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Abstract

Resistance Calculation of an Infinite Network of Resistors-
Application on Green’s Functions
By
Jihad Hasan Jabali Asad
Supervisor

Prof. Dr. Jamil Mahmoud Khalifeh

The resistance of an infinite network of identical resistors is calculated in two- and
three-dimensions, using the Lattice Green’s function (LGF). This work deals with two
cases: the perfect lattice and the perturbed lattice (i.e. a bond between two lattice points
is removed).

It is shown how to derive the basic formula which relates the resistance to the
LGF. In calculating the resistance we make use of the values of the LGF at arbitrary
sites and we use some recurrence formulae. Comparison of calculated values is carried
out with experimental results for finite square and simple cubic lattices. The asymptotic
behavior of the resistance in a square and simple cubic (SC) lattices for both the perfect
and perturbed cases is studied.

The study resulted in finding that for a perfect lattice (i.e. square or SC) the
resistance is symmetric along the low-index directions, whereas for the perturbed case
the symmetry is broken. We demonstrate that the resistance in a square lattice diverges

as the separation between the sites increases, while in the SC lattice it tends to a finite
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value. Finally, the measured bulk values are in good agreement with those calculated,
but as approaching the edge or the surface of the lattice the measured values exceed

those calculated.
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Introduction

The Lattice Green's Function (LGF) is a basic function in the study of the solid
state physics and condensed matter. It appears especially when impure solids are studied
[Morita and Horiguchi, 1972]. Green was the first physicist who established the basic
concepts of Green’s function in the potential theory, and his work was focused on
solving Laplace's and Poisson's equations with different boundary conditions. The use
of Green’s function method plays an important role in many-body problems [Fetter and
Walecka, 1971], especially in problems of solid state physics where an enormous
progress has been realized. In the mathematical problem of quantum theory which
consists of solving linear operator equations with given boundary conditions, Green's
functions constitute the natural language to study boundary conditions.

Nowadays, Green’s function is one of the most important concepts in many
branches of physics, as many quantities in solid state physics can be expressed in terms
of LGF. In the following are some examples: statistical model of ferromagnetism such
as Ising model [McCoy and Wu, 1978], Heisenberg model [Dalton and Wood, 1967],
spherical model [Lax, 1952], random walk theory [Montrol et. al, 1965], [Hughes,
1986], diffusion [Montet, 1973], band structure [Koster and Slater, 1954], and
resistance calculation for an infinite network of identical resistors [Cserti, 2000], [Cserti
et. al, 2002].

The LGF for several structure lattices has been widely studied during the second
half of the last century. The LGF for the rectangular lattice has been investigated by
[Katsura and Inawashiro, 1971], they used the Mellin-Barnes type integral. Recurrence
relation, which gives the LGF along the diagonal direction from a couple of values of
complete elliptic integrals of the first and second kinds for the rectangular and square

lattices, has been derived by [Morita, 1971b].
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The LGF for Simple Cubic (SC) lattice at the origin G(0,0,0)has been
investigated by many authors: [Joyce, 1973] expressed G(0,0,0)in terms of the
complete elliptic integrals of the first kind, [Horiguchi, 1971] expressed G(1,0,0)as a

sum of simple integrals of the complete elliptic integrals of the first kind and evaluated
it numerically, [Katsura et al., 1971] investigated the LGF for the SC lattice using the
Mellin-Barnes type integral. Recently, [Glasser and Boersma, 2000] showed that

G(I,m,n)can be expressed rationally in terms 0fG(0,0,0).

The first attempts to study the LGF for the Body Centered Cubic (BCC) lattice
have been carried out by [Maradudin et al., 1960]. They showed that the LGF for the

BCC lattice at the origin G(0,0,0)can be expressed as a product of complete elliptic

integrals of the first kind. One can find other useful investigations for the LGF of the

BCC lattice in many references as [Joyce, 1971a and b and Inoue, 1975].

The LGF for the Face Centered Cubic (FCC) lattice was studied well by [Iwata, 1969],

he expressed G(0,0,0)in a compact form as a product of complete elliptic integrals of
the first kind. The LGF at any lattice site G(I,m,n)was studied by [Mano, 1974 and
Joyce, 1971c]; G(l,m,n)is expressed in terms of linear combinations of complete

elliptic integrals of the first and second kind. In their paper [Glasser and Boersma,

2000] expressed the LGF for FCC lattice in terms of the known value of G(0,0,0).

Finally, [Zeitoun, 1991] studied the LGF for the SC lattice at any arbitrary site
with the aid of the recurrence formulae and difference equations by using the Mellin-
Barnes type integrals. Also, [Sakaji, 1994, Sakaji et al., 2002, a, b, Hijjawi, 2002 and
Hijjawi and Khalifeh, 2002] studied the LGF for different dimensions where they

evaluated analytically and numerically Green's function, density of states, phase shift
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and scattering cross section for one, and two- dimensional lattices, Glasser cubic lattice

and BCC lattice.

Previous Studies

A classic problem in electric circuit theory studied by many authors over many
years is computation of the resistance between two nodes in a resistor network. Besides
being a central problem in electric circuit theory, the computation of resistances is also
relevant to a wide range of problems ranging from random walk [Doyle and Snell,
1984] and [Lovasz, 1996], theory of harmonic functions [Van der Pol, 1959] to first-
passage processes [Render, 2001] to LGF [Katsura and Horiguchi, 1971].

The connection with these problems originates from the fact that electrical
potentials on a grid are governed by the same difference equations as those occurring in
the other problems. For this reason, the resistance problem is often studied from the
point of view of solving the difference equations, which is most conveniently carried
out for infinite networks.

Kirchhoff [1847] formulated the study of electric networks more than 150 years
ago. The electric- circuit theory is discussed in detail by [Van der Pol and Bremmer,
1955] they derived the resistance between nearby points on the square lattice. Francis J.
Bartis [1966] introduced how complex systems can be treated at the elementary level
and showed how to calculate the effective resistance between adjacent nodes of a
square, triangular, honeycomb and kagome lattices of one-ohm resistors.

Venezian [1994] showed that the resistance between adjacent sites on an infinite
square grid of equal resistors can easily be found by the superposition of current
distribution; and the mathematical problem involves the solution of an infinite set of
linear, inhomogeneous difference equations which are solved by the method of

separation of variables. Numerical results for the resistances between the sites (0,0) and
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(I,m)in units of Rare presented. Atkinson and Van Steenwijk [1998] calculated the

resistance between two arbitrary sites in an infinite square lattice of identical resistors.
Their method is generalized to infinite triangular- and hexagonal- lattices in two
dimensions, and also to infinite cubic and hypercubic- lattices in three and more
dimensions.

Monwhea Jeng [1999] introduced a mapping between random walk problems and
resistor network problems, where his method was used to calculate the effective
resistance between any two sites in an infinite two-dimensional square lattice of unit
resistors and the superposition principle was used to find the effective resistances on
toroidal- and cylindrical- square- lattices.

Recently, [Cserti, 2000] introduced an alternative method based on the LGF rather

than using the superposition distribution of current, where the resistance for d-
dimensional hypercubic- rectangular- triangular- and honeycomb- lattices of resistors is
discussed in detail. Recurrence formulae for the resistance between arbitrary lattice
points of the square lattice have been given in his paper. Cserti’s method can be applied
in a straightforward manner to other types of lattice structures and can be useful
didactically for introducing many concepts used in condensed matter physics.
The resistance between arbitrary nodes of infinite networks of resistors is studied when
the network is perturbed by removing one bond from the perfect lattice [Cserti et al.,
2002], where the resistance in a perturbed lattice is expressed in terms of the resistance
in a perfect lattice.

Finally, [Wu, 2004] obtained the resistance between arbitrary two nodes in a
resistor network in terms of the eigenvalues and eigenfunctions of the Laplacian matrix

associated with the network. Explicit formulae for two point resistances are deduced in
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his paper for regular lattices in one, two, and three- dimensions under various boundary

conditions.

1.3 Thesis Plan

The plan of this thesis is as follows:
Chapter two is devoted to the general formalism, which includes the derivation of the
formulae that relate the resistance in pure- and perturbed- infinite networks of identical
resistors to the LGF of the tight-binding Hamiltonian (TBH). Chapter three is
concerned with the application of the LGF in calculating the resistance for pure- and
perturbed- square lattices, and comparing with experimental results. Chapter four
contains the application of the LGF for the pure- and perturbed SC lattices and
comparing with experimental results. In chapter five, results and discussion of this work
are presented including comparison between experimental measurements and
theoretical calculations. Finally, in chapter six a general summary is presented with a

partial list of some open problems that can be investigated in future.
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In this chapter formalism of the problem is presented as follows: the perfect case
(section 2.1), the perturbed case (section 2.2), and finally a summary follows in section

2.3.
2.1 Pure (Perfect) Lattice
Consider a d-dimensional lattice such that all the lattice points are specified by the
position vector I
r=Ia +hLa,+..+1,a,.
(2.1)

Where 1,,1,,...,1, are integers (positive, negative or zero),

and @,,d,,...,a, are independent primitive translation vectors.
When all &;’s have the same magnitude ( i.e.|§l|=|§2|=...=|éd|=a), then the d-

dimensional lattice is called a hypercube.

In the case of network of resistors we assume the hypercube to consist of identical
resistors (i.e. the same resistance R). In this section we present the resistance between
the origin and a given lattice point I of the infinite hypercube. To do this let us assume

that a current (+1)enters at the origin and a current (—1) exits at a lattice pointr, and

zero otherwise. Thus

(2.2)
0 , otherwise.

The above equation can be rewritten as

(2.3)

Also the potential at the lattice point I''to be V (F').
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According to Ohm’s and Kirchhoff’s laws we can write
L(F)R,(F") = D IV (F) =V (F'+M)].
(2.4)
Where i are vectors from site I’ to its nearest neighbors (i.e.n = £&,,i = 1,2,...,d ).

Using the so-called lattice laplacian defined on the hypercubic lattice [Cserti, 200] i.e.
Ay F(FY=D [F(F+A)— f(F)].
n

2.5)

The right hand side of Eq. (2.4) can be written as:

D IV(F+) =V () =—-A,V(F). (2.6)

So Eq. (2.4) becomes
AV (F)==1(FR(F).

2.7)

Now, using Eq. (2.3) then |(F")R,(F") can be written as
(F)R,(F) =R, (F") Orr ]
= IR, (F)[0-1];
= —IR,(F).
(2.8)

Also,A V() =V (r)-V(0). So Eq. (2.7) becomes

®
V(F)=V(0)=-IR,(F);
Or

V (0) -V (F)

R, (F) = |

(2.9)
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To find the resistance we need to solve Eq. (2.7), which is a Poisson-like equation
and it may be solved using the LGF, so one may write (comparing with Poisson’s

equation)

V(F)=RY.G,(F - ().

(2.10)
where the LGF is defined by

A Gy (F—F)==5

(2.11)
Using Eq. (2.3) and Eq. (2.10) then V (0) and V (F)can be written as
V(0) = IR[G, (0) -G, (F")].
(2.12)
and
V(r) =IR[G, (F) -G, (0)].
(2.13)

Now, using Eq. (2.9) then

R, (F)

:M = R[G, (0) - G, (F) - G, (F) + G, (0)];

R, () =2R[G,(0) -G, ()].
(2.14)
The last expression is our basic result for the resistance. Once we know the LGF it
is easy to obtain the resistance R, (T) for a perfect lattice structure.
To find the LGF defined in Eq. (2.11), we take the periodic boundary conditions at the
edges of the hypercube, and to do this consider a hypercube with L lattice points along

each side; then the number of sites in the d-dimensional hypercube is L* .
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Substituting the Fourier transform

G, (F) :Lid > G, (K)exp(iKr).

KeBz
(2.15)

of the LGF into Eq. (2.11). Thus

2, Aoy S0, (R)exp IR (P~} =5 2o ()X [expliR(F + -1} —expliK(F = F)}]=-5
1 v T
7 2 2.Gu (K)lexp(iKm) ~1]=~1;
KeBZ i

> .G (K)lexp(iKm) ~1]= - 3 1;

KeBz i KeBZ

G, (K)> [exp(iKii) —1]=-1;

> -1
G, (K)= — ;
(K > [exp(iKii) —1]
G, (K)=—; 1 ;
2> (1-CosKa,)
_ 1
G K = .
o(K) ER)
(2.16)
where

E(K) =2i(1—COSK§i).

i=1
(2.17)
and the wave vector defined in Eq. (2.16) is limited to the first Brillouin Zone and is

given by
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— — — m, -
K=mT1b1+mT2b2+...+T"bd (2.18)
where
L is assumed to be even,
and
m;,'s are integers such that
_TLSmi s% for i =12,...,d (2.19)

Bj are the reciprocal lattice vectors defined by

ab, =276, i,j=12,...d.

1

Substituting Eq. (2.16) into Eq. (2.15), the LGF takes the form

o _ 1§ exp(iKF)
G, (M =13 ,z;z—E(K)

(2.20)

Taking the limit as L——o0, the summation over K can be changed into integration

[Ashcroft and Mermin, 1988], i.e.

4z

KeBz OKEBZ (27[)d ‘
(2.21)
where vV, = a’ is the volume of the unit cell of the d-dimensional hypercube.

Using Eq. (2.21), then Eq. (2.20) becomes

G,(F)=V

_[ dK exp(iKr)
* ety 2 E(K)

(2.22)

To find the resistance defined by Eq. (2.14)
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dK 1
GO(O)_VORJBZQTYI%'
(2.23)
and
o d?K exp(iKF)
G"(r)_v"KJBZ(z;z)" E(K)
(2.24)

Thus Eq. (2.14) becomes

~ dK 1—exp(iKF)
Ro(r)=2RvoKJ.BZ(2ﬂ)d £R)

(2.25)
The last formula can be simplified if the lattice point is specified by Eq. (2.1) and
by using Eq. (2.17). Thus

dx, ded 1—exp(l,x, +1,X, +...+1,%,)
2z 2r

d Zd: (1-Cosx;)

Ry(.1yl) =R |

(2.26)

Finally, the LGF for a d-dimensional hypercube can be written as [Economou, 1983]

(.l l,) = .’f%m."fdxd exp(il, X, +il,x, +...+il;Xy)
e W Lo 2Zd:(1—Cosx) |
i=1 I

(2.27)

2.2 Perturbed Lattice (a bond is removed)

Consider again a d-dimensional infinite lattice made up of identical resistors, and

as in section 2.1 we assume that all the lattice points are specified by Eq. (2.1). Before
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starting the formalism of the perturbed lattice, let us review the perfect case presented in
section 2.1 using Dirac notation.

As in section 2.1 let the potential at site I, be V(F;) and the current entering at origin to
be(+1), and the current exiting at a lattice point T;to be(—I). One can form two state

vectors, V and | such that

Vv =Z|i>Vi

(2.28)
=2l

(2.29)
where

Vi =V(F)
(2.30)
and

L =1(r).
(2.31)

We assume that (i|k) = & and Z| iXi|=1.(i.e. |i) forms a complete orthonormal set).

Using Eq. (2.28) and Eq. (2.29), then Eq. (2.2) can be written as

Z(Zé‘ij _Aij)<”v = R<i|l (2.32)

where z is the number of neighbors of each lattice site (i.e. z = 2d for a d- dimensional
hypercube lattice).
and

(1, F,F are nearest neighbors
Ay =3 (2.33)
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| zero, otherwise

Multiplying both sides of Eq. (2.32) by |I> and summing over i, we obtain

LV =-RI (2.34)

0

where L, is the so-called lattice laplacian [Cserti et. Al, 2002]
L, =D |iXA; — 28| (2.35)
ij

The LGF of the operator L, is also defined by [Economou, 1983]

LG, =-1 (2.36)
The solution of Eq. (2.34) is simply

V =-RL I (2.37)
and from Eq. (2.36)
L, =-G, . Thus Eq. (2.37) becomes

V =-RLI =RG,I.
(2.38)

To measure the resistance between any two arbitrary sites we assume that a current + |

entersat I, and —1 exits at Fj , while the current at all other sites is zero, so
Iy =1(6n —6) for all m.
(2.39)

Inserting the above relation into Eq. (2.38), one gets

V, =(klV =R(k|G,1I ;
=Rzm:<k|Go|m>lm;

= RI[Go(kai)_Go(k» J)]

(2.40)
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Finally, the resistance between sites F; and f; can be written as

R,(,]))= ! I L and using Eq. (2.40), one gets

R, (i, ) = 2R[G, (i,i) = G, (i, )]
(2.41)
Now, let us introduce the formalism of the perturbed lattice (i.e. a bond between the
sites F,, and T, is removed). Again we consider here a d- dimensional infinite lattice
made up of identical resistors.
At site T, the current contribution 51, due to the bond (i,, j,)can be written as
SR =58 (V, =V, )+ (V; =V, );
:<i|i0>(<i0|_<j0|)v +<i| j0>(<j0|—<i0|)V )
:<i|(|i0>_| j0>)(<io |—<j0|)V )
o,R= <i |LlV .
(2.42)
where the operator L, is of a so-called “dyadic” form
Ly = (o) | o (i [ = (i - (2.43)
and
(n|m) =&, has been used.
Now removing the bond (i, j,) from the perfect lattice, then the current |, at site T; is
given by
(-L,V); =R, =R, (2.44)
Thus, Ohm’s and Kirchhoff’s laws for the perturbed lattice can be written by inserting

Eq. (2.42) into Eq. (2.44)
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LV =-RI. (2.45)
where L=1L,+L,
Note that the operator Lis now a sum of L associated with the perfect lattice and a
perturbation given by L, [Kirkpatrick, 1973].
The LGF for the operator L, is given by [Economou, 1983]
LG =-1.
(2.46)
To measure the resistance between sites F, and F;we assume that the current
distribution is given by Eq. (2.39).
Using Eq. (2.44) and Eq. (2.46), one can write
V=-RL'I;

=RGI . (2.47)

So
V, =(k[V =R(k[GI =R (k|G|m)I .

(2.48)

Substituting Eq. (2.39) into the last expression one gets
V, = IR(k|G|m)(S,, =5,
V, = IR[G(k,i)-G(k, })].

(2.49)

Thus, the resistance between sites F; and F; can be written as

.. Vi_ j
R, }) :f (2.50)

From Eq. (2.49)
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R@, J) = RIG(1,) -G, ) +G(], ) -G(J,D]
(2.51)
Note that G(i,i) # G( ], ), because the translation symmetry is broken in the perturbed
lattice. However, as we shall see G(i, j) = G(j,i).
Now, our problem of finding the resistance reduces to the calculation of the LGF for the
perturbed lattice.
Using Eq. (2.35) and Eq. (2.46), one can write

LG=-1= (L, +L)G=-1.

(2.52)

L, =—-G'. Thus the above relation becomes

(-G +L,)G =-1.

(2.53)

Multiplying the last relation from left by G,, one gets
-G+G,L,G=-G,.

(2.54)

Finally,
G=G,+G,LG.

(2.55)

Equation (2.55) is called Dyson’s equation, which is an equation for G in terms of
G, (which is assumed to be known), and the perturbation L,. Its solution can be found
by the iteration method

G=G,+G,LG, +G, LG, LG, +... (2.56)

If L, has a special form as Eq. (2.43), then Dyson’s equation can be solved exactly.
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Sincel, = (| i0> —| Jo >)(<i0 | - < Jo |), so we may apply the identity

AT |x)y|A”

_ A 2.57
T+ (y[A) 37)

(A+|x)(yp™" = A"

The above identity is valid for arbitrary vectors |X> and | y> whose dimensions

are the same as the operator A, assuming the inverse of A i.e. A™' exists and
1+(y|A™|x) = 0.[Cserti et. al, 2002].

x)=|i,)—| i,) and(y|=(i,|—(j,|. One obtains

Using the above identity withA=L_,
for the LGF
G = _(Lo + Ll)il;

LWL, L ,
1+ (i |- (3o DL o (lis) = | Go))

= —L_lo +

_G 4 G, (liy) — | Jo (i |- (0 G, |
* =1 [Guin) — (i Ga[ o)~ (o [Goli) + (1o [Ga] 101

_ g, + Golli) | io )Gl | (3o S,
1=2[Giysiy) - Gliy, Jo)]

(2.58)

where we have used
(n|G,|m) =G, (n,m), G,(n,m) =G, (m,n)
and
G,(n,n) =G, (m,m).
Note that the denominator 1-2[G,(i,,i,)—G,(i,, ],)] never equal to zero ford)1.
Expressing G with the matrix elements of G, (i.e. taking<i|G| j> =G(i, j)), then Eq.

(2.58) becomes
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[Go(iﬂio)_Go(i’ jo)][Go(iw j)_Go(joﬂ J)] )
1_2[Go(ioﬁio)_Go(joa jo)]

G(, )= <i|G| j> =G,(, )+
(2.59)

There is an alternative way to obtain Eq. (2.59). By inserting L, given by Eq. (2.43)
into Eq. (2.56).

It is clear from the G,(i,])=G,(],i), that G(,]) 1is also symmetric,
(i.e.G(, J) =G(],1)).

The resistance between i and | can be obtained by Eq. (2.51) and Eq. (2.59)

@:G(i,meu, i) - 2G(, i)

after some lengthy but straight-forward algebra, one gets

R(I’ J) — Ro(i, J)+ [Ro(i: jo)+ Ro(j’io)_Ro(i’io)_Ro(j’ jo)]2

R A1-R,(,, J)I

(2.60)

Eq. (2.60) is our final result for the resistance between arbitrary nodes i and j of the
perturbed lattice in which the bond (i, j,) is removed.
It is easy to calculate the resistance between sites i, and j, for a d- dimensional hyper

cubic lattice. For symmetry reasons [Cserti, 2000] the resistance between i, and j, in

a perfect lattice isR_(i,, J,) =§, and then from Eq. (2.60) the resistance between the

two ends of the removed bond is R(i,, j,) = % [Cserti et.al, 2002].

2.3 Summary

It has been shown in section 2.1 that for the perfect lattice the resistance between

the origin and the node T, can be calculated using Eq. (2.15) or using the integral

defined by Eq. (2.26). From the final expression of the resistance Eq. (2.26) one can see
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that the resistance does not depend on the angles between the unit vectorsa,,a,,...,a, .

Physically, this means that the hypercube can be deformed without changing the
resistance between any two lattice points.
For the perturbed lattice, we show that the resistance between any two arbitrary

nodesf and F; can be obtained either in terms of the perfect LGF or in terms of the

perfect resistance. In the derivation of Eq. (2.60) the definition of the lattice Laplacian

L, is not used. Thus, our final result for the resistance Eq. (2.60) in the perturbed lattice

is valid for any lattice structure in which each unit cell has only one lattice site.(e.g.
square lattice, triangular lattice and simple cubic lattice).

When more than one bond is removed from the perfect lattice, our method can be
iterated and lattices with more complex defects can be studied analytically. For
example, the so-called crack-type defects arising in several fields such as: electrical and
mechanical breakdown phenomena in insulators, thin films and modern

ceramics.[Duxbury et.al, 1987 and Boksiner et.al, 1998].
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In this chapter application of chapter two for a square lattice is presented, in
section 3.1 in which we calculate the resistance of the perfect square lattice. In section
3.2 we calculate the resistance of the perturbed square lattice. Finally, in section 3.3 the

experimental results for the perfect and perturbed square lattice are presented.

3.1 Perfect (Pure) Square Lattice

The resistance in two dimensions between the origin and 7 =18, + mad, can be

obtained from Eq. (2.26), with d =2

R (I m)_R.’fdi]r-ﬂl—expi(lx+my) .
o 227 Y27 2-Cosx—Cosy ’

3 RT J- dy 1—[Cos(Ix + my) +iSin(Ix + my)]
2 —Cosx — Cosy |

3.1)

Since ISinde = 0, thus the last expression becomes

-

dy 1-Cos(Ix + my)
' 2 2—Cosx — Cosy

R, (I,m) = RT j (3.2)

Also, the energy dependent LGF of the TBH for a square lattice is given by [Economou,

1983]

dx tdy Cos(Ix+m
G, (E:l,m )_I J y ( y)
' 2m Y 2m E—CosX — Cosy

(3.3)
The last formula is a generalization of our LGF by introducing a variable

E instead of 2 in the denominator in Eq. (2.27) ford =2.



45

Note that a factor 2 appearing in the denominator of Eq. (2.27) is missing in Eq. (3.3).

This is related to the fact that in the Schrodinger equation the Laplacian is multiplied by

| . .
a factor > while in our case the Laplacian equation is solved.

To obtain the resistance between the origin and a pointf, =18, + ma,, from Eq.

(2.26) for d =2 one obtains

T s

J- ICos(Ix+my)
22— Cosx Cosy - 27 < 2—Cosx—Cosy

R,(I,m) = R{jdx j

(3.4)
Comparing the last equation with that given in Eq. (2.27). Thus
R,(I,m) =R[G,(0,0)-G,(I,m)].
(3.5)
One can calculate the resistance using Eq. (3.5). The resistance between two adjacent
sites (i.e. (1, 0)), is
R, (1,0) = R[G, (0,0) -G, (1,0)] (3.6)

G,(1,0) Can be expressed as [Hijjawi, 2002]
1
Go (1’0) = E[EGO (0,0) - 1]
Substituting the last expression into Eq. (3.5), one gets

R, (1,0) = R[G, (00)——G (00)+] CE=2

= R[G, (0,0)— G, (0,0) + %] ;

o | o

AN 3.7
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Since, R, (I,m)=R,(m,l), ie. due to the symmetry of the Ilattice, then
R,(1L,0)=R, (0,1)=%. The same result was obtained by [Cserti, 2002], [Venezian,

1994] and [Aitchison, 1964].

To calculate the resistance between the origin and the second nearest neighbors
(i.e. (1, 1)) is

R, (L) = R[G,(0,0) -G, (1,])].
(3.8)

G, (1,1) can be expressed in terms of G, (0,0) and G’ (0,0) as [Hijjawi, 2002]

G, (LD = (g -1)G,(0,0) - %(4 -t )Go, 0,0);
6,00 =2 K. (3.9)
and
' - E(f) 1 2
G, (0,0)= 7zt(t—2)_E K(?). (3.10)
Where

2 2 o . . .
K(?) and E(?) are the elliptic integrals of the first kind and second kind respectively,

and
t =2, is the energy.
Substituting the last two expressions into Eq. (3.8), one obtains

R(L=2R
T

(3.11)

Again our result is the same as others [Cserti, 2000] and [Venezain, 1994].
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Using the previous method one can calculate R, (2,0),R,(2,1),R,(3,0) and so on.

Or one can calculate R (lI,m) using some recurrence formulae based on those derived

for the LGF by [Morita, 1975], and those formulae are

2
G,EmiLmi=—" & _pe,Emm- A" he, E:m-Lm-1) (.12
2m+1 2y 2m+1
G, (Esm +1,m) = 2o (B M) = 2/G, (E:m.m =) (3.13)
2y
6. (E:m+ 1.0y = 2ECS(EsmO) =1, (Eim - 10) - 2,6, (Esm)) 1
y
G, (E:m+1, p) = 2EC(EsM P)=7G, (Bsm =1, p) =56, (Esm, p+ 1) =76, (Em, p— 1
y
for O( p{(m (3.15)

where y =land E=2.

Substituting the last four equations into Eq. (3.5), one gets the following
recurrence formulae for the resistance

R (m+L,m+1)=—"_R (m,m)—2M-!
2m+1 2m+1

R,(m-1,m-1)
(3.16)

R,(m+1,m)=2R (m,m)—-R, (m,m-1)

(3.17)

R, (M+1,0) = 4R_(m,0)— R, (m—1,0)— 2R_(m,1)

(3.18)

Ro(m+1’ p):4Ro(ma p)_Ro(m_la p)_Ro(m, p+1)_Ro(m’ p_l) (319)

for O( p{(m.
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Using the last four recurrence formulas and the values of R (1,0)and R (L1) with
the trivial one R (0,0) =0 , we can calculate easily the resistance exactly between the

origin and any other site. As an examples

1-Take m=1 and use Eq. (3.16). Thus

R, (2.2) = % R, (1)~ % R, (0,0)
:iR—OziR =(0.848826R..
3 3

2-Take m=1 and use Eq. (3.17). Thus
R,(2,) =2R,(1,1) - R,(1,0)

_4R —%R — 0.773239R

7
3-Take m=1 and use Eq. (3.18). Thus
R,(2,0) =4R,(1,0) - R, (0,0) - 2R, (1,1)

~ 4 R-0-*R=0.726760R.
2 T

4- Take m=2 and use Eq. (3.17). Thus
R,(3,2) =2R,(2,2)-R,(2,])

=2(0.848826)R —0.773239R
=0.924413R.

5- Take m=2 and use Eq. (3.18). Thus
R,(3,0)=4R,(2,0) - R,(1,0) - 2R, (2,])

= 4(0.726760)R — 0.5R — 2(0.773239)R
= 0.860562R.

And so on for other values, Table 1 shows the values of the resistance between the
origin and arbitrary sites for a perfect square lattice. This way we obtain same results as

others [Atkinson and Van Steenwijk, 1999].
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Table 1: Calculated and measured values of the resistance between the
origin and an arbitrary site in a perfect square lattice.

The Site —RO(I’m) —RO(I’m) The Site —RO ,m —RO(I’m)
(I,m) R R (I,m) R R
Theoretically Experimentally Theoretically Experimentally
(1,0) 0.5 0.4997 (11) 0.63662 0.6379
(2,0) 0.72676 0.7283 (2.2) 0.84883 0.8527
(3,0) 0.860563 0.8642 (3.3) 0.97615 0.9853
(4,0) 0.953987 0.9616 (4,4) 1.06710 1.086
(5,0) 1.0258 1.039 (5,5) 1.13783 1.169
(6,0) 1.08423 1.104 (6,6) 1.19571 1.244
(7,0) 1.13352 1.162 7 1.24468 1.316
(8,0) 1.17616 1.214 (8,8) 1.28712 1.388
(9,0) 1.21375 1.263 (9,9) 1.32457 1.464
(10,0 1.24735 1.313 (10,10) 1.35807 1.549
(11,0 1.27774 1.362 (11,11) 1.38839 1.648
(12,0) 1.30547 1.416 (12,12) 1.41607 1.769
(13,0) 1.33098 1.481 (13,13) 1.44153 1.931
(14,0 1.35459 1.571 (14,14) 1.464521 2177
(15,0 1.37657 1.755 (15,15) 1.486464 2.707
(-1,0) 0.5 0.5011 (1-1-) 0.63662 0.6376
(-2,0) 0.72676 0.7287 (-2,-2) 0.84883 0.8525
(-3,0) 0.860563 0.8649 (-3-3) 0.97615 0.9860
(-4,0) 0.953987 0.9622 (-4,-4) 1.06710 1.085
(-5,0) 1.0258 1.039 (-5,-5) 1.13783 1.169
(-6,0) 1.08423 1.104 (-6,-6) 1.19571 1.244
(-7,0) 1.13352 1.161 (7-,7-) 1.24468 1.316
(-8,0) 1.17616 1.214 (-8,-8) 1.28712 1.388
(-9,0) 1.21375 1.264 (-9,-9) 1.32457 1.464
(-10,0) 1.24735 1.313 (-10,-10) 1.35807 1.549
(-11,0) 1.27774 1.362 (-11,-12) 1.38839 1.648
(-12,0) 1.30547 1.416 (-12,-12) 1.41607 1.769
(-13,0) 1.33098 1.481 (-13,-13) 1.44153 1.930
(-14,0) 1.35459 1.570 (-14,-14) 1.464521 2177
(-15,0) 1.37657 1.754 (-15,-15) 1.486464 2.708

The advantages of the recurrence formulae are that they provide a new, very
simple and effective tool to calculate the resistance. Others gave also the exact values of
the resistance for nearby points in a square lattice using a different approach [Van der

Pol et.al, 1959].



50

It is important to study the asymptotic behavior of the resistance for large values
of | or/andm . To do this we derive first the asymptotic behavior of the LGF for square
lattice, [see appendix AJ;

where the final result is obtained as:

F
6,()= G, (0) - (Lnll 1, + L8
2 a 2

(3.20)
Inserting Eq. (3.20) into the general result of the resistance given in Eq. (2.14). Thus the

asymptotic form of the resistance is
R,(I,m) :E(Ln\/l2 +m? +7/+%)
T

(3.21)

where y =0.5772 is the Euler-Mascheroni constant [Arfken and Weber, 1995]. The
resistance is logarithmically divergent for large values of | andm, as shown in

Appendix B.

3.2 Perturbed square lattice (a bond is missing)

As discussed in section 2.2 one can calculate the resistance between any two
arbitrary sites using the last expression derived in Eq. (2.60). It is simple to find the

resistance between the ends of the missing bond. On the one hand it is well known
[Aitchison, 1964] that for a perfect lattice the resistance between adjacent sites 153 and

on the other hand, this resistance equals the parallel resultant of R and the resistance

we wish to find. Thus
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1
R
2

1 1
—+—.
R R

(3.22)
So, R" =R (i.e. the resistance between the ends of the removed bond) [Cserti et.al].
NOW, by nOting thatl = (ixaiy) ) J = (jxa jy)’ io = (ioxaioy) and jo = (joxa joy)a

one can write equation (2.60) as

RGix =i By —iy) = Ry (i =1 §, =) +

[Ro(jox _ix9 joy _iy)+ Ro(iox - jx’ioy - jy)_ Ro(iox _ixbioy _iy)_ Ro(jox - jx’ joy - jy)]2
4[R_ Ro(jox _iox’ joy _ioy)]

(3.23)
To study the asymptotic behavior of the resistance of the perturbed square lattice,

substituting Eq. (3.21) into Eq. (3.23). Thus, one obtains

2
{RLnJizhizihjozj%jozioz

- . ) .2 . -2 .
2 S B TR Rl e P

R _, - — RO ', H - -
(i, ) =R, (0, ) + 4R-R,(, )]

(3.24)

Now, as ior/and ] goes to infinity then the limit of the numerator goes to zero. So, one
yields that
R@, J) =R, (0, J)

(3.25)
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that is, the perturbed resistance between arbitrary sites goes to the perfect resistance as
the separation between the two sites goes to infinity. The derivation of Eq. (3.24) is
given in details in appendix C.

To calculate the resistance one has to specify the removed bond before starting the
calculations and as an example let us consider the removed bond to be i, = (0,0)and
J, =(1,0). Now it is simple to calculate the resistance between any two arbitrary sites
using Eq. (3.23), the above missing bond and the values obtained in section 3.1 for the
resistance of the perfect lattice. Our results are arranged in Table 2, and below are some

examples:

1-The resistance between the two ends of the missing bond. (i.e.i=(0,0)and
j=(10)).

R,(1,0)+R,(0,)) = R,(0,0) - R, (0,0)]*

~ [
R(1,0) = R, (1,0) + 4R -R,(1,0)]

. RiRoop
R(1,0)=3+2 2 .
4R-
[ 2]
-R.

2-The resistance between i = (0,0) and j =(2,0)

[Ro (150) + Ro (2,0) B Ro (0,0) B Ro (150)]2
4R-R,(1,0)]

R(2,0) = R, (2,0) +

2
(R +0726760R 0 1

—0.726760R +—2 s 2_ _0.990850R.

3-The resistance between i = (0,0) and j =(-1,0)

R,(1,0)+R,(1,0)— R, (0,0) - R, (2,0)]?

o [
R(-1,0) = R, (1,0) + 4R-R,(1,0)]




=0.537330R.

4-The resistance between i = (0,0)and j = (-2,0)

R(-2,0) = R, (2,0) +

=0.793810R.

[Ro (1,0) + Ro (2’0) - Ro (0,0) B Ro (350)]2

4R-R,(1,0)]

5- The resistance between i =(0,0)and | =(-3,0)

R(-3,0)=R,(3,0) +

=0.94322R.

[Ro (150) + Ro (390) - Ro (0’0) - Ro (450)]2

4R-R,(1,0)]
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Table 2: Calculated and measured values of the resistance between the sites

i=(0,0)and j=(j,,],), for a perturbed square lattice (i.e. the bond between

i, =(0,0)and j, =(1,0) is broken).

TheSite R, j) Ra, J) TheSite — R(, j) RQ, J)
1=0 1) R R 1=0 1) R R
Theoretically Experimentally Theoretically Experimentally

(1,0) 1 1.002 (0,1) 0.56602 0.5657
(2,0) 0.99085 0.9939 (0,2) 0.82960 0.8305
(3,0) 1.06142 1.067 (0,3) 0.97567 0.9793
(4,0 1.13006 1.141 (0,4) 1.07364 1.081
(5,0) 1.18929 1.205 (0,5) 1.14747 1.161
(6,0 1.24015 1.264 (0,6) 1.20696 1.227
(7,0) 1.28438 1.317 0,7) 1.25687 1.285
(8,0) 1.32339 1.366 (0,8) 1.29990 1.338
(9,0 1.35825 1.414 (0,9 1.33776 1.387
(10,0) 1.38971 1.461 (0,10 1.37155 1.437
(11,0) 1.41840 1.510 (0,11) 1..40208 1.487
(12,0) 1.44472 1.564 (0,12) 1.42992 1.541
(13,0) 1.46906 1.628 (0,13) 1.45551 1.606
(14,0) 1.49167 1.717 (0,14) 1.47919 1.696
(15,0) 1.51280 1.900 (0,15) 1.50122 1.879
(-1,0) 0.53733 0.5384 (0,-1) 0.56602 0.5674
(-2,0) 0.79381 0.7953 (0,-2) 0.82960 0.8310
(-3,0) 0.94322 0.9464 (0,-3) 0.97567 0.9802
(-4,0) 1.04566 1.052 (0,-4) 1.07364 1.082
(-5,0) 1.12329 1.135 (0,-5) 1.14747 1.161
(-6,0) 1.18580 1.203 (0,-6) 1.20696 1.227
(-7,0) 1.23811 1.263 (0,-7) 1.25687 1.285
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(-8,0) 1.28307 1.317 (0,-8) 1.29990 1.338
(-9,0) 1.32251 1.369 (0,-9) 1.33776 1.388
(-10,0) 1.35762 1.418 (0,-10) 1.37155 1.438
(-11,0) 1.38926 1.468 (0,-11) 1..40208 1.489
(-12,0) 1.41804 1.523 (0,-12) 1.42992 1.545
(-13,0) 1.44445 1.587 (0,-13) 1.45551 1.615
(-14,0) 1.46884 1.677 (0,-14) 1.47919 1.695
(-15,0) 1.49150 1.860 (0,-15) 1.50122 1.915

Now, the broken bond is shifted to be between the sites i, =(1,0)and j, =(2,0).

Thus, using the above method one calculates the resistance between the origin and any

other site. Our results are arranged in Table 3 below.

Table 3: Calculated and measured values of the resistance between the sites

i=(0,0)and j=(}],,],), for a perturbed square lattice (i.e. the bond between

i, =(,0)and j, =(2,0)is broken).

The Site RG@, 1)) RG@, J) The Site RG@, 1) R@, 1)
J:(Jxajy) R R J:(Jxajy) R R
Theoretically Experimentally Theoretically Experimentally

(1,0) 0.53733 0.5372 (0,1) 0.50406 0.5038
(2,0) 0.99085 0.9939 (0,2) 0.73819 0.7398
(3,0) 0.96340 0.9689 (0,3) 0.87733 0.881
(4,0) 1.01899 1.029 (0,4) 0.97391 0.9816
(5,0) 1.07706 1.092 (0,5) 1.04757 1.061
(6,0) 1.12880 1.151 (0,6) 1.10712 1.127
(7.,0) 1.17419 1.204 0,7) 1.15712 1.185
(8,0) 1.21426 1.255 (0,8) 1.20023 1.238
(9,0) 1.25004 1.303 (0,9 1.26257 1.288
(10,0) 1.26214 1.351 (0,10) 1.27200 1.337
(11,0) 1.31163 1.400 (0,12) 1.30257 1.387
(12,0) 1.33853 1.454 (0,12) 1.33044 1.441
(13,0) 1.36336 1.518 (0,13) 1.35606 1.506
(14,0) 1.38641 1.606 (0,14) 1.37975 1.596
(15,0) 1.40791 1.790 (0,15) 1.40180 1.779
(-1,0) 0.50432 0.5058 (0,-1) 0.50406 0.5052
(-2,0) 0.73565 0.7377 (0,-2) 0.73819 0.7402
(-3,0) 0.87257 0.8766 (0,-3) 0.87733 0.8817
(-4,0) 0.96815 0.9753 (0,-4) 0.97391 0.9822
(-5,0) 1.04155 1.054 (0,-5) 1.04757 1.061
(-6,0) 1.10118 1.120 (0,-6) 1.10712 1.127

(-7,0) 1.15141 1.178 0,-7) 1.15712 1.185



(-8,0)
(-9,0)
(-10,0)
(-11,0)
(-12,0)
(-13,0)
(-14,0)
(-15,0)

1.19482
1.23303
1.26716
1.29799
1.32722
1.35195
1.37585
1.39809

1.231
1.282
1.330
1.380
1.434
1.499
1.588
1.772

(0,-8)
0,9
(0,-10)
(0,-11)
(0,-12)
(0,-13)
(0,-14)
(0,-15)

1.20023
1.26257
1.27200
1.30257
1.33044
1.35606
1.37975
1.40180

1.238
1.288
1.337
1.387
1.441
1.506
1.595
1.779
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From the above Tables, one can see that the resistance in the perturbed case is

always larger than that in the perfect case. This is due to the positive contribution of the

second term in equation Eq. (2.60). The resistance is not symmetric (i.e.

R(l,m) # R(m,l) because the translational symmetry is broken.
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3.3 Experimental results
To study the resistance of the square lattice experimentally we constructed a finite
square network of identical resistances (R ) consisting of (30 x 30 ) resistors, each has a

value of (1kQ) and a tolerance of (1%) as shown in Fig. 1.

Fig. 1: A square mesh consisting of (30x30) identical resistors.
Using the perfect mesh shown in Fig. 1 above, we measured the resistance

between the origin and the site (I,m)along the directions [10], [01], and [11]. Our
results are arranged in Table 1 above. To measure the resistance for the perturbed case

we removed the bond between i, =(0,0) and j, = (1,0), then we measured the resistance
between the site i=(0,0)and the site j =(],,],) along the directions [10], [01], and

[11]. Our results are arranged in Table 2 above.

Now, the removed bond is shifted, i, =(1,0)and j, =(2,0), then we measured
again the resistance between the site i=(0,0)and the site j=(j,,],) along the

directions [10], [01], and [11]. Our results are arranged in Table 3 above.
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In this chapter application of chapter two for the SC lattice is presented, in section
4.1 in which we calculate the resistance of the perfect SC lattice. In section 4.2 we
calculate the resistance of the perturbed SC lattice. Finally, in section 4.3 the
experimental results for the perfect and perturbed SC lattice are presented.
4.1 Perfect SC lattice

For a perfect SC lattice, the resistance between the origin and a lattice point

r, =13, + md, + nd, can be obtained from Eq. (2.25) with d=3. Thus

i

R, (I,m,n) = RJ' Idyjdz 1 - exp(ilx — imy + inz)

(4.1)
r 2n? 2w 3—Cosx —Cosy —Cosz
RJ-%J-_ IE 1—Cos(Ix + my + nz) 42)
Y 2m 7 2r ° 27 3—Cosx—Cosy —Cosz

Similar to the case of a square lattice, the exact values of the resistance between

two adjacent lattice sites can be calculated from Eq. (4.2). Because of the symmetry one

can write
R, (1,0,0) + R, (0,1,0) + R, (0,0,1) = RI jdy dz 1 Cosx
Y2z C 2% 7”27r 3—Cosx —Cosy — Cosz
1-Cosy . 1-Cosz _R

3 Cosx —CCosy —Cosz 3 —Cosx —Cosy — Cosz

. : .. . R : :
Therefore the resistance between adjacent sites 1s§. In general for a d-dimensional

. : . . R
hypercube the resistance between adjacent sites is— .

The energy dependent LGF of the tight-binding Hamiltonian for a SC lattice is

defined as [Economou, 1983]

s

G, (E;l,m,n) = J%Id_ng Cos(Ix + my + nz)
2 2x° 2r E - Cosx—Cosy —Cosz

(4.3)
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This is a generalization of the LGF by introducing a new variable E instead of the
value 3 in the denominator in Eq. (2.27) ford = 3. The missing factor of two in the
denominator in Eq. (4.3) has been explained in section 3.1.

The resistance between the origin and a lattice sitel, =1a, + md, + na,, can be

obtained using equation (2.26) withd = 3. Thus

RO(I,m,n)zRI%Jﬂ dz 1-Cos(Ix +my +nz) (4.4)
2r° 2r° 2r 3 —Cosx — Cosy — Cosz

Compare with Eq. (4.3), for d =3

R, (I,m,n) = R[G,(3;0,0,0) - G, (3;1,m,n)] (4.5)

The resistance of an infinite SC network of identical resistors between the origin and

any lattice site (I,m,n) can be expressed as:

R, (I,m,n) p
O—:plgo +2—2+,03
R V4

0 (4.6)

where g, = G,(0,0,0) is the LGF at the origin,
and p,, p,, p;are related to I1,,r,,r; or Duffin and Shelly’s parameters A,,4,,4,

[Glasser and Boersma, 2000] and [Duffin and Shelly, 1958]) as:

py=—h==4 4.7
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Various values of r,,r,,r;,are shown [Glasser and Boersma, 2000] in Table 1, for
(I, m,n)ranging from (0,0,0) to (5,5,5). To obtain other values of r,,r,,r; one has to use

the relation [Horiguchi, 1971]

G, (+1,mn)+G,(I-1,m,n)+G,(I,m+1Ln)+G,(I,m-1,n) +
(4.8)
G,(bmn+)+G,(I,m,n-1) =-26,,0,,,0,, + 2EG, (I, m,n)
where E =3, is the energy.
In some cases one may use the recurrence formulae Eq. (4.8) two or three times to

calculate different values of r,,r,,r, for (I,m,n) beyond(5,5,5).

Table 4: Values of the resistance in a perfect infinite SC lattice for arbitrary sites.

Site —RO(I’m’n)=p1g0+ ’fz + 05
Imn o P> Ps3 R 7T°g,
000 O 0 0 0

100 0 0 1/3 0.333333
110  7/12 1/2 0 0.395079
111 9/8 -3/4 0 0.418305
200  -7/3 2 2 0.419683
210  5/8 9/4 -1/3 0.433508
211 5/3 2 0 0.441531
220 -37/36 29/6 0 0.449351
221 31116 -21/8 0 0.453144
222 38 27120 0 0.460159
300  -332 21 13 0.450371
310 115/36 85/6 -4 0.454415
311 15/4 2112 23 0.457396
320 -271/48 119/8 1/3 0.461311
321 161/36 -269/30 0 0.463146
322 -19/16 213/40 0 0.467174
330 -47/3 1046/25 0 0.468033
331 38/3 -148/5 0 0.469121
332 -26/9 1012/105 0 0.471757
333 51/16 -1587/280 0 0.475023

400 -985/9 -542/3 92 0.464885
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410 531/16 879/8 -115/3 0.466418
411 11/2 -357/5 12 0.467723
420 -2111/72 13903/300 6 0.469777
421 245/16 -1251/40 -1 0.470731
422 -32/3 1024/35 0 0.473076
430 -2593/48 28049/200 -1/3 0.473666
431 1541/36 -110851/1050 0 0.474321
432 -493/32 4617/112 0 0.476027
433 667/72 -8809/420 0 0.478288
440 -5989/36 620161/1470 0 0.477378
441 4197/32 -919353/2800 0 0.477814
442 -2927/48 31231/200 0 0.479027
443 571/32 -119271/2800 0 0.480700
444 -69/8 186003/7700 0 0.482570
500 -9275/12 -3005/2 2077/3 0.473263
510 11653/36 138331/150 -348 0.473986
511 -271/4 -5751/10 150 0.474646
520 -2881/16 15123/200 229/3 0.475807
521 949/12 -27059/350 -24 0.476341
522 -501/8 4209/28 2 0.477766
530 -3571/18 1993883/3675 -8 0.478166
531 1337/8 -297981/700 4/3 0.478565
532 -2519/36 187777/1050 0 0.479693
533 2281/48 -164399/1400 0 0.481253
540 -18439/32 28493109/19600 1/3 0.480653
541 1393/3 -286274/245 0 0.480920
542 -7745/32 1715589/2800 0 0.481798
543 5693/72 -4550057/23100 0 0.483012
544 -1123/32 560001/6160 0 0.484441
550 -196937/108 101441689/22050 0 0.483050
551 12031/8 -18569853/4900 0 0.483146
552 -1681/2 5718309/2695 0 0.483878
553 5175/16 -2504541/3080 0 0.484777
554 -24251/312 -1527851/7700 0 0.485921
5565 9459/208 -12099711/107800 0 0.487123
600 -34937/6 -313079/25 5454 0.478749
610 71939/24 160009/20 -9355/3 0.479137
633 18552/72 -747654/1155 0 0.483209
644 -388051/1872 23950043/46200 0 0.486209
655 13157/78 -5698667/13475 0 0.488325
700 -553847/12 5281913/50 44505 0.482685

The value of the LGF at the origin was first evaluated by [Watson, 1939] in his

famous paper, where he found that

G, (0,0,0) = ) (18+1242 1043 — 776)[K (k,)]? = 0.505462.
T

with  k, =(2-~/3)/3-4/2)
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and

B
K(k) = jd@ is the complete elliptic integral of the first
0

B S
Ji-k’sin’0
kind.
A similar result was obtained by [Glasser and Zucker, 1977] in terms of gamma
function.

The asymptotic behavior ( i.e. as |, or m, or n— o) of the resistance in a SC is

[see Appendix D]

M — G,(0,0,0).

4.2 The SC lattice (Perturbed case)

To calculate the resistance between the site i=(,i,i,) and the
site j = (Jy» J,>J,), one has to specify the removed (missing) bond between
Iy = (Igxsloy51e;) and jo = (Joy5 Joy» Jor) - Thus the perturbed relation obtained in section
2.2 becomes:

RO =T 0y =1y, 3 =) =Ry (G =i Jy =iy, J, =) +

1
4[R - Ro(jox - ioxa joy - ioyﬁ joz - ioz)]

{

Ro(jox _ix’joy _iya joz _iz)_Ro(iox - jxﬂioy - jy’ioz - jz)_Ro(iox _Ixﬂloy _Iyﬂloz _iz)_

Ro(jox_jx’joy_jy’joz_jz)}z' (49)

To study the asymptotic behavior of the resistance of the perturbed SC lattice,

substituting Eq. (4.5) into Eq. (4.9). Thus, one obtains
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. - R
R I, = RO l, + . . . . . . Go 0’050 -
( J) ( J) 4[1_Go(oa050)+Go(Jox _on’Joy _on’Joz _Ioz)]{ ( )

Go(jox _ix’ joy _iya joz _iz)+G(O:0,O)_Go(iox - jxﬂioy - jy’ioz - jz)_G(090’0)+
Go(iox _ix>ioy _iyﬁioz _iz)_Go(O:O>O)+Go(jox - jxa joy - jya joz - jz)}2 .

The quantity G, (Jox —loxs Joy —loys Joz —10z) = G, (1,0,0), whatever the broken bond is.

Thus, using Eq. (4.5) with R, (1,0,0) = g one gets

R(Iaj):Ro(l’J)+§{_Go(Jox_IXDJoy_Iyﬂjox_lz)_Go(lox_Jx9|oy_Jy5|oz_Jz)

3
+Go(iox _ix’ioy _iyﬂioz _iz)+Go(jox - jxﬂ joy - jy: joz - jz)}z'

Using G, (l,m,n) — 0as any of I, m, n goes to infinity the second term in the above
equation cancels out. So; R(i, j) =R, (i, J).
Thus, we conclude that for a large separation between sites the perturbed resistance

approaches the perfect one. To see this, let us consider the removed bond to be between

the site i, =(0,0,0) and the site j, = (1,0,0), we need to find the resistance between any
two sites i = (i, ,i,)and j=(}],, J,,],). To do this one should use Eq. (4.9) and the

values given in Table 4. Our results are shown in Table 5. Below we show some
examples:

1-The resistance between i = (0,0,0) and j = (1,0,0).

{Ro (1’030) + Ro (1,030) - Ro (O,an) - Ro (050,0)}2

R(1,0,0) = R,(1,0,0) + 4R -R, (1,0,0)]




1 1
~R+-R-0-0}’
{3 3 §

=0.5R.

2-The resistance between i =(0,0,0) and j =(2,0,0)

{R,(1,0,0) + R, (2,0,0) - R,(0,0,0) - R, (1,0,0)}*

R(2,0,0) = R,(2,0,0) + 4R - R, (1,0,0)]

=0.485733R.

3- The resistance between i = (0,0,0) and j =(3,0,0)

R, R -R -R,(2 ?
RG.00) = R, (3.00) + Re(L00+R, (300 R, (0.0.0) - R, 20.0)}

4R -R,(1,0,0)]

=0.500062R.

4- The resistance between i = (0,0,0) and j =(—4,0,0)

{Ro (13090) + Ro (4:0>O) B Ro (0,0,0) B Ro (53030)}2

R(-4,0,0) = R, (4,0,0) + 4R-R,(1,0,0)]

=0.5510257R.

5- The resistance between i =(0,0,0) and j =(0,—1,0)

{R,(1,0,0)+ R, (0,1,0) - R,(0,0,0) - R, (1,1,0)}*

R(0,-1,0) = R, (0,1,0) + 4[R-R,(1,0,0)]

=0.360993R.
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Table 5: Calculated and measured values of the resistance between the sites

i=(0,0,0)and j=(j,,],,J,), for a perturbed simple cubic lattice (i.e. the bond

between i, =(0,0,0)and j, =(1,0,0)is broken).

The Site R(, j) R(@, ) The Site R(, j) R(G, j)

j:(jx’jy’jz) R R j:(jx’jy’jz) R R

Theoretically Experimentally Theoretically Experimentally
(0,0,0) 0 0 (-1,0,0) 0.356208 0.3559
(1,0,0) 0.5 0.5009 (-2,0,0) 0.454031 0.4565
(2,0,0) 0.485733 0.4904 (-3,0,0) 0.4526508 0.5003
(3.0,0) 0.500062 0.5151 (-4,0,0) 0.467337 0.5699
(4,0,0) 0.510257 0.5806 (0,-1,0) 0.360993 0.3606
(0,1,0) 0.360993 0.3615 (0,-2,0) 0.457943 0.4611
(0,2,0) 0.457943 0.4612 (0,-3,0) 0.491033 0.5040
(0,3,0) 0.491033 0.5041 (0,-4,0) 0.506167 0.5735
(0,4,0) 0.506167 0.5735 (0,0,-1) 0.360993 0.3613
(0,0,1) 0.360993 0.3611 (0,0-2) 0.457943 0.4615
(0,0.2) 0.457943 0.4613 (0,0,-3) 0.491033 0.5043
(0,0,3) 0.491033 0.5042 (0,0,-4) 0.506167 0.5736
(0,0,4) 0.506167 0.5737 (-1,-1,-1) 0.454367 0.4560
(1,1,1) 0.4659804 0.4203 (-2,-2,-2) 0.50009 0.5170
(2.2.2) 0.503597 0.4780 (-3,-3:-3) 0.5158855 0.5854
(333) 0.517510166 0.5458 (-4,-4,-4) 0.5237707 0.8974
(4,4.4) 0.524705 0.8579
Now, if the removed bond is shifted and becomes between

i, =(1,0,0)and j, =(2,0,0), then the resistance between any two sites can be calculated,

using Eq. (4.9). Our results are arranged in Table 6.
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Table 6: Calculated and measured values of the resistance between the sites

i=(0,0,0)and j=(j,,],,J,), for a perturbed SC lattice (i.e. the bond between

i, =(10,0)and j, =(2,0,0)is broken).

TheSite — — R(i, J) R, J) ThesSite — — R(, j) R, j)
J:(Jxajyajz) R R Jz(Jxajy:Jz) R R
Theoretically Experimentally Theoretically Experimentally

(0,0,0) 0 0 (-1,0,0) 0.334495 0.3345
(1,0,0) 0.356208 0.3552 (-2,0,0) 0.421618 0.4247
(2,0,0) 0.485733 0.4903 (-3,0,0) 0.452650 0.4656
(3,0,0) 0.461555 0.4757 (-4,0,0) 0.467337 0.5342
(4,0,0) 0.470021 0.5389 (0,-1,0) 0.334191 0.3338
(0,1,0) 0.334191 0.3346 (0,-2,0) 0.421552 0.4247
(0,2,0) 0.421552 0.4247 (0,-3,0) 0.452738 0.4656
(0,3,0) 0.452738 0.4657 (0,-4,0) 0.467467 0.5348
(0,4,0) 0.467467 0.5347 (-1,-1,-1) 0.420168 0.4185
(1,1,2) 0.419799 0.4218 (-2,-2,-2) 0.462590 0.4795
(2,2,2) 0.460461 0.4812 (-3,-3,-3) 0.477628 0.5479
(3,3.3) 0.477922 0.5494 (-4,-4,-4) 0.485253 0.8602

(4,4,4) 0.485476 0.8616
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4.3 Experimental results
To study the resistance of the simple cubic lattice experimentally we constructed a
three dimensional SC finite network of identical resistors (R ) consisting of (8x8x8)

resistors, each has a value of (1 kQ) and tolerance (1%) as shown in  Fig. 2.

Fig. 2 A three dimensional SC mesh consisting of (8x8x8 ) identical resistors.

Using the perfect mesh shown in Fig. 2 above, we measured the
resistance between the origin and the site (I,m,n)along the directions [100],

[010], [001], and [111]. Our results are arranged in Table 7 below.
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Table 7: Calculated and measured values of the resistance between the
origin and an arbitrary site in a perfect SC lattice.

The Site R,(I,m,n) R,(I,m,n) The Site R, (I,m,n) R,(I,m,n)
(I,m,n) R R (I,m,n) R R
Theoretically Experimentally Theoretically Experimentally

(0,0,0) 0 0 (-1,0,0) 0.3333 0.3333
(1,0,0) 0.3333 0.3331 (-2,0,0) 0.419683 0.4230
(2,0,0) 0.419683 0.4227 (-3,0,0) 0.450371 0.4635
(3,0,0) 0.450371 0.4633 (-4,0,0) 0.464885 0.5321
(4,0,0) 0.464885 0.5323 (0,-1,0) 0.3333 0.3337
(0,1,0) 0.3333 0.3331 (0,-2,0) 0.419683 0.4228
(0,2,0) 0.419683 0.4228 (0,-3,0) 0.450371 0.4634
(0,3,0) 0.450371 0.4623 (0,-4,0) 0.464885 0.5322
(0,4,0) 0.464885 0.5321 (0,0,-1) 0.3333 0.3335
(0,0,1) 0.3333 0.3334 (0,0,-2) 0.419683 0.4231
(0,0,2) 0.419683 0.4230 (0,0,-3) 0.450371 0.4635
(0,0,3) 0.450371 0.4634 (0,0,-4) 0.464885 0.5324
(0,0,4) 0.464885 0.5325 (-1,-1,-1) 0.418305 0.4204
(1,1,1) 0.418305 0.4203 (-2,-2,-2) 0.460159 0.4772
(2,2,2) 0.460159 0.4774 (-3,-3,-3) 0.475023 0.5464
(3,3.3) 0.475023 0.5461 (-4,-4,-4) 0.482570 0.8583
(4,4,4) 0.482570 0.8581

Now, to measure the resistance for the perturbed case we removed the bond

between i, =(0,0,0)and j, =(1,0,0), then we measured the resistance between the site
i =(0,0,0)and the site j=(],],,],) along the directions [100], [010], [001], and

[111]. Our results are arranged in Table 5 above.

Now, the removed bond is shifted, i, =(1,0,0) and j, = (2,0,0), then we measured
again the resistance between the site i=(0,0,0) and the site j=(j,,],,],) along the

directions [100], [010], [001], and [111]. Our results are arranged in Table 6 above.
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In this chapter, the results of the resistance for two- and three- dimensional infinite
networks are given below. Section (5.1) is devoted to the two- dimensional results
whereas section (5.2) is concerned with the three- dimensional results.

5.1 Square Lattice

The results of the resistance for the two- dimensional lattice (square) are shown in

Figs. (3-12). Figs. (3-6) show the theoretical results for the resistance of the perfect and

perturbed infinite square lattices. The resistance diverges as the site(l,m) goes away

from the origin.
The figures show the resistance of an infinite square perfect lattice is symmetric

under the transformation (I, m) — (—I,—m). This is due to the inversion symmetry of the

lattice. However, the resistance of the perturbed infinite square lattice is not symmetric
due to the broken bond, except along the [01] direction since the broken bond is along
the [10] direction.

Also, one can see that the resistance in the perturbed infinite square lattice is
always larger than that in a perfect lattice. This is due to the positive contribution of the
second term in Eq. (2.60). But as the separation between the sites increases the
perturbed resistance goes to that of a perfect lattice.

Figures (3-4) show that the calculated resistance of the perfect infinite square
lattice along the [10] direction is symmetric due to inversion symmetry of the lattice and
for large values of | and m, the resistance diverges. While the calculated resistance of

the perturbed lattice (the resistor between 1= (0,0)and j=(1,0) is broken) is not

symmetric and it is always larger than that of the perfect one due to the second positive
term in Eq. (2.60).
As the broken bond is shifted to, i =(1,0)and j =(2,0), the calculated perturbed

resistance of the lattice approaches that of the perfect one more rapidly. The same thing
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can be said about the [01], [12], [21] and [11] directions, except that the calculated
perturbed resistance of the lattice is symmetric along the [01] direction, the same
behavior as the perfect resistance, because there is no broken bond along this direction,
see Figs. (5-6).

The constructed mesh gives accurately the bulk resistance shown in Figs. (7-12),
and this means that a crystal consisting of (30x30) atoms enables one to study the bulk
properties of the crystal in a good way. But, as we approach the edge then the measured
resistance exceeds the calculated one and this is due to the edge effect. Also, one can
see from the figures that the measured resistance is symmetric in the perfect mesh,
which is expected.

Fig.10 and Fig.12 show that the measured resistance along the [01] direction is
nearly symmetric within experimental error, which is expected due to the fact that there
is no broken bond along this direction, and this is in agreement with the theoretical
result. Finally, our values are in good agreement with the bulk values calculated by

Cserti’s method.
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5.2 Simple Cubic (SC) Lattice

The results of the resistance for the three- dimensional lattice (SC) are shown in
Figs. (13-26). Figures (13-17) show the theoretical results, and Figs.(18-26) show the
experimental ones.

Figure 13 shows the resistance against the site (I,m,n) along the [100] direction
for both a perfect infinite and perturbed SC (i.e. the bond between i, = (0,0,0) and
Jo = (1,0,0) is broken). It is seen from the figure that the resistance is symmetric
(i.e. R, (1,0,0) = R, (-1,0,0) ) for the perfect case due to inversion symmetry of the lattice
while for the perturbed case the symmetry is broken, hence the resistance is not
symmetric. As (I,m,n) goes away from the origin the resistance approaches its finite
value for both cases.

Figure 14 shows the resistance against the site (I,m,n) along the [010] direction
for a perfect infinite and perturbed SC (i.e. the bond between i, =(0,0,0)and
Jo = (1,0,0)is broken) lattice. The figure shows that the resistance is symmetric for the
perfect and perturbed cases, since there is no broken bond along this direction. As
(I,m,n) goes away from the origin the resistance approaches its finite value for both

cases.
In Figs. (15-17), the same behavior as in the above figures is seen except that the

broken bond is shifted (i.e. the bond between i, =(1,0,0)and j, =(2,0,0) is broken).
The resistance along [100]direction is not symmetric in the perturbed case since the

broken bond is taken to be along that direction.
From Figs. (13-17), as the broken bond is shifted from the origin along [100]
direction then the resistance of the perturbed SC approaches that of the perfect lattice.

Also, one can see that the perturbed resistance is always larger than the perfect one.
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Figure 18 shows the measured and calculated resistances of the perfect SC lattice
against the site (I,m,n) along the [100] direction. It is seen from the figure that the
measured  resistance is  symmetric =~ within  the  experimental  error
(i.e.R,(1,0,0) =R, (-1,0,0)) due to inversion symmetry of the mesh. The measured
resistance behaves the same along the directions [010], [001] and [111].

Figure 21 shows the measured and calculated resistance values of the perturbed
(i.e. the bond between i, =(0,0,0) and j, = (1,0,0)is broken) SC lattice against the site
(1,m,n) along the [100] direction. It is seen from the figure that the measured resistance
is not symmetric (i.e. R, (1,0,0) # R, (-1,0,0) ) due to the removed bond. The measured
resistance along the [010], [001] and [111] directions is symmetric within experimental
errors due to inversion symmetry of the mesh, as shown in Figs. ( 21-23).

Fig.24 shows the measured and calculated resistance of the perturbed (i.e. the
bond between i, = (1,0,0)and j, = (2,0,0) is broken) SC lattice against the site (I,m,n)
along the [100] direction. It is seen from the figure that the measured resistance is not

symmetric (i.e. R, (1,0,0) # R, (-1,0,0) ) due to the removed bond.

Figures (25-26) show the measured and calculated resistance values of the

perturbed (i.e. the bond between i, =(1,0,0)and j, =(2,0,0)is broken) SC lattice
against the site (1,m,n) along the [010] and [111] directions. It is seen from the figures

that the measured resistance is symmetric within the experimental error due to the
inversion symmetry of the mesh. From Figs. (18-26) the (8x8x8) constructed SC mesh
gives the measured bulk resistance nearly exactly as those calculated. This also shows
that one can study the bulk properties of a crystal consisting of (8x8x8) atoms
accurately. In addition, as we approach the surface of the SC mesh the measured

resistance exceeds the calculated due to surface effect.
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function of j; calculated (squares) and measured (circles) along the [111] direction.
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The ends of the removed bond are i, =(1,0,0) and j, =(2,0,0).
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In this concluding chapter the highlights of the thesis are first
summarized (Section 6.1), and then some open problems and possible

extension of this work are presented (Section 6.2).

6.1 General Summary

This work aimed at calculating the resistance between two adjacent points in an
infinite network of identical resistors (i.e. square and SC networks) theoretically and
experimentally for both the perfect and perturbed cases.

Theoretically, the resistance between adjacent points in a perfect infinite square
lattice is written in terms of the LGF at the origin and its derivatives, or by using the so-
called recurrence formulae which is simpler. The resistance in a perfect infinite SC
lattice is expressed rationally in terms of the LGF at the origin using some recurrence
formulae.

Experimentally, the resistance between any two points in a finite square and SC
networks is measured for the first time. The bulk values obtained experimentally are
very close to those obtained theoretically; while as approaching the edge or the surface
of the constructed networks the observed resistances exceed those obtained theoretically
due to the edge or the surface effect. It is shown that for large separation between the
two sites the resistance in infinite perfect and perturbed square lattice diverges while for
infinite perfect and perturbed SC lattices the resistance approaches a finite value.

The theoretical approach used in this thesis may have several advantages:

(i) It can be used for more complicated lattice structures such as body- and face-
centered cubic lattices. (ii) The results derived by this method reflect the symmetry of
the lattice structures. (iii) From the equation for the Green's function one can, in
principle, derive some of the so-called recurrence formulae for the resistances between

arbitrary grid points of an infinite lattice. (iv) Finally, our approach for networks of



88

resistors may serve as a good example for introducing the Green's function method as
well as many basic concepts such as the Brillouin zone (BZ) used in solid state physics.
We therefore feel that the Green's function method is of some physical interest.
6.2 Open Problems

There are many areas where one can extend the present work:
- One can consider the case where more complicated perturbation is introduced. To do

this, one has to write the current contribution at any site T; due to the bonds (i, j,) and
(k,l,). Write the current at the siteT;, then removing the above two bonds and writing

Ohm’s and Kirchhoff’s laws as before. Finally, we write Dyson’s equation for the new
perturbed case and then solve it.

- The problem can be extended to finite lattice and semi infinite lattice
structures.

- The Green's function method can be applied to complex systems such as
inductivity, capacitance and other combinations.

- One can study finite lattice structures in one dimension, such as ladder

structure.
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APPENDIX A

The Asymptotic Form of the Lattice Green’s Functions for a Square

Lattice

In this appendix we derive the asymptotic form of the lattice Green’s function for a

square lattice. The lattice Green’s function at site I =0is divergent since E(K)=0
for K = 0. Therefore we calculate the asymptotic form of G_(0) -G, (F). Starting from

Eq.(2.21) the LGF for siter = nd, + md, in a square lattice becomes

T

G, (0)— G, (n,m) = 1 J‘ﬂj%l—exp(lnx)exp(lmy)' Al
2727°2xr 2-Cosx—Cosy

The integral over X can be obtained from [Cserti, 2000] so

— - . A2
T sinh S

Co(0)=Go(nm)=7 2 J.27z Sinhs

dy 1 {exp(-{nls) exp(imy)} ol texp(-|njs)Cosy}
0
The same result was obtained by [Venezian, 1994].
A similar method was used in [Chaikin’s book, 1995] in the case of a continuous
medium in two dimensions. To calculate A2, we break the integral into three parts:

GO(O)_Go(nam): Il + |2 + |3

where

ji dy 1- {exp(—|n|y)Cosmy}'

27 y
_jﬂ L1
o 27 Sinhs

z y exp(— |n|y)Cosmy exp(—|n[s)Cosmy
-[ 2 Sinhs

0

where s satisfies Coshs =2 —Cosy . A3
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The first part I, can be expressed by the integral exponential Ein(z)[Abramowitz et.al,

1972]:

I, = iRe{Tdyl_eXp((_M_im)y).= L Re(Ein(a(n - im)}
2 2

0

where Ein(z)is defined by
Ein(z) = [t “e"tﬁ.
0

For large values of its argument, Ein(z) ~ Lnz + y, where y = 0.5772...1s the

Euler-Mascheroni constant. Thus, for large nand m |, can be approximated by
I, ~ 2L(Ln|7z(|n| —im)|+7) = zi(Ln\/n2 +m? +y+Lnx).
V4 V4

Using (A3) the integral |, can be evaluated exactly:

L= LT

27 J(2-Cosy)> -1 Y 27 2

In the integral 1, the integrand is close to zero for small values of y and

ssince S ~ Sinhs = y, while for larger values of y and S the exponentials are
negligible, therefore |, = 0.

Finally, we find that the LGF for large arguments, i.e.,
[F| =avn® + m* — o becomes

. 1| Lng
G, (F) =G, (0) ——(Ln = 4y + —). A4
o(F) =G, (0) 2ﬂ( St )
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DIVERGENCE OF THE RESISTANCE FOR A PERFECT SQUARE LATTICE

The resistance between the origin and any lattice site (I, m) in a perfect square

lattice is given in Eq. (3.29) as (providing that there is a large separation between the

origin and the site (I, m))
R,(0;1,m) = E(Lnx/I2 +m? +7/+%).
zr

Take the limit of Eq. (B1) as| — co. Thus, we can write

Lim RO(I,m)szim(Ln\/lz m? +}/+%);

|50 | >

2
:BLim(LnI1/1+m—2+7/+%);
T 15w I 2
R, . m’
=—Lim(tnl+Ln 1+|—2+constant);
T 15w

_R
T

Lim¢Lnl +% Ln(l+ e)+cons tant).
[

2

With e= rln_2 <<I

The value of Ln(1+ €) can be expanded as [Mary Boas, 1983]

3
Ln(l+ )= -2+ 5
23

Substituting Eq. (B3) into Eq. (B2) we obtains
2 3

LimiLtnl +%(e—%+%+..)+constant);

| >0

LimR.(.m)=

| >0

R

VA
R 1

=—[Lnowo+—(0)+constant);
V4 2

R
=—[oco+constant) — .
v

B1

B2

B3

B4
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So, as | — cothen the resistance in a perfect square lattice goes to infinity. The same
thing can be said ifm — oo. Therefore, we conclude that as the separation between the

origin and the site (I, m)goes to infinity then the resistance diverges to infinity.
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APPENDIX C

The Asymptotic form of the Perturbed Resistance for a Square Lattice

Starting with the final expression for the asymptotic behavior of the resistance of the

square perfect lattice i.e.
RO(I,m):B(Ln\/I2+m2+7+%) Cl1
T

Now, using the above equation we wrote the resistance between the origin and the

sites (i, j,),(J,1,),(,i,), and (], j,) respectively.
Ro(h o) = (Lnyi* 6,7 47+ 0);
Ro(j,io)=§(an+7+%);
Ro(hig) =~ (Lnyi* 4,7 474500

.. R N 3 Lng
RO(J,JO):;(Ln\/fﬂf+7+7>. C2

By substituting Eq. (C2) into the following formula

. . L
R A1-R,(iy, jo)]
[B(Ln\/iZ iy i —Lnyit +i, 2 Ly i + O
R@, ) =R, (0, j)+-Z C3

4[R - Ro (io’ jo)]

Noting that: Ln(a) + Ln(b) = Ln(ab), and Ln(a) — Ln(b) = Ln(%) )

[B(Ln\/iz T — i i+ T
R, j) =R, (i, j)+-Z —
(I J) (I J)+ 4[R_Ro(|oﬂjo)]
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Rn \/(i ¥ _jo;)(_j; + ?0?]2
R, ) = R, (i, j)+ —— L *lo MU+ ) c4
4[R_Ro(|oﬂjo)]

[BLn i2j2+i2i02+j02j2+j02i02]2
o NP2+ +i jr+ici,)
R(, ) =R,(, j) + STE 2= C5
4[R_Ro(|oajo)]

Now taking the limit of the Eq. (C5) as both iand jgoes to infinity and using L’

Hopitals rule, then the second term cancels out=

LIimR(, j) > R,(, ) > = C6

i,jo>o
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APPENDIX D

ASYMPTOTIC FORM OF THE RESISTANCE FOR A SC LATTICE

The resistance between the origin and any lattice site (I,m,n)in a perfect SC
lattice is given in Eq. (3.27) as:

WZ[GO(O,O,O)_GO(l’m’n)] V!

Now, the LGF for a perfect SC lattice is given as [Economou, 1983]

cosIxcosmy cosnz dxdlydz D2

Go(l,m,n)=(%) Hj

E —cosXx—cosy—cosz

Taking the limit of Eq. (D2) as| — o, then we may write

] 1 . ttF coslxcosmycosnz
LImGo(Iamﬂn):(;) LIIT]”_[E y dXdde D3
000

T o T, —(cosX+cosy+cosz)

= (L;)”[ Lim _f coslx dx]cosmycosnzdydz D4
T

00 Toe 3 E—(cosX+cosy+cosz)

Now, let us take | to be

f cos Ix

I=Lim| dx;

>0 3 E—(COX+cCOsY+cosz)

=Lim ]r.¢(x) cos Ixdx.. D5

| >0

In the theory of Fourier series, we have the so-called Riemann’s lemma i.e.:

b
Limj¢(X)cos pxdx — 0. D6

p—x g
From Eq. (D6), we conclude that | =0 . Thus, Eq. (D4) becomes

LimG,(,m,n)—0. D7

|00
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The same thing can be done for m — o« and forn — o . Thus, we conclude that the
LGF for a perfect SC lattice goes to zero as any of |, or m, or n goes to infinity.
Finally, Eq. (D1) becomes

R (I,m,n
M —G,(0,0,0). D8

So the resistance in a perfect SC lattice goes to a finite value for large separation

between the origin and the site (I, m,n).
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