Eqs.(3.103 ,3.104 and 3.105), together with the addition theorem of spherical

harmonics,we get the following relations between F i
L
and A i

L
(or T i

L
) :

Ai
L
= F i

L
/
(

1 + F i
L
/(2L+ 1)

)

. (3.109)

The asymmetry of the two-body wave function requires that the forward–

scattering amplitude must be asymmetric under the exchange of fermionic coor-

dinates; i.e.,

PA(~k1, ~k2) ~σ1 ~σ2

~τ1 ~τ2
= −A(~k1, ~k2) ~σ1 ~σ2

~τ1 ~τ2

= A(~k2, ~k1)
~σ2 ~σ1

~τ2 ~τ1 , (3.110)

where

P ≡ P~kP~σP~τ = −1 (3.111)
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is the exchange operator. Letting k1 = k2, P~k = 1, then, in the S=1 and T=1 states

where P~σP~τ = 1,

PA(~k1, ~k1)
~σ1 ~σ2

~τ1 ~τ2 = A(~k1, ~k1)
~σ~σ

~τ~τ

= −A(~k1, ~k1)
~σ~σ

~τ~τ . (3.112)

Thus,

A(~k1, ~k1)
~σ~σ

~τ~τ = 0, (3.113)

which guarantees that the forward–scattering amplitude for two quasiparticles of

parallel spins and isospins in the same momentum state vanishes. This allows us,

using Eqs.(3.105, 3.108, and 3.113), to obtain the following sum rule:

∑

L

A1
L
+ A2

L
+ A3

L
+ A4

L
= 0 . (3.114)

In the S=0, T=0 states, P~σP~τ = 1 , which implies that

∑

L

A1
L
− 3A2

L
− 3A3

L
+ 9A4

L
= 0 . (3.115)

In the two cases above, L=odd; i.e, the T-amplitude vanishes in odd partial waves.

No such rules exist for even parity since P = P~kP~σP~τ = −1 (S=1,T=0 or S=0,T=1).

For 3He, there is only one sum rule :

∑

L

A 1
L
+ A 2

L
= 1, (3.116)
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which corresponds to

PA(~k1, ~k2)
↑↑ = A(~k1, ~k2)

↑↑

= −A(~k1, ~k2)↑↑. (3.117)

In this latter case 1, 2 refer to S, A parts of A or T , respectively.

3.3 Summary and Discussion

The aim of this Chapter has been to study some sound phenomena in dilute neutral

Fermi systems within a unified framework. In Section 3.1, the rudiments of this

framework have been developed starting from Landau’s transport equation and its

general solution for collective modes of vibrations. Various sound modes have then

been examined.

In Section 3.2, an appropriate scheme has been introduced that links the T-

matrix with macroscopic phenomena. In particular, the effective interaction has

been related to the transition probabilities, Eqs. (3.68, 3.69), on the one hand,

and to Landau’s parameters, Eq.(3.102), on the other. Finally, the (diagonal) T-

matrix has been expressed in terms of the forward–scattering amplitude, with the

associated sum rules, Eqs. (3.109, 3.114, 3.115, and 3.117).

Clearly, the framework presented here is general enough to embrace many fun-
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damental aspects of sound phenomena in dilute neutral Fermi systems. Although

we have set out to lay out a mere outline of a suitable theoretical scheme, the

net result has evidently turned out to be much more than this. The next step is

presumably to invoke our arsenal of numerical techniques and realistic input poten-

tials to convert the foregoing abstract scheme into concrete numbers and figures.

This is one possible extension of the present work; other possible extensions will be

suggested in the next chapter.
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CHAPTER FOUR

CONCLUSION



Chapter 4

Conclusion

This concluding Chapter aims primarily at suggesting some possible extensions of

the present work, as has just been mentioned. These will be listed briefly in Section

4.2. Prior to this, however, it is in order to summarize (in Section 4.1) the main

highlights of our Thesis.

4.1 General Summary

Motivated by the recent renewed interest in dilute neutral Fermi systems, as well

as by the long–standing problem of deriving their macroscopic properties from

their microscopic constituents, we have attempted to calculate a general effective

interaction for these systems. To this end, we have invoked the Galitskii–Migdal–

Feynman (GMF) T–matrix. Our strategy has been to derive this matrix, which

is in effect the required effective interaction in momentum space, for the general

104
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noncentral input two–body potential, from which the simpler central case can be

obtained at once by switching off the noncentral aspects of the problem. In passing,

we have presented new derivations, published here for the first time, concerning

orthogonality and completeness of the T–matrix, which can be regarded as useful

sum rules imposed on this matrix by physical considerations.

We have then used our general effective interaction to compute the proper self–

energy, from which the macroscopic properties of the system can be immediately

computed according to standard recipes.

Our effective interaction has then been used within an ambitious theoretical

framework for shedding more light on the rich physics involved in the sound phe-

nomena occurring in dilute neutral Fermi systems, the idea being to bring together

the multifarious aspects involved in a unified whole. Among the elements discussed

in this context have been various sound modes propagating in these systems and

their relation with the density–response function, the static structure factor and

the acoustic impedance.

Throughout this work our main emphasis has been on the connection between

the microscopic and the macroscopic, which has been realized in a crystal–clear

manner within the framework of the sound phenomena studied.
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4.2 Possible Extensions of the Present Work

As mentioned in the concluding remarks of Chapter Three, our theoretical frame-

work lends itself to immediate numerical extensions through a judicious choice of

realistic input potentials. The list of physical quantities which can be then com-

puted seems to be endless: It could include the effective mass, compressibility, and

many other bulk properties; in addition to all sorts of acoustic properties.

Another type of extension lies in the age–old quest of improving the independent–

pair model used here to embrace long–range correlations, which are vital for denser

systems – not to mention the question of three– and higher–body forces.

Yet, a third class of possible extensions comprises other interesting quantum

systems, such as spin–polarized systems, so–called new quantum systems and low–

dimensional systems.

Needless to say, all these extensions should ultimately incorporate the explicit

temperature dependence into the picture.

By now it should be clear that the determination of a sound effective interaction

for the systems under present consideration, among others, remains the central

problem in many–body theory !
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