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Preface 

This study is submitted in order to achieve a doctor of philosophy (PhD) degree from the 

Department of Biochemistry and Molecular Biology (BMB), Faculty of Engineering, in the 

University of Southern Denmark, Odense, Denmark. 

The research work was carried out in the Technical Microbiology group in the BMB de-

partment. This PhD program was financed by the University of Southern Denmark (50%), 

the Danish Research Agency and the Danish Ministry of Food, Agriculture and Fisheries 

(50%). 

This study is a part of a project called ‘Absorption in water droplets of odours, ammonia and 

dust from livestock buildings’. The participants in the project are Danish Institute of Agri-

cultural Sciences / Department of Agricultural Engineering, Aalborg University, Danish 

Bacon & Meat Council, Solum Group and Turbovent A/S. This project is one of several 

joint research projects, under the research programme ‘Sustainable Technology in Agricul-

ture’, financed by the Danish Research Agency and the Danish Ministry of Food, Agricul-

ture and Fisheries. The projects are coordinated by the ‘Danish Agricultural Network in 

Engineering and Technology (DaNet)’. 

The odour emission from livestock buildings is causing many environmental and health 

problems. Biological methods, which are environmentally friendly, are the preferred tech-

niques for reducing odours emitted from livestock buildings. The bioscrubber is one of the 

biological methods. It comprises an absorption column (air wet scrubber), in which the 

polluted air stream is washed by water droplets, and a bioreactor (water purification mod-

ule), which cleans and recycles the washing water coming from the absorption column. 

Characterization of a mixture of odorants, in absorption column or in bioreactor, gives 

information about the odorants dissolved in water and the performance of the bioreactor. 

The aim of this study was identification and quantification of representative mixtures of key 

odorants in bioscrubbers of livestock buildings. During this research, the identification and 

quantification of odorants were carried out by two analytical equipments: (1) gas chroma-

tography (GC), and (2) electronic tongue (ET). GC was used off-line. The ET is a relatively 

new technology. It is an analytical instrument containing an array of chemical sensors, with 

partial specificity for different components in liquid media and an appropriate pattern 

recognition and/or multivariate calibration tool for identification and quantification of 

simple and complex solutions. It analyses the compounds in liquid media with high sensitiv-

ity. 
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Both analytical equipments identified and quantified some of the investigated key odorants. 

Also, ET showed a high potential as an on-line sensor for odorants. 

This thesis is based on literature review and experimental work. The chapters in the begin-

ning describe the general background of the study, followed by three articles. These articles 

were submitted to several international journals, and they will give a comprehensive idea 

about the results of this scientific research. 
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Abstract 

The odour emitted from livestock buildings is responsible for many environmental and 

health problems in the society. The biological methods are favourite techniques to reduce 

odours. These methods are environmentally friendly. The bioscrubber is one of the biologi-

cal methods. It comprises an absorption column (air wet scrubber), in which the polluted air 

stream is washed by water droplets, and a bioreactor (water purification module), which 

cleans and recycles the washing water coming from the absorption column. 

Characterization of a mixture of odorants, in absorption column or in bioreactor, is neces-

sary in the optimization of the bioscrubber. In livestock buildings, there are huge numbers 

of odorants. A representative selection of these odorants, called key odorants, was used in 

this study. The key odorants were selected to represent a variety of chemical groups. 

Two analytical equipments: gas chromatography and electronic tongue (i.e. a sensor array) 

were used for characterization of odorants.  

Gas chromatography-flame ionisation detection (GC-FID) was utilized as an off-line 

method for characterization of key odorants in the air wet scrubber. Two methods were used 

before injection of key odorants into the GC-FID: direct aqueous injection (DAI) and solid 

phase extraction (SPE). Both DAI and SPE methods were efficient for identification of 

odorants in the air wet scrubber. However, DAI is the method of choice for quantification of 

odorants, because it is simple, fast, requires small volumes only, without pre-concentration 

and no derivatisation of the compounds is needed before injection into GC. Two odorants, 

i.e. phenol and 1-butanol, were quantified successfully using the DAI method. Their limit of 

detection and limit of quantification were below literature values for odorants detection 

limits in livestock buildings. 

An electronic tongue (ET) comprising 14 cross-sensitive electrodes was used for identifica-

tion, quantification and classification of different test mixtures of key odorants. ET is an 

analytic instrument which includes an array of electrodes with cross-sensitivity, in addition 

to an appropriate pattern recognition or multivariate calibration tool that is able to recognize 

qualitatively and quantitatively the composition of both simple and complex solutions. ET 

has many advantages compared to other methods. The key advantages are rapidity, simplic-

ity, low cost and simultaneous on-line determination of several components of very different 

chemical properties in the liquid.  

The ET was calibrated using 4 different test mixtures. Initially 14 electrodes were investi-

gated in different principal component analysis (PCA), partial least squares (PLS) and back 
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propagation neural network (BPNN) models. The ET was able to quantify ammonium and 

n-butyrate using six electrodes only in the test mixtures of key odorants at pH 6. In the test 

mixtures containing ammonium at pH 8, n-butyrate and phenolate were quantified using six 

and four electrodes, respectively. It was seen that eight electrodes were sufficient for all 

identifications and quantifications of n-butyrate, ammonium and phenolate.  

ET has successfully classified different test mixtures of key odorants. The ET was able to 

distinguish between two test mixtures of key odorants at the same pH with classification 

rates in the range of 88 - 100%. Classification between the same test mixtures of key odor-

ants at different pH was even higher, 100%. Also, ET classified different test mixtures of 

key odorants comprising a variety of the chemical groups at pH 6. The average classifica-

tion rate (ACR) in this case was 81%. The reproducibility of electrodes was better in this 

case, where the complexity of the mixture was decreased. 

Nine electrodes out of 14 were sufficient for all identification, quantification and classifica-

tion of test mixtures of key odorants. The decreased, but sufficient number of electrodes 

improved the performance of the ET since the standard deviation and relative standard 

deviation of measurements in triplicates decreased in comparison with the array comprising 

14 electrodes. 

Further research with more cross-sensitive electrodes is needed. However, the results 

indicate that ET has a high potential as an on-line sensor for measurement of odorants in 

livestock buildings and as a prerequisite for control of emission from livestock buildings. 

Moreover, ET might be used as an alarm system for which there is a demand. 
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Abstract ‘in Danish’ 

Luftbåren forurening fra intensiv husdyrproduktion er den vigtigste begrænsende faktor for 

omfanget af denne produktion. De forurenende forbindelser kan fjernes helt eller delvist ved 

adsorption i en væskefase i form af en aerosol, dannet i små dyser, monteret i 

ventilationskanaler i stalde. Efterfølgende renses væsken i et biofilter, før den returneres til 

ventilationskanalen. 

Bestemmelse af representative, forurenende kemiske forbindelser er en forudsætning for 

optimering af adsorption og biologisk nedbrydning. Blandinger af karakteristiske lugtstoffer 

blev analyseret uden (direkte vandig injektion) og med (faststof ekstration) prøveforberedelse 

ved flammejonisationsgaskromatografi. Fenol og 1-butanol blev ved begge metoder bestemt 

i koncentrationer under litteraturværdier for koncentrationer i staldbygninger. Direkte vandig 

injektion blev foretrukket, da prøveforberedelse blev undgået. 

En elektronisk tunge, bestående af 14 elektroder med krydssensitivitet overfor hovedsageligt 

ladede forbindelser, blev testet for at identificere, kvantificere og klassificere forskellige 

blandinger af karakteristiske lugtstoffer. Signalerne fra alle elektroder blev individuelt 

analyseret ved statitiske metoder, herunder mønstergenkendelse og multivariat dataanalyse. 

Den elektroniske tunge har mange fordele sammenlignet med andre analysemetoder: Den er 

hurtig, ukompliceret og først og fremmest en on-line metode, der kan karakterisere selv 

komplekse blandinger. Den elektroniske tunge blev kalibreret ved ‘principal component 

analysis’ (PCA) samt ‘partial least squares’ (PLS) og ‘back propagation neural network’ 

(BPNN). Ved disse analyser kunne antallet af elektroder begrænses fra 14 til 8 ved 

kvantificering af ammonium, n-butyrat og fenolat uden tab af analysesikkerhed. Forskellige 

blandinger af de karakteristiske lugtstoffer blev med 8 elektroder kvantificeret med 

følsomheder svarende til gaskromatografens og med klassifikationsrater fra 88 til 100%. 

Standardafvigelser og relative standardafvigelser var lavere for det begrænsede antal 

elektroder sammenlignet med den elektroniske tunge bestående af 14 elektroder. 

Resultaterne viser, at den elektroniske tunge har et stort potentiale som en on-line metode til 

at karakterisere sammensætningen af staldluft og –lugt. Herved kunne vurderingen af 

lugtgener blive mere objektive. Endelig er en kvantificering af karakteristiske lugtstoffer en 

forudsætning for optimering af installationer til begrænsning af lugtgener samt udledning af 

ammoniak fra staldbygninger, hvilket er en af nutidens største miljøteknologiske 

udfordringer. 
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1. Introduction  

Livestock is one of Denmark’s largest industries. Denmark has become a major contributor 

to technological advances within this field, and it is very famous worldwide for its agricul-

tural technology, e.g. milk, cheese and meat production. In Denmark, there were 16073 cow 

farms, 9994 pigs farms, 3288 poultry farms and 2668 sheep farms in 2004 (StatBank, 2006). 

The dairy sector is important in Denmark. The total number of cattle in Denmark is about 

1.9 million. Of these, about 0.6 million are dairy cows. About 4.6 million tonnes of milk are 

produced annually. On average, each dairy farmer keeps approximately 62 cows. Each 

yielding 7600 kg milk yearly. Production of broilers amounts to approximately 134 million 

Danish kroner (about 20 million American dollars) yearly. A small production of turkeys, 

ducks and other poultry are also present. About 210 thousands tonnes of poultry meat is 

produced yearly. Two-thirds is exported to foreign markets. There are 3.7 million egg-

laying hens, producing 74 million eggs annually. This amount covers the national consump-

tion of eggs (Danish Agricultural Council, 2006). 

Denmark is one of the world’s leading exporters of pork. It is the fifth largest pig meat 

producer in the European Union (EU); after Germany, Spain, France and Netherlands; but it 

is the largest exporter. In 1999 the exports of pig meat products accounted for 6.2% of the 

total value of Danish exports and 46.3% of total agricultural exports. The pig meat accounts 

for 47% of the world meat production compared to 24% for poultry and 29% to beef. Pig 

meat accounts for 49% of total meat consumption within the EU (Lara et al., 2002). 

The odour problem is an important environmental pollution issue (Yuwono and Lammers, 

2004). Livestock buildings are one of the main sources of the odours from the animal 

production (Carney and Dodd, 1989). It is foreseen that in the coming years large farms will 

have to significantly reduce the output of odours, ammonia and dust emission to the sur-

rounding area from their livestocks. This is because of the legislation restriction, near-

neighbour pressure and environmental issues (Gostelow et al., 2001; Schiffman, 1998). On 

the other hand, this reduction of odour, ammonia and dust emission will increase the scale 

and profit of animal productions. This is because the regulation in Denmark enforces a 

minimum distance of 300 meter as a buffer zone between livestock buildings and 

neighbouring houses. This buffer zone affects one fourth (25%) of livestock producers in 

Denmark (DaNET, 2004). There are several methods for reducing odours. These include 

physical, chemical and biological methods. The biological methods are inexpensive, simple 

to operate and environmentally friendly (Revah and Morgan-Sagastume, 2005). One of the 

biological methods is the bioscrubber. 
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The bioscrubber consists of two main parts: an absorption column (air wet scrubber) and a 

bioreactor (water purification module). In the livestock building, the absorption column and 

the bioreactor are place inside the ventilation chimney and at floor level, respectively. In the 

absorption column, odour substances (odorants), ammonia and dust particles are absorbed 

by water droplets. Water droplets are provided to the absorption column through water 

nozzles, who receive water recycled from the bioreactor. The bioreactor can supply cleaned 

water for several absorption columns. The bioreactor contains microorganisms that metabo-

lize different substances. This results in the production of biomass, water and CO2 (Revah 

and Morgan-Sagastume, 2005). 

Bioscrubber looks like a good method for Danish livestock buildings, since more than 90% 

of the Danish poultry and pig houses are estimated to use mechanical ventilation systems, in 

which the exhaust air is discharged through ventilation chimney. An air cleaning system 

mounted in a ventilation chimney would therefore be an effective technical solution for the 

reduction of odour emissions from this type of livestock building (DaNET, 2004). 

Identification and/or quantification of a mixture of odorants in absorption column or in 

bioreactor, gives information about the absorbed odorants and the efficiency of the bioreac-

tor. Also, it allows designers or operators to make the right decisions related to the choice of 

technique, modifications, etc. 

Identification and/or quantification are carried out by different analytical equipments, which 

work off-line or on-line. Off-line methods include gas chromatography (GC), gas chroma-

tography-mass spectrometry (GC-MS), etc. The on-line method might be achieved by using 

an electronic tongue (ET); this is an analytical instrument containing an array of chemical 

sensors, with partial specificity for different components in liquid media and an appropriate 

pattern recognition and/or multivariate calibration tool for identification and quantification 

of simple and complex solutions (Vlasov et al., 2005). The ET is a new technology, and it 

was known for about 10-15 years. There are many advantages in using ET compared to 

other analytical methods. The key advantages are rapidity, simplicity, low cost and simulta-

neous on-line determination of several components in the liquid (Legin et al., 2004a). ET 

was used in many applications. 

This study will investigate the possibility of identification and quantification of odorants in 

bioscrubbers of livestock buildings, using two analytical methods: gas chromatography and 

ET. However, due to the presence of huge amount of odorants in livestock buildings (O'Neil 

and Philips, 1992; Schiffman et al., 2001), a representative selection of these odorants was 
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used in this study, and we called them key odorants. They were chosen from different 

chemical groups and due to their contribution in the odour nuisance problem.  

This is the first study related to use ET for identification and/or quantification of odorants in 

bioscrubbers of livestock buildings. It is a step forward in a long process aiming to build an 

on-line sensor of odorants. This study contributes to both sensor and environmental technol-

ogy. 

The following chapters will give a background related to odour, electronic tongue and 

multivariate data analysis. The latter is used to convolute the complicated signals produced 

by ET. 
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2. Aim and objectives 

The aim of this research was to investigate the possibility of using ET (i.e. a sensor array) as 

an on-line sensor for identification and/or quantification of odorants in bioscrubbers of 

livestock buildings. To achieve this aim, the following objectives were formulated: 

� To identify and/or quantify key odorants using an off-line method. GC was used. The 

off-line method might be used as a reference method for an on-line technique, i.e. ET, 

� To investigate the possibility of using ET to identify and/or quantify key odorants, 

� To investigate the possibility of using ET to classify different mixtures of key odorants, 

and 

� To simplify ET, by decreasing the number of electrodes from the maximum number to 

fewer electrodes that are able to model key odorants and classify different test mixtures 

of key odorants, without any loss of analytical information. 

 



Odours 5 

Identification and quantification of odorants from livestock buildings 

3. Odours 

To be able to reduce or control odours, it is important to study and understand them. This chapter han-

dles a mini literature review related to odours. It covers the general aspects of odours and emphasize 

mainly on agricultural odours. 

3.1. General concepts 

Smell is the most sophisticated sensory system for mammals, including human beings 

(Dalton, 2003). Generally, odour or malodour refers to unpleasant smell (Yuwono and 

Lammers, 2004). There is no universal definition of odour (Mackie et al., 1998). However, 

odour can be defined as the perceived effect of one or more odorants as detected and inter-

preted by the olfactory system (Gostelow et al., 2001; Mackie et al., 1998; Schiffman et al., 

2001). Odorants are the compounds responsible for imparting an odour, and their molecules 

mass is generally between 30 to 300 Daltons (Persaud et al., 1996b; Sarig, 2000). The 

molecular structures of odorants are very diverse (Persaud et al., 1996b). The relation 

between odorant properties and odour perception is not clear. This is due to the lack of a full 

theory of olfaction (Gostelow et al., 2001). 

Detection of odours is a very complicated process (Dalton, 2003). The human olfactory 

system consists of three parts: olfactory epithelium, the olfactory bulb and the olfactory 

cortex. The olfactory epithelium is an area of approximately 5 cm2 located in the upper nasal 

cavity, below the eyes. It contains about 107 to 108 receptor cells. The receptor cells connect 

via olfactory neurones to the olfactory bulb at the base of the brain. There, the pre-

processing of the electrical output from the receptor cells takes place before passing to the 

olfactory cortex, where further processing takes place in the higher order olfactory structure 

of the central nervous system. The receptors have a broad response with a large overlap 

between different classes. Humans are just able to name few odours by analogy, e.g. it 

smells sweaty, fishy, etc. (Gostelow et al., 2001; Mackie et al., 1998). 

The 2004 Nobel Prize winner in medicine, Richard Axel and Linda B. Buck, have contrib-

uted greatly to the understanding of the mechanisms involved in olfaction. They cloned 

olfactory receptors, and showed that they belong to the family of G protein coupled recep-

tors. By analyzing rat DNA, they estimated that there were approximately 1000 different 

genes for olfactory receptors in the mammalian genome. That research opened the door to 

the genetic and molecular analysis of the mechanisms of olfaction. It was suggested that 

combined stimulation from different types of receptors can enable the brain to identify a 

large number of different odours  (Nobel Prize, 2004). The humans are capable of recogniz-

ing and remembering 10000 odours or more (Mackie et al., 1998; Nobel Prize, 2004). The 
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deep understanding of Axel and Buck theory is beyond the scope of this study. On the other 

hand, it just shows that the olfaction system is still a complicated scientific issue until recent 

days. 

Odorant molecules emanating from different sources must be sufficiently volatile to arrive 

at the olfactory receptors in the nose. They should also be partly soluble in water, so that 

they can pass through the nasal mucus to the olfactory epithelium, and they should be 

soluble in lipids, so that they can pass through the lipid layer that forms the surface of the 

olfactory organ, i.e. the nose (Persaud et al., 1996b; Sarig, 2000). It is estimated that 10% of 

the air that we breathe through our nose actually reaches the olfactory epithelium (Dalton, 

2003). The perception of people toward odour is highly individually. It depends on many 

factors, such as gender, age, general health, smoking habits and repeated exposure to an 

odorant (Gostelow et al., 2001). 

3.2. Agricultural odours 

The sources of odours from livestock units are: (1) manure, (2) ventilation exhaust air from 

farm building, (3) animals, and (4) feed (Carney and Dodd, 1989). Nevertheless, the odour 

emissions from animals and feed are considered low when compared to manure and ventila-

tion exhaust air odours. In Europe, it was estimated that the total odour emissions from 

animal facilities are made up of 50% from indoor exhaust air, 25% from manure storage and 

25% from manure transport and spreading (Klooster Van’t and Voermans (1993) cited in 

Sheridan et al. (2002)). Odorants causing malodour are produced by micro-organisms 

decomposing various substances like undigested feed particle in manure (Mackie et al., 

1998). The emission rates of odours from livestock operations are dependent on many 

factors. Some of these factors are temperature, humidity, time of the year and day, weather 

condition, ventilation rates, wind force, housing type, manure properties and animal species 

(Jacobson et al., 1999). Dust is an important odour and ammonia carrier. Dust concentration 

and emissions is dependent on housing type and animal species. The highest dust concentra-

tions are found in poultry housing followed by pig and cattle (Takai et al., 1998; Takai et 

al., 2002). Some of the methods to reduce dust are spraying oil or oil-water mixture inside 

the building, as well as mechanical or electrical dust removal from air head space (Zhang et 

al., 2002). 

3.3. Odours and health 

Odours may lead to health problems, including physiological and psychological conditions. 

They can potentially affect memory (Schiffman, 1998). It was also found that the 
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neighbours of livestock buildings suffer more from depression, negative emotions, greater 

mood disturbance, more tension, an overall feeling of less vigour, anger, fatigue, and confu-

sion than people living far away from livestock buildings (Schiffman et al., 1995). More-

over, odours cause a decreased quality of life for the vicinity people, e.g. they could not 

enjoy the nice weather in their home gardens (Wing and Wolf, 2000). A significant percent-

age of agricultural workers have respiratory diseases from the long term exposure to dust 

and odours (Kirkhorn and Garry, 2000). These symptoms were mainly found in and near pig 

farms. The odours from the livestock buildings are not toxic. However, livestock buildings 

should be equipped with proper ventilation systems, and the persons (farmers) who are 

working inside them should have fresh air outside the buildings during working hours 

(Dalton, 2003; Gostelow et al., 2001). High level of odour in pig production facilities 

affects the animals’ health. The growth decrease and the susceptibility to diseases increase 

(Mackie et al., 1998). 

3.4. Odour measurements 

Odour nuisance (i.e. irritation, annoyance) is one of the most important factors in odour 

environmental problems. Odour nuisance is generally defined by the ‘FIDO’ factors. FIDO 

stands for: Frequency, Intensity, Duration and Offensiveness. Frequency refers to the 

number of times an odour occurs. Intensity refers to the strength of an odour. Duration 

refers to the period of time an odour is encountered, and offensiveness refers to the charac-

ter or hedonic tone of the odour (Mackie et al., 1998; O'Neil and Philips, 1992). Offensive-

ness measurement is more subjective (individual) than intensity measurement. People 

perception of the offensiveness of an odour differ more than their perception of odour 

intensity, and it is difficult to differentiate between degrees of offensiveness (Misselbrook et 

al., 1993). 

Odour intensity is the key factor in quantification of odour nuisance problems. Generally, 

the odour intensity from animal housing air decreases from pig through poultry to cattle 

(Hartung, 1992; Jongerbreur et al., 2003). Hartung (1992) found that the intensity is affected 

by the age of the animals, the type of housing and the reason for which they are being kept. 

Direct and indirect methods have been developed for measuring odour intensity. Direct 

(sensory or olfactometric) methods involve the use of about 4-16 trained persons in a panel, 

using their nose as a detector. Indirect (analytical) methods measure the concentration of 

volatile odorants in air, and if possible correlate the measurements to direct observations (Le 

et al., 2005; Mackie et al., 1998; Rappert and Muller, 2005). So, the analytical measure-
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ments refer to odorants, while the sensory measurements refer to odours (Gostelow et al., 

2001; Mackie et al., 1998). 
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The olfactometric method uses two major techniques: scaling and dilution.  

The principle of scaling measurements is to vary the odour concentration and thus vary 

perceived intensity. Scaling involves: (a) rating the odour intensity on an arbitrary scale 

(using a seven points rating scale that ranges from no odour to extremely strong), or (b) 

referencing odour intensity to the intensity of a known substance (Le et al., 2005; Mackie et 

al., 1998; Rappert and Muller, 2005). The most commonly used reference compound is n-

butanol (C4H9OH). This is mainly due to its stability, availability in high purity, relatively 

non-toxic and has a reasonably agreeable odour that is unrelated to most other odours of 

concern (Mackie et al., 1998; Schulte, 2000). The scaling methods are simple, easy and do 

not need elaborated equipment (Mackie et al., 1998). 

The dilution methods involve presenting the panellists with a range of dilutions of the 

odours samples in liquid or vapour form to determine odour threshold or detectability. The 

results from the panellists are expressed as a dimensionless ratio, like threshold odour 

numbers (TON) or dilution to threshold (D/T). So, odour concentrations derived by the 

threshold olfactometry are dimensionlessly expressed (Gostelow et al., 2001). However, 

since the odour concentration from olfactometry is the mostly commonly used parameter for 

signifying the intensity (strength) of odours (Le et al., 2005), the dimensionless ratio has 

been expressed as a physical concentration, and it is called odour units (OU) or odour units 

per cubic meter (OU/m3) (Gostelow et al., 2001). The definition of one odour unit is the 

amount of the odour, which when diluted in 1 m3 of air, can just be distinguished from clean 

air by half (50%) of the members of an odour panel (Le et al., 2005). Here is an example 

about OU: if an odour sample, collected from the farm, needs to be diluted 70 times before 

50% of the persons on the odour panel can detect the odour and 50% can’t, then the odour 

stream has an odour intensity of 70 OU or OU/m3. Liquid dilution has mainly been used in 

the estimation of odour in water and wastewater treatment effluents (Mackie et al., 1998). 

The intensity and odorant concentration are correlated. The perceived intensity increases 

with increasing odorant concentration. Nevertheless, the correlation is not linear (Gostelow 

et al., 2001). There are two laws explaining this relationship: Weber-Fechner law and 

Steven’s law. The Weber-Fechner law produces a linear plot of intensity versus logarithm of 

odorant concentration. Steven’s law produces a linear plot of intensity logarithm versus 
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logarithm of odorant concentration (Gostelow et al., 2001; Le et al., 2005). However, both 

laws give almost the same results with respect to intensity (Misselbrook et al., 1993). 

Dilution methods can be static or dynamic. Static dilution involved the mixing of known 

volumes (m3) of odours and odour free air. Dynamic dilution involves the mixing of known 

flow rates (m3/sec). Dynamic dilution has some advantages over static dilution, as (1) 

minimizing the effects of sample adsorption to the internal surfaces of the instrument, and 

(2) delivering the sample to the sniffing port at a constant flow, which helps to improve the 

repeatability of the results (Gostelow et al., 2001). Dilution methods are more objective than 

scaling methods. The use of a reference (e.g. n-butanol) is useful in both scaling and dilu-

tion methods, since it will help in comparing values from different panellists (Mackie et al., 

1998). 

A device called a scentometer is used for direct field measurements, to determine the 

thresholds dilution. It is a small device that can be carried by hand. The principle is similar 

to the dilution method of olfactometric. The procedure is to vary proportions of ambient air, 

i.e. odours, which are drawn through an activated carbon filter, i.e. odour free air, that 

introduced to two nasal ports for the nose of a trained and experienced person. The ratio of 

the ambient air to filtered air at which an individual detects an odour is the dilution thresh-

old (Mackie et al., 1998; Rappert and Muller, 2005). The most common methods for meas-

uring odour intensity for research purposes are dilution olfactometer and scentometer 

(Mackie et al., 1998; Rappert and Muller, 2005). 

For practical applications, values of OU higher than 7 will create odour complaints (Schulte, 

2000). A serious nuisance is expected at a value of 31 OU (Gostelow et al., 2001). How-

ever, there are some limitations of the sensory (olfactometry) methods for measuring odour 

intensity, as expensive, labour intensive and time consuming. Moreover, these methods are 

subjective and personality variation in sensitivity to different odours, quick saturation of 

olfactory senses, fatigue as a result of adaptation and climatic variables changes when 

measuring odours under field conditions (Le et al., 2005; Mackie et al., 1998; Rappert and 

Muller, 2005). Gostelow and Parsons (2000) stated that even with a lot of standardization 

procedures presented these days, the olfactometry is not a precise measurement. Further-

more, until recent days, no individual compound is used as an indicator to predict the 

olfactory responds (Zhang et al., 2002). Consequently, there is a need for other methods for 

measuring odours. This might be done by indirect analytical methods, in which separation, 

identification and quantification of odorants can be carried out. 
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Analytical measurements refer to odorants, while sensory measurements refer to odours 

(Gostelow et al., 2001; Mackie et al., 1998). Despite that the intensity of odour, as it will be 

perceived by humans, is not related to the analytical methods (Mackie et al., 1998; Missel-

brook et al., 1993), the advantages of analytical measurements compared to sensory meas-

urements are: (1) objective, (2) repeatable, (3) accurate, (4) automated samples and meas-

urement, and (5) related to the theoretical models of odorant formation or emission 

(Gostelow et al., 2001; Gostelow and Parsons, 2000; Mackie et al., 1998). The odorants 

concentration is the most common measurement by analytical methods (Gostelow et al., 

2001; Gostelow and Parsons, 2000). Misselbrook (1993) suggested that odours of equal 

concentration will not necessarily have equal perceived intensity or offensiveness. 

Gas chromatography (GC) is the most commonly used analytical technique in separation 

and identification of volatile compounds (Mackie et al., 1998; Rappert and Muller, 2005). 

GC is a precise method and might be used off-line, in situ and for continuous measurements 

(Rappert and Muller, 2005). The peak area and the height are used to quantify the concen-

tration of each compound. The compounds are separated by injecting a sample into specific 

columns. They are separated in the column according to their vapour pressure and solubility 

(Mackie et al., 1998). Figure 1 shows a schematic diagram of a GC. 

 

Figure 1. Schematic diagram of gas chromatography (Source: Reed at al., 1998) 

There are specific detectors for GC that are sensitive to certain types of compounds. Flame 

ionization detector (FID) is a universal detector for a broad range of organic compounds. It 

consists of a hydrogen/air flame and a collector plate. The effluent from GC column passes 

through the flame. The flame breaks down organic molecules and generates ions. This 

creates a small current. The response is proportional to the number of carbon in the analysed 
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compound. The ions are collected on a biased electrode and produce an electrical signal. 

The FID is extremely sensitive with a large dynamic range. One of its disadvantages is that 

it destroys the sample (Reed et al., 1998). Combining GC with mass spectrometry (GC-MS) 

improves the certainty of the identified compounds. However, it is an expensive device, 

used just for research rather than for monitoring, does not correlate well with the dilution 

levels required for detection of odour by a human panel using olfactometry, and the limit of 

analytical detection may be higher than the thresholds of smell (Bourgeois et al., 2003; 

Mackie et al., 1998; Rappert and Muller, 2005). Sometimes, GC or GC-MS is coupled with 

an olfactometry port to link and compare the results between sensory and analytical methods 

(Wright et al., 2005). GC with different detectors has been used in many applications related 

to sewage odours (Gostelow et al., 2001). Also, purge and trap (P&T), solid phase micro 

extraction (SPME) and solvent extraction were used as a separation techniques before GC 

and/or GC-MS analysis (Kim et al., 2002; Razote et al., 2004; Shin and Ahn, 2004). 

The identification and quantification of all the odorants present in a sample is a very diffi-

cult process. This is due to two main factors (Gostelow and Parsons, 2000): 

1. A large number of odorants are present in the sample (i.e. mixture of odorants), and  

2. The presence of odorants in very low concentrations. 

Moreover, the main obstacle in linking analytical and sensory concentration measurements 

is the effect of mixtures (Gostelow and Parsons, 2000). Complex odours, which have 

several individual odorants, smell differently than the individual odorant. It is so difficult to 

predict the odorants in an odour mixture. The unpleasantness of the odorant mixture in-

creases with the number of odorants in the mixture and the growing concentration of the 

odorants. However, it is not a linear relationship. The detection threshold for a mixture of 

odorants is generally lower than for any individual odorants, indicating that a synergistic 

additivity among odorants is present. Nevertheless, the additivity is hard to predict 

(Gostelow et al., 2001; Mackie et al., 1998). The perceived intensity for a mixture is likely 

to be higher than for any individual odorant in the mixture (Gostelow et al., 2001). This 

contributes to the nuisance problem related to the odours emitted from agricultural produc-

tions. Even though the individual odorants rarely exceeds the recognition or irritation 

threshold (Schiffman et al., 2001). 

There are four odour threshold concentrations: the detection threshold, the recognition 

threshold, the irritation (or nuisance) threshold and the toxic threshold. The detection 

threshold is the lowest concentration that the odorant can be perceived by the human nose or 
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by half of an olfactometric test panel. The recognition threshold is the lowest concentration 

of the odour or odorant where it is possible to recognize the source or odour character, and it 

is 1.5-10 times of the detection threshold. The irritation threshold is often in the range of 

recognition threshold, and it is 3-10 times the detection threshold. The toxic threshold is the 

concentration of the odorant that the toxicological effect of the odorants negatively affects 

the human health. It is about 500 times the odour threshold of an odorant (Dalton, 2003; 

Gostelow et al., 2001; Mackie et al., 1998; Schiffman et al., 2001). 
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The use of sensor arrays may be one optional method for correlating intensity and concen-

tration of odorants. Electronic nose (EN) is one of the sensor arrays that were used for 

identification and quantification of samples presented in gas form. EN is defined as an 

instrument consisting of an array of partial specificity chemical sensors and an appropriate 

pattern recognition system capable of recognition odour. It has been used in many quality 

controls, especially in the food processing industry. It has a high potential to be used in 

medical applications (Stefan et al., 1999). Also, it has been used in environmental and odour 

investigation purposes (Hobbs et al., 1995; Persaud et al., 1996a; Stuetz and Nicolas, 2001). 

EN is commercially available (Nagle et al., 1998). However, Le et al. (2005) suggested that 

EN is still far from implementation in measuring livestock odour. Some problems should be 

solved before EN can be used in a farm, as large size, periodic calibrations, sensor drift, 

humidity and temperature dependence, high power consumption and high cost (Bourgeois et 

al., 2003; Nagle et al., 1998; Stefan et al., 1999). 
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There are few reviews and studies related to quantification of odorants from livestock 

buildings. Those studies primarily addressed swine operations (O'Neil and Philips, 1992; 

Schiffman et al., 2001). There are a huge numbers of odorants in livestock buildings. About 

300 different odorants have been identified (Schiffman et al., 2001), many of them have a 

very small detection threshold value of 1 µg/m3 or less (O'Neil and Philips, 1992). Key 

odorants are usually used in analytical measurements, to reduce the required analytical work 

and time expenditure needed for analysis. The key odorant should be representive for the 

diversity of the odorants present in the original odour (Schiffman et al., 2001). Many scien-

tists used a representative compounds to evaluate a new technology or application, and to 

study odours (Razote et al., 2002; Zahn et al., 2001). In some cases, a particular odorant 

may be dominant and give an indication of the overall odour concentration. A good example 
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of that is hydrogen sulphide (H2S), which is the dominant odorant associated with sewage 

odours (Gostelow et al., 2001; Gostelow and Parsons, 2000). 

Choosing of key odorants is a difficult task, since it is so complicated to correlate the 

nuisance, offensiveness or intensity to specific odorant compounds. However, many scien-

tific attempts were carried out to suggest the most important odorants, which have the most 

offensive and intense effects in the different animal production facilities. Barth et al. (1974) 

suggested volatile fatty acids (VFAs), ammonia (NH3) and H2S. Schaefer (1977) recom-

mended VFAs, phenol, p-cresol, indole and skatole. Spoelstra (1980) suggested p-cresol and 

VFAs as indicators of odour offensiveness from animal production facilities. Other odorants 

like VFAs, phenol, p-cresol and skatole were suggested by Williams and Evan (1981). Four 

major groups of odorants: VFAs, indoles, phenols and sulphides were recommended by 

Williams (1984) and Hobbs et al. (1997). Mackie et al. (1998) and Zhu (2000) divided the 

main odorants to four groups: VFAs, indoles and phenols, ammonia and volatile amines, 

and sulphur containing compounds. Branching and long chain VFAs (which contains four to 

nine carbons: C4-C9) may present a good indication of the offensiveness of the animal 

odours (Zhu et al., 1999). P-cresol was suggested by Wright et al. (2005) as the main 

indicator of odour offensiveness. Le et al. (2005) concluded that p-cresol is the most impor-

tant compound in odour nuisance problem, followed by indole and skatole. 

Despite that many livestock buildings have the same housing systems, there is a huge 

variation in measurements of odour emission in different locations of livestock buildings. 

The coefficient of variation (CV) for these measurements is in the range of 7-83% (Le et al., 

2005). The literature reviews related to odour concentration in livestock buildings, in the 

last thirty years, reported a widely range of concentrations among different studies. These 

differences included the odour threshold, the minimum or the maximum odour concentra-

tions in the studies. The variations are possibly due to: (1) the accuracy of the equipments 

used, (2) different measuring and sampling methods, (3) different sources of samples, and 

(4) the rapid change in the animal production system from the seventies until nowadays, 

which may include housing systems, animal breeds and diet. The best way to reduce the 

variations in the future is to set and follow the standardization measuring methods (Le et al., 

2005). 
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The correlation between different odorants and combinations of odorant in livestock build-

ings are weak (Nimmermark, 2004). Nevertheless, there were some scientific trials to study 



Odours 14 

Identification and quantification of odorants from livestock buildings 

this point and find correlations. The correlations may help in linking information collected 

from the livestock production during research or working. 

The correlation between NH3 and odour in livestock production has been investigated. Pain 

and Misselbrook (1990) found a positive correlation and Heber et al. (1998) found no 

correlation. On the other hand, Jongerbreur et al. (2003) concluded that the correlation 

between NH3 and odour emission is not reliable in the livestock production. Hobbs et al. 

(1999) studied the effect of aging pig waste (i.e. for 112 days) on odour emission rate. They 

found that the emissions of phenols, VFAs, H2S and carbon dioxide (CO2) showed a de-

crease, while methane (CH4) and NH3 showed an increase with increasing storage period. 

Le et al. (2005) suggested that: (1) the production of indole and skatole is negatively corre-

lated with each other, (2) methane does not cause odour nuisance. But it plays a consider-

able a role to the greenhouse effect, (3) VFAs concentrations are negatively correlated with 

methane production, (4) H2S emission rate is negatively correlated to the methane emission 

rate, and (5) NH3 emission rate correlated positively with methane emission rate. 

3.5. Odour reduction methods 

There are mainly three methods for odour control and reduction (Revah and Morgan-

Sagastume, 2005): 

1. Physical methods: e.g. adsorption, absorption and condensation. 

2. Chemical methods: e.g. thermal oxidation (incineration) and plasma technology. 

The physical and chemical methods transfer the odour from gas phase to another phase 

(solid or liquid). 

3. Biological methods: they use microorganisms (bacteria, fungi) to degrade gas pollutants, 

which are transferred into the liquid phase. The microorganisms utilize these molecules 

as a source of nutrients and energy for growth, producing more biomass and carbon di-

oxide, water, sulphate, nitrate, etc. as by products. So, the microorganisms convert or-

ganic and certain inorganic compounds to less toxic and odourless compounds. 

The choice of a particular or a combination of these methods depends on: (1) the investment 

and maintenance cost, (2) treatment objectives, (3) the nature and complexity of the odours 

compounds (e.g. flow rate, volume, concentration, solubility, intensity, temperature, oxygen 

content), and (4) site characteristics, e.g. operation, maintenance capabilities (Burgess et al., 

2001; Revah and Morgan-Sagastume, 2005). 



Odours 15 

Identification and quantification of odorants from livestock buildings 

The physical and chemical odour reduction methods are mainly used for waste gas streams 

where the flow and pollutant concentration are high. Despite that they may have a high 

efficiency, they are expensive. This is due to their consumption of a large amount of chemi-

cals, demand labour control and maintenance of the equipments (Koe and Yang, 2000; 

Revah and Morgan-Sagastume, 2005). 

The biological methods have the following advantages over the chemical and physical 

methods (Burgess et al., 2001; Revah and Morgan-Sagastume, 2005): (1) effective at low 

concentrations, (2) inexpensive and economic, (3) environmentally acceptable, (4) have a 

good efficiency, (5) need very little energy, (6) simple to operate, (7) applicable for a wide 

range of pollutants, (8) can be used under normal conditions, i.e. temperature, pressure and 

pH, and (9) pollutants are converted to biomass instead of being transferred to another 

phase, as in chemical or physical methods where disposal will still be a concern. 

The most common configurations of the biological methods are biofilters (most extensively 

used), biotrickling filters and bioscrubbers. These configurations are often known as biore-

actors (Yuwono and Lammers, 2004). 
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A biofilter is a fixed-bed bioreactor. It is based on a filter media bed filled with a porous 

moist packing material (e.g. wood chips, compost). Microorganisms grow on the surface 

and gaps of the packing material and they form a biofilm. The efficiency of the biofilm is 

depending on the environmental conditions and the microbial density. The contaminated gas 

enters to the biofilter from the bottom or the side. It goes upward through the packing 

material into which the pollutants are absorbed on the packing material for microbial degra-

dation by the biofilm (Revah and Morgan-Sagastume, 2005). 

Despite that the biofilter may be active in degradation of odours, it may produce spores. 

These spores have a potential respiratory health danger when they are blown and inhaled by 

the people around (Ogendahl, 2005). 
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The gas flows through a fixed bed (e.g. structured plastics, ceramics), that is irrigated with 

an aqueous solution continuously. The solution contains the nutrients required by the bio-

logical system. The fixed bed has microorganisms, and they form a biofilm. The gas is 

firstly absorbed by the aqueous film that surrounded the biofilm (biological layers). Then 

the biodegradation takes place within the biofilm that slowly develops on the fixed bed 

particles (Delhomenie and Heitz, 2005). The main disadvantage of biotrickling is the accu-
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mulation of excess biomass in the filter bed, when the nutrients and water are not properly 

controlled and also due to time factor. This will lead to decrease in performance and clog-

ging problems (Delhomenie and Heitz, 2005; Revah and Morgan-Sagastume, 2005). 

Iranpour et al. (2005) reviewed the air pollution control using biofilters and biotrickling 

filters. They focused mainly on different applications in United States of America. They 

concluded that both methods are capable of removing odour and H2S from waste gas. Also, 

they found that the removal efficiency in the laboratory scale is higher than in the field 

applications. This is logical and expected, due to complexity of odours in the real life, and 

studying just only one or two odorants in the laboratory scale. 
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The bioscrubber consists of two units. The first unit is the absorption unit (air wet scrubber), 

and the second unit is the bioreactor (water purification module). In the absorption unit, 

gaseous contaminants, that are soluble in water, will transfer to the liquid phase. The ab-

sorption unit preferably contain a packed bed. The water that contains the compounds will 

be cleaned in the bioreactor. The microorganisms present in the bioreactor. The ‘degrading’ 

microorganisms and the nutrients needed for their growth and survival are suspended in the 

aqueous phase in the bioreactor. The effluent leaving the bioreactor is recirculated to the top 

of the absorber unit. This recirculation will help in absorbing more gaseous contaminants 

(Delhomenie and Heitz, 2005; Singh et al., 2005). Bioscrubbers were successfully used in 

many industrial and agricultural applications, and their use is growing (Kraakman, 2005). 

The main advantages of the bioscrubbers over the other biological configurations are: (1) 

easily control of biological parameters (pH, nutrients, temperature, and removal of meta-

bolic products are controlled in the bioreactor), (2) operational stability, (3) low pressure 

drop, (4) small equipment volume, (5) no clogging problem of packing material, (6) suitable 

for elimination of water-soluble compounds where pH is an important factor in the elimina-

tion process, (7) capable of handling large gas flow rates (about 3000-4000 m/hr), (8) 

capable of handling pollutant with a concentration less than 5 g/m3, (9) capability of remov-

ing pollutant degradation by washing the bioreactor, (10) low operational cost, and (11) 

having two separate parts, making it possible to dimension each part separately to adapt to 

any modification. However, the main disadvantage of bioscrubbers is that they are used for 

treatment of compounds that only have a high solubility in water, i.e. compounds with low 

dimensionless air-water partition coefficient (KAW). The KAW  is the concentration of the 

compound in the air phase divided by the concentration of the same compound in liquid 

phase, assuming that the gas and liquid are at equilibrium. Compounds treated by bioscrub-
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bers are preferably have KAW less than 0.01. This disadvantage makes bioscrubbers less 

popular than biofilters. To solve the problem of compounds that are not high soluble in 

water, there were successful trials to add emulsifying agents to improve their solubility 

(Burgess et al., 2001; Datta and Allen, 2005; Delhomenie and Heitz, 2005; Singh et al., 

2005). 

Figure 2 shows a schematic design of a bioscrubber. However, some research just used the 

absorption column and they called it air scrubbing or air wet scrubber (Melse and Ogink, 

2005). 

 

Figure 2. Schematic design of bioscrubber. It contains two units: (1) absorption column, 

where the odours gas is transferred into liquid phase, and (2) bioreactor, where biodegra-

dation by active microbial culture occurs (adapted from: Singh et al., 2005) 

The three types of bioreactors mentioned above have four critical common parameters: (1) 

pH, which is generally optimum at about seven, (2) temperature, which is between 20 to 

40oC, (3) availability of essential, non carbon nutrients (nitrogen, phosphate, potassium, 

sulphur and micronutrients), and (4) moisture content in the growth media. The main differ-

ences are their design and mode of operations (Delhomenie and Heitz, 2005). Table 1 

presents the main differences between the three types of bioreactors. 

Water nozzles 

1. 2. 
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Table 1. Main differences between different biological configurations (Source: Delhomenie 

and Heitz, 2005; Yuwono and Lammers, 2004) 

Characteristics Biofilter Biotrickling filter Bioscrubber 

� Reactor design Single reactor Single reactor Two reactors 

� Microorganisms Fixed Fixed Suspended 

� Liquid phase - Stationary 

- The bed is occasionally 

irrigated with nutrients 

solution 

- Flowing 

- Continuous trick-

ling over the filter 

bed 

- Possible recycling 

- Flowing 

- Continuously distributed 

- Recycled 

� Clogging of packing May occur May occur No clogging problem 

� Removal steps of 

odours 

- In the filter bed 

- In the biofilm 

- In the filter bed 

- In the biofilm 

- Air and gas are separated in 

the absorption column 

- Odorants are metabolized by 

the microorganisms in the 

bioreactor  

 

Generally, in all bioreactor configurations (i.e. biofilter, biotrickling filter and bioscrubber), 

the reported average removal efficiency of ammonia is higher and has less variations than 

the reported average removal efficiency of any other odorants. The removal efficiency is the 

fraction of the odorant removed by the bioreactor expressed in percentage. The high re-

ported variations indicate that the removal of odorants is a difficult problem and no agree-

ment between scientists about different odorants removal efficiency. Still a lot of research 

should be carried out within odour reduction technologies (Datta and Allen, 2005; Melse 

and Ogink, 2005). 

The pH is an important factor in different bioreactor configurations. This is because the pH 

has an effect on the transfer of odorants from the gas (i.e. in the air) to the liquids phase in 

the absorption column, and the microbial activity in the bioreactor. Most bioreactors have 

mixed microbial cultures, and the optimum pH levels are in the range of 4-8 (Singh and 

Ward, 2005). However, most microbial growth occurs near neutral pH (McNevin and 

Barford, 2000). Cautions should be taken for the fluctuations in pH levels, since they are 
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generally harmful for microbial activity. Microbial cultures for the different waste gas 

contaminants treatment were reviewed by Sing and Ward (2005). 

The design of the bioscrubber mostly focuses on the removal of one chemical group of 

compounds only or even removal of one compound only (Sheridan et al., 2003; Singh et al., 

2005). The performance of the odour control methods are carried out by olfactometry and/or 

analytical methods, e.g. GC, GC-MS (Melse and Ogink, 2005). 

In connection to the mini review mentioned above: 

This study is a part of a larger research project called ‘Absorption in water droplets of 

odours, ammonia and dust from livestock buildings’ (Figure 3). In which, odours from 

livestock buildings will be treated using a bioscrubber to reduce the nuisance. Key odorants 

were investigated in this study (Table 2). They were chosen by the Danish Ministry of Food, 

Agriculture and Fisheries / Danish Institute of Agricultural Sciences / Department of Agri-

cultural Engineering, who is a partner in the project. Key odorants were chosen to represent 

a variety of chemical groups and due to their contribution in the nuisance problem from 

livestock buildings, although they are in relatively low concentrations. Key odorants will be 

absorbed in the absorption unit and degraded in the bioreactor. The absorption column and 

the bioreactor will be designed by other partners and colleagues. 

This study contributes to the analytical measurement of odorants. Its aim is to identify and 

quantify the selected key odorants. These identification and quantification might be carried 

out before and/or after the bioreactor (as shown in Figure 3). The goal is to have an idea 

about the odorants absorbed by water droplets and the efficiency of the bioreactor. The 

identification and quantification will be carried out using gas chromatography and electronic 

tongue (next chapter). Using electronic tongue for characterization of odorants in livestock 

buildings was not reported before. 

The concentrations of the key odorants in the pig farms, and not in poultry or cattle farms, 

were investigated in this study. This was done because: (1) the pigs and their meat produc-

tion have a high influence in the Danish economy (Lara et al., 2002), (2) the ultimate goal 

of the project is to reduce the nuisance problem caused by livestock buildings, and the 

nuisance problem in the pig farm is higher than the poultry and cattle farms (Hartung, 1992; 

Jongerbreur et al., 2003), (3) the concentrations (using analytical methods) of these odorants 

in pig farms had been reviewed (O'Neil and Philips, 1992; Schiffman et al., 2001), and (4) 

the presence of all key odorants in the pig farm, which results in a complex mixture of 

odorants (Table 2), e.g. sulphides, phenols and indoles. 
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Studying a complex mixture of odorants is an interesting research subject. However, charac-

terization of key odorants in a pig farm will also imply the possibility of characterizing 

different odorants in poultry or cattle farms. This is because it is more comprehensive and 

difficult to characterize odorants in the pig farm. 

 

Figure 3. Sketch of project: ‘Absorption in water droplets of odours, ammonia and dust 

from livestock buildings’. Odorants might be identified and quantifies before and/or after 

bioreactor (X: suggested positions that samples of water are measured). Heat pump is to 

control temperature of water, if needed (Source: DaNet, 2004) 

 

Bioreactor unit 

Absorption columns (air wet 

scrubber) 

Heat pump 

X 

X 
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Table 2. Key odorants investigated in this study 

Group 

number 

Group Odorant 

number 

Odorant Chemical 

abstract service 

(CAS #) 

Molecular 

formula 

Number of citations in agricultural references 

according to presence of odorants in different 

livestock buildings 

(O'Neil et al., 1992; Sunesson et al., 2001) 

Sensory and odour characteristics 

(Schiffman et al., 2001) 

      Pig Poultry Cattle Sheep  

1 Sulphide 1 dimethyl sulphide 75-18-3 (CH3)2S 7 3 3 1 stench, decayed vegetables, putrid, disagreeable 

2 Alcohol 2 1-butanol 71-36-3 C4H10O 5 0 1 0 irritant, fusel oil 

3 VFAs 3 n-butyric acid 107-92-6 C4H8O2 12 3 0 0 irritant, sweaty, rancid 

  4 iso-valeric acid 503-74-2 C5H10O2 8 0 0 0 rancid, cheese 

4 Phenol 5 phenol (carbolic acid) 108-95-2 C6H6O 14 3 1 0 irritant 

  6 4-methyl phenol (p-cresol) 106-44-5 C7H8O 16 4 1 0 irritant, phenolic 

5 Indole 7 3-methyl indole (skatole) 83-34-1 C9H9N 13 4 0 0 stench, fecal odour, nauseating 

6 Ammonia 8 ammonia 7664-41-7 NH3 12 3 1 0 sharp, pungent 

Reference of chemical properties: Syracuse Research Corporation (2005) 
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4. Electronic tongues (ETs) 

Electronic tongues (ETs) have been developed quickly during the past few years. This is due to their 

large application potential and their promising alternative for many analytical methods. This chapter 

will discuss the different measurement principles, types, history, applications, advantages and limita-

tions of ETs. 

There are many analytical instruments that are used in biotechnology and industrial proc-

esses, e.g. mass spectrometry, gas chromatography, high performance liquid chromatogra-

phy (HPLC), etc. Nevertheless, almost all of them are bulky, expensive, often time-

consuming and require experienced operators (Gouma et al., 2004; Legin et al., 2004a). 

Chemical sensors are an alternative. Stradiotto et al. (2003) defined a chemical sensor as: ‘a 

device that provides continuous information about its environment. Ideally, a chemical 

sensor provides a certain type of response directly related to the quantity of a specific 

chemical species’. Chemical sensors mainly include electrochemical, optical and mass 

sensors. Use of electrochemical sensors is growing more rapidly than any other chemical 

sensors. This is due to their low cost, experimental simplicity and high detectability 

(Stradiotto et al., 2003). 

There are three main types of the electrochemical sensors: potentiometric (measure the 

voltage), voltammetric (measure the current), and conductometric (measure the resistance). 

The main basic electrochemical principles are potentiometry and voltammetry. Both of them 

required at least two electrodes, i.e. a working electrode and a reference electrode, and an 

electrolyte solution. The working electrode responds to the target molecular, and the refer-

ence electrode has a constant potential. The potentiometry method measures the potential 

difference of a charged membrane in contact with analytes, at no current. Different types of 

membrane materials have been used for this method. On the contrary, the voltammetry 

method measures the current at fixed potential. The current is related to the electron transfer 

reaction in the solution (oxidation and reduction) (Winquist et al., 2004). 

An electronic tongue (ET) is a chemical sensor. Most ETs are using electrochemical princi-

ples for measurements. The idea of the ET is based on using arrays that have cross-sensitive 

chemical sensors, combined with multivariate data analysis. The multivariate data analysis 

(explained in the next chapter) is important to analyse and understand the complicated 

signals produced by ET. Electronic noses (ENs) and ETs are based on the same concept, but 

ENs are used for gas analysis and ETs are used for liquid analysis. The ET is related to the 

human sense of taste, in the same way that the EN is related to olfaction. From this point, 

the ET was given this name (Legin et al., 2004a; Winquist et al., 2004). The term ‘elec-
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tronic tongue’ was first suggested by an Italian-Russian research cooperation in a confer-

ence in Leuven, Belgium, in 1996 (Winquist et al., 2004). 

4.1. Advantages of ETs 

The main advantages of ETs are: (1) relatively low cost, (2) simplicity of usage, (3) rapidity 

of measurement, (4) small size of sensors, which might be miniaturised, (5) measure di-

rectly in the solutions, (6) can be used in buffer media, (7) robust and better suited for 

measurements in industrial processes, (8) simultaneous determination of several compo-

nents in the media, (9) the possibility of measuring ions, for which no ion-selective elec-

trodes are known for measuring them, (10) measure in aqueous phase in which it will be 

able to provide information about ions and compounds that can be measured only in this 

phase (e.g. compounds having a low vapour pressure), (11) provide a larger amount of 

information about changes in the composition of the sample and this will provide a better 

understanding of the process, (12) suitable for some biological liquids, e.g. blood and blood 

plasma, where other sensors have some limitations, (13) safe and suitable for pharmaceuti-

cal application, especially in the absence of toxicological data for new medicine, (14) higher 

selectivity and lower detection limit than for a single sensor, and (15) require a small vol-

ume of sample (Legin et al., 2004b; Legin et al., 2004a; Soderstrom et al., 2003a; Vlasov et 

al., 2005; Vlasov and Legin, 1998; Winquist et al., 2004). 

4.2. Different types of ETs 

The most important types of ETs that are mentioned in the literature until now are: (1) taste 

sensor, which was designed in Japan, (2) voltammetric electronic tongue, which was de-

signed in Sweden, and (3) potentiometric electronic tongue which was designed in Russia. 

However, there are other scientific groups and types of ETs than mentioned. 

������ %��
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This was the first multi-sensor system, based on non-specific sensors for liquid solution. It 

used potentiometric method for measurement. It was introduced in Kyushu University / 

Japan, by Kiyoshi Toko and co-workers in 1990, and they named it ‘taste sensor’. However, 

recently they referred to it as electronic tongue (Vlasov et al., 2002). It is based on an array 

of eight different lipid/polymer membranes on a multi channel electrode. The voltage 

difference between the electrodes and a reference electrode (i.e. silver/silver chloride 

(Ag/AgCl)) is measured when the current is close to zero. However, different lipid materials 

are used depending on the object studied. Toko’s group claimed that the taste sensor can 

mimic all the basic human biological tastes substances, i.e. sweetness, saltiness, sourness, 
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bitterness and ‘umani’. Umani is the Japanese term for implying delicious taste (Toko, 

1998). On the other hand, Vlasov et al. (2002) suggested that caution should be taken before 

generalizing that this device can mimic the human taste. 

ET and taste sensor are somehow different. Taste sensor tries to mimic the operation of the 

human tongue to classify or identify the five different basic taste sensations. However, ET 

classifies or identifies the targeted solution without trying to mimic the human taste, and the 

results are not necessary compared with human sensation, but with other quality properties 

of the solution. Moreover, it was suggested that there is no need to compare ET signals with 

human sensory results in all applications, since this will limit the vision and applications of 

ETs (Winquist et al., 2004). 

The main area of the taste sensor applications is foodstuffs’ quantification and recognition, 

e.g. beer, coffee, milk, mineral water and tomato juice (Toko, 1998). The taste sensor has 

been commercialized on the market and used in different industrial applications (Winquist 

et al., 2004). 
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The voltammetric ET was firstly described by Fredrik Winquist and co-workers in Linkop-

ing University / Sweden in 1997. It consisted of a reference electrode (Ag/AgCl), auxiliary 

electrode made of stainless steel and an array of two working electrodes constructed from 

two different noble metals, i.e. gold (Au) and platinum (Pt) (Winquist et al., 1997). In the 

recent days, and after many modifications, the ET consists of reference electrode, auxiliary 

electrode and an array of six working electrodes, i.e. gold (Au), iridium (Ir), platinum (Pt), 

palladium (Pd), rhenium (Re) and rhodium (Rh). Nevertheless, the number of the electrodes 

used is depending upon the applications (Legin et al., 2002b). 

In this type of ET, current due to an electrochemical reaction from the redox active com-

pounds (oxidation or reduction) present in the solution, is passed between the working 

electrode and the auxiliary electrode. At the same time, the applied potential to the working 

electrode is referred to a reference electrode of a constant potential. The current will depend 

on the type of working electrodes and the potential applied. The voltammetric method is 

robust and very sensitive. But in most cases, its selectivity is poor. The poor selectivity is 

due to that all the electrochemically compounds in the solution contribute to the measured 

current, due to their activity below the applied potential. One solution to overcome this 

problem is to apply pulse voltammetry, which it is more sensitive than constant potential. 

So, measurements in this type of ET are achieved using pulse voltammetry, in which volt-
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age is applied to the metal electrodes in pulses of different amplitude, and the resulting 

current is collected for data analysis (Krantz-Rulcker et al., 2001). 

This type of ET has been used in many applications. Some of these applications are moni-

toring of milk deterioration due to the microbial growth when kept at room temperature 

(Winquist et al., 1998), classification of six different microbial species (Soderstrom et al., 

2003b) and monitoring of drinking water production plants (Krantz-Rulcker et al., 2001). 

Voltammetry ET is already commercialized on the market and utilized in several industrial 

processes (Winquist et al., 2004). Some of the reported industrial applications are using of 

ET in house washing machines (Ivarsson et al., 2005) and in dairy application (Winquist et 

al., 2005). 
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It was introduced by Andrey Legin and co-workers in St. Petersburg University / Russia. It 

was developed in 1996 as a part of an Italian-Russian research cooperation (Winquist et al., 

2004). The potentiometric ET is based on an array of ion-selective electrodes (ISEs). This 

ET has the advantages of being relatively cheap, rapidity of measurement and simplicity of 

usage. Moreover, ETs with an array of ISEs are the most wide spread type of ETs system 

until now (Stradiotto et al., 2003; Vlasov et al., 2005). 
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For an individual ISE, a linear relationship is assumed between ISE output (cell potential), 

and the logarithm of the activity (concentration) of the primary ion in the solution (Legin et 

al., 2002b; Stradiotto et al., 2003). The electrode should follow the Nerst equation, which is 

used for constructing a calibration curve: 
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where: E is the total potential (mV) developed between the sensing membrane and reference 

electrodes, Eo is the standard potential of the electrode, and it is characterized by the particu-

lar ISE/reference pair, as the intercept potential when the analyte activity is 1 M, R the gas 

constant (8.314 joules/(Kelvin × mole)), T is the temperature in Kelvin, zi is the electrical 

charge of the primary ion (with sign), F is the Faraday constant (96500 coulombs/mole), 

and ai is the activity of the primary ion, i.e. concentration. The term RT/ziF is known as the 

response slope, which is the sensitivity of an ISE in the absence of interfering ions (Albert et 

al., 2000; Legin et al., 2002b). 
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In the case of presence of two compounds in the solution, i.e. primary and interfering ions, 

the Nikolsky-Eisenman equation can be applied (Vlasov et al., 2005): 
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which is equivalent to: 
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where: ai and aj are the activity of the primary and interfering ion, respectively, Kij is the 

selectivity coefficient of the ISE to the primary ion i in the presence of the an interfering ion 

j, and the number 2.3 is the conversion factor from natural to base10 logarithm. This equa-

tion assumes a linear relationship between the sensor response, E, and the logarithm of the 

activity of the ions in the solution. However, this equation does not imply for a complex 

solution which contains many ions, i.e. more than two, which the electrodes are responsive 

for. Furthermore, the response of relation between E and logarithm of activity will be 

nonlinear (Legin et al., 2002b; Vlasov et al., 2005). 

It can be noticed that selectivity and selectivity coefficient of the ISE are very important 

factors. The selectivity method refers to the degree to which ISE can determine particular 

analyte(s) in a complex mixture without interference from other components in the mixture. 

The selectivity coefficient is defined as the ability of an ISE to distinguish between a par-

ticular ion from the others. The smaller this value is, the greater is the effect of the primary 

ions. The selectivity coefficient between two compounds is determined by: (1) fixed inter-

ference method (FIM), and (2) separate solution method (SSM) (Buck and Lindner, 1994). 

�������� ������
�	
���������

The selectivity of ISEs in a complex mixture is a large problem. However, the use of low-

selective sensors array together with the multivariate data analysis, i.e. ET, provides a 

solution to the selectivity problem. Usually the sensor array contains 10-30 sensors, depend-

ing on the application (Vlasov et al., 2002). Figure 4 shows a schematic diagram of a 

potentiometric sensor array. An ET is defined as: ‘an analytical instrument comprising an 

array of non-specific, low-selective, chemical sensors with high stability and cross-

sensitivity to different species in solution, and an appropriate method of pattern recognition 

and/or multivariate calibration for data processing’ (Vlasov et al., 2005). 
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The terms high cross-sensitivity and low selectivity are important terms in ET, and the 

sensor array should comprise both of them. Cross-sensitivity is usually used to describe the 

multi-sensor systems. The cross-sensitivity means that the different sensors have to produce 

a stable response and/or to have the ability to respond in a reproducible way to different 

analytes present in a solution (Vlasov et al., 2005). Three parameters were suggested for 

characterization of cross-sensitivity: average slope of sensors, reproducibility and non-

selectivity. These parameters are evaluated on the basis of measurements in a set of individ-

ual components that are expected to present in the complex solution. Among the three 

parameters, the average slope of sensors is the most important factor for cross-sensitivity. 

The low selectivity of multi-sensor array, also named non-specific or low-selective, means 

that the sensors are not totally selective for one particular species in solution, but may well 

respond to diverse compounds in the solution (Legin et al., 2002b; Vlasov et al., 1997; 

Vlasov et al., 2005). 

Characterization of sensor array, i.e. cross-sensitivity parameters, selectivity and limit of 

detection, were investigated in some papers (Legin et al., 1999b; Vlasov et al., 1997). The 

cross-sensitive and low-selective sensors are important terms with respect to ET’s perform-

ance. It was found that the array with cross-sensitive and low-selective sensors can signifi-

cant improve selectivity and detection limit compared to discrete sensors. The detection 

limit of the sensor array was at least three times lower than that of the discrete sensor, under 

the same conditions (Legin et al., 1999b). 
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Potentiometric ETs were used in many scientific applications. Some of these applications 

are:  

∗ Characterization of different mineral water brands (Legin et al., 1999a) and analysing the 

inorganic pollutants in the groundwater (Rudnitskaya et al., 2001), 

∗ Monitoring of fermentation process of E. coli (Turner et al., 2003) and prediction of 

multi-components in the fermentation growth media (Legin et al., 2004a), 

∗ Prediction and assessment of the pharmaceutical products taste (Legin et al., 2004b), and 

∗ Classification of different apples varieties (Rudnitskaya et al., 2006) and recognition of 

different liquids and water containing flesh food, i.e. fish (Legin et al., 2002a). 
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4.3. Limitations and defects of ETs 

The ETs are new technique. They were known since the beginning of the nineties of this 

century, i.e. 10-15 years ago. Naturally, there are some technical limitations and defects 

associated with their measurement principles and applications, due to their novelty and 

sensitivity. In addition, ETs have not yet reached their full potential to provide information 

and applied outside the laboratory (Soderstrom et al., 2003a; Vlasov et al., 2002). The 

researchers should be aware that the analytical capability of ETs should neither be overesti-

mated (Winquist et al., 2004) nor underestimated (Vlasov et al., 2002). More research and 

applications related to ETs should be addressed.  

The Japanese potentiometric taste sensor (i.e. ET) has a number of defects: (1) sensing 

mechanism is not clear and need more investigation, especially because the sensors are not 

ISEs, and (2) the potentiometric technique measures only ions (charged species) present in 

the solutions (Vlasov et al., 2002; Winquist et al., 2004). 

The defects of the Swedish voltammetric ET are: (1) the differences between electrochemi-

cal reactions on the different sensor array, i.e. noble metals, are not clear and need more 

examination, and (2) the choice of the step size of the pulse voltammetry applied to the 

electrodes during measurement, are not fully explained (Vlasov et al., 2002). 

The defects of the Russian potentiometric ET are: (1) measurement of only ions in the 

solution, and (2) drift of the sensors (Holmberg et al., 2004; Winquist et al., 2004). Regard-

ing the first point, Legin et al. (1999a) suggested that the responses of ET can be based on 

ionic, redox or molecular interaction at the membrane/solution interface. Furthermore, they 

recently stated that the ET mainly responds to ions (Soderstrom et al., 2005). For the second 

point, i.e. drift, they suggested that drift is much related to the nature of the solution meas-

ured, and it can be overcome by using flow injection analyses or washing the electrodes 

between measurements until they reach their initial potential readings (Holmberg et al., 

2004). 

Different versions of ET can show different analytical characteristics of the same samples 

under test. This is because the characteristics of ET, i.e. limit of detection, selectivity and 

cross-sensitivity, depend on the composition, design and the sensing materials used in the 

sensor array (Holmberg et al., 2004; Vlasov et al., 2005). Merging the data of different ETs 

for the same tested samples will give more information of the samples. Russian and Swedish 

ETs were used for recognition of four molds and one yeast. It was found that the merged 

data from both ETs improved discrimination of the samples in selected cases, despite that 
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both ETs alone can discriminate between different species (Soderstrom et al., 2005). The 

Swedish and the Japanese ETs were used for classification of different tea and detergent 

samples. Extra information were obtained by combining data of the two sensor systems, 

despite that each ET is able to classify the samples separately (Ivarsson et al., 2001). Also, 

combination of ET and EN data can help in improving the classification properties, e.g. fruit 

samples (Winquist et al., 1999). 

4.4. Perspective of ETs 

Despite that the ETs are still in their ‘infancy’, the expectations of increased commercial 

and research interest towards them in the modern chemical sensor sector is high, especially 

after their successful applications in research laboratories and some real life applications. 

This interest is due to the need for advanced detection devices for many applications, e.g. 

health services, environmental technology and quality control. It is expected that sensors 

will play an essential role in human welfare in the future. The miniaturized sensors will 

contribute a lot to this point. The future is expected to be full of inexpensive, easy to handle 

and miniaturized sensors for our daily life (Gouma et al., 2004; Vlasov et al., 2002). 

Vojinovic et al. (2006) reviewed many methods related to real time bioprocess monitoring, 

e.g. optical methods, nuclear magnetic resonance and ETs. They concluded that ETs are a 

promising new tool in bioprocess control, despite that they have not yet been used for in situ 

bioprocess monitoring. Moreover, they recommended further research and applications in 

ET area. 

In connection to the mini review mentioned above: 

A custom made prototype ET was purchased from Analytical Systems, Ltd., St. Petersburg 

– Russia. It consists of 14 potentiometric electrodes (i.e. sensors). Eleven polymer (PVC) 

plasticized membrane electrodes containing different active substances, two chalcogenide 

glass electrodes and one wire electrode. ET was designed to have a cross-sensitivity for the 

selected key odorants investigated in this study. Figure 4 shows a schematic diagram of the 

ET used.  

The compounds used in the experiments are shown in Table 2. Different test mixtures of 

key odorants (i.e. solutions) were used in the experiments. However, dimethyl sulphide and 

1-butanol were not included in the solutions. For dimethyl sulphide: 

� ET has no response in the range of interest,  

� Hard to wash the electrodes when dimethyl sulphide is included in the solution, 
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� No stable signal when dimethyl sulphide is included in the solution, and 

� Constant drift of all electrodes reading, which indicated a possibility of damaging 

electrode membrane. 

For 1-butanol, there was no-reproducibility of the electrode signals, i.e. signal jumping, 

when a solution contains 1-butanol. 

Potentiometric measurements, i.e. potential difference between each electrode of the array 

and one common reference electrode, were performed using a high-input impedance mul-

tichannel voltmeter versus conventional Ag/AgCl reference electrode. A pH glass electrode 

was also included in the sensor array. The sensor array was connected to a computer for data 

acquisition. The data were deconvoluted using multivariate data analysis (next chapter). 

The pH electrode was used to monitor the pH levels in the solutions during measurements. 

Maintaining the pH level at a constant value is important, to prove that ET does not only 

measure the pH, but the other compounds in the solutions. 

In this study, ET was used for: 

1. Studying the possibility of identifying and/or quantifying key odorants, 

2. Classifying different test mixtures of key odorants, and 

3. Simplifying the construction of the array and the data analysis by decreasing the number 

of electrodes, from the maximum number, i.e. 14 electrodes, to fewer electrodes. How-

ever, the selected electrodes should be sufficient for modelling key odorants and classi-

fying different test mixtures of key odorants. 

Papers number 2 and 3 discussed these issues. 

 

Figure 4. Schematic diagram of potentiometric electronic tongue 



Multivariate data analysis (MVDA)  

Identification and quantification of odorants from livestock buildings 

31

5. Multivariate data analysis (MVDA) 

Multivariate data analysis (MVDA) or chemometrics is an important technique in different sciences. It 

simplifies the interpretation of the data and gives an idea about the quality parameters in concern. 

Moreover, it is the key for any sensor array development. In our study, ET produces complicated sig-

nals that might be solved using MVDA. The latter includes many techniques: linear (PCA, PLS, PLS-

DA and SIMCA) or non-linear (ANNs, which contains many types, such as SOM and BPNN). 

Many parameters are obtained during measurements and sensors monitoring of different 

processes. Methods to simplify the interpretation of large data sets are required. Multivariate 

data analysis (MVDA) or chemometrics is used to simplify the extraction of relevant infor-

mation. Wold (1995) defined chemometrics as: ‘how to get chemically relevant information 

out of measured chemical data, how to represent and display this information, and how to 

get such information into data'. Another reason for MVDA to become a powerful tool in 

different processes is due to the change in the philosophy of handling information in meas-

urement technology. Quality parameters of the sample; e.g. condition, expected taste and 

state of process; rather than the quantitative chemical analysis of specific compounds, is 

desirable in many cases (Winquist et al., 2004). 

MVDA is used for ETs signal processing. MVDA extract the information from the compli-

cated signals that ETs produce. The signals (pattern) contain information about different 

compounds and other features in the complex media. Different MVDA techniques are 

employed to extract these information. The applied techniques are depending on two fac-

tors: (1) the structure of the data, and (2) the goal of the research. For point no. 1, the struc-

ture of data refers to the linear or non-linear relation between the sensors response (inde-

pendent variables, or predictors) and the concentration of the compounds (dependent vari-

ables) (Vlasov et al., 2005). The non-linearity response of the sensors results from the 

interferences between ions in the media (Legin et al., 2004a). For point no. 2, the ETs are 

applied for two tasks: qualitative (identification, classification and clustering) and quantita-

tive (prediction) analysis. Qualitative analysis is mainly performed with principal compo-

nent analysis (PCA), partial least squares-discrimination analysis (PLS-DA), soft independ-

ent modelling of class analogy (SIMCA), or self organizing map (SOM) (i.e. Kohonen net). 

Quantitative analysis is mainly performed with partial least squares (PLS) or back propaga-

tion neural network (BPNN) (Vlasov et al., 2005). Table 3 summarizes the most used 

MVDA techniques for ET data processing, and some characteristics of these techniques. 

MVDA, including pattern recognition and calibration methods, is reviewed in many papers 

(Burns and Whitesides, 1993; Despagne and Massart, 1998; Jurs et al., 2000; Pravdova et 

al., 2002; Richards et al., 2002; Svozil et al., 1997). 
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Table 3. Multivariate data analysis techniques that mostly used for electronic tongue signal processing, and some characteristics of these techniques 

Aim Method Linear Supervised Advantages Drawbacks 

PCA Yes No - Easy to understand and interpret (score plot, loading plot, etc.) - Sensitive to drift in the data 

SOM  No No - Two dimensions of the data from any dimensionality 

- A promising method for data fitting and clustering for non-linearity cases 

- Used for data compression, while preserving their content 

- Works as a black box (i.e. it is an ANN technique) 

- Less commonly used than PCA 

- Reduces the data to two dimensions only, while PCA expressed the 

reduced data to higher dimensions (i.e. different number of PCs) 

PLS-DA Yes Yes - Work reliably when each class is ‘tight’ and occupies a small and separate 

volume in the X-space 

- All measured variables play the same role with respect to the class assignment 

- PLS components try to find a proper compromise between two goals: 

describing the set of explanatory variables and predicting the response ones 

- The number of modelled classes must not be high, i.e. classes are 

between 2-4 
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SIMCA Yes Yes - Can be used when the classes are not ‘tight’, often due to the lack of homoge-

neity and similarity between non-tight classes 

- Can work when the number of classes even exceed 4 classes 

- Can be used to categorize samples that are not members of any class 

- Unknown sample is only assigned to the class for which, it has a high 

probability to belong to 

- Can work with few samples per classes, e.g. 10 samples per class 

- Can work with a few numbers of variables (often the number of measurement 

variables exceeds the number of samples in chemical studies) 

- Sensitive to the quality of the data used to generate the principal 

component models 

- Need more time, caution and experience than PLS-DA to build the 

classification models 

                                                                    Continue �
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Table 3: Continued 

Aim Method Linear Supervised Advantages Drawback 

PLS Yes Yes - Small calibration data set might be handled (cross validation is used in this 

case) 

- Statistical description of the results 

- Ability to analyse noisy, collinear, large amount of variables and missing 

values in X and Y matrices 

- Non-linearity can be solved, to some extent, by transformation of variables or 

including extra PCs (latent variables) to the model 

- There are non-linear PLS softwares available 

- Sensitive to drift 

- Difficulty in interpreting the latent variables and the loading of the 

independent variables in very complex data 

- A lot of samples is needed for good models 

2.
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BPNN No Yes - Easily deals with non-linear data 

- Flexible in terms of working in linear and non-linear models 

- High tolerance to data containing noise due to distributed processing within the 

network 

- Learning and underlying the relations between input and output without 

assistance of the user 

- The BPNN algorithm is used for solving both prediction and classification 

problems 

- Works as black box (i.e. it is an ANN technique) 

- Good ANN models are always more time consuming than PLS 

models to produce 

- Experience for building models is needed 

- Lack some important features as model diagnostic tools 

- Lack of clear rules or fixed guidelines for optimal ANN architec-

ture design. The optimal architecture is highly problem dependent 

and is sometimes found by trial and error 

Sources: 

Basheer and Hajmeer (2000); CAMO (2006); Dieterle et al. (2004); Eriksson et al. (2001); Legin et al. (2002b); NeuralWare (2003); Richards et al. (2002); Vlasov et al. (2005); Wold et al. (2001) 
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In the coming pages, we will mainly focus on PCA, PLS and ANN techniques, since they 

were used in this study. 

5.1. Principal component analysis (PCA) 

PCA is a famous method for processing multidimensional data in chemical applications. It 

is an unsupervised data reduction method. It describes variations of multivariate data in 

terms of a set of uncorrelated variables. The original data matrix is projected from a high 

dimensional space into a less dimensional space, with as little loss of information as possi-

ble. The matrix decomposes into scores (which describes the relation between samples) and 

loadings (which describes the relation between variables). The principal components (PCs), 

also called latent factors (variables), are determined on the basis of the maximum variance 

criterion, and they are orthogonal. The first PC contains the most of the variance of the data. 

PCA results and graphs are rather easy to understand and interpret (Legin et al., 1999a; 

Pravdova et al., 2002). 

A mathematical PCA model expresses the original data, X, in terms of scores and loadings is 

written as: 

X = TPT + E 

where T is the score matrix, PT is the transposed loading matrix and E is the residual matrix 

(noise). There are many algorithms for evaluating T and P matrices. The most common 

algorithms are non-linear iterative partial least squares (NIPALS) and singular value de-

composition (SVD) (Richards et al., 2002). However, the deep understanding of these 

algorithms is beyond the scope of this study. MVDA softwares handle the analysis using 

one of these algorithms. 

Before performing PCA, each variable in the X matrix should be autoscaled (centred and 

divided by the standard deviation). The autoscaled data will have a mean of zero and unit 

variance for each column, i.e. a variable or a sensor signal. Autoscaling will guarantee 

transformation of the data to the origin, all the variables have the same variance and no 

dominant variables are presented (Wold et al., 2001). Occasionally, only one part of auto-

scaling is carried out, i.e. centring or dividing by the standard deviation. This depends on the 

nature of the data handled, and it should be investigated during data analysis. 

5.2. Partial least squares (PLS) 

PCA and PLS are the so-called projection methods that allow one to efficiently reduce the 

number of original variables and reject noise (Legin et al., 2004b). PLS regression is used to 
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correlate data in a X matrix (the independent variables) to a Y matrix (the dependent 

variables) in a linear way, by simultaneously finding latent structure (latent variables) in 

both matrices. In general, two PCA models are performed on X and Y, but not independently 

of each other. The inner relation is used to connect both models. In this way, mostly the 

information (variance) in X related to the phenomena of interest Y is extracted. Mathemati-

cally, X and Y are composed to: 

X = TPT + E 

Y = UQT + F 

where T and U are the score matrices, E and F are residual matrices and PT and QT are the 

transposed loading matrices for X and Y matrices, respectively. A linear model is assumed to 

relate the score matrices T and U, with H as a residual matrix and B as a diagonal matrix 

that contains: 

U = TB + H 

B is the matrix containing the regression coefficients in the inner relation (Dieterle et al., 

2004; Richards et al., 2002). 

There are two types of PLS regressions. PLS-1, which uses just one Y-variable, and PLS-2, 

which uses more than one Y-variable. It is suggested that PLS-1 models often give better 

results than PLS-2 (Dieterle et al., 2004). PLS has the ability to analyse noisy, collinear and 

missing values in both matrices. Moreover, PLS can handle, to some extend, the non-

linearity problem, by mathematical transformation of the variables or including extra latent 

variables (PCs) in the model. However, there is non-linear PLS techniques available in some 

softwares (Pravdova et al., 2002; Richards et al., 2002; Wold et al., 2001). MVDA soft-

wares show the results of PLS in graphs (e.g. scores, loadings and predicted vs. measured) 

which make it easier to comprehend the results. 

Partial least squares-discrimination analysis (PLS-DA) is used for classification. In PLS-DA 

coded dependent Y-variables (i.e. dummy variable) are employed. The number of dependent 

variables Y is equal to the number of the classes. Values of either 1 for samples belonging to 

the class, or -1 (some use zero) for samples not belonging to the class are assigned. Then 

PLS-1 or PLS-2 are used (Legin et al., 2004b). 
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5.3. Artificial neural network (ANN) 

Artificial neural networks (ANNs) are a part of artificial intelligence. They are algorithms 

simulating the biological neuronal system. They are capable of learning both linear and non-

linear systems. ANNs are used for both classification and regression methods.  

A feed forward ANN architecture (also known as multi-layer perceptrons (MLP)) consists 

of nodes (known as neurons) and weights associated to nodes. The nodes are arranged in 

layers. Each neuron in a layer receives the same inputs, x. The sum of each input multiplies 

by a weight, w, plus a bias, b, is then passed through a transfer function, f, to give a result t 

for that neural for the given input. This equation explains the process: 
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The transfer functions might be linear or non-linear (e.g. sigmoid and hyperbolic tangent). 

Weight can be calculated during the training process, then the whole network is applied to 

samples (Copper, 2004; Pravdova et al., 2002; Richards et al., 2002). 

There are many popular types of ANNs. One of the most famous and most widely used is 

back-propagation neural network (BPNN). It consists of three layers. They are: (1) an input 

layer, having nodes representing input variables for the model, (2) an output layer, with 

nodes having the dependent variables, and (3) one or more hidden layers, containing nodes 

trying to capture the non-linearity in the data. However, it is possible not to have a hidden 

layer, if the data structure showed that. 

The data in BPNN are fed forward into the network. On the other hand, its name is back 

propagation neural network. This is because in this network the error computed at the output 

side is propagated backward, i.e. from the output layer to the hidden layer and finally to the 

input layer. During that process the weights of the interconnections are changing to get the 

minimum error between the input and the output targets. BPNNs are used for calibration and 

classification problems (Basheer and Hajmeer, 2000; NeuralWare, 2003; Richards et al., 

2002). 

ANNs different techniques are often referred to as ‘black boxes’. This expression was given 

due to their incapability to explain, in a comprehensible way, the process through which a 

given answer was made (Basheer and Hajmeer, 2000). However, many authors argue about 

this point. Despangne and Massart (1998) stated that this limitation is not peculiar to ANNs 

only. ANNs work, in terms of prediction, as good as any other techniques. Copper (2004) 

suggested that with new ANNs software tools, e.g. sensitivity analysis, the relation between 

input and output variables and the factors effecting the result can be explained. 
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Generally, ANNs proved to give the best results for sensor array signals processing 

(Stefan et al., 1999). With respect to the ET signals, in many experiments, quantitative 

results handled by PLS and BPNN, are not identical but very similar. BPNN can improve 

the non-linearity in the data, but it lacks some important features as visualization tools and 

clear rules about building models. However, PLS and/or BPNN are used for ET signal 

processing (Vlasov et al., 2005). 

In connection to the mini review mentioned above: 

ET was used in this study for identification and/or quantification of key odorants that are 

present in livestock buildings. ET signals produced in the experiments were handled by two 

softwares: 

1. The Unscrambler (v. 9.2, Camo, Oslo, Norway): which was used for PCA, PLS and 

PLS-DA, and 

2. ‘Predict’ (v. 3.13, NeuralWare, Pittsburgh, USA): which was used for BPNN. 

The ‘Predict’ software was employed because there were non-linear relations between the 

response of the sensors and the concentrations of the compounds (Vlasov et al., 2005). 

Each calibration model was initially checked by PLS linear technique, and depending on the 

non-linearity degree, BPNN might be used. The non-linearity between X (independent 

variables) and Y (dependent variables) matrices can be checked by many ways using Un-

scrambler software. Some of these ways are: 

• X-Y relation outliers plot in PLS (i.e. T-U score plot): might be used for non-linearity 

and also for detection of outliers, 

• Y-residual plot, 

• A 2-dimensional scatter plot of an array of one sensor response (X) and a concentration 

array of a compound (Y). This method is for an individual sensor and just to get an idea 

about linearity, and 

• Normal probability plot of any sensor in X is valid for non-linearity checking unless Y is 

prepared in "equal" interval. 

The articles attached to this thesis have all the results related to the experiments and data 

analysis using MVDA. 
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6. Summary and conclusion of the papers 

Three papers are attached to this thesis. Figure 5 shows the schematic presentation of these 

papers. 

 

Figure 5. Schematic presentation of papers in this thesis 

In the first paper, gas chromatography-flame ionisation detection (GC-FID) was utilized as 

an off-line method for characterization of key odorants in the absorption column (air wet 

scrubber). Direct aqueous injection (DAI) and solid phase extraction (SPE) methods were 

used before injection of key odorant into GC-FID. Both DAI and SPE methods were effi-

cient for identification of odorants in the wet scrubber. However, DAI is the method of 

choice for quantification of odorants in air wet scrubbers, since it is simple, fast, requires 

small volumes, without pre-concentration and no derivatisation of the compounds is needed 

before injection into GC. Two odorants, i.e. phenol and 1-butanol, were quantified success-

fully using the DAI method. Their limit of detection (LOD) and limit of quantification 

(LOQ) were below literature values for odorants detection limits in livestock buildings. 

The second paper discussed the possibility: (1) to identify and/or quantify key odorants 

occurring in livestock buildings using ET, and (2) to simplify the construction of the ET and 

the data analysis by decreasing the number of electrodes in ET as much as possible. Four 

test mixtures of key odorants were used for calibrating ET. Two test mixtures of key odor-

ants at two different acidities, pH 6 and 8. It was seen that ET was able to quantify ammo-

nium and n-butyrate using six electrodes only in the test mixtures of key odorants at pH 6. 

In the test mixtures containing ammonium at pH 8, n-butyrate and phenolate were quanti-
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fied using six and four electrodes, respectively. Different multivariate data analysis 

techniques were used, i.e. PCA, PLS and BPNN. These techniques showed that eight 

electrodes were sufficient for all identifications and quantifications of n-butyrate, ammo-

nium and phenolate. The decreased, but sufficient number of electrodes improved the 

reproducibility of ET because the standard deviation and relative standard deviation of 

measurements in triplicates decreased in comparison with the array comprising 14 elec-

trodes. 

In the third paper, the ET has successfully classified different test mixtures of key odorants. 

Eight electrodes were sufficient for classification using BPNN. The ET was able to distin-

guish between two test mixtures of key odorants at the same pH with classification rates in 

the range of 88 - 100%. Classification rates between the same test mixtures of key odorants 

at different pH were 100%. Different test mixtures of key odorants comprising a variety of 

the chemical groups at pH 6 were also successfully classified. The average classification 

rate (ACR) was 81%. The reproducibility of electrodes improved when the complexity of 

the test mixture was decreased. 

The results from the second and third paper showed that nine electrodes in total were suffi-

cient for identification, quantification and classification of all test mixtures of key odorants. 

It is concluded that ET has a high potential and it is an obvious candidate as an on-line 

sensor for monitoring odorants in livestock buildings. Also, it might be used as an alarm 

system, for which there is a demand. 
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Abstract 
Characterization of key odorants from an air wet scrubber is presented. The key odorants 

represent five chemical groups, i.e. sulphides, alcohols, volatile fatty acids (VFAs), phenols 

and indoles. Direct aqueous injection (DAI) and solid phase extraction (SPE) methods were 

used before gas chromatography-flame ionisation detection (GC-FID). The DAI and SPE 

methods were efficient for identification of odour compounds from the air wet scrubber. The 

SPE method had a high recovery. However, DAI showed a better linearity and a lower limit 

of detection (LOD) and quantification (LOQ) than the SPE method. The DAI method was 

preferred as it is cheaper, easier to handle, without sample preparation and highly applicable. 

At least two odorants, phenol and 1-butanol, were quantified successfully using the DAI 

method. Their LOD and LOQ were below literature values for odorants detection limits in 

livestock buildings.  

 

Keywords: air wet scrubber, odorant compounds, direct aqueous injection (DAI), solid phase 

extraction (SPE) 
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1. Introduction  
Odour is an important environmental pollution issue [1]. An odour is defined as a sensation 

resulting from the reception of a stimulus by the olfactory sensory system [2, 3], whereas an 

odorant is the compound imparting an odour [4]. Odorant molecules emanating from different 

sources must be sufficiently volatile to arrive at the olfactory receptors in the nose. The 

molecular structures of odorants are very diverse, with a mass range up to approximately 300 
Daltons [5]. 

The main sources of odours from animal production are livestock buildings, waste storage and 

land spreading of manure [6]. The emission of odours from livestock buildings contributes 

significantly to odour problems. This leads to environmental and health problems. It was 

found that neighbours of livestock buildings suffer from greater mood disturbance, negative 

emotions, an overall feeling of less vigour, more tension, depression, anger, fatigue and 

confusion compared with people living away from livestock buildings [7]. In addition, it was 

found that odours can also potentially affect memory [8]. 

There have been many attempts to reduce odours emission from livestock buildings, i.e. 

physical, chemical and biological. One of the biological method is to use bioscrubbing, which 

is considered as environmental friendly [9], and were used for air treatment in different 

industrial and agricultural activities [10, 11]. Bioscrubbers consist of two main parts, air wet 

scrubber (the absorption column) and a bioreactor. The air wet scrubber washes the polluted 

air stream and the bioreactor cleans the washing water coming from the air wet scrubber [12]. 

Therefore, the process of bioscrubbing is divided into two steps, the water soluble 

components in the gas (exhaust air) are transferred to the liquid phase in the air wet scrubber, 

and microorganisms metabolize different substances in the bioreactor. This results in the 

production of biomass, water and CO2 [13]. 

Despite extensive information about bioscrubbers, they have not been successfully 

implemented in livestock buildings, mainly due to their high capital and operating costs, and 

due to the large volumes of air that must pass through the air scrubbers, i.e. high energy 

requirement [11]. A new type of livestock bioscrubber for treatment of larger volumes of air, 

without risk of high pressure loss over the scrubber column, has been introduced [14]. This 

bioscrubber consists of two separate units: an absorption column and a water purification 

module (a bioreactor), as shown in Figure 1. The absorption column is placed inside the 

ventilation chimney, where odour substances (odorants), ammonia and dust particles are 

absorbed by water droplets. Water droplets are introduced to the absorption column through 

water nozzles, who receive water recycled from the bioreactor, where the water is purified. 

The bioreactor is placed at floor level, and can supply cleansed water to several absorption 
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columns [14]. In the bioscrubber, it is necessary to characterize the mixture of odorants 

present in water, before and after the bioreactor for determination of the cleaning efficiency of 

the bioreactor. 

Odours are measured analytically or sensorally. Analytical methods measure odorants, and 

sensory methods measure odours. The analytical methods characterise odorants in terms of 

their chemical or physical composition, with the most common measurement being odorant 

concentration. Analytical measurements have the advantages of objectivity, repeatability and 

accuracy. They are directly related to theoretical models with regard to odorant formation or 

emission and are more suited for formation, emission and dispersion models. However, a link 

between analytical and sensory measurements is needed [4]. The main barrier to that link is 

the effect of mixtures. It is often observed that a mixture of odorants will have a stronger 

odour than any of the component odorants alone, so that the effect of mixing will be 

additivity. However, the degree of additivity varies [15]. An analytical quantification of a 

mixture of odorants in water will be the first step in an effort to establish a comparison 

between the sensory and the analytical methods. 

The full characterization of all the odorants present in a sample is an impossible task, as a 

large number of odorants are likely to be present at very low concentrations. Schiffman et al. 

[3] identified a total of 331 different odorants from livestock buildings. These compounds 

belong to different groups, e.g. alcohols, carbonyls, nitrogen-containing compounds, sulphur-

containing compounds, ketones and aromatic organics among others. O’Neil and Philip [16] 

found 168 different compounds in livestock waste and in the air in livestock buildings, that 

contribute to odour, and 30 of them have detection thresholds of 0.001 mg/m3 or less. 

Separation techniques followed by different identification methods are used. Purge and trap 

(P&T), solid phase micro extraction (SPME) and solvent extraction were used as a separation 

techniques for gas chromatography (GC) or gas chromatography-mass spectrometry (GC-MS) 

analysis [17-19].  

Due to the huge numbers of odorants, seven key odorants, representing five groups, i.e. 

sulphides, alcohols, volatile fatty acids (VFAs), phenols and indoles, were chosen as key 

odorants in this study (Table 1).  

The chemical and physical properties of the key odorant are shown in Table 1. The pKa for 

neutral 3-methyl indole (skatole) was not available in literature. The pKa for indole, pKa = 

16.7, was used to give an idea about the dissociation of skatole [20]. The compounds 

investigated are polar or moderately polar. They are present in various livestock buildings and 

have an offensive odour [16]. The concentrations of these compounds in air were investigated 

by many researches. O’Neil and Philip [16] and Schiffman et al. [3] reviewed the odorant 
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detection thresholds in livestock buildings. These odorant detection thresholds of key 

odorants in air will be used in this study.  

In the air wet scrubber, these compounds are present in the liquid phase rather than in the gas 

phase, and their concentrations are calculated using Henry’s constant (H) (see Table 1), 

assuming an equilibrium between gas and liquid. Henry’s constant (H) is the ratio of the 

partial pressure of the analyte in the gas phase to the equilibrium concentration in the water 

(expressed in: atmosphere × liter / mol). The dimensionless air-water partition coefficient 

(KAW) is H/RT, and is the air to water concentration ratio at equilibrium [21]. The 

dimensionless air-water partition coefficient represents volatility of the compound. A 

compound with KAW of 0.05 or larger is volatile, whereas those with a KAW  lower than 0.05 

tend to occur in the water phase [22]. Almost all of the targeted compounds, except dimethyl 

sulphide, have a lower KAW than 0.05 and they tend to occur in water. The detection 

thresholds of the targeted compounds in air and the equivalent odorant detection threshold in 

water are shown in Table 2.  

In this work, the characterizations of key odorants were carried out using two methods, i.e. 

direct aqueous injection-gas chromatography (DAI-GC) and solid phase extraction-gas 

chromatography (SPE-GC).  

DAI-GC was used both in the laboratory and in the field for the detection of fuel oxygenates, 

benzene, toluene, ethylbenzene and xylenes (BTEX) with very high accuracy [23], in the 

quantification of major volatile compounds and polyols in wine [24] and for quality control of 

water [25]. 

SPE could be regarded as a specific type of column chromatography, switching between full 

retention using e.g. water as mobile phase, and no retention using e.g. 100% organic solvent 

as mobile phase [26]. Different sorbents are available for different applications. Successful 

applications of SPE include the analysis of flavour compounds in milk, preservatives and 

sweeteners in soft drinks, colourants in alcoholic beverages, pesticides in water [27] and 

several medical examples [28-31]. 

The goal of this study is to characterize the key odorants in an air wet scrubber, according to 

their odorants detection threshold, using DAI-GC and SPE-GC and to compare the two 

methods with respect to the air wet scrubber application. 
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2. Experimental section 

2.1. Sample preparation 
2.1.1. Materials 

All compounds were purchased from Sigma-Aldrich (Schnelldorf, Germany), phenol and 3-

methyl indole (skatole) as solids. Skatole was dissolved in hot Millipore water [32]. Phenol 

was dissolved in Millipore water. Dimethyl sulphide, 1-butanol, n-butyric acid, iso-valeric 

acid and 4-methyl phenol have purity of 99%. Phenol and 3-methyl indole have purity of 

99.5% and 98% respectively. Compounds were used without any further purification. Ten 

standard solutions were prepared in Millipore water with a concentration range between 10-

5000 mg/m3 for VFAs and 4-methyl phenol, between 5-2490 mg/m3 for 3-methyl indole, 

between 15-7500 mg/m3 for 1-butanol and phenol, and between 15-7537 mg/m3 for dimethyl 

sulphide. The same standard solutions were used for the DAI and the SPE methods. Acetone 

(HPLC quality) was used as a solvent for SPE and Millipore water for DAI.  

2.1.2. Direct Aqueous Injection (DAI) 

Samples for DAI were acidified to approximately pH 2, by adding 0.2% (v/v) formic acid. 

Injection volumes of 0.5 and 1.0 µl were used in duplicates. 

2.1.3. Solid Phase Extraction (SPE) 

The analytes were extracted from the solution of odorants mixture using Strata-X polymeric 

SPE cartridges (Phenomenex, CA, USA), with 500 mg adsorbent and 3 ml reservoir volume. 

Strata-X is a modified styrene-divinylbenzene polymer suitable for a wide range of basic, 

neutral and acidic compounds [28, 29], and can separate trace amounts of chemical 

compounds from a complex solution [27]. 

A 10 ml aliquot was taken from each standard solution. The pH was adjusted to 2 by addition 

of concentrated HCl. Before sample loading, the SPE columns were conditioned by washing 

with 5 ml methanol, and equilibrated with 5 ml of deionized water. Before the column dried, 

the samples were loaded onto the conditioned column with the aid of a vacuum manifold. The 

mean flow rate was about 2.5 ml min-1. The analytes were eluted with 2 ml of a mixture of 

acetone and methylene chloride, CH2Cl2 (1:1 v/v). The eluted solvents were collected for 

analysis. Duplicates of SPE samples were carried out. 

The recovery and breakthrough of SPE columns were investigated before using the Strata-X 

column to make calibration curves. The solutions that were eluted to investigate recovery and 

breakthrough, had at least threefold higher concentration than the maximum concentration of 

each compound, that were used for the calibration curves in the SPE experiment. Recovery of 

the SPE columns was evaluated through double elutions, i.e. after finishing elution from the 
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column, another elution was done within the same column, and injected into the GC in 

duplicate. Breakthrough of the column is the point, where the SPE sorbent becomes saturated 

and unable to retain additional analytes. Breakthrough was evaluated by using two SPE 

columns, i.e. collecting the eluted sample from the first SPE column, load it once more on 

another SPE column and then elute the collected samples from both columns into the GC. 

Same procedure of elution was followed for both columns. 

2.2. Gas Chromatography (GC) 
An Agilent gas chromatograph (HP 6890), containing a capillary column (Zebron ZB-Wax, 

Phenomenex, CA, USA) 30 m long × 320 µm inner diameter × 0.25 µm nominal film 

thickness, with a cool-on-column injector (COC) and flame ionisation detection (FID), with a 

maximum temperature of 300oC, was used. A 5 m deactivated precolumn of the same 

diameter was used before the analytical column. The temperature program was: 35oC for 5 

min, then increased to 225oC at 10oC/min and kept at this temperature for 15 min. The total 

run time was 39 min. According to our preliminary experiments with DAI, a modified 

temperature program was required for improved identification of 1-butanol: 35oC for 5 min, 

then increased to 120oC at 30oC/min, then increased to 225oC at 10oC/min and kept at this 

temperature for 10 min. The total run time was 28.33 min.  

The injection volume was 1 µl in the case of DAI and SPE. For 1-butanol using DAI, two 

injection volumes (1.0 µl and 0.5 µl) of odorants were tested. Hydrogen was carrier gas with a 

constant flow rate of 2.5 ml/min, corresponding to an initial head pressure of 43.7 kPa. 

Samples were injected using an auto sampler (HP 6890 injector) with a slow plunger speed. 

Manual integrations were done for small peaks in the chromatogram. 

The limit of detection (LOD) and limit of quantification (LOQ) were determined from the 

calibration curves according to Miller and Miller [33], i.e. LOD is three times the standard 

deviation of the noise / slope ratio of the calibration curve, and LOQ is ten times the standard 

deviation of the noise / slope ratio of the calibration curve. 

3. Results and discussion 

3.1. Direct aqueous injection (DAI) 
Injection of samples containing a high amount of water into a chromatographic column will 

affect the efficiency of the column, lead to degradation of the stationary phase, and create 

active sites resulting in low peak resolution, poor reproducibility and shortened column life 

[24]. However, the structure of the stationary phase in capillary columns has been improved 

[34]. The Wax stationary phase is thermally stable, inert and has high endurance with 

repeated injection of aqueous samples [35]. The Wax columns are recommended for many 
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separations, including alcohols and aroma compounds [24]. However, there is still a need for 

frequent system maintenance to avoid troublesome effects, e.g. peak tailing, reduced recovery 

and sensitivity, caused by water. The precolumn is used in the GC to reduce these 

troublesome effects. It is frequently shortened, and is recommended to replace it after about 

1000 injections [23].  

Water samples spiked with the key odorants, were injected into the Wax column in the GC. 

Samples were acidified to approximately pH 2 by adding 0.2% (v/v) formic acid, since it was 

impossible to identify the VFAs in the chromatogram without acidifying the samples.  

3.1.1. Identification and quantification of compounds  

The chromatogram of the DAI is shown in Figure 2. The injection volume has an effect on the 

peak shape, especially for alcohols [23]. Therefore two injection volumes, i.e. 1.0 µl and 0.5 

µl, of odorant mixture were investigated. The goal was to find the volume that produces the 

best peak shape for 1-butanol. The characterization of 1-butanol mentioned in Table 3 was 

determined based on two temperature programs, and two injection volumes. A volume of 1.0 

µl, using the temperature program that was used for all the other compounds and two injection 

volumes of 1.0 µl and 0.5 µl, using the temperature program only used for 1-butanol. 

Generally, the peak shape of the 0.5 µl injection volume was only slightly better than that of 

the 1.0 µl sample (Figure 3). The latter will therefore be used as the injection volume in 

further experiments, especially with samples containing low concentrations. This is in 

agreement with Zwank et al. [23] who recommended an injection volume of 1 µl for alcohols. 

The performance of the DAI-GC is shown in Table 3. The adjusted retention time, which is 

the difference between the dead time and the retention time for a compound, was used to 

identify the odorants. The dead time is the time required for the mobile phase to reach the 

detector [36]. The range of the standard deviation in the adjusted retention time was between 

0.00 - 0.16 minute; 1-butanol had the highest standard deviation that reflects the difficulty in 

assigning the peak position of broad peaks. 

The calibrations curves showed linearity with good correlation coefficients (R2= 0.99) for the 

range specified. The LOD was used to assess the possibility of identifying odorants in low 

concentrations. Four compounds: 1-butanol, n-butyric acid, iso-valeric acid and phenol, had 

limit of detections which were below the equivalent odorant detection threshold reported by 

Schiffman et al. [3]. Two compounds: 1-butanol and phenol, had limit of detections which 

were below the minimum equivalent odorant detection threshold reported by O’Neil and 

Philips [16]. Three of the compounds, e.g. n-butyric acid, iso-valeric acid and 4-methyl 

phenol, had limit of detections which were between the minimum and maximum equivalent 

odorant detection threshold reported by O’Neil and Philips [16]. 



 8 

The limit of quantifications of phenol and 1-butanol were below the equivalent odorant 

detection thresholds reported by both reviewers. While the n-butyric’s LOQ was below the 

equivalent odorant detection threshold reported by Schiffman et al. [3], and was between the 

equivalent odorant detection thresholds reported by O’Neil and Philips [16]. 

These results suggest that at least two compounds, i.e. 1-butanol and phenol, had LOD and 

LOQ that were below the equivalent odorant detection threshold reported by both reviewers, 

and they were identified and quantified successfully. These two compounds can therefore be 

used as representatives of the key odorants to give an idea about the efficiency of the air wet 

scrubber and the biofilter, as illustrated in Figure 1. Most existing bioscrubber designs focus 

on the removal of one chemical group of compounds [12], or even removal of one compound 

only [37]. Therefore our method, which identifies and quantifies at least two compounds, will 

improve the characterization of the bioscrubber.  

DAI is a fast and simple technique that only requires small volumes and no pre-concentration. 

Moreover, it requires no derivatisation of the compounds before injection into the GC. DAI 

has acceptable sensitivity and is comparable with other analytical methods [23]. In addition, 

compounds are quantified regardless of their boiling points, which is a limitation in some 

analytical methods [19]. The results of this study showed that DAI is a convenient method for 

identification and quantification of odorants in the air wet scrubber. 

3.2. Solid Phase Extraction (SPE) 
3.2.1. Recovery and breakthrough 

Recovery and breakthrough results of the Strata-X column are shown in Table 4. A high 

recovery was obtained, with a mean > 99% and relative standard deviation (RDS) < 1%. The 

breakthrough was almost absent, with a mean of < 1%. These results were calculated omitting 

dimethyl sulphide. If dimethyl sulphide was included, the recovery and the breakthrough 

became > 89% and < 15% respectively. Dimethyl sulphide is at the boiling point limit and is 

unstable [38, 39], and therefore excluded in the analyses by some researchers [40]. However, 

the recovery and breakthrough results showed a high performance in comparison with other 

studies [28], and they are in agreement with Zhang et al. [31] and Coulibaly and Jeon [27] 

who stated that SPE provides high recovery and clean extracts. These results indicate that 

Strata-X columns have a good separation capacity for the compounds of interest, even though 

they have different chemical properties. 

3.2.2. Identification and quantification of compounds  

Figure 4 shows the chromatogram of odorants extracted by Strata-X column. It appears that 

the column was unable to identify and quantify the VFAs. However, it could identify them in 

the recovery and breakthrough experiment (Table 4). This is most likely explained by the 
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concentration, which was used in the recovery and breakthrough experiment. This 

concentration was at least threefold higher than the concentration used for making the 

calibration curves. This higher concentration allowed the VFAs to be available in sufficient 

amount in free acid forms, so they appeared in the chromatogram in the recovery and 

breakthrough experiment. Also, the VFAs in the calibration experiment might be lost during 

the SPE process. 

The performance of the SPE is shown in Table 5. The range of the standard deviation in the 

adjusted retention time was between 0.1 – 0.11 minute. The highest standard deviation was 

for phenol. Nevertheless, the absolute retention time showed an acceptable identification of 

odorants. Calibration curves showed linearity with correlation coefficients of > 0.977, when 

omitting dimethyl sulphide. 

It was noticed that the LOD and LOQ of two compounds, i.e. 1-butanol and phenol, were 

below the equivalent odorant detection threshold reported by Schiffman et al. [3]. One 

compound, phenol, had a LOD that was below the minimum equivalent odorant detection 

threshold reported by O’Neil and Philips [16]. Two of the compounds, e.g. 1-butanol and 4-

methyl phenol, had limit of detections and limit of quantifications that were between the 

minimum and maximum equivalent odorant detection threshold reported by O’Neil and 

Philips [16]. Phenol was the only compound which had both LOD and LOQ that were below 

the equivalent odorant detection threshold reported by the two reviewers [3, 16]. It was 

noticed that the peak of 4-methyl phenol splits gradually into two peaks, when decreasing the 

quantity injected into the GC. This may be due to the use of acetone and methylene chloride 

as solvents. 

The LOD and LOQ of odorants were higher when using SPE in comparison to DAI. This may 

be due to the complexity of the compounds and the loss of the volatile compounds during the 

process of extraction and concentration. Moreover, SPE is a sensitive sample preparation 

technique [27] and has more extraction steps than in the DAI. However, the LOD and LOQ of 

3-methyl indole were almost the same in both methods. This indicates 3-methyl indole was 

the best compound to be quantified using SPE in our mixture.  

From the results above, it is concluded that Strata-X can be used for identification of odorants 

in air wet scrubber. 

4. Application and perspectives 
A water sample was provided to our laboratory by a company, running an experimental air 

wet scrubber in a Danish farm. It is noteworthy that to have as many compounds as possible 

absorbed in water, the ratio between the water flow and gas flow should be at least equivalent 

to the dimensionless air-water partition coefficient (KAW) [12]. The pH of the sample was 7. It 
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was noticed that for acidifying the samples to approximately pH 2, more formic acid than 

used for the samples creating the calibration curves was needed. This may be due to the 

presence of compounds having buffer capacity in the water sample. The chromatogram of the 

spiked samples is shown in Figure 5. The spike recoveries are listed in Table 6. It is seen that 

the recoveries are near 100% for most of the compounds, and this proves that that DAI 

method is suitable for quantifying the key odorants.  

There are huge variations in odorant concentrations and odorant detection thresholds for 

odorant compounds from livestock buildings. This is because the odorant concentration is 

related to many factors, e.g. environmental factors, dietary feed quality, measuring methods 

and sources of sample [41].  

It is possible in one report to find an odorant detection threshold higher than a minimum 

concentration of the same odorant in another report or vice versa, e.g. for phenol, the odorant 

detection threshold is higher than the minimum concentration reported by two reviewers [3, 

16]. Therefore we conclude that although the LOD and LOQ of some compounds in this study 

were higher than the minimum equivalent detection threshold, there is still a possibility that 

DAI method can identify or quantify these compounds, because of the huge variation in 

concentrations reported. 

Our method might be used for quantification of targeted compounds in water samples. It can 

also be used as a reference measurement method for measurements of odorant concentrations 

in an air wet scrubber. A new method was recently described, the electronic tongue (ET) 

which has high potential as an on-line sensor for analysis of liquids from the air wet scrubber. 

ET is an analytical instrument containing an array of chemical sensors with partial specificity 

for different components in liquids and an appropriate pattern recognition or multivariate 

calibration tool for identification and quantification of even complex solutions [42]. ET was 

used in various applications, e.g. for quantitative analysis of mineral water and wine [43], for 

analysis of fermentation growth media [44], for pharmaceutical analytics [45] and monitoring 

of the quality of drinking water in a production plant [46]. It is possible to place a calibrated 

ET in the air wet scrubber to identify and quantify the odorants of interest on-line. On-going 

research is taken now place in our laboratory for this purpose.  

In conclusion we find that DAI is a suitable method for identification and quantification of 

odorants with a good precision in the air wet scrubber. Two compounds: 1-butanol and 

phenol, have LOD and LOQ that are below the equivalent odorant detection threshold. DAI is 

the method of choice for quantification of odorants in air wet scrubbers, and DAI can check 

their efficiency for odour reduction. DAI is fast, simple, without pre-concentration, requires 



 11 

small volumes only and no derivatisation of the compounds is needed before injection into 

GC. DAI can be used as a quality control method for the air wet scrubber design. 
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Table 1. Chemical and physical properties of key odorants   

Group Odorant  Chemical  

abstract 

service 

(CAS #) 

Molecular 

formula 

Molecular 

mass 

(g mol-1) 

Solubility in 

H2O at 25oC 

(g l-1) 

pKa Henry's constant 

(H) 

atm. l. mol-1 

Vapour  

pressure at 

25oC 

(mm Hg) 

Octanol-water 

partition 

coefficient  

 (log p) 

Melting  

point 
oC 

Boiling  

point 
oC 

Sulphides dimethyl sulphide  75-18-3 (CH3)2S 62.13 22 35.1 1.61 502 0.92 -98.3 37.3 

Alcohols 1-butanol 71-36-3 C4H10O 74.12 63.2 16.1 8.81 × 10-3 6.7 0.88 -89.8 117.7 

n-butyric acid 107-92-6 C4H8O2 88.11 60 4.82 5.35 × 10-4 1.65 0.79 -5.7 163.7 VFAs a 

iso-valeric acid 503-74-2 C5H10O2 102.13 40.7 4.77 8.33 × 10-4 0.44 1.16 -29.3 176.5 

phenol  108-95-2 C6H6O 94.11 82.8 9.99 3.33 × 10-4 0.35 1.46 40.9 181.8 Phenols 

4-methyl phenol  106-44-5 C7H8O 108.14 21.5 10.3 1 × 10-3 0.11 1.94 35.5 201.9 

Indoles 3-methyl indole  83-34-1 C9H9N 131.18 0.498 ≈ 16.7 b 2.13 × 10-3 0.00555 2.60 97.5 266 

 Reference of properties: Syracuse Research Corporation (2005) [47] 
a VFAs: volatile fatty acids  
b This value is for indole [20]  
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 Table 2: Detection threshold concentrations of key odorants in air and water 

Dimensionless air-water 

partition coefficient  

(KAW) c   

Odorant detection threshold 

in air [16] 

(mg/m3) 

Equivalent odorant detection 

threshold in water 

(mg/m3) d 

Odorant detection threshold 

in air [3] 

(mg/m3) 

Equivalent odorant detection 

 threshold in water 

(mg/m3) e 

Odorant 

 Min. Max. Min. Max   

dimethyl sulphide 6.58 × 10-2 0.0003 0.16 5 × 10-3 2.4 0.00589 895 × 10-4 

1-butanol 3.60 × 10-4 0.158 42 439 12 × 104 1.51 41.9 × 102 

n-butyric acid 2.19 × 10-5 0.0004 42 2 × 101 1.9 × 106 0.0145 663 

iso-valeric acid 3.40 × 10-5 0.0002 0.0069 6 2.0 × 102 0.0105 308 

phenol  1.36 × 10-5 0.022 4 16 × 102 3 × 105 0.427 314 × 102 

4-methyl phenol  4.09 × 10-5 0.00005 0.024 1 5.9 × 102 0.00832 204 

3-methyl indole  8.70 × 10-5 0.00035 0.00078 4.0 9.0 0.00309 35.5 
c KAW  = H / RT, where: R: gas constant = 0.0821 atm. l. / (mol. K), T: temperature in Kelvin = 273 + 25 = 298 

KAW
  = H (atm. l. / mol) / 24.47 

KAW = Concentration in air (Ca) / Concentration in water (Cw) � Cw = (24.47 × Ca) / H (atm. l. /mol) 
d Cw: Calculated according to concentration of targeted compounds in air reported by O’Neil and Philips [16] 
e Cw: Calculated according to concentration of targeted compounds in air reported by Schiffman et al. [3] 
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Table 3. Performance data for DAI-GC method (n=2). Injection volume is 1µl unless other values are stated 

Odorant Calibration equation  Rectilinear range used in 

calibration curves 

(mg/m3) 

Correlation  

coefficient 

(R2) 

Adjusted retention time  

(mean ± SDev h) 

(min) 

Limit of  

detection 

(LOD) 

(mg/m3) 

Limit of  

quantification  

(LOQ) 

(mg/m3) 

dimethyl sulphide  y = 47 × 10-4 x + 26 × 10-2 150-7537 0.999 0.31 ± 0.00 181 602 

1-butanol f y = 13 × 10-3 x – 34 ×10-4 150-7500 0.999 7.13 ± 0.16 95 315 

1-butanol g y = 13 × 10-3 x + 24 ×10-2 150-7500 0.999 5.58 ± 0.14 151 503 

1-butanol, 0.5 µl injection volume g  y = 65 × 10-4 x + 21 × 10-2 150-7500 0.999 5.70 ± 0.07 209 697 

n-butyric acid y = 84 × 10-4 x – 38 × 10-2 100-5000 0.999 13.71 ± 0.14 130 433 

iso-valeric acid y = 94 × 10-4 x + 39 × 10-2 100-5000 0.999 14.08 ± 0.12 114 381 

phenol  y = 15 × 10-3 x – 0.11 × 10-1 150-7500 0.999 17.19 ± 0.03 158 527 

4-methyl phenol  y = 14 × 10-3 x – 14 × 10-1 100-5000 0.999 17.88 ± 0.02 219 730 

3-methyl indole  y = 17 × 10-3 x – 60 × 10-2 62-2490 0.999 21.30 ± 0.01 59 197 
f The temperature program: 35oC for 5 min, then increased to 225oC at 10oC/min and kept at this temperature for 15 min  
g The temperature program: 35oC for 5 min, then increased to 120oC at 30oC/min, then increased to 225oC at 10oC/min and kept at this temperature for 10 min 
h SDev: Standard Deviation 
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Table 4. Recovery and breakthrough of Strata-X columns for key odorants (n=3) 

Recovery within the same column 

(%) i 

Breakthrough  

(%) k 

Odorant 

(mean ± SDev) RSD j (mean ± SDev) 

dimethyl sulphide 89.64 ± 4.54 5.06 15.19 ± 1.85 

1-butanol 100 ± 0.00 0 0 

n-butyric acid 100 ± 0.00 0 0 

iso-valeric acid 99.85 ± 0.27 0.27 0 

phenol 99.81 ± 0.14 0.14 0.07 ± 0.03 

4-methyl phenol 99.28 ± 0.49 0.50 0.26 ± 0.05 

3-methyl indole 99.15 ± 0.81 0.82 0.18 ± 0.04 
i Recovery within same column = A1 / (A1 + A2), where:  

A1: area under curve from first elution of column 

A2: area under curve from second elution of same column  

j RSD: Relative Standard Deviation, RSD = 100 × SDev / mean [33] 
k Breakthrough = A3 / (A1 + A3), where: 

A3: area under curve from collected solution in second column 

A1: area under curve from first column 

 



 16 

Table 5. Performance data for SPE-GC method (n=2) 

Odorant Calibration equation Rectilinear range used in 

calibration curves 

 (mg/m3) l 

Correlation  

coefficient 

(R2) 

Adjusted retention time 

(mean ± SDev) 

(min) 

Limit of  

detection (LOD) 

(mg/m3) l 

Limit of  

quantification (LOQ) 

(mg/m3) l 

dimethyl sulphide y = 59 × 10-4 x + 3.1 × 101 377-7537 0.985 0.30 ± 0.07 1380 4602 

1-butanol y = 32 × 10-4 x – 4.3 × 101 187-7500 0.998 6.31 ± 0.02 512 1706 

n-butyric acid nn m      

iso-valeric acid nn m      

phenol y = 29 × 10-3 x – 4.8 × 101 187-7500 0.997 17.21 ± 0.11 594 1980 

4-methyl phenol y = 29 × 10-3 x + 12 × 101 125-5000 0.997 17.84 ± 0.03 379 1263 

3-methyl indole y = 32 × 10-3 x - 45 × 10-2 50-2490 0.999 21.14 ± 0.01 57 190 
l Before re-concentration. Compounds were re-concentrated 5 times (10 ml eluted / 2 ml of elution solvent = 5 times) using Strata-X columns 
m  nn: not found 
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Table 6. Recovery of key odorants in water sample from air wet scrubber matrix (n=3)  

Odorant Recovery (%) 

(mean ± SDev) 

dimethyl sulphide 98.9 ± 11.9 

1-butanol 89.9 ± 1.4 

n-butyric acid 132.5 ± 10.7 

iso-valeric acid 300 ± 8.4 

phenol 98.3 ± 2.7 

4-methyl phenol 104.0 ± 5.2 

3-methyl indole 83.5 ± 3.5 
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Figure 1. Schematic outline of livestock building bioscrubber (X: points at which samples containing 

mixture of odorants are measured). Heat pump is used to control temperature of water [14] 
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Figure 2. GC chromatogram of direct aqueous injection (DAI) water sample spiked with 1000 mg/m3 

volatile fatty acids (VFAs) and 4-methyl phenol, 498 mg/m3 3-methyl indole, 1500 mg/m3 1–butanol and 

phenol, and 1507 mg/m3 dimethyl sulphide (DMS) (1: DMS, 2: 1-butanol, 3: n-butyric acid, 4: iso-valeric 

acid, 5: phenol, 6: 4-methyl phenol, 7: 3-methyl indole). Injection volume: 1.0 µl. Temperature program: 

35oC for 5 min, then increased to 225oC at 10oC/min and kept at this temperature for 15 min 
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Figure 3. GC chromatogram of direct aqueous injection (DAI) water sample spiked with 1000 mg/m3 

volatile fatty acids (VFAs) and 4-methyl phenol, 498 mg/m3 3-methyl indole, 1500 mg/m3 1–butanol and 

phenol and 1507 mg/m3 dimethyl sulphide (DMS), using the temperature program for the 1-butanol: 35oC 

for 5 min, then increased to 120oC at 30oC/min, then increased to 225oC at 10oC/min and kept at this 

temperature for 10 min. Two injection volume were used, top: 1.0 µl and bottom: 0.5 µl (1: DMS, 2: 1-

butanol, 3: n-butyric acid, 4: iso-valeric acid, 5: phenol, 6: 4-methyl phenol, 7: 3-methyl indole)  
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Figure 4. GC chromatogram of water sample extracted by Strata-X column. Water samples were spiked 

with 3750 mg/m3 volatile fatty acids (VFAs) and 4-methyl phenol, 1867 mg/m3 3-methyl indole, 5625 

mg/m3 1–butanol and phenol and 5653 mg/m3 dimethyl sulphide (DMS) (1: DMS, 2: methylene chloride 

(solvent), 3: acetone (solvent), 4: 1-butanol, 5: phenol, 6: 4-methyl phenol, 7: 3-methyl indole). Injection 

volume: 1.0 µl. Temperature program: 35oC for 5 min, then increased to 225oC at 10oC/min and kept at 

this temperature for 15 min 
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Figure 5. GC chromatogram of direct aqueous injection (DAI) for water sample from air wet scrubber in 

real Danish farm, spiked with target compounds (1: dimethyl sulphide (DMS), 2: 1-butanol, 3: formic 

acid, 4: n-butyric acid, 5: iso-valeric acid, 6: phenol, 7: 4-methyl phenol, 8: 3-methyl indole). Injection 

volume: 1.0 µl. Temperature program: 35oC for 5 min, then increased to 225oC at 10oC/min and kept at 

this temperature for 15 min 
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ABSTRACT 

This contribution serves a dual purpose. The first purpose was to investigate the possibility 

of using a sensor array (an electronic tongue) for on-line identification and quantification of 

key odorants representing a variety of chemical groups at two different acidities, pH 6 and 

8. The second purpose was to simplify the electronic tongue by decreasing the number of 

electrodes from 14, which was the number of electrodes in the prototype. Different elec-

trodes were used for identification and quantification of different key odorants. A total of 

eight electrodes were sufficient for identification and quantification in micromolar concen-

trations of the key odorants n-butyrate, ammonium and phenolate in test mixtures also con-

taining iso-valerate, skatole and p-cresolate. The limited number of electrodes decreased the 

standard deviation and the relative standard deviation of triplicate measurements in com-

parison with the array comprising 14 electrodes.  

The electronic tongue was calibrated using 4 different test mixtures, each comprising 50 dif-

ferent combinations of key odorants in triplicates, a total of 600 measurements. Back propa-

gation artificial neural network, partial least square and principal component analysis were 

used in the data analysis. The results indicate that the electronic tongue has a promising po-

tential as an on-line sensor for odorants absorbed in the bioscrubber used in livestock build-

ings. 

Keywords: electronic tongue, odorants, principal component analysis (PCA), partial least 

squares (PLS), back propagation artificial neural network (BPNN) 
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INTRODUCTION 

An odour is defined as a sensation resulting from reception of a stimulus by the olfactory 

sensory system (Schiffman et al. 2001), and it is an important environmental pollution issue 

(Powers 2003). Odorants are the compounds responsible for imparting an odour, and their 

molecular mass is between 30 to 300 Daltons (Persaud et al. 1996; Sarig 2000). These 

odours lead to environmental and health problems. It was found that neighbours of livestock 

buildings suffer from depression, negative emotions, greater mood disturbance, more ten-

sion, an overall feeling of less vigour, anger, fatigue and confusion compared with people 

living far away from livestock buildings (Schiffman et al. 1995). 

There are many methods to reduce odours emission from livestock building, i.e. physical, 

chemical and biological. Biological methods are considered environmentally friendly 

(Revah and Morgan-Sagastume 2005). One of the biological methods is the bioscrubber 

which is used for air treatment in different industrial and agricultural applications (Hansen 

and Rindel 2000; Kraakman 2005). The bioscrubber comprises two main parts: an absorp-

tion column and a bioreactor. The absorption column is placed inside the ventilation channel 

in the livestock building, where odour substances (odorants), ammonia and dust particles are 

absorbed by water droplets. Water droplets are introduced to the absorption column through 

nozzles, which receive water recycled from the bioreactor. The bioreactor can be placed at 

floor level and can supply water for several absorption columns (Revah and Morgan-

Sagastume 2005). 

Odours are measured sensorally or analytically. Sensory methods measure odours, while 

analytical methods measure odorants. Examples of analytical methods include purge and 

trap (P&T), solid phase micro extraction (SPME), direct aqueous injection – gas chromatog-

raphy (DAI-GC) and solvent extraction (Abu-Khalaf et al. 2006; Kim et al. 2002; Razote et 

al. 2004; Shin and Ahn 2004). Analytical methods have the advantages of objectivity, re-

peatability and accuracy (Gostelow et al. 2001).  

Characterization of a mixture of odorants, in absorption column or in bioreactor, gives in-

formation about the absorbed odorants and the efficiency of the bioreactor. An electronic 

tongue (ET) has a high potential for this application. A calibrated ET inserted before or/and 

after the bioreactor characterizes the odorants on-line. ET is an analytical instrument con-

taining an array of electrodes, with partial specificity for different components in liquids and 

an appropriate pattern recognition or multivariate calibration tool for identification and 

quantification of even complex liquid mixtures. It measures the compounds in a liquid with 
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high sensitivity (Legin et al. 1997; Vlasov et al. 2002). It was already used in many applica-

tions including characterization of different types of mineral water and wine (Legin et al. 

1999), monitoring of fermentation process (Legin et al. 2004; Turner et al. 2003) and food 

quality (Auger et al. 2005; Rudnitskaya et al. 2002). 

There is a need to test ETs in different applications, e.g. health services, environmental 

technology and quality control. Therefore, research should become less focused on the  rela-

tion between the ET signals and human sensory panels (Gouma et al. 2004; Vlasov et al. 

2002; Winquist et al. 2004). However, ET is a recently developed method, and it has not yet 

reached its full potential for application outside the laboratory (Soderstrom et al. 2003; 

Vlasov et al. 2002). Nevertheless, ET’s ability should neither be underestimated (Vlasov et 

al. 2002) nor overestimated (Winquist et al. 2004), and more research should address new 

applications. 

There are many advantages in using ET compared to other methods, such as GC, HPLC or 

mass spectrometry. The key advantages are: rapidity, simplicity, low cost and simultaneous 

on-line determination of several components of very different chemical properties in the 

liquid. Furthermore, ET provides information about ions and compounds that are found in 

aqueous phase only (e.g. compounds having a low vapour pressure) (Legin et al. 2004; 

Soderstrom et al. 2003; Winquist et al. 2004). 

There are huge numbers of odorants in the livestock building. Approximately 300 different 

odorants have been identified (Schiffman et al. 2001), many of them have a very low detec-

tion threshold of 0.001 mg/m3 or less (O'Neil and Philips 1992). A representative selection 

of these odorants was used in this study.  

The pH plays an important factor in the bioscrubber application. The transfer of odorants 

from the gas (i.e. in the air) to the liquids phase in the absorption column and the microbial 

activity in the bioreactor are strongly dependent on pH. The optimum pH in the bioreactor is 

in the interval of 4 to 8 (Singh and Ward 2005). However, most microbial growth occurs 

near neutral pH (McNevin and Barford 2000). In this study, an ET based on potentiometric 

cross-sensitive electrodes was used to study the characterization of four test mixtures of se-

lected odorants, i.e. two different mixtures of key odorants, at two different acidities (pH 6 

and pH 8). 

This study serves a dual purpose. The first purpose is to investigate the possibility of using 

ET to identify and/or quantify key odorants, and the second purpose is to simplify the ET by 

decreasing the number of electrodes from 14, which was the number in the prototype to a 
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lower but sufficient number. The present study is an example of application of the ET for 

monitoring environmental and industrial processes. 

EXPERIMENTAL 

Sensor array, i.e. the electronic tongue (ET) 

A custom made prototype ET was purchased from Analytical Systems, Ltd., St. Petersburg 

– Russia. It was designed to have a cross-sensitivity for the selected key odorants tested in 

this study. It consists of 14 potentiometric electrodes. Eleven polymer (PVC) plasticized 

membrane electrodes containing different active substances (no. 1-11), two chalcogenide 

glass electrodes (no. 12-13) and one wire electrode (no. 14). The electrodes were numbered 

in order to identify the individual electrodes that were sufficient for identification and quan-

tification of different key odorants. 

A pH glass electrode was also included in the sensor array in addition to a conventional 

Ag/AgCl reference electrode. Potentiometric measurements were performed using a high-

input impedance multichannel voltmeter connected to a PC for data acquisition. The elec-

trode response comprises ionic, redox or molecular interaction at the membrane/liquid inter-

face. Pattern recognition and multivariate calibration methods were used to deconvolute 

these complex signals, producing quantitative and qualitative information about multicom-

ponent liquids (Legin et al. 1999; Pravdova et al. 2002). 

Preparation of test mixtures of key odorants 

It is an impossible task to include all odorants from livestock buildings in the calibration. 

Therefore six key odorants were selected in this study as representive odorants. They repre-

sented a variety of chemical groups, i.e. volatile fatty acids (VFAs), indoles, phenols and 

ammonia. The selected key odorants were: n-butyric acid, iso-valeric acid, 3-methyl indole 

(skatole), phenol, 4-methly phenol (p-cresol) and ammonia. The chemical and physical 

properties of the selected key odorants are shown in Table 1. The pKa for neutral skatole is 

unavailable in literature. The pKa for indole, pKa = 16.7, was used to give a rough estimate 

of the dissociation of skatole (Kirk and Othmer 1991). Despite the very low dissociation of 

skatole in water, skatole was added to the test mixtures of key odorants. This was done to 

mimic mixtures of odorants in livestock buildings, where skatole is one of the most impor-

tant components of odour nuisance problems (Le et al. 2005). 

Many researchers investigated the concentrations of these key odorants in air samples from 

livestock buildings. O’Neil and Philips (1992) and Schiffman et al. (2001) reviewed concen-
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tration intervals which are used as the main reference for the minimum and maximum con-

centrations of these key odorants (Table 2). The lowest minimum and the highest maximum 

concentrations reported in these two reviews were used in the test mixtures of key odorants 

in this work. 

In the bioscrubber, odorants are present in the liquid phase. Henry’s constant (H) is the ratio 

of the partial pressure of the analyte in the gas phase to the equilibrium concentration in the 

water (expressed in: atmosphere × liter / mol) and is used for calculating the concentrations 

of odorants in the liquid phase. The dimensionless air-water partition coefficient (KAW) is 

equal to H/RT, and it is the air to water concentration ratio at equilibrium (Datta and Allen 

2005). The value of the dimensionless air-water partition coefficient expresses the volatility 

of the odorant. An odorant with KAW of 0.05 or larger is volatile, whereas those with a lower 

KAW occur predominantly in the water phase (Squillace et al. 1997). All of the key odorants 

have KAW lower than 0.05 and they will occur predominantly in the liquid phase. The con-

centrations of the key odorants in air, the equivalent equilibrium concentrations in the liquid 

phase and the interval of concentrations used in our experiments are shown in Table 2. The 

interval of concentrations of each key odorant was subdivided into seven intervals (Table 3), 

to get as many combinations as possible in the test mixtures of key odorants used in calibra-

tion experiments. 

Stock solutions with different concentrations were prepared separately for each key odorant. 

Phenol and skatole were obtained as solids, with purities of 99.5% and 98%, respectively. 

The purity of n-butyric acid, iso-valeric acid and p-cresol was 99%. These key odorants 

were purchased from Sigma-Aldrich (Schnelldorf, Germany). Ammonium hydroxide (25%, 

v/v) was purchased from J. T. Baker (Deventer, Holland). All key odorants were diluted in 

deionised water, except skatole which was dissolved in hot deionised water (Budavari et al. 

1996). All key odorants were used without any further purification. 

Experimental design 

Four groups of experiments were carried out separately: two mixtures of key odorants at 

two different acidities. In the first group of experiments, the mixture of key odorants con-

tained: n-butyrate (n-butanoate), iso-valerate, phenolate, skatole and ammonium. In the sec-

ond group of experiments, ammonium was replaced with p-cresolate. Deionised water was 

solvent at pH 6. The pH of the mixtures was adjusted by addition of sodium hydroxide or 

hydrochloric acid. At pH 8, a buffer of KH2PO4 (3.7 × 10-3 M) and Na2HPO4 (78 × 10-3 M) 

was used. After pH adjustment, the acidity remained constant throughout the experiment. 
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Each group of experiments comprised 50 measurements in triplicates, totally 150 measure-

ments. This number of measurements was chosen according to preliminary experiments, 

which showed that 50 measurements constitute a sufficient number of combinations of mix-

tures of key odorants. In each group of experiments, the mixtures of key odorants were 

measured in random order. Microsoft office Excel 2000 (Microsoft Corporation, USA) 

software was used to randomize the intervals of concentrations in the test mixtures in each 

group of experiments, using a randomization and uniform distribution function. Williams 

(2001) suggested that samples for calibration should be collected with uniform distribution 

of composition within the anticipated interval. In uniform distribution, each treatment has an 

equal probability of being observed. The method for randomization of 50 measurements us-

ing Excel program was: use the tools option, data analysis, random number generation, dis-

tribution: uniform, number of variables was 5 (since we had five key odorants in each mix-

ture), parameter was between 1-7 (since we had seven intervals of concentrations) and num-

ber of measurements was 50 (since we had 50 experiments). The randomized group of ex-

periments comprised 50 rows (experiments), with 5 columns (five key odorants) and in each 

row there were five numbers between 1 to 7, which is related to the concentration of each 

key odorant. For example, if the digits for one row (experiment) were: 1, 7, 5, 3, 4 and if we 

follow the order in Table 3 for the test mixture containing ammonium, we will mix concen-

tration no. 1 of n-butyrate (10-7 M), concentration no. 7 of iso-valerate (10-4 M), concentra-

tion no. 5 of phenolate (3 × 10-6 M), concentration no. 3 of skatole (5 × 10-8 M),  and con-

centration no. 4 of  ammonium (5 × 10-5 M). 

The ET was submerged in the test mixture of key odorants in a 100 ml Teflon container 

with a magnetic stirrer. Five minutes were sufficient for electrodes to reach stable potential 

in all cases. Electrodes were washed several times with deionised water between measure-

ments to reach initial potential readings. 

Multivariate data analysis 

Multivariate data analysis, including pattern recognition and calibration methods, is re-

viewed in many papers (Burns and Whitesides 1993; Despagne and Massart 1998; Jurs et al. 

2000; Pravdova et al. 2002; Richards et al. 2002; Svozil et al. 1997).  

Pattern recognition includes a variety of methods, e.g. principal components analysis (PCA), 

linear discrimination analysis (LDA) and self organizing map (SOM). Calibration methods 

include partial least squares (PLS), principal component regression (PCR), multiple linear 
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regression (MLR) and back propagation artificial neural network (BPNN) (Jurs et al. 2000; 

Pravdova et al. 2002). In this study, we mainly used PCA, PLS and BPNN. 

PCA is a well known method for processing of multidimensional data. It is an unsupervised 

data reduction method and it describes variations of multivariate data in terms of a set of 

uncorrelated variables. The original data matrix is projected from a high dimensional space 

into a less dimensional space, with as little loss of information as possible. The matrix is 

decomposed into scores (which describes the relation between samples) and loadings (which 

describes the relation between variables). The principal components (PCs) are determined 

on basis of the maximum variance criterion, and they are orthogonal. The first PC contains 

most of the variance of the data. In addition, PCA results are comparatively easy to compre-

hend and interpret (Legin et al. 1999; Pravdova et al. 2002). 

PLS projects the original data to latent structures. It correlates two matrices, e.g. X (the re-

sponse of the electrodes) and Y (the concentration of the key odorant), by a linear multivari-

ate model. It has the ability to analyse noisy, collinear and incomplete variables in both ma-

trices (Pravdova et al. 2002; Wold et al. 2001). There are two types of PLS regression. PLS-

1, where only one Y-variable is used, and PLS-2 where more than one Y-variable is used. It 

was suggested that PLS-1 gave better results than PLS-2 (Dieterle et al. 2004).  

The root mean square error of prediction (RMSEP) is an estimate of the prediction error, 

which should be as small as possible. Also, the correlation, the lowest numbers of PCs and 

the lowest difference between the RMSEP and the root mean square error of calibration 

(RMSEC) were considered in modelling (Lammertyn et al. 2000). Outliers were identified 

and handled. 

The Unscrambler (v. 9.2, Camo, Oslo, Norway) software was used for PCA and PLS analy-

sis. Full cross validation was used for averaging triplicates of each sample. 

Artificial neural networks (ANNs) are networks of simple processing elements, i.e. neurons, 

operating within their local data range and communicating with other elements. The archi-

tectures of ANN are inspired by the structure of the brain, but have developed away from 

their biological inspiration (Burns and Whitesides 1993; Svozil et al. 1997). ANNs have 

many applications, for instance in spectroscopy, process control, protein folding, analytical 

chemistry and electrochemical systems (Richards et al. 2002; Svozil et al. 1997). 

The BPNN (also called feed forward network), which is one type of ANNs, is the most 

widely used network and was used in this study as well. It comprises many processing ele-

ments that are arranged in layers: an input layer, an output layer, and one or more layers in 
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between, called hidden layers. In BPNN, the inputs are introduced and weighted, then re-

ceived by each node in the next layer. The weighted inputs are summed and passed through 

a non-linear transfer function to produce the node output, which is also weighted and passed 

to the processing elements in the next layer. The output from the network is compared with 

the actual value and the error between the two values is calculated. This error is then used to 

adjust the weights until the network finds a set of weights that will produce the input-output 

mapping with the smallest possible error (Burns and Whitesides 1993; Despagne and Mas-

sart 1998). Principal components are used as inputs for the neural network model in order to 

reduce the risk of overfitting (Dieterle et al. 2004). 

We used a neural network software ‘Predict’ (v. 3.13, NeuralWare, Pittsburgh, USA) em-

ploying BPNN for modelling in the framework of Microsoft Excel. The ‘Predict’ program is 

powerful and easy to use (Copper 2004). The models in the program contain one hidden 

layer with different numbers of nodes. Despange and Massart (1998) concluded that models 

with one hidden node are stable. The models employ hyperbolic tangent and sigmoid trans-

fer functions in the hidden and output layers, respectively. These functions are commonly 

used, differentiable, fit a large number of non-linearities and have the appropriate slope be-

haviour for data extremes (Copper 2004; Despagne and Massart 1998). Direct connections 

between input and output nodes were also allowed, which enables the models to evaluate the 

need for a hidden layer. The model employs an adaptive gradient learning rule. Also, it re-

duces overfitting by including a weight decay method. The default parameters suggested by 

the program were used. Maier and Dandy (1999) suggested that inclusion of default parame-

ters is acceptable. The default parameters and mathematical explanation of the functions are 

beyond the scope of this communication but  they are described elsewhere (NeuralWare 

2003). 

In all BPNN models, the rule of thumb that the number of samples in the training set is at 

least twice the total number of weights in the BPNN topography (Despagne and Massart 

1998) was followed in our analysis. Each measurement in triplicates was treated as one 

sample. This triplicate was used either in train, in test or in validation set. 

Data were centred and scaled before modelling in both PLS and BPNN, so each variable 

will have the same importance in the analysis (Wold et al. 2001). Calibration models were 

carried out separately for each key odorant. 

During data analysis, different electrodes were examined for their contribution in identifica-

tion and quantification of key odorants. The aim was to achieve the best recognition and 

calibration results, taking into consideration the rules of thumbs in Unscrambler and ‘Pre-
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dict’ programs. The total number of electrodes in the electronic tongue was reduced without 

any loss of analytical information. This was done before by others in many applications of 

ET, e.g. Legin et  al. (1999) and Auger et al. (2005). Moreover, a dimensionless parameter 

called: ratio of standard error of performance to standard deviation (RPD) can be used to 

assess the calibration model in both PLS and BPNN. RPD is the standard deviation of the 

validation set of the dependent variable divided by RMSEP. As a rule of thumb, an accept-

able model has RPD larger than 2.5, and an excellent model has 10 or larger (Fearn 2002; 

Williams 2001). 

RESULTS AND DISCUSSION 

In this study, we calibrated an ET using four test mixtures of selected key odorants in con-

centrations within the interval of minimum and maximum concentrations of key odorants 

given in two reviews (O'Neil and Philips 1992; Schiffman et al. 2001). However, it is em-

phasized that there is a huge variation in the concentrations of odorants in livestock build-

ings caused by environmental factors, composition of feed, construction of livestock build-

ing including ventilation, sources of sample and measuring methods (Le et al. 2005). 

The four test mixtures comprised two mixtures of key odorants at two different acidities (pH 

6 and pH 8). One mixture of key odorants contained: n-butyrate (n-butanoate), iso-valerate, 

phenolate, skatole and ammonium. In the other mixture of key odorants ammonium was re-

placed with p-cresolate (Table 3). The choice of ammonium and p-cresolate was due to their 

importance in the odour problems in livestock buildings (Arogo et al. 2003; Le et al. 2005). 

The four groups of experiments (two mixtures of key odorants at two acidities) were carried 

out separately, and they can be considered independently with regard to experimental design 

and number of samples in each interval. The possibility to identity and/or quantify key 

odorants in different mixtures is discussed below. 

Test mixtures of key odorants containing ammonium at pH 6 

Standard deviation of triplicate measurements was between 0 - 11 mV and 0 - 5.6 mV when 

electrodes no. 1-14 and no. 2, 5, 6, 7, 8, 9 were used, respectively. The relative standard de-

viation (RSD = (standard deviation / mean) × 100), was between 0 - 4.8% and 0 - 3.4% 

when electrodes no. 1-14 and no. 2, 5, 6, 7, 8, 9 were used, respectively. It was noticed that 

the most interfering ions were ammonium and n-butyrate.  

PCA score plot of all samples (Figure 1) indicates that it is possible to monitor ammonium 

in the mixture of key odorants. The two PCs accounted for 96% of the variation. Six elec-
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trodes were sufficient (no. 2, 5, 6, 7, 8, 9). Samples containing high ammonium concentra-

tions, i.e. 10-4 - 10-3 M, are surrounded by the dashed line.  

Due to the complexity of the test mixture, it was difficult to model any key odorant reasona-

bly in their entire interval of concentrations. Data were sorted in ascending and descending 

orders, according to concentrations of key odorants, in an attempt to find a trend in the data. 

We could identify ammonium, when the concentration of n-butyrate was below 10-4 M (16 

samples). The PCA score plot of the remaining samples, 34 samples, is shown in Figure 2. 

Two PCs accounted for 97% of the variation. Six electrodes were sufficient (no. 2, 5, 6, 7, 8, 

9). The figure shows that the concentration of ammonium decreases diagonally, which indi-

cates that ET is able to monitor ammonium in the mixture of key odorants. 

Samples having ammonium concentrations equal to and higher than 5 × 10-6 M (23 samples 

including one outlier) could be modelled reasonably. PLS-1, full cross validation and two 

principal components were used and six electrodes (no. 2, 5, 6, 7, 8, 9) were sufficient. The 

principal components accounted for 92% and 93% of total validated variance of X and Y, 

respectively. Slope, correlation (r), RMSEP and RPD of the calibration curve were 0.93, 

0.95, 0.26 and 3.35, respectively (Figure 3). The model is an acceptable model, since the 

RPD is greater than 2.5, and it has a good slope and correlation. For modelling ammonium 

using BPNN, 23 samples in triplicates (69 samples) were split into train, test and validation 

sets, i.e. 33, 18 and 18, respectively. The BPNN used 6, 3, 1 nodes. Six electrodes were suf-

ficient (no. 2, 5, 6, 7, 8, 9). Slope, correlation, RMSEP and RPD of the calibration curve 

were 0.92, 0.98, 0.18 and 4.40, respectively (Figure 4). It is noticed that slope, correlation, 

RMSEP and RPD showed an improvement in the BPNN model compared to the PLS-1 

model. 

It was possible to model n-butyrate, if the concentration of ammonium was below 5 × 10-4 

M, and the concentration of n-butyrate was equal to or higher than 10-5 M. The 29 samples 

in triplicates (87 samples) were split into train, test and validation sets, e.g. 48, 21 and 18, 

respectively. The BPNN used 6, 8, 1. Six electrodes were sufficient (no. 2, 5, 6, 7, 8, 9). 

Slope, correlation, RMSEP and RPD of the calibration curve were 0.97, 0.94, 0.28 and 2.56, 

respectively (Figure 5).  

In quantification of both ammonium and n-butyrate, we found modelling limitations. It was 

noticed that ammonium could be modelled if the concentration of n-butyrate was below 10-4 

M (between 10-7 to 5 × 10-5 M). Also n-butyrate could be modelled if the concentration of 

ammonium was below 5 × 10-4 M (between 10-7 to 10-4 M). Considering these limitations, 

the sample number was decreased from 50 to 27. When modelling ammonium from 5 × 10-6 
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to  10-4 M, the number of samples decreased to 16. PLS-1, full cross validation and two 

principal components were used and six electrodes (no. 2, 5, 6, 7, 8, 9) were sufficient. The 

two PCs accounted for 94% and 89% of the total calibrated variance of X and Y, respec-

tively. The PLS-1 score plot (Figure 6 a) shows that ET can monitor ammonium. Samples 

with high ammonium are located to the right side of the figure. Slope, correlation, RMSEP 

and RPD of the calibration curve were 0.86, 0.92, 0.20 and 2.5, respectively (Figure 6 b). 

These results indicate that the ET can monitor ammonium in the presence of the other key 

odorants, if the concentration of n-butyrate is below 10-4 M. 

Test mixtures of key odorants containing p-cresolate at pH 6 

Standard deviation of triplicate measurements was between 0 - 17.3 mV and 0 - 6.8 mV 

when electrodes no. 1-14 and no. 1, 2, 4, 5, 8 were used, respectively. The RSD was be-

tween 0 - 15.5% and 0 - 3.5% when electrodes no. 1-14 and no. 1, 2, 4, 5, 8 were used, re-

spectively. 

In this test mixture, all samples of key odorants containing high concentrations of n-butyrate 

(5 × 10-4 - 10-3 M) were identified. PLS-1 and full cross validation were used and five elec-

trodes (no. 1, 2, 4, 5, 8) were sufficient. The PLS-1 scores plot (Figure 7) identifies these 

samples (10 samples) at the upper right side of the figure. This indicates that the ET can 

monitor high n-butyrate concentrations (5 × 10-4 - 10-3 M) in the test mixture. 

BPNN was used for modelling n-butyrate from 10-5 to 10-3 M. Thirty-nine samples in tripli-

cates (117 samples) were split into train, test and validation sets, i.e. 60, 30 and 27, respec-

tively. The BPNN used 5, 2, 1. Five electrodes were sufficient (no. 1, 2, 4, 5, 8). Slope, cor-

relation, RMSEP and RPD of the calibration curve were 1.02, 0.93, 0.28 and 2.61, respec-

tively (Figure 8).  

Test mixtures of key odorants containing ammonium at pH 8 

Standard deviation of triplicate measurements was between 0 - 2.6 mV and 0 - 1.6 mV when 

electrodes no. 1-14 and no. 1, 2, 4, 5, 7, 8 were used, respectively. The RSD was between 0 

- 8.4% and 0 - 0.7% when electrodes no. 1-14 and no. 1, 2, 4, 5, 7, 8 were used, respec-

tively. The standard deviation of triplicate measurements and RSD were between 0 - 1.6 mV 

and 0 - 0.7% when electrodes no. 1, 5, 7, 8 were used.  

The PLS-1 score plot of n-butyrate (Figure 9), shows that ET can monitor all samples (15 

samples) containing a high n-butyrate concentration (5 × 10-4 - 10-3 M) in the mixture. PLS-1 

and full cross validation were used and six electrodes (no. 1, 2, 4, 5, 7, 8) were sufficient. It 
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was noticed that the number of samples with these concentrations, i.e. 15 samples, was dif-

ferent from the number of samples in the same mixture in deionised water, i.e. 10 samples 

(Figure 7). This is because the design of each experiment was carried out independently. 

However, in both experiments we used uniform distribution. 

BPNN was used for modelling n-butyrate. Thirty-six samples were prepared with n-butyrate 

concentrations from 10-5 to 10-3 M. These triplicate samples (108 samples) were split into 

60, 27 and 21 as train, test and validation sets, respectively. The BPNN used 6, 0, 1. Six 

electrodes were sufficient (no. 1, 2, 4, 5, 7, 8). Slope, correlation, RMSEP and RPD of the 

calibration curve were 0.88, 0.94, 0.22 and 2.67, respectively (Figure 10). This indicates that 

ET can monitor and model n-butyrate at pH 8, in the presence of the other key odorants in 

the test mixture of odorants. 

It was impossible to model the ammonium concentration. This is most likely explained by 

the decrease of the ammonium-ammonia ratio in combination with the increased ionisation 

of the other added key odorants in the test mixture when pH was increased from 6 to 8. 

Phenolate was modelled from 10-6 to 10-5 M, when the concentration of both n-butyrate and 

ammonium was below 5 × 10-4 M. Seventeen samples in triplicates (51samples) were split 

into 24, 15 and 12 for train, test and validation sets, respectively. The BPNN used 4, 4, 1. 

Four electrodes were sufficient (no. 1, 5, 7, 8). Slope, correlation, RMSEP and RPD of the 

calibration curve were 0.89, 0.91, 0.15 and 2.62, respectively (Figure 11). This indicates that 

ET has a potential for prediction of phenolate concentration, when the concentrations of 

ammonium and n-butyrate are low. This result needs further investigations, since the cali-

bration curve covers a rather a small interval of concentrations compared to other key odor-

ants. Nevertheless, it indicates that ET has a potential as a sensor for phenolate as well. 

Test mixtures of key odorants containing p-cresolate at pH 8 

Standard deviation of triplicate measurements was between 0 - 2.1 mV and 0 - 1.6 mV when 

electrodes no. 1-14 and no. 2, 5, 6, 7, 8, 9 were used, respectively. The RSD of glass elec-

trodes was high when electrodes no. 1-14  were used, since the potential readings and stan-

dard deviations of triplicate measurements were very small, e.g. 0, -0.2 mV. When omitting 

the glass electrodes from the array, the RSD was between 0 - 0.9%. The RSD was between 

0 - 0.4% when electrodes no. 2, 5, 6, 7, 8, 9 were used. It is noticed that the standard devia-

tion of triplicate measurements in the mixture of key odorants in phosphate buffer at pH 8 

was lower than the standard deviation of triplicate measurements in the same mixture of key 
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odorants in the deionised water with pH 6. This is because the buffered mixture contains 

higher and stabilized concentrations of ions. 

Figure 12 shows that samples with high n-butyrate concentration (5 × 10-4 - 10-3 M) in the 

mixture, can be monitored using PLS-1 score plot. PLS-1 and full cross validation were 

used and six electrodes (no. 2, 5, 6, 7, 8, 9) were sufficient. It was possible to model n-

butyrate from 5 × 10-5 to 10-3 M. Twenty-nine samples in triplicates (87samples) were split 

into 48, 21 and 18 as train, test and validation sets, respectively. The BPNN used 6, 9, 1 

nodes. Six electrodes were sufficient (no. 2, 5, 6, 7, 8, 9). Slope, correlation, RMSEP and 

RPD of the calibration curve were 0.83, 0.97, 0.14 and 3.22, respectively (Figure 13). 

Potential of ET for on-line measurement of odorants 

A summary of results of all experiments is shown in Table 4. The modelling using BPNN 

was preferred in most of the analytical procedures. This was due to the non-linear relation 

between the response of electrodes (independent variables, or predictors) and the concentra-

tion of the key odorants (dependent variables) (Vlasov et al. 2005). The non-linear response 

of the electrodes results from interferences between ions in the test mixtures (Legin et al. 

2004). PCA and PLS can explain linear models only. They are able to show the linear pro-

jection of samples, and to model the concentration of key odorants in a linear way. If PLS is 

used for modelling of non-linear relations a high number of principal components is re-

quired, which may lead to overfitting. Therefore, the BPNNs were preferred for modelling, 

and they could model concentrations in the range below what was possible using PCA or 

PLS score plots. PCA and PLS score plots show the linear relation between samples in two 

dimensions. BPNN used all dimensions of the inputs, i.e. electrode signals, for non-linear 

modelling of concentration. 

In all modelling, it was noticed that inclusion of measurements of the wire and the two glass 

electrodes decreased the quality of models. Therefore we excluded these electrodes from all 

our models i.e. PCA, PLS and BPNN.  

The ET used in this study was a custom made prototype, which was used for the first time. 

This study served a dual purpose. The first goal was to test the ET in identification and 

quantification of key odorants, and the second goal was to simplify the array by decreasing 

the number of electrodes. Both goals have been achieved. It was possible to reduce the 

number of electrodes sufficient for modelling without any loss of analytical information 

(Table 4), since the calibration curves of different key odorants had a high correlation coef-

ficient, reasonable slope, small RMSEP and an acceptable RPD. The reduction of number of 
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electrodes was achieved using multivariate data analysis. For example, six electrodes only 

were sufficient for all identification and quantification models in the test mixtures of key 

odorants containing ammonium at pH 6. Six and four electrodes were sufficient to model n-

butyrate and phenolate, respectively in the test mixture of key odorants containing ammo-

nium at pH 8. By inclusion of individual electrodes sufficient for analysis of all four test 

mixtures of key odorants, it is seen that eight electrodes (no. 1, 2, 4, 5, 6, 7, 8, 9) were suffi-

cient for identification and quantification of n-butyrate, ammonium and phenolate. As ex-

pected the decreased, but sufficient number of electrodes improved the reproducibility, since 

the standard deviation and the RSD decreased, as shown in Table 5. 

ET measured mainly ions in the mixtures (Soderstrom et al. 2005). The percentage of ion-

ised n-butyric acid, iso-valeric acid, phenol, p-cresol, skatole and ammonium at pH 6 is: 

94%, 94%, 0.01%, 0.005%, 0 % and 100%, respectively. For comparison, the percentage of 

ionised n-butyric acid, iso-valeric acid, phenol, p-cresol, skatole and ammonium at pH 8 is: 

100%, 100%, 1%, 0.5%, 0% and 95%, respectively. 

The ET could identify and quantify different key odorants, i.e. ammonium, n-butyrate and 

phenolate, in different mixtures at different acidities. These results are promising for the ap-

plication in bioscrubbers, since most existing bioscrubber designs focus on the removal of 

one single type of compound only (Singh et al. 2005), or removal of one single compound 

only (Sheridan et al. 2003). 

The ability to monitor ammonium indicates that ET has a potential as an alarm system for 

ammonium in livestock buildings, for which there is a demand (Arogo et al. 2003; Timmer 

et al. 2005). 

ET could reasonably identify and quantify n-butyrate, in most cases. This indicates that n-

butyrate can be used as a representative odorant of the mixture of odorants. Moreover, n-

butyric acid is considered as an important odorant (Le et al. 2005). 

By comparing the results of quantification using ET and gas chromatography (GC) (Abu-

Khalaf et al. 2006), it is seen that ET could model phenolate from10-6 to 10-5 M. The GC 

method showed a rectilinear correlation with concentration of phenol from 1.6 × 10-6 to 8.0 

× 10-5 M. ET could model n-butyrate from 10-5 to 10-3 M. Also, the GC had a rectilinear cor-

relation with concentration of n-butyric acid from 1.1 × 10-6 to 5.7 × 10-5 M. These results 

indicate that ET is comparable to GC in terms of sensitivity. However, ET is the method of 

preference since it has the potential as an on-line sensor. 
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Above it is reported that model limitations for both ammonium and n-butyrate were ob-

served. However, it is unlikely that these limitations will have any significance, when the 

ET is used as an on-line sensor in the bioscrubber. In the case of ammonium, the model 

limitation occurred in quantification of ammonium when the concentration of n-butyrate 

was above 5 × 10-4 M. Literature values for minimum and maximum equivalent equilibrium 

concentrations in water for n-butyrate are 5.2 × 10-7 M and 3.6 × 10-4 M, respectively, so the 

model limitation concentration range for quantification is marginal compared to the total 

concentration range. 

As far as model limitations for n-butyrate at high ammonium concentration are concerned, 

the same considerations are valid. 

Even in extreme cases the model still identifies both ammonium and n-butyrate with an ac-

curacy sufficient for application of ET in an alarm function. 

The simultaneous on-line measurement of ammonium, n-butyrate and phenolate makes ET 

an obvious candidate for objective characterization of odour emission from livestock build-

ings. Of equal importance is the application of ET in control of the bioscrubber. By meas-

urement of key odorants in the liquid after the bioreactor it is possible to optimize the func-

tion of the bioscrubber, i.e. keeping dissolved odorants below suitable threshold values. By 

doing this, a sufficient driving force for transport of odorants from the gas to the liquid is 

maintained. This control is a prerequisite for optimization of the water flow through the 

nozzles in the absorption column, which is the most energy consuming part of the bioscrub-

ber. 

CONCLUSION 

This study served a dual purpose. The first purpose was to identify and/or quantify key 

odorants occurring in livestock buildings using ET. The second purpose was to simplify the 

construction of the ET and the data analysis by decreasing number of electrodes in ET as 

much as possible. The ET was calibrated using 4 different test mixtures, each comprising 50 

different combinations of key odorants in triplicates, a total of 600 measurements. The ET 

was able to quantify ammonium and n-butyrate using six electrodes only in the test mixtures 

of key odorants at pH 6. In the test mixtures containing ammonium at pH 8, n-butyrate and 

phenolate were quantified using six and four electrodes, respectively. Initially 14 electrodes 

were investigated in different PCA, PLS and BPNN models, which showed that eight elec-

trodes were sufficient for all identifications and quantifications of n-butyrate, ammonium 

and phenolate. The decreased, but sufficient number of electrodes improved the perform-
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ance of the ET because the standard deviation and relative standard deviation of measure-

ments in triplicates decreased in comparison with the array comprising 14 electrodes. Limi-

tations were taken into consideration during identification and quantification of key odor-

ants. These limitations are related to the interference of different ions at different conditions, 

i.e. odorants present in mixtures at different acidities. Further research with more cross-

sensitive electrodes is needed. However, the results indicate that ET has a promising poten-

tial as an on-line sensor for measurement of odorants in livestock buildings as a prerequisite 

for control of odorant emission from livestock buildings.  
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Table 1. Chemical and physical properties of key odorants  

No. Odorant Chemical  

abstract 
service 

(CAS #) 

Molecular 

formula 

Molecular 
mass 

(g mol-1) 

Solubility in 

H2O at 25oC 

(g l-1) 

pKa Henry's constant 

(H) 

atm. l. mol-1 

Vapour  

pressure at 25oC 

(mm Hg) 

Octanol-water 
partition coeffi-

cient  

 (log p) 

Melting point 
oC 

Boiling point 
oC 

1.  n-butyric acid 107-92-6 C4H8O2 88.11 60 4.82 5.35 × 10-4 1.65 0.79 -5.7 163.7 

2.  iso-valeric acid 503-74-2 C5H10O2 102.13 40.7 4.77 8.33 × 10-4 0.44 1.16 -29.3 176.5 

3.  phenol  108-95-2 C6H6O 94.11 82.8 9.99 3.33 × 10-4 0.35 1.46 40.9 181.8 

4.  4-methyl phenol (p-cresol)  106-44-5 C7H8O 108.14 21.5 10.3 1 × 10-3 0.11 1.94 35.5 201.9 

5.  3-methyl indole (skatole) 83-34-1 C9H9N 131.18 0.498 ≈ 16.7 a 2.13 × 10-3 0.00555 2.60 97.5 266 

6.  ammonia 7664-41-7 NH3 17.03 482 9.25 1.61 × 10-2 7510 0.23 -77.7 -33.4 

Reference of properties: Syracuse Research Corporation (2005) 

a pKa for indole (Kirk and Othmer 1991) 
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 Table 2: Concentration of key odorants in air and water 

Odorant Dimensionless 
air-water partition 

coefficient  

Minimum key odorant 

concentration in air c 

 

Maximum key odorant 

concentration in air c 

 

Minimum equivalent equi-
librium key odorant 

 concentration in water  d, e 

Maximum equivalent equilib-
rium key odorant 

 concentration in water d, e 

Interval of concentrations used 

in experiments 

 

 (KAW)b mg/m3 mg/m3 mg/m3 M mg/m3 M Minimum (M) Maximum (M) 

n-butyric acid 2.19 × 10-5 0.001 0.7 46 5.2 × 10-7 32 × 103 3.6 × 10-4 10-7 10-3 

iso-valeric acid 3.40 × 10-5 0.002 0.21 59 5.8 × 10-7 62 × 102 6.0 × 10-5 10-7 10-4 

phenol  1.36 × 10-5 0.001 0.0078 73 7.8 × 10-7 57 × 101 6.1 × 10-6 10-7 10-5 

p-cresol 4.09 × 10-5 0.002 0.041 49 4.5 × 10-7 10 × 102 9.3 × 10-6 10-7 10-5 

skatole 8.70 × 10-5 0.00049 0.003 5.6 4.3 × 10-8 34 2.6 × 10-7 10-8 10-6 

ammonia 6.54 × 10-4 0.01 18 15 8.9 × 10-7 27 × 103 1.6 × 10-3 10-7 10-3 
b KAW  = H / RT, where: R: gas constant = 0.0821 atm. l. / (mol. K), T: degree Kelvin  

KAW
  = H (atm. l. / mol) / 24.47 

c According to O’Neil and Philip (1992) and Schiffman et al. (2001)  

d Equivalent equilibrium concentrations in water calculated using KAW (Datta and Allen 2005): 

KAW = Concentration in air (Ca) / Concentration in water (Cw) � Cw = (24.47 × Ca) / H (atm. l. /mol) 

e M (mole/l.) = 10-6  × concentration (mg/m3) / molecular mass (g/mole)  
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Table 3. Mixture of odorants and concentration intervals of key odorants 

Odorant Minimum  Concentration numbers g   Maximum 

 

Mixture containing  

ammonium 

Mixture containing  

p-cresolate 1 2 3 4 5 6 7 

   M M M M M M M 

n-butyrate  X f X 10-7 10-6 10-5 5 × 10-5 10-4 5 × 10-4 10-3 

iso-valerate X X 10-7 5 × 10-7 10-6 5 × 10-6 10-5 5 × 10-5 10-4 

phenolate X X 10-7 3 × 10-7 5 × 10-7 10-6 3 × 10-6 5 × 10-6 10-5 

p-cresolate  X 10-7 3 × 10-7 5 × 10-7 10-6 3 × 10-6 5 × 10-6 10-5 

skatole X X 10-8 3 × 10-8 5 × 10-8 10-7 3 × 10-7 5 × 10-7 10-6 

ammonium X  10-7 5 × 10-6 h / 10-6  10-5 5 × 10-5 10-4 5 × 10-4 10-3 
f X: presence of key odorant in mixture 

g Concentration numbers were used to randomize concentration intervals of key odorants. Method was explained in experimental design section  

h Concentration of 5 × 10-6 M was included in concentration interval of ammonium in test mixtures of key odorants in deionised water, i.e. pH 6  
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Table 4. Summary of results for different test mixtures of key odorants at pH 6 and pH 8 

pH Test mixture of  

key odorants 

Sufficient electrodes 

 out of 14  

Key odorant i Identified (I) and quantified (Q) key odorant 

6 Containing ammonium  2, 5, 6, 7, 8, 9 ammonium I. between 10-4 - 10-3 M (Figure 1) 

  2, 5, 6, 7, 8, 9 ammonium I. between 10-7 - 10-3 M, when concentration of n-butyrate was < 10-4 M (Figure 2)  

  2, 5, 6, 7, 8, 9  ammonium Q. between 5 × 10-6 - 10-3 M, when concentration of n-butyrate was < 10-4 M (Figure 3 and 
Figure 4) 

  2, 5, 6, 7, 8, 9  n-butyrate Q. between 10-5 - 10-3 M, when concentration of ammonium was < 5 × 10-4 M (Figure 5) 

  2, 5, 6, 7, 8, 9 ammonium I. between 5 × 10-6 - 10-4 M, when concentration of n-butyrate was < 10-4 M, and concentration 
of ammonium was < 5 × 10-4 M (Figure 6 a) 

  2, 5, 6, 7, 8, 9  ammonium Q. between 5 × 10-6 - 10-4 M, when concentration of n-butyrate was < 10-4 M, and concentration 
of ammonium was < 5 × 10-4 M (Figure 6 b) 

6 Containing p-cresolate 1, 2, 4, 5, 8  n-butyrate I. between 5 × 10-4 - 10-3 M (Figure 7) 

  1, 2, 4, 5, 8 n-butyrate Q. between 10-5 - 10-3 M (Figure 8) 

8 Containing ammonium 1, 2, 4, 5, 7, 8 n-butyrate I. between 5 × 10-4 - 10-3 M (Figure 9) 

  1, 2, 4, 5, 7, 8 n-butyrate Q. between 10-5 - 10-3 M (Figure 10) 

  1, 5, 7, 8  phenolate Q. between 10-6 - 10-5 M, when concentration of n-butyrate and ammonium were < 5 × 10-4 M 
(Figure 11) 

8 Containing p-cresolate 2, 5, 6, 7, 8, 9 n-butyrate I. between 5 × 10-4 - 10-3 M (Figure 12) 

  2, 5, 6, 7, 8, 9 n-butyrate Q. between 5 × 10-5 - 10-3 M (Figure 13) 
i Key odorant identified (I) and/or quantified (Q) 
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Table 5. Standard deviation (StDev) and relative standard deviation (RSD) of triplicate measurements 

with total and sufficient numbers of electrodes 

pH Test mixture of key odorants Electrode no.  StDev  j  

(mV)  

RSD  j 

 (%) 

6 Containing ammonium 1-14 0 - 11 0 - 4.8 

  2, 5, 6, 7, 8, 9 0 - 5.6  0 - 3.4 

6 Containing p-cresolate 1-14 0 - 17.3 0 - 15.5 

  1, 2, 4, 5, 8 0 - 6.8 0 - 3.5 

8 Containing ammonium 1-14 0 - 2.6  0 - 8.4 

  1, 2, 4, 5, 7, 8 0 - 1.6 0 - 0.7 

  1, 5, 7, 8 0 - 1.6 0 - 0.7 

8 Containing p-cresolate 1-14 0 - 2.1 high l 

  1-11, 14 0 - 2.1 0 - 0.9 

  2, 5, 6, 7, 8, 9 0 - 1.6 0 - 0.4 
j StDev: Standard deviation of triplicate measurements 

k RSD: Relative standard deviation of triplicate measurements 

l high: potential readings and standard deviation were very small, which results in high value of RSD 
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Figure 1. PCA score plot of all samples in test mixtures of key odorants containing ammonium at pH 6. 

Samples surrounded by dashed line (16 samples) contain high ammonium concentration (10-4 to 10-3 M). 

Full cross validation was used and six electrodes were sufficient 
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Figure 2. PCA score plot of 34 samples in test mixtures of key odorants containing ammonium at pH 6. 

Concentration of n-butyrate was below 10-4 M. Full cross validation was used and six electrodes were suf-

ficient 



 24 

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0
-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

 

 

P
re

di
ct

ed
 c

on
ce

nt
ra

te
d 

(lo
g 

M
)

Added concentration (log M)

 

Figure 3. Calibration curve of ammonium from 5 ×××× 10-6 to 10-3 M at pH 6. PLS-1, full cross validation for 

22 samples and two PCs were used and six electrodes were sufficient. Concentration of n-butyrate was 

below 10-4 M 
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Figure 4. Calibration curve (18 samples) of ammonium from 5 ×××× 10-6 to 10-3 M at pH 6. BPNN used 6, 3, 1 

nodes. Concentration of n-butyrate was below 10-4 M  
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Figure 5. Calibration curve (18 samples) of n-butyrate at pH 6. BPNN used 6, 8, 1 nodes. Concentration of 

ammonium was below 5 ×××× 10-4 M 
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Figure 6 a: PLS-1 score plot for 16 samples of ammonium, considering limits of modelling in test mixtures 

of key odorants containing ammonium at pH 6. B: Calibration curve of identical ammonium samples. 

PLS-1, full cross validation and two PCs were used and six electrodes were sufficient 
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Figure 7. PLS-1 score plot of all samples in test mixtures of key odorants containing p-cresolate at pH 6. 

Samples (10 samples) with high concentrations (5 ×××× 10-4 - 10-3 M) of n-butyrate are surrounded by dashed 

line. Full cross validation was used and five electrodes were sufficient 
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Figure 8. Calibration curve (27 samples) of n-butyrate in test mixtures of key odorants containing p-

cresolate at pH 6. BPNN used 5, 2, 1 nodes 
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Figure 9. PLS-1 score plot of all samples in test mixtures of key odorants containing ammonium at pH 8. 

Samples (15 samples) with high concentrations (5 ×××× 10-4 - 10-3 M) of n-butyrate are surrounded by dashed 

line. Full cross validation was used and six electrodes were sufficient 
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Figure 10. Calibration curve (21 samples) of n-butyrate in test mixtures of key odorants containing am-

monium at pH 8. BPNN used 6, 0, 1 nodes 
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Figure 11. Calibration curve (12 samples) of phenolate in test mixtures of key odorants containing ammo-

nium at pH 8. BPNN used 4, 4, 1 nodes 
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Figure 12. PLS-1 score plot of all samples in test mixtures of key odorants containing p-cresolate at pH 8. 

Samples (15 samples) with high concentrations (5 ×××× 10-4 - 10-3 M) of n-butyrate are surrounded by dashed 

line. Full cross validation was used and six electrodes were sufficient 
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Figure 13. Calibration curve (18 samples) of n-butyrate in test mixtures of key odorants containing p-

cresolate at pH 8. BPNN used 6, 9, 1 nodes 
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ABSTRACT 

An electronic tongue comprising different numbers of electrodes was able to classify differ-

ent test mixtures of key odorants (n-butyrate, iso-valerate, phenolate, p-cresolate, skatole 

and ammonium) with high performance in micromolar concentrations, which makes it suit-

able as an on-line sensor for characterization of odorants in livestock buildings.  

Back propagation artificial neural network was used for classification. The average classifi-

cation rate was above 80% in all cases. 

A limited, but sufficient number of electrodes were selected by average classification rate 

and relative entropy. The sufficient number of electrodes decreased standard deviation and 

relative standard deviation compared to the full electrode array. 
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network (BPNN), average classification rate (ACR) 
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INTRODUCTION 

An odour is defined as a sensation resulting from the reception of a stimulus by the olfac-

tory sensory system (Schiffman et al. 2001). The odour emission from livestock buildings in 

intensive farming is causing many environmental and health problems (Schiffman et al. 

1995). 

Biological methods, which are environmentally friendly, are the preferred techniques for 

reducing emission of odours from livestock buildings. The bioscrubber is one of the bio-

logical methods and comprises an absorption column, in which the polluted air stream from 

the livestock building is washed by water droplets, and a bioreactor, which cleans and recy-

cles the washing water coming from the absorption column (Revah and Morgan-Sagastume 

2005). 

Characterization of odorants, in absorption column or in bioreactor, is necessary in the op-

timization of the bioscrubber. Also, there is a demand for an alarm system for monitoring 

odorant in livestock buildings (Arogo et al. 2003; Timmer et al. 2005). It was recently ob-

served that an electronic tongue (ET) has a high potential as an on-line sensor for odorants 

(Abu-Khalaf and Iversen 2006). ET is an analytical instrument containing an array of elec-

trodes, with partial specificity for different components in liquids in addition to an appropri-

ate pattern recognition or multivariate calibration tool for identification and quantification of 

even complex liquid mixtures (Legin et al. 1997; Vlasov et al. 2002). Recently, ET was used 

to classify different types of wine and water (Legin et al. 1999) and four molds and one 

yeast (Soderstrom et al. 2005).  

The pH is an important control variable in the bioscrubber for two reasons. pH affects the 

transfer of odorants from the gas to the liquid phase in the absorption column, and it also 

affects the microbes in the bioreactor. The optimum pH in the bioreactor is in the range of 4 

to 8 (Singh and Ward 2005). However, most microbial growth occurs near neutral pH 

(McNevin and Barford 2000). 

The objective of this communication is to use an ET to classify different test mixtures of 

key odorants. For a detailed account of the calibration of the ET we refer to a previous 

communication (Abu-Khalaf and Iversen 2006). In livestock buildings, there are huge num-

bers of odorants (Schiffman et al. 2001). A representative selection of these odorants, called 

key odorants, was used in this study. The key odorants were selected to represent a variety 

of chemical groups and were n-butyrate (n-butanoate), iso-valerate, phenolate, p-cresolate, 

skatole and ammonium. ET was used to classify four test mixtures of key odorants, i.e. two 
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test mixtures of key odorants at two different acidities (i.e. pH 6 and 8). Moreover, ET was 

used to classify six different test mixtures of key odorants that were prepared to give the 

maximum representation of a variety of chemical groups at pH 6. 

EXPERIMENTAL 

Sensor array, i.e. the electronic tongue (ET) 

A custom made prototype ET was purchased from Analytical Systems, Ltd., St. Petersburg 

– Russia. It consists of 14 potentiometric electrodes. Eleven polymer (PVC) plasticized 

membrane electrodes (no. 1-11), two chalcogenide glass electrodes (no. 12-13) and one wire 

electrode (no. 14). The electrodes were numbered in order to identify the individual elec-

trodes that were sufficient for the classification. A pH glass electrode and a conventional 

Ag/AgCl reference electrode were included in the ET. Potentiometric measurements were 

performed using a high-input impedance multichannel voltmeter connected to a PC for data 

acquisition.  

Preparation of test mixtures of key odorants 

The concentrations of odorants in air samples from livestock buildings were investigated by 

many researchers. O’Neil and Philips (1992) and Schiffman et al. (2001) reviewed concen-

tration intervals which are used as the main reference for the minimum and maximum con-

centrations of these odorants. Odorants are transferred to the liquid phase in the bioscrubber. 

The equivalent equilibrium concentrations of key odorants in water were calculated by us-

ing the dimensionless air-water partition coefficient (KAW) (Datta and Allen 2005), as shown 

in Table 1. 

Stock solutions of different concentrations were prepared separately for each key odorant in 

the test mixtures. Iso-valeric acid, n-butyric acid and p-cresol all had purities of 99%. Ska-

tole and phenol were obtained as solids, and had purities of 98% and 99.5%, respectively. 

All odorants were purchased from Sigma-Aldrich (Schnelldorf, Germany). Ammonium hy-

droxide (25%, v/v) was purchased from J. T. Baker (Deventer, Holland). All the odorants 

were diluted in deionised water, except skatole which was dissolved in hot deionised water 

(Budavari et al. 1996). The odorants were used without any further purification. 

Experimental design 

Five groups of experiments were carried out separately. Data from the first four groups of 

experiments were also used for calibration of the ET (Abu-Khalaf and Iversen 2006). The 
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first test mixture of key odorants contained: n-butyrate, iso-valerate, phenolate, skatole and 

ammonium. In the second test mixture, ammonium was replaced with p-cresolate. Ammo-

nium and p-cresol were chosen because of their importance as part of the odour problems in 

livestock buildings (Arogo et al. 2003; Le et al. 2005). At pH 6, deionised water was sol-

vent. At pH 8, a buffer of KH2PO4 (3.7 × 10-3 M) and Na2HPO4 (78 × 10-3 M) was solvent. 

Each group of experiments comprised 50 measurements in triplicates. The intervals of con-

centrations of each odorant were subdivided into seven intervals, to get as many combina-

tions as possible in the test mixtures. The total number of measurements was 600. Details of 

test mixtures are shown in Table 2.  

In the fifth experiment, test mixtures of key odorants were prepared to give maximum repre-

sentation of a variety chemical groups, i.e. volatile fatty acids (VFAs) mixed with phenols, 

VFAs mixed with skatole, VFAs mixed with ammonium, etc. (Table 3). The test mixtures 

were diluted in deionised water after which the acidity was adjusted to pH 6 with NaOH or 

HCl. After this adjustment, the pH remained constant throughout the experiment. Each 

combination of the test mixtures was subjected to 15 measurements in triplicates, a total of 

270 measurements (Table 3). The interval of concentrations was divided into five subsets, 

which were chosen from the seven intervals used in the previous four experiments. 

In each group of experiments the test mixtures were measured in random order. Microsoft 

office Excel 2000 (Microsoft Corporation, USA) software was used to randomize the con-

centrations levels (seven levels in the first four groups of experiments and five levels in the 

fifth) in each group of experiments, using a randomization and uniform distribution function 

(Abu-Khalaf and Iversen 2006). 

The ET was submerged in the test mixture of key odorants in a 100 ml Teflon container 

with a magnetic stirrer. Five minutes were sufficient for electrodes to reach stable potential 

in all cases. Electrodes were washed with deionised water several times between measure-

ments, until they reached a steady potential. It was suggested that washing of electrodes is 

one of the solutions to avoid drift problems of electrodes in ET (Holmberg et al. 2004). 

Artificial neural networks 

The architecture of artificial neural networks (ANNs) is inspired by the structure of the 

brain. However, the architectures used in ANNs have lost their biological inspiration (Burns 

and Whitesides 1993; Svozil et al. 1997). There are many types of ANNs. One of the most 

widely used network is back propagation artificial neural network (BPNN), which is also 

called feed forward network. It comprises many processing elements, i.e. nodes, which are 
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arranged in layers: an input layer, an output layer, and one or more layers in between, called 

hidden layers. 

A neural network software ‘Predict’ (v. 3.13, NeuralWare, Pittsburgh, USA), which uses 

BPNN and works in the framework of Microsoft Excel, was used in this study. The models 

in the program contain one hidden layer with different numbers of nodes, which results in a 

stable model (Despagne and Massart 1998). Models have direct connections between input 

and output nodes. This enables the program to evaluate the need for a hidden layer. More-

over, models employ an adaptive gradient learning rule. A weight decay method is em-

ployed to reduce overfitting. The use of the default parameters of ‘Predict’ software is rec-

ommended (Maier and Dandy 1999). The software employs hyperbolic tangent transfer 

function in the hidden layer. It employs sigmoid and softmax transfer functions in the output 

layer to address prediction and classification problems, respectively. The default parameters 

and mathematical explanation of the functions are beyond the scope of this communication 

but  they are described elsewhere (NeuralWare 2003).  

In the present study, classification (supervised networks) of test mixtures of key odorants 

was carried out. The input (independent variable) was the electrode signals, and the corre-

lated output (dependent variable) was the class of test mixture. One column was utilized for 

classification during data arrangement in Excel worksheet. It contained the class of the test 

mixture, e.g. test mixtures of key odorants containing ammonium at pH 6 were called class 

1, test mixtures of key odorants containing p-cresol at pH 6 were called class 2, etc. This 

method is called one-of-N encoding (NeuralWare 2003). ‘Predict’ software is able to distin-

guish between the text that presents classes in the classification problems, i.e. class 1, class 

2, etc., and to identify the output nodes according to number of classes that were included in 

the classification model.  

The classification rate for each test mixture of key odorants and the average classification 

rate (ACR) were found. The average classification rate is the average of classification rates 

of all classes. The values of the classification rate and the ACR are shown directly in the 

software, and there is no need for any calculations. 

In each case of classification, the data were divided into train, test and validation sets. There 

is little agreement among researchers about the number of samples in training set for BPNN 

analysis. Basheer and Hajmeer (2000) concluded that there are no mathematical rules for 

solving this problem. However, Daspagne and Massart (1998) suggested that the number of 

samples in the training set should be at least twice the total number of weights in the BPNN 

topography. The latter recommendation was followed in this study.  
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Each measurement in triplicates was treated as one sample. This triplicate was used either in 

train, in test or in validation set. Data were centred and scaled before classification, so each 

variable contributes equally in the analysis (Wold et al. 2001).  

A higher ACR and a lower relative entropy are the most important factors for classification 

problems using ‘Predict’ software (Copper 2004). The relative entropy is an internal meas-

urement in the ‘Predict’ classification model. It measures the shared information between 

probability distributions. The higher this value is, the more similar the probability distribu-

tions are. 

All electrodes were examined for their individual contribution to classification of test mix-

tures of key odorants. The goal was to achieve the highest ACR and the lowest relative en-

tropy with the minimum number of electrodes for further classification processes. Initially 

all (14) electrodes were investigated for classification, and ACR and relative entropy were 

determined. By statistical analysis of the outputs of many combinations of a decreased 

number of electrodes it was observed that eight electrodes were sufficient for classifying all 

test mixtures of key odorants without influencing negatively ACR and relative entropy. The 

total number of electrodes in the ET was reduced without any loss of analytical information. 

This was done before in many applications of ET, e.g. Auger et al. (2005) and Soderstrom et 

al. (2005). 

RESULTS AND DISCUSSION 

Classification of test mixtures of key odorants at pH 6 

Standard deviation of triplicate measurements in the test mixtures of key odorants contain-

ing ammonium was between 0 - 11 mV and 0 - 6.6 mV when electrodes no. 1-14 and no. 1, 

2, 5, 6, 7, 8, 9, 11 were used, respectively. The relative standard deviation (RSD = (standard 

deviation / mean) × 100), was between 0 - 4.8% and 0 - 3.4% when electrodes no. 1-14 and 

no. 1, 2, 5, 6, 7, 8, 9, 11 were used, respectively. For the test mixtures of key odorants con-

taining p-cresolate, standard deviation was between 0 - 17.3 mV and 0.1 - 6.8 mV when 

electrodes no. 1-14 and no. 1, 2, 5, 6, 7, 8, 9, 11 were used, respectively. The RSD was be-

tween 0 - 15.5% and 0 - 3.5% when electrodes no. 1-14 and no. 1, 2, 5, 6, 7, 8, 9, 11 were 

used, respectively. 

The data of each test mixture of key odorants were split into train, test and validation sets. 

The number of different samples was 30, 10 and 10 (i.e. 90, 30 and 30 including triplicates), 

respectively for each test mixture of key odorants. The BPNN used 8, 4, 2. Electrodes no. 1, 
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2, 5, 6, 7, 8, 9, 11 were sufficient. The classification rate for the validation set of the test 

mixtures of key odorants containing ammonium and test mixtures of key odorants contain-

ing p-cresolate was 80% and 97%, respectively. The ACR was 88%.  

Classification of test mixtures of key odorants at pH 8 

Standard deviation of triplicate measurements in the test mixtures of key odorants contain-

ing ammonium was between 0 - 2.6 mV and 0 - 1.6 mV when electrodes no. 1-14 and no. 1, 

2, 5, 6, 7, 8, 9, 11 were used, respectively. The RSD was between 0 - 8.4% and 0 - 0.7% 

when electrodes no. 1-14 and no. 1, 2, 5, 6, 7, 8, 9, 11 were used, respectively. For the test 

mixtures of key odorants containing p-cresolate, standard deviation was between 0 - 2.1 mV 

and 0 - 1.6 mV when electrodes no. 1-14 and no. 1, 2, 5, 6, 7, 8, 9, 11 were used, respec-

tively. The RSD was between 0 - 0.4% when electrodes no. 1, 2, 5, 6, 7, 8, 9, 11 were used. 

The RSD of glass electrodes was high when electrodes no. 1-14  were used, since the poten-

tial readings and standard deviations of triplicate measurements were very small, e.g. 0, -0.2 

mV. When the glass electrodes were omitted from the array, the RSD was between 0 - 

0.9%. 

It is noticed that the standard deviation of triplicate measurements in the mixture of key 

odorants in phosphate buffer at pH 8 was lower than the standard deviation of triplicate 

measurements in deionised water at pH 6, i.e. reproducibility is higher. This is because the 

buffered mixture contains higher and stabilized concentrations of ions. 

The data of each test mixture of key odorants were split into train, test and validation sets. 

The number of different samples was 30, 10 and 10 (i.e. 90, 30 and 30 including triplicates), 

respectively for each test mixture of key odorants. The BPNN used 8, 0, 2. Electrodes no. 1, 

2, 5, 6, 7, 8, 9, 11 were sufficient. The classification rate for the validation set of both test 

mixtures was 100%, and consequently the ACR was 100%. 

Classification of test mixtures of key odorants containing ammonium 

at pH 6 and pH 8 

The data were split into train, test and validation sets as in the previous experiment. The 

BPNN used 8, 0, 2 nodes. Electrodes no. 1, 2, 5, 6, 7, 8, 9, 11 were sufficient. The classifi-

cation rate for the validation set of both test mixtures was 100%, and consequently the ACR 

was 100%. 
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Classification of test mixtures of key odorants containing p-cresol at 

pH 6 and pH 8 

The data were split into train, test and validation sets as in the previous experiment. The 

BPNN used 8, 0, 2 nodes. Electrodes no. 1, 2, 5, 6, 7, 8, 9, 11 were sufficient. The classifi-

cation rate for the validation set of both test mixtures was 100%, and consequently the ACR 

was 100%. 

Table 4 shows the classification rates and ACR for the validation sets of the different test 

mixtures of key odorants. ET signals respond mainly to ions in the test mixtures 

(Soderstrom et al. 2005). The percentage of ionised n-butyric acid, iso-valeric acid, phenol, 

p-cresol, skatole and ammonium at pH 6 is: 94%, 94%, 0.01%, 0.005%, 0% and 100%, re-

spectively. The percentage of ionised n-butyric acid, iso-valeric acid, phenol, p-cresol, ska-

tole and ammonium at pH 8 is: 100%, 100%, 1%, 0.5%, 0% and 95%, respectively. The re-

sults in Table 4 indicate that ET has a promising potential as a sensor for odorants. ET sig-

nals contained the fingerprints for each test mixtures of key odorants, which explains the 

successful classification. 

Classification of test mixtures of key odorants comprising maximum 

number of combinations of a variety of chemical groups at pH 6 

Standard deviation of triplicate measurements in the test mixtures of key odorants shown in 

Table 3 was between 0 - 3.3 mV and 0.1 - 3.0 mV when electrodes no. 1-14 and no. 1, 2, 5, 

6, 7, 8, 9, 11 were used, respectively. The RSD was between 0 - 2.3% and 0 - 1.2% when 

electrodes no. 1-14 and no. 1, 2, 5, 6, 7, 8, 9, 11 were used, respectively. Standard deviation 

is lower, i.e. reproducibility is better in comparison to the previous four experiments that 

were carried out in deionised water. This is because the complexity of the test mixtures, i.e. 

the number of key odorants, was reduced in the test mixtures of key odorants in this experi-

ment. 

The total number of samples (comprising triplicates) was 90, which is equivalent to 270 

measurements, i.e. 6 test mixtures × 15 samples × 3 (triplicates). The data were split into 

train, test and validation sets. The number of different samples was 42, 18 and 30 (i.e. 126, 

54 and 90 including triplicates), respectively. Train, test and validation samples within each 

class of test mixtures of key odorants were considered. The number of different samples was 

7, 3 and 5 (i.e. 21, 9 and 15 including triplicates), respectively. BPNN used 8, 4, 6 nodes. 

Electrodes no. 1, 2, 5, 6, 7, 8, 9, 11 were sufficient. The classification rates are shown in 
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Figure 1.Two test mixtures of key odorants having classification rate of 100%, contained 

VFAs and phenols, or phenols and ammonium, i.e. A and F, respectively. The test mixtures 

of key odorants that contained VFAs and ammonium, i.e. C, had the lowest classification 

rate (67%). The ACR for all test mixtures of key odorants was 81%. Most of the test mix-

tures of key odorants were misclassified as test mixtures C. However the objective of BPNN 

classification was to get the highest classification rate with lowest entropy. In the case of 

misclassifications, the test mixtures of key odorants were misclassified to only one different 

test mixture of key odorants, e.g. C was misclassified as F, and D was misclassified as E. 

This indicates that the classification model enables us to predict the class of the test mix-

tures of key odorants with an acceptable inaccuracy, e.g. C is only classified as C or F, and 

D is only classified as D or E. 

When we tested numbers of electrodes that were less than the sufficient 8 electrodes used 

for classification, ACR decreased in comparison with the full array (14 electrodes) , e.g. 

when electrodes no. 2, 5, 6, 7, 8, 9 were used, the ACR decreased from 81% to 70%.  

If pH changed when the test mixtures of key odorants were diluted in deionised water, ad-

justment of pH to 6 was carried out with NaOH or HCl. After adjustment, pH stayed con-

stant throughout the measurement period. This is expected, since the VFAs in the test mix-

tures have buffer capacity. 

BPNN classification models were superior to linear classification methods, e.g. Partial Least 

Square – Discriminant Analysis (PLS-DA) (Legin et al. 2004b).This was explained by the 

non-linear response of electrodes (Vlasov et al. 2005), which results from interferences be-

tween ions in the test mixtures (Legin et al. 2004a). However, PLS-DA showed a complete 

agreement with BPNN in some cases. PLS-DA was carried out for classification of the last 

three test mixtures of key odorants shown in Table 4. In these cases, the two test mixtures 

were easily separated in the PLS score plots, as shown in Figure 2 to Figure 4. Electrodes 

no. 1, 2, 5, 6, 7, 8, 9, 11 were sufficient. 

Eight electrodes were sufficient for classification of all test mixtures of key odorants. Mod-

els using these eight electrodes resulted in the highest ACR and lowest entropy in compari-

son to any other number of electrodes. Also, standard deviation and RSD of triplicate meas-

urements, i.e. reproducibility, improved when the number of electrodes was decreased 

(Table 5). 

The sufficient number of electrodes for classification was determined from ACR and rela-

tive entropy in this work. For comparison, in calibration experiments (Abu-Khalaf and 
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Iversen 2006) the determination of the sufficient number of electrodes was based on many 

factors related to calibration curves, i.e. high correlation, reasonable slope, low root mean 

square error of prediction (RMSEP) and high ratio of standard error of performance to stan-

dard deviation (RPD). Therefore, the determination of sufficient number of electrodes in the 

classification process is much easier than in the calibration process. 

Comparing the standard deviation and RSD of the sufficient number of electrodes used for 

calibration (Abu-Khalaf and Iversen 2006) and classification (this communication), it is ob-

vious that the sufficient number of electrodes in the ET improved the reproducibility in 

comparison with the ET comprising 14 electrodes (Table 5). 

In this and in an earlier communication (Abu-Khalaf and Iversen 2006) we have described 

the classification and calibration, respectively, of the ET. We have used test mixtures for 

this purpose, in order to simplify calibration and classification, respectively of up to five key 

odorants in a wide range of concentrations. Nine electrodes in total (no. 1, 2, 4, 5, 6, 7, 8, 9, 

11) were sufficient for identification, quantification (Abu-Khalaf and Iversen 2006) and 

classification of all test mixtures of key odorants (this communication). 

Next step of the application of the ET is to add these key odorant to liquid samples from the 

bioscrubber in order to measure recoveries. However, the liquid from the bioscrubber con-

tains many and at present unknown compounds, which most likely will destroy the electrode 

membranes irreversibly. We want to avoid this fouling by separation of the bioscurbber liq-

uid from the ET by introducing a membrane that will allow passage of key odorants only, 

but withhold fouling components. At present we are working on development of a mem-

brane material for this purpose, a prerequisite for application of the ET as an on-line control 

sensor in bioscrubbers. 

CONCLUSION 

A calibrated ET, comprising 8 PVC plasticized cross-sensitive potentiometric electrodes, 

has successfully classified different test mixtures of key odorants. The ET was able to dis-

tinguish between two test mixtures of key odorants at the same pH with classification rates 

in the range of 88 - 100%. Classification between the same test mixtures of key odorants at 

different pH was even higher, 100%. Also, ET classified different test mixtures of key odor-

ants comprising a variety of the chemical groups at pH 6. As expected the reproducibility of 

electrodes was better in this case, where the complexity of the mixture was decreased.  
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The results presented in this study are promising. The ability of ET to classify different test 

mixtures of key odorants with a high performance, makes ET an obvious candidate as an 

on-line sensor for characterization of odorants in livestock buildings. 

ACKNOWLEDGMENTS 

We acknowledge Erling Lund Knudsen for his help in the laboratory. We acknowledge the 

Danish Research Agency and the Danish Ministry of Food, Agriculture and Fisheries for 

their financial support under the research programme ‘Sustainable Technology in Agricul-

ture’. We also acknowledge Dmitriy Kirsanov for his help.  

 



 12 

 Table 1: Concentration of key odorants in air and water 

Chemical 

group 

Odorant Henry's constant 

(H) 

 

Dimensionless  

air-water partition 

 coefficient  

Minimum key odorant 

concentration in air b 

 

Maximum key odorant 

concentration in air b 

 

Minimum equivalent  

equilibrium key odorant 

 concentration in water  c, d 

Maximum equivalent  

equilibrium  key odorant  

concentration in  water c, d 

  atm. l. mol-1 (KAW) a mg/m3 mg/m3 mg/m3 M mg/m3 M 

VFA e n-butyric acid 5.35 × 10-4 2.19 × 10-5 0.001 0.7 46 5.2 × 10-7 32 × 103 3.6 × 10-4 

 iso-valeric acid 8.33 × 10-4 3.40 × 10-5 0.002 0.21 59 5.8 × 10-7 62 × 102 6.0 × 10-5 

Phenol phenol  3.33 × 10-4 1.36 × 10-5 0.001 0.0078 73 7.8 × 10-7 57 × 101 6.1 × 10-6 

 p-cresol 1 × 10-3 4.09 × 10-5 0.002 0.041 49 4.5 × 10-7 10 × 102 9.3 × 10-6 

Indole skatole 2.13 × 10-3 8.70 × 10-5 0.00049 0.003 5.6 4.3 × 10-8 34 2.6 × 10-7 

Ammonia  ammonia 1.61 × 10-2 6.54 × 10-4 0.01 18 15 8.9 × 10-7 27 × 103 1.6 × 10-3 

a KAW  = H / RT, where: R: gas constant = 0.0821 atm. l. / (mol. K), T: degree Kelvin  

KAW
  = H (atm. l. / mol) / 24.47 

b According to O’Neil and Philip (1992) and Schiffman et al. (2001)  

c Equivalent equilibrium concentrations in water calculated using KAW (Datta and Allen 2005): 

KAW = Concentration in air (Ca) / Concentration in water (Cw) � Cw = (24.47 × Ca) / H (atm. l. /mol) 

d M (mole/l.) = 10-6  × concentration (mg/m3) / molecular mass (g/mole)  

e VFA: volatile fatty acids  
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Table 2. Test mixtures of key odorants in four groups of experiments 

Test mixtures of  

key odorants 

Odorants present in test  

mixture 

pH Interval of 

concentrations (M) 

Number of key odorants 

in test mixtures 

Number of  

measurements 

containing ammonium n-butyrate 6 10-7 - 10-3 5 150 (50 in triplicates) 

 iso-valerate  10-7 - 10-4   

 skatole  10-8 - 10-6   

 phenolate  10-7 - 10-5   

 ammonium  10-7 - 10-3   

containing p-cresolate n-butyrate 6 10-7 - 10-3 5 150 (50 in triplicates) 

 iso-valerate  10-7 - 10-4   

 skatole  10-8 - 10-6   

 phenolate  10-7 - 10-5   

 p-cresolate  10-7 - 10-5   

containing ammonium same as above 8 same as above 5 150 (50 in triplicates) 

containing p-cresolate same as above 8 same as above 5 150 (50 in triplicates) 
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Table 3. Test mixtures of key odorants comprising a variety of chemical groups of selected key odorants at pH 6  

Arbitrary name of test  

mixtures of key odorants 

Groups of key odorants 

 in test mixtures 

pH Key odorants 

in test mixtures 

Interval of 

concentrations (M) 

Numbers of key odorants 

 in test mixtures 

Number of  

measurements 

A VFAs + phenols 6 n-butyric acid 10-6 - 5 × 10-4 4 45 (15 in triplicates) 

   iso-valeric acid 5 × 10-7 - 5 × 10-5   

   phenol 5 × 10-7 - 10-5   

   p-cresol 5 × 10-7 - 10-5   

B VFAs + skatole 6 n-butyric acid 10-6 - 5 × 10-4 3 45 (15 in triplicates) 

   iso-valeric acid 5 × 10-7 - 5 × 10-5   

   skatole 3 × 10-8 - 5 × 10-7   

C VFAs + ammonium 6 n-butyric acid 10-6 - 5 × 10-4 3 45 (15 in triplicates) 

   iso-valeric acid 5 × 10-7 - 5 × 10-5   

   ammonium 10-6 - 5 × 10-4   

D phenols + skatole 6 phenol 5 × 10-7 - 10-5 3 45 (15 in triplicates) 

   p-cresol 5 × 10-7 - 10-5   

   skatole 3 × 10-8 - 5 × 10-7   

E skatole + ammonium 6 skatole 3 × 10-8 - 5 × 10-7 2 45 (15 in triplicates) 

   ammonium 10-6 - 5 × 10-4   

F phenols + ammonium 6 phenol 5 × 10-7 - 10-5 3 45 (15 in triplicates) 

   p-cresol 5 × 10-7 - 10-5   

   ammonium 10-6 - 5 × 10-4   
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Table 4. Classification rates and average classification rate (ACR) for validation sets of test mixtures of key odorants  

Test mixtures of key odorants   Containing ammonium Containing p-cresolate Containing ammonium Containing p-cresolate 

 pH 6 6 8 8 

      

Containing ammonium 6 80% 20%   

Containing p-cresolate  6 3% 97%   

ACR  88%   

      

Containing ammonium 8   100% 0% 

Containing p-cresolate 8   0% 100% 

ACR    100% 

      

Containing ammonium 6 100%  0%  

Containing ammonium 8 0%  100%  

ACR   100%   

      

Containing p-cresolate 6  100%  0% 

Containing p-cresolate 8  0%  100% 

ACR    100%  
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Table 5. Standard deviation (StDev) and relative standard deviation (RSD) of triplicate measurements 

with different number of electrodes used for classification and calibration  

pH Test mixture of key odorants Electrode no.  StDev h 

(mV) 

RSD i 

 (%) 

6 Containing ammonium 1-14 0 - 11 0 - 4.8 

  1, 2, 5, 6, 7, 8, 9, 11 0 - 6.6  0 - 3.4 

  2, 5, 6, 7, 8, 9 0 - 5.6  0 - 3.4* 

6 Containing p-cresolate 1-14 0 - 17.3 0 - 15.5 

  1, 2, 5, 6, 7, 8, 9, 11 0.1 - 6.8 0 - 3.5 

  1, 2, 4, 5, 8 0 - 6.8 0 - 3.5* 

8 Containing ammonium 1-14 0 - 2.6  0 - 8.4 

  1, 2, 5, 6, 7, 8, 9, 11 0 - 1.6 0 - 0.7 

  1, 2, 4, 5, 7, 8 0 - 1.6 0 - 0.7* 

  1, 5, 7, 8 0 - 1.6 0 - 0.7* 

8 Containing p-cresolate 1-14 0 - 2.1 high  j 

  1-11, 14 0 - 2.1 0 - 0.9 

  1, 2, 5, 6, 7, 8, 9, 11 0 - 1.6 0 - 0.4 

  2, 5, 6, 7, 8, 9 0 - 1.6 0 - 0.4* 

6 Test mixtures of key odorants comprising a variety of 

chemical groups at pH 6 

1-14 0 - 3.3 0 - 2.3 

  1, 2, 5, 6, 7, 8, 9, 11 0.1 - 3.0 0 - 1.2 

h StDev: Standard deviation of triplicate measurements 

i RSD: Relative standard deviation of triplicate measurements 

j Potential readings and standard deviation were very small, which results in high value of RSD 

* Data from Abu-Khalaf and Iversen (2006) 
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Figure 1. Classification rates for validation sets of different test mixtures of key odorants f comprising a 

variety of chemical groups at pH 6. Average classification rate (ACR) was 81% 

f A: VFAs + phenols 

 B: VFAs + skatole 

 C: VFAs + ammonium 

 D: phenols + skatole 

 E: skatole + ammonium 

 F: phenols + ammonium 
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Figure 2. PLS-1 score plot of all samples in test mixtures of key odorants containing ammonium (to right) 

and test mixtures of key odorants containing p-cresolate (to left) at pH 8. Full cross validation, PLS-DA 

was used and eight electrodes were sufficient 
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Figure 3. PLS-1 score plot of all samples in test mixtures of key odorants containing ammonium at pH 6 

(to right) and at pH 8 (to left). Full cross validation, PLS-DA was used and eight electrodes were sufficient 
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Figure 4. PLS-1 score plot of all samples in test mixtures of key odorants containing p-cresolate at pH 6 

(to right) and at pH 8 (to left). Full cross validation, PLS-DA was used and eight electrodes were sufficient 
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