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Abstract 
 

 

Resistance Calculation of an Infinite Network of Resistors- 

Application on Green’s Functions  

By 

Jihad Hasan Jabali Asad 

Supervisor 

Prof. Dr. Jamil Mahmoud Khalifeh 

 

 
         The resistance of an infinite network of identical resistors is calculated in two- and 

three-dimensions, using the Lattice Green’s function (LGF). This work deals with two 

cases: the perfect lattice and the perturbed lattice (i.e. a bond between two lattice points 

is removed). 

         It is shown how to derive the basic formula which relates the resistance to the 

LGF. In calculating the resistance we make use of the values of the LGF at arbitrary 

sites and we use some recurrence formulae. Comparison of calculated values is carried 

out with experimental results for finite square and simple cubic lattices. The asymptotic 

behavior of the resistance in a square and simple cubic (SC) lattices for both the perfect 

and perturbed cases is studied. 

         The study resulted in finding that for a perfect lattice (i.e. square or SC) the 

resistance is symmetric along the low-index directions, whereas for the perturbed case 

the symmetry is broken. We demonstrate that the resistance in a square lattice diverges 

as the separation between the sites increases, while in the SC lattice it tends to a finite 
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value. Finally, the measured bulk values are in good agreement with those calculated, 

but as approaching the edge or the surface of the lattice the measured values exceed 

those calculated. 
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GENERAL INTRODUCTION 
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1.1 Introduction 

         The Lattice Green's Function (LGF) is a basic function in the study of the solid 

state physics and condensed matter. It appears especially when impure solids are studied 

[Morita and Horiguchi, 1972]. Green was the first physicist who established the basic 

concepts of Green’s function in the potential theory, and his work was focused on 

solving Laplace's and Poisson's equations with different boundary conditions.  The use 

of Green’s function method plays an important role in many-body problems [Fetter and 

Walecka, 1971], especially in problems of solid state physics where an enormous 

progress has been realized. In the mathematical problem of quantum theory which 

consists of solving linear operator equations with given boundary conditions, Green's 

functions constitute the natural language to study boundary conditions.  

         Nowadays, Green’s function is one of the most important concepts in many 

branches of physics, as many quantities in solid state physics can be expressed in terms 

of LGF. In the following are some examples:  statistical model of ferromagnetism such 

as Ising model [McCoy and Wu, 1978], Heisenberg model [Dalton and Wood, 1967], 

spherical model [Lax, 1952], random walk theory [Montrol et. al, 1965], [Hughes, 

1986], diffusion [Montet, 1973], band structure [Koster and Slater, 1954], and 

resistance calculation for an infinite network of identical resistors [Cserti, 2000], [Cserti 

et. al, 2002].  

         The LGF for several structure lattices has been widely studied during the second 

half of the last century. The LGF for the rectangular lattice has been investigated by 

[Katsura and Inawashiro, 1971], they used the Mellin-Barnes type integral. Recurrence 

relation, which gives the LGF along the diagonal direction from a couple of values of 

complete elliptic integrals of the first and second kinds for the rectangular and square 

lattices, has been derived by [Morita, 1971b]. 
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         The LGF for Simple Cubic (SC) lattice at the origin )0,0,0(G has been 

investigated by many authors: [Joyce, 1973] expressed )0,0,0(G in terms of the 

complete elliptic integrals of the first kind, [Horiguchi, 1971] expressed )0,0,1(G as a 

sum of simple integrals of the complete elliptic integrals of the first kind and evaluated 

it numerically, [Katsura et al., 1971] investigated the LGF for the SC lattice using the 

Mellin-Barnes type integral. Recently, [Glasser and Boersma, 2000] showed that 

),,( nmlG can be expressed rationally in terms of )0,0,0(G . 

         The first attempts to study the LGF for the Body Centered Cubic (BCC) lattice 

have been carried out by [Maradudin et al., 1960]. They showed that the LGF for the 

BCC lattice at the origin )0,0,0(G can be expressed as a product of complete elliptic 

integrals of the first kind. One can find other useful investigations for the LGF of the 

BCC lattice in many references as [Joyce, 1971a and b and Inoue, 1975]. 

The LGF for the Face Centered Cubic (FCC) lattice was studied well by [Iwata, 1969], 

he expressed )0,0,0(G in a compact form as a product of complete elliptic integrals of 

the first kind. The LGF at any lattice site ),,( nmlG was studied by [Mano, 1974 and 

Joyce, 1971c]; ),,( nmlG is expressed in terms of linear combinations of complete 

elliptic integrals of the first and second kind. In their paper [Glasser and Boersma, 

2000] expressed the LGF for FCC lattice in terms of the known value of )0,0,0(G . 

         Finally, [Zeitoun, 1991] studied the LGF for the SC lattice at any arbitrary site 

with the aid of the recurrence formulae and difference equations by using the Mellin-

Barnes type integrals. Also, [Sakaji, 1994, Sakaji et al., 2002, a, b, Hijjawi, 2002 and 

Hijjawi and Khalifeh, 2002] studied the LGF for different dimensions where they 

evaluated analytically and numerically Green's function, density of states, phase shift 
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and scattering cross section for one, and two- dimensional lattices, Glasser cubic lattice 

and BCC lattice. 

1.2 Previous Studies 

         A classic problem in electric circuit theory studied by many authors over many 

years is computation of the resistance between two nodes in a resistor network. Besides 

being a central problem in electric circuit theory, the computation of resistances is also 

relevant to a wide range of problems ranging from random walk [Doyle and Snell, 

1984] and [Lovãsz, 1996], theory of harmonic functions [Van der Pol, 1959] to first-

passage processes [Render, 2001] to LGF [Katsura and Horiguchi, 1971].    

         The connection with these problems originates from the fact that electrical 

potentials on a grid are governed by the same difference equations as those occurring in 

the other problems. For this reason, the resistance problem is often studied from the 

point of view of solving the difference equations, which is most conveniently carried 

out for infinite networks. 

         Kirchhoff [1847] formulated the study of electric networks more than 150 years 

ago. The electric- circuit theory is discussed in detail by [Van der Pol and Bremmer, 

1955] they derived the resistance between nearby points on the square lattice. Francis J. 

Bartis [1966] introduced how complex systems can be treated at the elementary level 

and  showed how to calculate the effective resistance between adjacent nodes of a 

square, triangular, honeycomb and kagome lattices of one-ohm resistors. 

         Venezian [1994] showed that the resistance between adjacent sites on an infinite 

square grid of equal resistors can easily be found by the superposition of current 

distribution; and the mathematical problem involves the solution of an infinite set of 

linear, inhomogeneous difference equations which are solved by the method of 

separation of variables. Numerical results for the resistances between the sites )0,0(  and 
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),( ml in units of R are presented. Atkinson and Van Steenwijk [1998] calculated the 

resistance between two arbitrary sites in an infinite square lattice of identical resistors. 

Their method is generalized to infinite triangular- and hexagonal- lattices in two 

dimensions, and also to infinite cubic and hypercubic- lattices in three and more 

dimensions.  

         Monwhea Jeng [1999] introduced a mapping between random walk problems and 

resistor network problems, where his method was used to calculate the effective 

resistance between any two sites in an infinite two-dimensional square lattice of unit 

resistors and the superposition principle was used to find the effective resistances on 

toroidal- and cylindrical- square- lattices.  

         Recently, [Cserti, 2000] introduced an alternative method based on the LGF rather 

than using the superposition distribution of current, where the resistance for d-

dimensional hypercubic- rectangular- triangular- and honeycomb- lattices of resistors is 

discussed in detail. Recurrence formulae for the resistance between arbitrary lattice 

points of the square lattice have been given in his paper. Cserti’s method can be applied 

in a straightforward manner to other types of lattice structures and can be useful 

didactically for introducing many concepts used in condensed matter physics. 

The resistance between arbitrary nodes of infinite networks of resistors is studied when 

the network is perturbed by removing one bond from the perfect lattice [Cserti et al., 

2002], where the resistance in a perturbed lattice is expressed in terms of the resistance 

in a perfect lattice.   

         Finally, [Wu, 2004] obtained the resistance between arbitrary two nodes in a 

resistor network in terms of the eigenvalues and eigenfunctions of the Laplacian matrix 

associated with the network. Explicit formulae for two point resistances are deduced in 
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his paper for regular lattices in one, two, and three- dimensions under various boundary 

conditions.  

 

1.3 Thesis Plan 

         The plan of this thesis is as follows: 

Chapter two is devoted to the general formalism, which includes the derivation of the 

formulae that relate the resistance in pure- and perturbed- infinite networks of identical 

resistors to the LGF of the tight-binding Hamiltonian (TBH). Chapter three is   

concerned with the application of the LGF in calculating the resistance for pure- and 

perturbed- square lattices, and comparing with experimental results. Chapter four 

contains the application of the LGF for the pure- and perturbed SC lattices and 

comparing with experimental results. In chapter five, results and discussion of this work 

are presented including comparison between experimental measurements and 

theoretical calculations. Finally, in chapter six a general summary is presented with a 

partial list of some open problems that can be investigated in future. 
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         In this chapter formalism of the problem is presented as follows: the perfect case 

(section 2.1), the perturbed case (section 2.2), and finally a summary follows in section 

2.3. 

2.1 Pure (Perfect) Lattice 

         Consider a d-dimensional lattice such that all the lattice points are specified by the 

position vector rr  

       dd alalalr rrrr
+++= ...2211 .                                                                                      

(2.1)                                                                                                    

Where dlll ,...,, 21 are integers (positive, negative or zero), 

and daaa rrr ,...,, 21 are independent primitive translation vectors. 

When all sai
,r  have the same magnitude ( i.e. aaaa d ====

rrr ...21 ), then the d- 

dimensional lattice is called a hypercube. 

         In the case of network of resistors we assume the hypercube to consist of identical 

resistors (i.e. the same resistance R). In this section we present the resistance between 

the origin and a given lattice point rr  of the infinite hypercube. To do this let us assume 

that a current )( I+ enters at the origin and a current )( I−  exits at a lattice point rr , and 

zero otherwise. Thus 

                         ⎧ ,I+ 0=′rr  
             =′)(rI r

⎨  ,I−  rr rr
=′                        

(2.2)                      
                         ⎩  ,0 otherwise. 
  
The above equation can be rewritten as  

        ][)( ,0, rrrIrI rrr
r

′′ −=′ δδ .                                                                                           

(2.3) 

Also the potential at the lattice point r ′r to be )(rV ′r . 
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According to Ohm’s and Kirchhoff’s laws we can write  

        ∑ +′−′=′′
n

o nrVrVrRrI )]()([)()( rrrrr .                                                                    

(2.4)                                                

  Where nr  are vectors from site r ′r  to its nearest neighbors (i.e. dian i ,...,2,1, =±=
rr ). 

Using the so-called lattice laplacian defined on the hypercubic lattice [Cserti, 200] i.e. 

      ∑ −+=∆ ′
n

r rfnrfrf )]()([)()(
rrrr

r .                                                            

(2.5) 

The right hand side of Eq. (2.4) can be written as: 

       ∑ ∆−=−+
n

r rVrVnrV )()]()([ )(
rrrr

r .                                                                        (2.6) 

So Eq. (2.4) becomes 

      )()()()( rRrIrV or ′′−=′∆ ′
rrr

r .                                                                                      

(2.7)                                                    

Now, using Eq. (2.3) then )()( rRrI o ′′ rr
can be written as 

        ])[()()( ,0, rrroo rIRrRrI rrr
rrr

′′ −′=′′ δδ ; 

                           ]10)[( −= rIRo
r ; 

                            )(rIRo
r

−= .                                                                                        

(2.8) 

   

  Also, )0()()()( VrVrVr −=∆
rr

r . So Eq. (2.7) becomes  

         )()0()( rIRVrV o
rr

−=− ; 

Or  

      =)(rRo
r

I
rVV )()0( r

− .                                                                                            (2.9)                         
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         To find the resistance we need to solve Eq. (2.7), which is a Poisson-like equation 

and it may be solved using the LGF, so one may write (comparing with Poisson’s 

equation) 

       )()()(
/

rIrrGRrV
r

o ′′−= ∑ rrrr

r
.                                                                                 

(2.10) 

where the LGF is defined by  

       rror rrG rrr
rr

,)( )( ′′ −=′−∆ δ .                                                                                       

(2.11)                                                     

Using Eq. (2.3) and Eq. (2.10) then )0(V  and )(rV r can be written as  

            )]()0([)0( rGGIRV oo ′−=
r .                                                                             

(2.12) 

  and  

           )]0()([)( oo GrGIRrV −=
rr .                                                                               

(2.13) 

Now, using Eq. (2.9) then  

)]0()()()0([)()0()( ooooo GrGrGGR
I

rVVrR +−−=
−

=
rr

r
r ; 

     )]()0([2)( rGGRrR ooo
rr

−= .                                                                                   

(2.14) 

         The last expression is our basic result for the resistance. Once we know the LGF it 

is easy to obtain the resistance )(rRo
r  for a perfect lattice structure. 

To find the LGF defined in Eq. (2.11), we take the periodic boundary conditions at the 

edges of the hypercube, and to do this consider a hypercube with L lattice points along 

each side; then the number of sites in the d-dimensional hypercube is dL . 
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Substituting the Fourier transform  

      ∑
∈

=
BZK

odo rKiKG
L

rG
r

rrrr )exp()(1)( .                                                                          

(2.15) 

of the LGF into Eq. (2.11). Thus  

                           

rr
nBZK

odo
BZK

dr rrKirnrKiKG
L

rrKiKG
L

rr
rr

r
rrrrrrrrrrrr

′
∈∈

′ −=′−−′−+=′−∆ ∑∑∑ ,)( )}](exp{)}([exp{)(1)}(exp{)(1 δ

 

1]1)[exp()(1
−=−∑ ∑

∈

nKiKG
L BZK n

od

rrr

r r
; 

∑∑ ∑
∈∈

−=−
dL

BZKBZK n
o nKiKG

rr r

rrr
1]1)[exp()( ; 

1]1)[exp()( −=−∑
n

o nKiKG
r

rrr
; 

∑ −
−

=

n

o nKi
KG

r

rr
r

]1)[exp(
1)( ; 

∑
=

−
= d

i
i

o

aKCos
KG

1
)1(2

1)(
rr

r
; 

           
)(

1)(
KE

KGo r
r

= .                                                                                               

(2.16) 

where  

          ∑
=

−=
d

i
iaKCosKE

1
)1(2)( rrr

.                                                                                

(2.17)                                                 

 and the wave vector defined in Eq. (2.16) is limited to the first Brillouin Zone  and is 

given by  
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        d
d b

L
m

b
L

mb
L

mK
rrrr

+++= ...21
21                                                                          (2.18) 

where  

   L is assumed to be even, 

   and         

   smi ' are integers such that 

22
LmL

i ≤≤
−    for di ,...,2,1=                                                                                  (2.19)                         

    jb
r

 are the reciprocal lattice vectors defined by  

   ijjiba πδ2=
rr   dji ,...,2,1, = . 

Substituting Eq. (2.16) into Eq. (2.15), the LGF takes the form  

     ∑
∈

=
BZK

do KE
rKi

L
rG

r
r
rr

r

)(
)exp(1)(                                                                                       

(2.20) 

Taking the limit as ∞⎯→⎯L , the summation over K
r

 can be changed into integration 

[Ashcroft and Mermin, 1988], i.e. 

     ∑ ∫
∈ ∈

⎯→⎯
BZK BZK

d

d

od

Kdv
L r r

r

)2(
1

π
.                                                                                   

(2.21) 

where d
o av =  is the volume of the unit cell of the d-dimensional hypercube. 

Using Eq. (2.21), then Eq.  (2.20) becomes  

        ∫
∈

=
BZK

d

d

oo KE
rKiKdvrG

r
r
rrr

r

)(
)exp(

)2(
)(

π
                                                                          

(2.22) 

To find the resistance defined by Eq. (2.14) 
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        ∫
∈

=
BZK

d

d

oo KE
KdvG

r
r

r

)(
1

)2(
)0(

π
.                                                                              

(2.23) 

and   

        ∫
∈

=
BZK

d

d

oo KE
rKiKdvrG

r
r
rrr

r

)(
)exp(

)2(
)(

π
.                                                                         

(2.24) 

Thus Eq.  (2.14) becomes 

    ∫
∈

−
=

BZK
d

d

oo KE
rKiKdRvrR

r
r

rrr
r

)(
)exp(1

)2(
2)(

π
.                                                                   

(2.25)                                  

         The last formula can be simplified if the lattice point is specified by Eq. (2.1) and 

by using Eq.  (2.17). Thus 

∫ ∫
∑− −

=

−

+++−
=

π

π

π

π ππ d

i
i

ddd
do

Cosx

xlxlxldxdxRlllR

1

22111
21

)1(

)...exp(1
2

...
2

),...,,( .                        

(2.26) 

Finally, the LGF for a d-dimensional hypercube can be written as [Economou, 1983] 

∫ ∫
∑− −

=

−

+++
=

π

π

π

π ππ d

i
i

ddd
do

Cosx

xilxilxildxdxlllG

1

22111
21

)1(2

)...exp(
2

...
2

),...,,( .                                    

(2.27) 

 

2.2 Perturbed Lattice (a bond is removed) 

         Consider again a d-dimensional infinite lattice made up of identical resistors, and 

as in section 2.1 we assume that all the lattice points are specified by Eq. (2.1). Before 
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starting the formalism of the perturbed lattice, let us review the perfect case presented in 

section 2.1 using Dirac notation. 

As in section 2.1 let the potential at site ir
r  be )( irV r  and the current entering at origin to 

be )( I+ , and the current exiting at a lattice point ir
r to be )( I− . One can form two state 

vectors, V  and I  such that 

               ∑=
i

iViV  .                        

(2.28) 

               ∑=
i

iIiI .                                                                                                  

(2.29) 

where          

       )( ii rVV r
= .                                                                                                            

(2.30) 

and    

       )( ii rII r
= .                                                                                                             

(2.31) 

We assume that ikki δ=  and ∑ =
i

ii 1 .(i.e. i  forms a complete orthonormal set). 

Using Eq. (2.28) and Eq. (2.29), then Eq. (2.2) can be written as  

       ∑ =∆−
j

ijij IiRVjz )( δ                                                                                  (2.32) 

where z  is the number of neighbors of each lattice site (i.e. dz 2= for a d- dimensional 

hypercube lattice). 

and  

                    ⎧ 1,    lk rr rr ,     are nearest neighbors 
          =∆ kl ⎨                                          (2.33) 
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                    ⎩ zero,          otherwise 
             

Multiplying both sides of Eq. (2.32) by i  and summing over i, we obtain  

               RIVLo −=                                                                                                   (2.34) 

where  oL  is the so-called lattice laplacian [Cserti et. Al, 2002] 

          iziL ijij
ji

o )(
,

δ−∆= ∑                                                                                    (2.35) 

The LGF of the operator oL is also defined by [Economou, 1983] 

          1−=ooGL                                                                                                         (2.36) 

The solution of Eq. (2.34) is simply 

         IRLV o
1−−=                                                                                                      (2.37) 

and from Eq. (2.36) 

oo GL −=−1  . Thus Eq. (2.37) becomes 

        IRGIRLV oo =−= −1 .                                                                                         

(2.38) 

To measure the resistance between any two arbitrary sites we assume that a current I+  

enters at ir
r  and  I−    exits at jrr , while the current at all other sites is zero, so  

    )( mjmim II δδ −=  for all m .                        

(2.39) 

Inserting the above relation into Eq. (2.38), one gets 

      IGkRVkV ok == ; 

           ∑=
m

mo ImGkR ; 

          )],(),([ jkGikGRI oo −= .                                                                                  

(2.40) 
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Finally, the resistance between sites ir
r  and jrr  can be written as 

         
I

VV
jiR ji

o

−
=),(  and using Eq.  (2.40), one gets 

        )],(),([2),( jiGiiGRjiR ooo −= .                                                                        

(2.41) 

Now, let us introduce the formalism of the perturbed lattice (i.e. a bond between the 

sites iorr and jorr  is removed). Again we consider here a d- dimensional infinite lattice 

made up of identical resistors. 

At site ir
r  the current contribution iIδ due to the bond ),( oo ji can be written as                        

)()(
oooooo ijijjiiii VVVVRI −+−= δδδ ;                                                                          

               VijjiVjiii oooooo )()( −+−= ; 

              Vjijii oooo ))(( −−= ; 

           VLiRIi 1=δ .                                                                                                  

(2.42) 

where  the operator 1L  is of a so-called “dyadic” form 

          ))((1 oooo jijiL −−= .                                                                            (2.43) 

and    

          nmmn δ=  has been used. 

Now removing the bond )( oo ji  from the perfect lattice, then the current iI  at site ir
r  is 

given by  

         iiio RIIRVL =−− δ)(                                                                                         (2.44) 

Thus, Ohm’s and Kirchhoff’s laws for the perturbed lattice can be written by inserting 

Eq. (2.42) into Eq.  (2.44) 
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             RILV −= .                                                                                                   (2.45) 

where    1LLL o +=         

Note that the operator L is now a sum of oL associated with the perfect lattice and a 

perturbation given by 1L  [Kirkpatrick, 1973]. 

The LGF for the operator 1L  is given by [Economou, 1983] 

         1−=LG .                                                                                                            

(2.46) 

To measure the resistance between sites  ir
r  and jrr we assume that the current 

distribution is given by Eq. (2.39). 

Using Eq. (2.44) and Eq. (2.46), one can write  

        IRLV 1−−= ;  

        RGI= .                                                                                                      (2.47)

  

So 

     ∑===
m

mk ImGkRGIkRVkV .                                                                 

(2.48) 

Substituting Eq. (2.39) into the last expression one gets 

    )( mjmik mGkIRV δδ −= ; 

    )],(),([ jkGikGIRVk −= .                                                                                      

(2.49) 

Thus, the resistance between sites ir
r  and jrr  can be written as  

    
I

VV
jiR ji −=),(                                                                                                     (2.50) 

From Eq. (2.49) 
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    )],(),(),(),([),( ijGjjGjiGiiGRjiR −+−=                                                        

(2.51) 

Note that ),(),( jjGiiG ≠ , because the translation symmetry is broken in the perturbed 

lattice. However, as we shall see ),(),( ijGjiG = . 

Now, our problem of finding the resistance reduces to the calculation of the LGF for the 

perturbed lattice. 

Using Eq. (2.35) and Eq. (2.46), one can write 

      1)(1 1 −=+⇒−= GLLLG o .                                                                                

(2.52)  

oo GL 1−−= . Thus the above relation becomes 

      1)( 1
1 −=+− − GLG o .                                                                                              

(2.53) 

 

Multiplying the last relation from left by oG , one gets 

     oo GGLGG −=+− 1̀ .                                                                                              

(2.54) 

Finally, 

     GLGGG oo 1+= .                                                                                                   

(2.55) 

Equation (2.55) is called Dyson’s equation, which is an equation for G  in terms of 

oG (which is assumed to be known), and the perturbation 1L . Its solution can be found 

by the iteration method 

     ...111 +++= oooooo GLGLGGLGGG                                                                    (2.56) 

If 1L  has a special form as Eq. (2.43), then Dyson’s equation can be solved exactly. 
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Since ))((1 oooo jijiL −−= , so we may apply the identity 

     
xAy

AyxA
AyxA 1

11
11

1
)( −

−−
−−

+
−=+ .                                                                    (2.57)                       

The above identity is valid for arbitrary vectors x  and y  whose dimensions  

are the same as the operator A , assuming the inverse of A  i.e. 1−A exists and  

.01 1 ≠+ − xAy [Cserti et. al, 2002]. 

Using the above identity with oLA = , oo jix −=  and oo jiy −= . One obtains 

for the LGF 

       1
1 )( −+−= LLG o ; 

 
)()(1 1

1
1

1
1

ooooo

oo
o

jiLji
LLLL

−−+
+−= −

−−
− ; 

     
][1

))((

oooooooooooo

oooooo
o jGjiGjjGiiGi

GjijiG
G

+−−−

−−
+= ; 

)],(),([21
))((

oooo

oooooo
o jiGiiG

GjijiG
G

−−

−−
+= .                                                                         

(2.58) 

where we have used  

     ),( mnGmGn oo = , ),(),( nmGmnG oo =   

and  

     ),(),( mmGnnG oo = . 

Note that the denominator  )],(),([21 oooooo jiGiiG −−  never equal to zero for 1〉d . 

Expressing G  with the matrix elements of oG , (i.e. taking ),( jiGjGi = ), then Eq. 

(2.58) becomes  
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)],(),([21
)],(),()][,(),([

),(),(
oooooo

oooooooo
o jjGiiG

jjGjiGjiGiiG
jiGjGijiG

−−
−−

+== .                 

(2.59) 

There is an alternative way to obtain Eq. (2.59). By inserting 1L  given by Eq. (2.43) 

into Eq. (2.56). 

It is clear from the ),(),( ijGjiG oo = , that ),( jiG  is also symmetric, 

(i.e. ),(),( ijGjiG = ). 

The resistance between i  and  j  can be obtained by Eq. (2.51) and Eq. (2.59) 

     ),(2),(),(),( jiGjjGiiG
R

jiR
−+=                 

after some lengthy but straight-forward algebra, one gets 

)],(1[4
)],(),(),(),([

),(),( 2

ooo

oooooooo
o jiR

jjRiiRijRjiR
jiR

R
jiR

−
−−+

+=                              (2.60) 

Eq. (2.60) is our final result for the resistance between arbitrary nodes  i  and j  of the 

perturbed lattice in which the bond  )( oo ji  is removed. 

It is easy to calculate the resistance between sites oi  and oj   for a d- dimensional hyper 

cubic lattice. For symmetry reasons [Cserti, 2000] the resistance between oi  and oj   in 

a perfect lattice is
d
RjiR ooo =),( , and then from Eq. (2.60) the resistance between the 

two ends of the removed bond is 
1

),(
−

=
d

RjiR oo [Cserti et.al, 2002]. 

2.3 Summary  

         It has been shown in section 2.1 that for the perfect lattice the resistance between 

the origin and the node or
r can be calculated using Eq. (2.15) or using the integral 

defined by Eq. (2.26). From the final expression of the resistance Eq. (2.26) one can see 
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that the resistance does not depend on the angles between the unit vectors daaa rrr ,...,, 21 . 

Physically, this means that the hypercube can be deformed without changing the 

resistance between any two lattice points. 

         For the perturbed lattice, we show that the resistance between any two arbitrary 

nodes ir
r and jrr  can be obtained either in terms of the perfect LGF or in terms of the 

perfect resistance. In the derivation of Eq. (2.60) the definition of the lattice Laplacian 

oL  is not used. Thus, our final result for the resistance Eq. (2.60) in the perturbed lattice 

is valid for any lattice structure in which each unit cell has only one lattice site.(e.g. 

square lattice, triangular lattice and simple cubic lattice). 

         When more than one bond is removed from the perfect lattice, our method can be 

iterated and lattices with more complex defects can be studied analytically. For 

example, the so-called crack-type defects arising in several fields such as: electrical and 

mechanical breakdown phenomena in insulators, thin films and modern 

ceramics.[Duxbury et.al, 1987 and Boksiner et.al, 1998].      
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         In this chapter application of chapter two for a square lattice is presented, in 

section 3.1 in which we calculate the resistance of the perfect square lattice. In section 

3.2 we calculate the resistance of the perturbed square lattice. Finally, in section 3.3 the 

experimental results for the perfect and perturbed square lattice are presented. 

3.1 Perfect (Pure) Square Lattice 

         The resistance in two dimensions between the origin and 21 amalr rrr
+=  can be 

obtained from Eq. (2.26), with 2=d  

∫ ∫
− − −−

+−
=

π

π

π

π ππ CosyCosx
mylxidydx

RmlRo 2
)(exp1

22
),(  ;                                                                  

             
CosyCosx

mylxiSinmylxCosdydxR
−−

+++−
= ∫ ∫

− − 2
)]()([1

22

π

π

π

π ππ
.                                            

(3.1)   

Since ∫
−

=
π

π

0Sinxdx , thus the last expression becomes 

),( mlRo CosyCosx
mylxCosdydxR

−−
+−

= ∫ ∫
− − 2

)(1
22

π

π

π

π ππ
.                                                                    (3.2)             

Also, the energy dependent LGF of the TBH for a square lattice is given by [Economou, 

1983] 

                                      
CosyCosxE
mylxCosdydxmlEGo −−

+
= ∫∫

−−

)(
22

),;(
π

π

π

π ππ
.                             

(3.3) 

         The last formula is a generalization of our LGF by introducing a variable 

E instead of 2 in the denominator in Eq. (2.27) for 2=d . 
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Note that a factor 2  appearing in the denominator of Eq. (2.27) is missing in Eq. (3.3). 

This is related to the fact that in the Schrodinger equation the Laplacian is multiplied by 

a factor 
2
1 while in our case the Laplacian equation is solved. 

         To obtain the resistance between the origin and a point 21 amalro
rrr

+= , from Eq. 

(2.26) for 2=d  one obtains 

∫∫ ∫∫
−− −− −−

+
−

−−
=

π

π

π

π

π

π

π

π πππ
}

2
)(

22
1

22
{),(

CosyCosx
mylxCosdx

CosyCosx
dydxRmlRo .                        

(3.4) 

Comparing the last equation with that given in Eq. (2.27). Thus 

    )],()0,0([),( mlGGRmlR ooo −= .                                                                              

(3.5) 

One can calculate the resistance using Eq. (3.5).  The resistance between two adjacent 

sites (i.e. (1, 0)), is 

   )]0,1()0,0([)0,1( ooo GGRR −=                                                                                  (3.6) 

)0,1(oG  Can be expressed as [Hijjawi, 2002] 

    ]1)0,0([
2
1)0,1( −= oo EGG  

Substituting the last expression into Eq. (3.5), one gets 

]
2
1)0,0(

2
)0,0([)0,1( +−= ooo GEGRR         ; 2=E  

]
2
1)0,0()0,0([ +−= oo GGR ; 

2
R

= .                                                                                                                             (3.7) 
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Since, ),(),( lmRmlR oo = , i.e. due to the symmetry of the lattice, then 

2
)1,0()0,1( RRR oo == . The same result was obtained by [Cserti, 2002], [Venezian, 

1994] and [Aitchison, 1964]. 

         To calculate the resistance between the origin and the second nearest neighbors 

(i.e. (1, 1)) is 

         )]1,1()0,0([)1,1( ooo GGRR −= .                                                                             

(3.8) 

)1,1(oG can be expressed in terms of )0,0(oG and )0,0(/
oG as [Hijjawi, 2002] 

    )0,0()4(
2

)0,0()1
2

()1,1( 2
2 ′−−−= ooo GttGtG ; 

   )2(2)0,0(
t

K
t

Go π
= .                                                                                                  (3.9)   

and  

  )2(1
)2(

)2(
)0,0( 2 t

K
ttt

t
E

Go ππ
−

−

−
=′ .                                                                          (3.10) 

Where  

 )2(
t

K  and )2(
t

E  are the elliptic integrals of the first kind and second kind respectively, 

  and 

t = 2, is the energy. 

Substituting the last two expressions into Eq. (3.8), one obtains  

      
π
RRo

2)1,1( = .                                                                                                        

(3.11) 

Again our result is the same as others [Cserti, 2000] and [Venezain, 1994]. 
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         Using the previous method one can calculate )0,3(),1,2(),0,2( ooo RRR  and so on. 

Or one can calculate ),( mlRo  using some recurrence formulae based on those derived 

for the LGF by [Morita, 1975], and those formulae are 

                                                                                                                                       

)1,1;()
12
12(),;()1

2
(

12
4)1,1;( 2

2

−−
+
−

−−
+

=++ mmEG
m
mmmEGE

m
mmmEG ooo γ

      (3.12) 

γ
γ

2
)1,;(2),;(2

),1;(
−−

=+
mmEGmmEEG

mmEG oo
o                                               (3.13) 

γ
γγ )1,;(2)0,1;()0,;(2

)0,1;(
mEGmEGmEEG

mEG ooo
o

−−−
=+                              (3.14) 

γ
γγγ )1,()1,;(),1;(),;(2

),1;(
−−+−−−

=+
pEmGpmEGpmEGpmEEG

pmEG oooo
o  

                        for mp〈〈0                                                                                           (3.15) 

where 1=γ and 2=E . 

         Substituting the last four equations into Eq. (3.5), one gets the following 

recurrence formulae for the resistance  

)1,1(
12
12),(

12
4)1,1( −−

+
−

−
+

=++ mmR
m
mmmR

m
mmmR ooo                                      

(3.16) 

)1,(),(2),1( −−=+ mmRmmRmmR ooo                                                                     

(3.17) 

                        

(3.18) 

 

)1,()1,(),1(),(4),1( −−+−−−=+ pmRpmRpmRpmRpmR ooooo      (3.19) 

                           for mp〈〈0 . 

)1,(2)0,1()0,(4)0,1( mRmRmRmR oooo −−−=+
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         Using the last four recurrence formulas and the values of )0,1(oR and )1,1(oR  with 

the trivial one 0)0,0( =oR  , we can calculate easily the resistance exactly between the 

origin and any other site. As an examples 

  1-Take m=1 and use Eq. (3.16). Thus 

     )0,0(
3
1)1,1(

3
4)2,2( ooo RRR −=  

                     RRR 848826.0
3
80

3
8

==−=
ππ

. 

  2-Take m=1 and use Eq. (3.17). Thus 

     )0,1()1,1(2)1,2( ooo RRR −=  

             RRR 773239.0
2
14

=−=
π

 

   3-Take m=1 and use Eq. (3.18). Thus 

     )1,1(2)0,0()0,1(4)0,2( oooo RRRR −−=  

                      RRR 726760.040
2
4

=−−=
π

. 

   4- Take m=2 and use Eq. (3.17). Thus 

      )1,2()2,2(2)2,3( ooo RRR −=  

                      
.924413.0

773239.0)848826.0(2
R

RR
=

−=  

   5- Take m=2 and use Eq. (3.18). Thus 

      )1,2(2)0,1()0,2(4)0,3( oooo RRRR −−=  

                      
.860562.0

)773239.0(25.0)726760.0(4
R

RRR
=

−−=  

And so on for other values, Table 1 shows the values of the resistance between the 

origin and arbitrary sites for a perfect square lattice. This way we obtain same results as 

others [Atkinson and Van Steenwijk, 1999]. 
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Table 1: Calculated and measured values of the resistance between the 
origin and an arbitrary site in a   perfect square lattice. 

The Site  
(l,m) 
 

R
mlRo ),(

 

Theoretically 

 
R

mlRo ),(
 

Experimentally

The Site  
(l,m) 
 

R
mlRo ),(

 

Theoretically 
R

mlRo ),(
 

Experimentally
(1,0) 0.5 0.4997 )1,1(  0.63662 0.6379 
(2,0) 0.72676 0.7283 (2,2) 0.84883 0.8527 
(3,0) 0.860563 0.8642 (3,3) 0.97615 0.9853 
(4,0) 0.953987 0.9616 (4,4) 1.06710 1.086 
(5,0) 1.0258 1.039 (5,5) 1.13783 1.169 
(6,0) 1.08423 1.104 (6,6) 1.19571 1.244 
(7,0) 1.13352 1.162 (7,7) 1.24468 1.316 
(8,0) 1.17616 1.214 (8,8) 1.28712 1.388 
(9,0) 1.21375 1.263 (9,9) 1.32457 1.464 

(10,0) 1.24735 1.313 (10,10) 1.35807 1.549 
(11,0) 1.27774 1.362 (11,11) 1.38839 1.648 
(12,0) 1.30547 1.416 (12,12) 1.41607 1.769 
(13,0) 1.33098 1.481 (13,13) 1.44153 1.931 
(14,0) 1.35459 1.571 (14,14) 1.464521 2.177 
(15,0) 1.37657 1.755 (15,15) 1.486464 2.707 
(-1,0) 0.5 0.5011 )-1,-1(  0.63662 0.6376 
(-2,0) 0.72676 0.7287 (-2,-2) 0.84883 0.8525 
(-3,0) 0.860563 0.8649 (-3,-3) 0.97615 0.9860 
(-4,0) 0.953987 0.9622 (-4,-4) 1.06710 1.085 
(-5,0) 1.0258 1.039 (-5,-5) 1.13783 1.169 
(-6,0) 1.08423 1.104 (-6,-6) 1.19571 1.244 
(-7,0) 1.13352 1.161 )-7,-7(  1.24468 1.316 
(-8,0) 1.17616 1.214 (-8,-8) 1.28712 1.388 
(-9,0) 1.21375 1.264 (-9,-9) 1.32457 1.464 

(-10,0) 1.24735 1.313 (-10,-10) 1.35807 1.549 
(-11,0) 1.27774 1.362 (-11,-11) 1.38839 1.648 
(-12,0) 1.30547 1.416 (-12,-12) 1.41607 1.769 
(-13,0) 1.33098 1.481 (-13,-13) 1.44153 1.930 
(-14,0) 1.35459 1.570 (-14,-14) 1.464521 2.177 
(-15,0) 1.37657 1.754 (-15,-15) 1.486464 2.708 

 
 
 

         The advantages of the recurrence formulae are that they provide a new, very 

simple and effective tool to calculate the resistance. Others gave also the exact values of 

the resistance for nearby points in a square lattice using a different approach [Van der 

Pol et.al, 1959]. 
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         It is important to study the asymptotic behavior of the resistance for large values 

of l  or/and m . To do this we derive first the asymptotic behavior of the LGF for square 

lattice, [see appendix A]; 

where the final result is obtained as: 

     )
2

8(
2
1)0()( Ln

a
r

LnGrG oo ++−= γ
π

r
r .                                                                 

(3.20) 

Inserting Eq. (3.20) into the general result of the resistance given in Eq. (2.14). Thus the 

asymptotic form of the resistance is  

    )
2

8(),( 22 LnmlLnRmlRo +++= γ
π

                                                                    

(3.21) 

where 5772.0=γ  is the Euler-Mascheroni constant [Arfken and Weber, 1995]. The 

resistance is logarithmically divergent for large values of  l  and m , as shown in 

Appendix B. 

 

 

3.2 Perturbed square lattice (a bond is missing) 

         As discussed in section 2.2 one can calculate the resistance between any two 

arbitrary sites using the last expression derived in Eq. (2.60). It is simple to find the 

resistance between the ends of the missing bond. On  the one hand it is well known 

[Aitchison, 1964] that for a perfect lattice the resistance between adjacent sites is
2
R  and 

on the other hand, this resistance equals the parallel resultant of R  and the resistance 

we wish to find. Thus 
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RRR ′

+=
11

2

1 .                                                                                                      

(3.22) 

So, RR =′ (i.e. the resistance between the ends of the removed bond) [Cserti et.al]. 

Now, by noting that ),( yx iii = , ),( yx jjj = , ),( oyoxo iii = and ),( oyoxo jjj = ,  

one can write equation (2.60) as  
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       (3.23) 

         To study the asymptotic behavior of the resistance of the perturbed square lattice, 

substituting Eq. (3.21) into Eq. (3.23). Thus, one obtains 
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π

                                       

(3.24) 

 

Now, as i or/and j goes to infinity then the limit of the numerator goes to zero. So, one 

yields that 

     ),(),( jiRjiR o=                                                                                                     

(3.25)                                                                 



  52

that is, the perturbed resistance between arbitrary sites goes to the perfect resistance as 

the separation between the two sites goes to infinity. The derivation of Eq. (3.24) is 

given in details in appendix C.  

         To calculate the resistance one has to specify the removed bond before starting the 

calculations and as an example let us consider the removed bond to be )0,0(=oi and 

)0,1(=oj . Now it is simple to calculate the resistance between any two arbitrary sites 

using Eq. (3.23), the above missing bond and the values obtained in section 3.1 for the 

resistance of the perfect lattice. Our results are arranged in Table 2, and below are some 

examples: 

   1-The resistance between the two ends of the missing bond. (i.e. )0,0(=i and 

)0,1(=j ). 

)]0,1([4
)]0,0()0,0()1,0()0,1([
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2

o

oooo
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RR

−
−−+

+=  

]
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]00
22
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2
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−
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.R=      

2-The resistance between )0,0(=i and )0,2(=j                                                                          

)]0,1([4
)]0,1()0,0()0,2()0,1([
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o

oooo
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3-The resistance between )0,0(=i and )0,1(−=j  
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RRRR
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−−+

+=−  
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.537330.0 R=  

4-The resistance between )0,0(=i and )0,2(−=j  

)]0,1([4
)]0,3()0,0()0,2()0,1([

)0,2()0,2(
2

o

oooo
o RR

RRRR
RR

−
−−+

+=−  

.793810.0 R=  

5- The resistance between )0,0(=i and  )0,3(−=j  

)]0,1([4
)]0,4()0,0()0,3()0,1([

)0,3()0,3(
2

o

oooo
o RR

RRRR
RR

−
−−+

+=−  

.94322.0 R=  

 

Table 2: Calculated and measured values of the resistance between the sites 

)0,0(=i and ),( yx jjj = , for a perturbed square lattice (i.e. the bond between 

)0,0(=oi and )0,1(=oj is broken). 

 
The Site  

),( yx jjj =  
 

R
jiR ),(

 

Theoretically

 
R

jiR ),(
 

Experimentally

The Site  
),( yx jjj =

 
R

jiR ),(
 

Theoretically 
R

jiR ),(
 

Experimentally
(1,0) 1 1.002 (0,1) 0.56602 0.5657 
(2,0) 0.99085 0.9939 (0,2) 0.82960 0.8305 
(3,0) 1.06142 1.067 (0,3) 0.97567 0.9793 
(4,0) 1.13006 1.141 (0,4) 1.07364 1.081 
(5,0) 1.18929 1.205 (0,5) 1.14747 1.161 
(6,0) 1.24015 1.264 (0,6) 1.20696 1.227 
(7,0) 1.28438 1.317 (0,7) 1.25687 1.285 
(8,0) 1.32339 1.366 (0,8) 1.29990 1.338 
(9,0) 1.35825 1.414 (0,9) 1.33776 1.387 
(10,0) 1.38971 1.461 (0,10) 1.37155 1.437 
(11,0) 1.41840 1.510 (0,11) 1..40208 1.487 
(12,0) 1.44472 1.564 (0,12) 1.42992 1.541 
(13,0) 1.46906 1.628 (0,13) 1.45551 1.606 
(14,0) 1.49167 1.717 (0,14) 1.47919 1.696 
(15,0) 1.51280 1.900 (0,15) 1.50122 1.879 
(-1,0) 0.53733 0.5384 (0,-1) 0.56602 0.5674 
(-2,0) 0.79381 0.7953 (0,-2) 0.82960 0.8310 
(-3,0) 0.94322 0.9464 (0,-3) 0.97567 0.9802 
(-4,0) 1.04566 1.052 (0,-4) 1.07364 1.082 
(-5,0) 1.12329 1.135 (0,-5) 1.14747 1.161 
(-6,0) 1.18580 1.203 (0,-6) 1.20696 1.227 
(-7,0) 1.23811 1.263 (0,-7) 1.25687 1.285 
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(-8,0) 1.28307 1.317 (0,-8) 1.29990 1.338 
(-9,0) 1.32251 1.369 (0,-9) 1.33776 1.388 

(-10,0) 1.35762 1.418 (0,-10) 1.37155 1.438 
(-11,0) 1.38926 1.468 (0,-11) 1..40208 1.489 
(-12,0) 1.41804 1.523 (0,-12) 1.42992 1.545 
(-13,0) 1.44445 1.587 (0,-13) 1.45551 1.615 
(-14,0) 1.46884 1.677 (0,-14) 1.47919 1.695 
(-15,0) 1.49150 1.860 (0,-15) 1.50122 1.915 

 
            
 

         Now, the broken bond is shifted to be between the sites )0,1(=oi and )0,2(=oj . 

Thus, using the above method one calculates the resistance between the origin and any 

other site. Our results are arranged in Table 3 below.  

 

Table 3: Calculated and measured values of the resistance between the sites     

)0,0(=i and ),( yx jjj = , for a perturbed square lattice (i.e. the bond between 

)0,1(=oi and )0,2(=oj is broken). 

The Site  
),( yx jjj =  

 
R

jiR ),(
 

Theoretically

 
R

jiR ),(
 

Experimentally

The Site  
),( yx jjj =

 
R

jiR ),(
 

Theoretically 
R

jiR ),(
 

Experimentally
(1,0) 0.53733 0.5372 (0,1) 0.50406 0.5038 
(2,0) 0.99085 0.9939 (0,2) 0.73819 0.7398 
(3,0) 0.96340 0.9689 (0,3) 0.87733 0.881 
(4,0) 1.01899 1.029 (0,4) 0.97391 0.9816 
(5,0) 1.07706 1.092 (0,5) 1.04757 1.061 
(6,0) 1.12880 1.151 (0,6) 1.10712 1.127 
(7,0) 1.17419 1.204 (0,7) 1.15712 1.185 
(8,0) 1.21426 1.255 (0,8) 1.20023 1.238 
(9,0) 1.25004 1.303 (0,9) 1.26257 1.288 

(10,0) 1.26214 1.351 (0,10) 1.27200 1.337 
(11,0) 1.31163 1.400 (0,11) 1.30257 1.387 
(12,0) 1.33853 1.454 (0,12) 1.33044 1.441 
(13,0) 1.36336 1.518 (0,13) 1.35606 1.506 
(14,0) 1.38641 1.606 (0,14) 1.37975 1.596 
(15,0) 1.40791 1.790 (0,15) 1.40180 1.779 
(-1,0) 0.50432 0.5058 (0,-1) 0.50406 0.5052 
(-2,0) 0.73565 0.7377 (0,-2) 0.73819 0.7402 
(-3,0) 0.87257 0.8766 (0,-3) 0.87733 0.8817 
(-4,0) 0.96815 0.9753 (0,-4) 0.97391 0.9822 
(-5,0) 1.04155 1.054 (0,-5) 1.04757 1.061 
(-6,0) 1.10118 1.120 (0,-6) 1.10712 1.127 
(-7,0) 1.15141 1.178 (0,-7) 1.15712 1.185 
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(-8,0) 1.19482 1.231 (0,-8) 1.20023 1.238 
(-9,0) 1.23303 1.282 (0,-9) 1.26257 1.288 
(-10,0) 1.26716 1.330 (0,-10) 1.27200 1.337 
(-11,0) 1.29799 1.380 (0,-11) 1.30257 1.387 
(-12,0) 1.32722 1.434 (0,-12) 1.33044 1.441 
(-13,0) 1.35195 1.499 (0,-13) 1.35606 1.506 
(-14,0) 1.37585 1.588 (0,-14) 1.37975 1.595 
(-15,0) 1.39809 1.772 (0,-15) 1.40180 1.779 

 
 

         From the above Tables, one can see that the resistance in the perturbed case is 

always larger than that in the perfect case. This is due to the positive contribution of the 

second term in equation Eq. (2.60). The resistance is not symmetric (i.e. 

),(),( lmRmlR ≠  because the translational symmetry is broken. 
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3.3 Experimental results 

         To study the resistance of the square lattice experimentally we constructed a finite 

square network of identical resistances ( R ) consisting of ( 3030× ) resistors, each has a 

value of (1 Ωk ) and a tolerance of (1%) as shown in Fig. 1. 

 

 

                          Fig. 1: A square mesh consisting of (30x30) identical resistors. 

         Using the perfect mesh shown in Fig. 1 above, we measured the resistance 

between the origin and the site ),( ml along the directions [10], [01], and [11]. Our 

results are arranged in Table 1 above. To measure the resistance for the perturbed case 

we removed the bond between )0,0(=oi and )0,1(=oj , then we measured the resistance 

between the site )0,0(=i and the site ),( yx jjj =  along the directions [10], [01], and 

[11]. Our results are arranged in Table 2 above. 

         Now, the removed bond is shifted, )0,1(=oi and )0,2(=oj , then we measured 

again the resistance between the site )0,0(=i and the site ),( yx jjj =  along the 

directions [10], [01], and [11]. Our results are arranged in Table  3 above. 
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         In this chapter application of chapter two for the SC lattice is presented, in section 

4.1 in which we calculate the resistance of the perfect SC lattice. In section 4.2 we 

calculate the resistance of the perturbed SC lattice. Finally, in section 4.3 the 

experimental results for the perfect and perturbed SC lattice are presented. 

4.1 Perfect SC lattice 

         For a perfect SC lattice, the resistance between the origin and a lattice point 

321 anamalro
rrrr

++=  can be obtained from Eq. (2.25) with d=3. Thus 

CoszCosyCosx
inzimyilxdzdydxRnmlRo −−−

+−−
= ∫∫ ∫

−− − 3
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                                                             (4.2) 

         Similar to the case of a square lattice, the exact values of the resistance between 

two adjacent lattice sites can be calculated from Eq. (4.2). Because of the symmetry one 

can write 

CoszCosyCosx
CosxdzdydxRRRR ooo −−−

−
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3
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Therefore the resistance between adjacent sites is
3
R . In general for a d-dimensional 

hypercube the resistance between adjacent sites is
d
R . 

         The energy dependent LGF of the tight-binding Hamiltonian for a SC lattice is 

defined as [Economou, 1983] 

CoszCosyCosxE
nzmylxCosdzdydxnmlEGo −−−

++
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−− −

)(
222

),,;(
π

π

π

π

π

π πππ
                                         (4.3) 
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This is a generalization of the LGF by introducing a new variable E  instead of the 

value 3  in the denominator in Eq. (2.27) for 3=d . The missing factor of two in the 

denominator in Eq. (4.3) has been explained in section 3.1. 

         The resistance between the origin and a lattice site 321 anamalro
rrrr

++= , can be 

obtained using equation (2.26) with 3=d .  Thus 

 

]
3

)(1[
222

),,(
CoszCosyCosx
nzmylxCosdzdydxRnmlRo −−−

++−
= ∫∫∫

−−−

π

π

π

π

π

π πππ
                                           (4.4) 

 

Compare with Eq. (4.3), for 3=d  

 

)],,;3()0,0,0;3([),,( nmlGGRnmlR ooo −=                                                                (4.5) 

The resistance of an infinite SC network of identical resistors between the origin and 

any lattice site ( nml ,, ) can be expressed as:   

 

                              

                                                                            (4.6) 

 

where )0,0,0(00 Gg = is the LGF at the origin, 

and 321 ,, ρρρ are related to 321 ,, rrr  or Duffin and Shelly’s parameters 321 ,, λλλ  

[Glasser and Boersma, 2000] and [Duffin and Shelly, 1958]) as:  
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            222 2
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             333 3
1 λρ =−= r     

         Various values of 321 ,, rrr are shown [Glasser and Boersma, 2000] in Table 1, for 

),,( nml ranging from (0,0,0) to (5,5,5). To obtain other values of 321 ,, rrr one has to use 

the relation [Horiguchi, 1971] 

 

 

                        (4.8) 

                 

where 3=E , is the energy. 

         In some cases one may use the recurrence formulae Eq. (4.8) two or three times to 

calculate different values of 321 ,, rrr  for ),,( nml  beyond )5,5,5( .  

 

Table 4: Values of the resistance in a perfect infinite SC lattice for arbitrary sites. 

Site 
lmn  1ρ  2ρ  3ρ  3

0
2

2
01

0 ),,(
ρ

π
ρ

ρ ++=
g

g
R

nmlR

000 0 0 0 0 
100 0 0 1/3 0.333333 
110 7/12 1/2 0 0.395079 
111 9/8 -3/4 0 0.418305 
200 -7/3 -2 2 0.419683 
210 5/8 9/4 -1/3 0.433598 
211 5/3 -2 0 0.441531 
220 -37/36 29/6 0 0.449351 
221 31/16 -21/8 0 0.453144 
222 3/8 27/20 0 0.460159 
300 -33/2 -21 13 0.450371 
310 115/36 85/6 -4 0.454415 
311 15/4 -21/2 2/3 0.457396 
320 -271/48 119/8 1/3 0.461311 
321 161/36 -269/30 0 0.463146 
322 -19/16 213/40 0 0.467174 
330 -47/3 1046/25 0 0.468033 
331 38/3 -148/5 0 0.469121 
332 -26/9 1012/105 0 0.471757 
333 51/16 -1587/280 0 0.475023 
400 -985/9 -542/3 92 0.464885 

),,(22)1,,()1,,(

),1,(),1,(),,1(),,1(

000000

0000

nmlEGnmlGnmlG

nmlGnmlGnmlGnmlG

nml +−=−++

+−+++−++

δδδ
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410 531/16 879/8 -115/3 0.466418 
411 11/2 -357/5 12 0.467723 
420 -2111/72 13903/300 6 0.469777 
421 245/16 -1251/40 -1 0.470731 
422 -32/3 1024/35 0 0.473076 
430 -2593/48 28049/200 -1/3 0.473666 
431 1541/36 -110851/1050 0 0.474321 
432 -493/32 4617/112 0 0.476027 
433 667/72 -8809/420 0 0.478288 
440 -5989/36 620161/1470 0 0.477378 
441 4197/32 -919353/2800 0 0.477814 
442 -2927/48 31231/200 0 0.479027 
443 571/32 -119271/2800 0 0.480700 
444 -69/8 186003/7700 0 0.482570 
500 -9275/12 -3005/2 2077/3 0.473263 
510 11653/36 138331/150 -348 0.473986 
511 -271/4 -5751/10 150 0.474646 
520 -2881/16 15123/200 229/3 0.475807 
521 949/12 -27059/350 -24 0.476341 
522 -501/8 4209/28 2 0.477766 
530 -3571/18 1993883/3675 -8 0.478166 
531 1337/8 -297981/700 4/3 0.478565 
532 -2519/36 187777/1050 0 0.479693 
533 2281/48 -164399/1400 0 0.481253 
540 -18439/32 28493109/19600 1/3 0.480653 
541 1393/3 -286274/245 0 0.480920 
542 -7745/32 1715589/2800 0 0.481798 
543 5693/72 -4550057/23100 0 0.483012 
544 -1123/32 560001/6160 0 0.484441 
550 -196937/108 101441689/22050 0 0.483050 
551 12031/8 -18569853/4900 0 0.483146 
552 -1681/2 5718309/2695 0 0.483878 
553 5175/16 -2504541/3080 0 0.484777 
554 -24251/312 -1527851/7700 0 0.485921 
555 9459/208 -12099711/107800 0 0.487123 
600 -34937/6 -313079/25 5454 0.478749 
610 71939/24 160009/20 -9355/3 0.479137 
633 18552/72 -747654/1155 0 0.483209 
644 -388051/1872 23950043/46200 0 0.486209 
655 13157/78 -5698667/13475 0 0.488325 
700 -553847/12 5281913/50 44505 0.482685 

 

 

         The value of the LGF at the origin was first evaluated by [Watson, 1939] in his 

famous paper, where he found that 

.505462.0)]()[6731021218()2()0,0,0( 22 =−−+= oo kKG
π

  

 with    )23)(32( −−=ok  
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                            and 

                              
θ

θ

π

22

2

0 1
1)(

Sink
dkK

−
= ∫  is the complete elliptic integral of the first 

kind. 

A similar result was obtained by [Glasser and Zucker, 1977] in terms of gamma 

function. 

         The asymptotic behavior ( i.e. as l, or m, or n ∞→ ) of the resistance in a SC is 

[see Appendix D]  

 

          )0,0,0(
),,(

o
o G

R
nmlR

→ .                                                         

4.2 The SC lattice (Perturbed case) 

         To calculate the resistance between the site  ),,( zyx iiii =  and the 

site ),,( zyx jjjj = , one has to specify the removed (missing) bond between 

),,( ozoyoxo iiii = and ),,( ozoyoxo jjjj = . Thus the perturbed relation obtained in section 

2.2 becomes: 

+−−−=−−− ),,(),,( zzyyxxozzyyxx ijijijRijijijR  

)],,([4
1

ozozoyoyoxoxo ijijijRR −−−−
{ 

−−−−−−−−−−−− ),,(),,(),,( zozyoyxoxozozyoyxoxozozyoyxoxo iiiiiiRjijijiRijijijR
  

),,( zozyoyxoxo jjjjjjR −−− } 2 .                                                                              (4.9) 

 

         To study the asymptotic behavior of the resistance of the perturbed SC lattice, 

substituting Eq. (4.5) into Eq. (4.9). Thus, one obtains 
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+−−−−−+−−− )0,0,0(),,()0,0,0(),,( GjijijiGGijijijG zozyoyxoxozozyoyxoxo  

 

2)},,()0,0,0(),,( zozyoyxoxoozozyoyxoxo jjjjjjGGiiiiiiG −−−+−−−− . 

 

The quantity )0,0,1(),,( oozozoyoyoxoxo GijijijG =−−− , whatever the broken bond is. 

Thus, using Eq. (4.5) with 
3

)0,0,1( RRo =  one gets  

 

),,(),,({

3
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),(),( zozyoyxoxozoxyoyxoxoo jijijiGijijijGRjiRjiR −−−−−−−−+=

2)},,(),,( zozyoyxoxozozyoyxoxo jjjjjjGiiiiiiG −−−+−−−+ . 

Using 0),,( →nmlGo as any of l, m, n goes to infinity the second term in the above 

equation cancels out. So; ),(),( jiRjiR o= . 

Thus, we conclude that for a large separation between sites the perturbed resistance 

approaches the perfect one. To see this, let us consider the removed bond to be between 

the site )0,0,0(=oi and the site )0,0,1(=oj , we need to find the resistance between any 

two sites ),,( zyx iiii = and ),,( zyx jjjj = . To do this one should use Eq. (4.9) and the 

values given in Table 4. Our results are shown in Table 5. Below we show some 

examples: 

1-The resistance between )0,0,0(=i and )0,0,1(=j . 
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2-The resistance between )0,0,0(=i and )0,0,2(=j  
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Table 5: Calculated and measured values of the resistance between the sites 

)0,0,0(=i and ),,( zyx jjjj = , for a perturbed simple cubic lattice (i.e. the bond 

between )0,0,0(=oi and )0,0,1(=oj is broken). 

The Site  
),,( zyx jjjj =  

 
R

jiR ),(
 

Theoretically 

 
R

jiR ),(
 

Experimentally

The Site  
),,( zyx jjjj =

 
R

jiR ),(
 

Theoretically 
R

jiR ),(
 

Experimentally
(0,0,0) 0 0 (-1,0,0) 0.356208 0.3559 
(1,0,0) 0.5 0.5009 (-2,0,0) 0.454031 0.4565 
(2,0,0) 0.485733 0.4904 (-3,0,0) 0.4526508 0.5003 
(3,0,0) 0.500062 0.5151 (-4,0,0) 0.467337 0.5699 
(4,0,0) 0.510257 0.5806 (0,-1,0) 0.360993 0.3606 
(0,1,0) 0.360993 0.3615 (0,-2,0) 0.457943 0.4611 
(0,2,0) 0.457943 0.4612 (0,-3,0) 0.491033 0.5040 
(0,3,0) 0.491033 0.5041 (0,-4,0) 0.506167 0.5735 
(0,4,0) 0.506167 0.5735 (0,0,-1) 0.360993 0.3613 
(0,0,1) 0.360993 0.3611 (0,0,-2) 0.457943 0.4615 
(0,0,2) 0.457943 0.4613 (0,0,-3) 0.491033 0.5043 
(0,0,3) 0.491033 0.5042 (0,0,-4) 0.506167 0.5736 
(0,0,4) 0.506167 0.5737 (-1,-1,-1) 0.454367 0.4560 
(1,1,1) 0.4659804 0.4203 (-2,-2,-2) 0.50009 0.5170 
(2,2,2) 0.503597 0.4780 (-3,-3,-3) 0.5158855 0.5854 
(3,3,3) 0.517510166 0.5458 (-4,-4,-4) 0.5237707 0.8974 
(4,4,4) 0.524705 0.8579    

            
 
 

         Now, if the removed bond is shifted and becomes between 

)0,0,1(=oi and )0,0,2(=oj , then the resistance between any two sites can be calculated, 

using Eq. (4.9). Our results are arranged in Table 6. 
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Table 6: Calculated and measured values of the resistance between the sites     

)0,0,0(=i and ),,( zyx jjjj = , for a perturbed SC lattice (i.e. the bond between 

)0,0,1(=oi and )0,0,2(=oj is broken). 

 

The Site  
),,( zyx jjjj =  

 
R

jiR ),(
 

Theoretically

 
R

jiR ),(
 

Experimentally

The Site  
),,( zyx jjjj =

 
R

jiR ),(
 

Theoretically 
R

jiR ),(
 

Experimentally
(0,0,0) 0 0 (-1,0,0) 0.334495 0.3345 
(1,0,0) 0.356208 0.3552 (-2,0,0) 0.421618 0.4247 
(2,0,0) 0.485733 0.4903 (-3,0,0) 0.452650 0.4656 
(3,0,0) 0.461555 0.4757 (-4,0,0) 0.467337 0.5342 
(4,0,0) 0.470021 0.5389 (0,-1,0) 0.334191 0.3338 
(0,1,0) 0.334191 0.3346 (0,-2,0) 0.421552 0.4247 
(0,2,0) 0.421552 0.4247 (0,-3,0) 0.452738 0.4656 
(0,3,0) 0.452738 0.4657 (0,-4,0) 0.467467 0.5348 
(0,4,0) 0.467467 0.5347 (-1,-1,-1) 0.420168 0.4185 
(1,1,1) 0.419799 0.4218 (-2,-2,-2) 0.462590 0.4795 
(2,2,2) 0.460461 0.4812 (-3,-3,-3) 0.477628 0.5479 
(3,3,3) 0.477922 0.5494 (-4,-4,-4) 0.485253 0.8602 
(4,4,4) 0.485476 0.8616    
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4.3 Experimental results 

         To study the resistance of the simple cubic lattice experimentally we constructed a 

three dimensional SC finite network of identical resistors ( R ) consisting of ( 888 xx ) 

resistors, each has a value of (1 Ωk ) and tolerance (1%) as shown in    Fig. 2. 

 

 

 

 

Fig. 2 A three dimensional SC mesh consisting of ( 888 xx ) identical resistors. 

         Using the perfect mesh shown in Fig. 2 above, we measured the 
resistance between the origin and the site ),,( nml along the directions [100], 
[010], [001], and [111]. Our results are arranged in Table  7 below. 
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Table 7: Calculated and measured values of the resistance between the 
origin and an arbitrary site in a   perfect SC lattice. 

The Site  
(l,m,n) 
 

R
nmlRo ),,(

 

Theoretically 

 
R

nmlRo ),,(
 

Experimentally

The Site  
(l,m,n) 
 

R
nmlRo ),,(

 

Theoretically 
R

nmlRo ),,(
 

Experimentally
(0,0,0) 0 0 (-1,0,0) 0.3333 0.3333 
(1,0,0) 0.3333 0.3331 (-2,0,0) 0.419683 0.4230 
(2,0,0) 0.419683 0.4227 (-3,0,0) 0.450371 0.4635 
(3,0,0) 0.450371 0.4633 (-4,0,0) 0.464885 0.5321 
(4,0,0) 0.464885 0.5323 (0,-1,0) 0.3333 0.3337 
(0,1,0) 0.3333 0.3331 (0,-2,0) 0.419683 0.4228 
(0,2,0) 0.419683 0.4228 (0,-3,0) 0.450371 0.4634 
(0,3,0) 0.450371 0.4623 (0,-4,0) 0.464885 0.5322 
(0,4,0) 0.464885 0.5321 (0,0,-1) 0.3333 0.3335 
(0,0,1) 0.3333 0.3334 (0,0,-2) 0.419683 0.4231 
(0,0,2) 0.419683 0.4230 (0,0,-3) 0.450371 0.4635 
(0,0,3) 0.450371 0.4634 (0,0,-4) 0.464885 0.5324 
(0,0,4) 0.464885 0.5325 (-1,-1,-1) 0.418305 0.4204 
(1,1,1) 0.418305 0.4203 (-2,-2,-2) 0.460159 0.4772 
(2,2,2) 0.460159 0.4774 (-3,-3,-3) 0.475023 0.5464 
(3,3,3) 0.475023 0.5461 (-4,-4,-4) 0.482570 0.8583 
(4,4,4) 0.482570 0.8581    

 
 
 
 
 
         Now, to measure the resistance for the perturbed case we removed the bond 

between )0,0,0(=oi and )0,0,1(=oj , then we measured the resistance between the site 

)0,0,0(=i and the site ),,( zyx jjjj =  along the directions [100], [010], [001], and 

[111]. Our results are arranged in Table 5 above. 

         Now, the removed bond is shifted, )0,0,1(=oi and )0,0,2(=oj , then we measured 

again the resistance between the site )0,0,0(=i and the site ),,( zyx jjjj =  along the 

directions [100], [010], [001], and [111]. Our results are arranged in Table 6 above. 
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         In this chapter, the results of the resistance for two- and three- dimensional infinite 

networks are given below. Section (5.1) is devoted to the two- dimensional results 

whereas section (5.2) is concerned with the three- dimensional results. 

5.1 Square Lattice 

         The results of the resistance for the two- dimensional lattice (square) are shown in 

Figs. (3-12). Figs. (3-6) show the theoretical results for the resistance of the perfect and 

perturbed infinite square lattices. The resistance diverges as the site ),( ml goes away 

from the origin.  

         The figures show the resistance of an infinite square perfect lattice is symmetric 

under the transformation ),(),( mlml −−→ . This is due to the inversion symmetry of the 

lattice. However, the resistance of the perturbed infinite square lattice is not symmetric 

due to the broken bond, except along the [01] direction since the broken bond is along 

the [10] direction. 

         Also, one can see that the resistance in the perturbed infinite square lattice is 

always larger than that in a perfect lattice. This is due to the positive contribution of the 

second term in Eq. (2.60). But as the separation between the sites increases the 

perturbed resistance goes to that of a perfect lattice.  

         Figures (3-4) show that the calculated resistance of the perfect infinite square 

lattice along the [10] direction is symmetric due to inversion symmetry of the lattice and 

for large values of l  and m , the resistance diverges. While the calculated resistance of 

the perturbed lattice (the resistor between )0,0(=i and )0,1(=j  is broken) is not 

symmetric and it is always larger than that of the perfect one due to the second positive 

term in Eq. (2.60). 

         As the broken bond is shifted to, )0,1(=i and )0,2(=j , the calculated perturbed 

resistance of the lattice approaches that of the perfect one more rapidly. The same thing 
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can be said about the [01], [12], [21] and [11] directions, except that the calculated 

perturbed resistance of the lattice is symmetric along the [01] direction, the same 

behavior as the perfect resistance, because there is no broken bond along this direction, 

see Figs. (5-6).  

         The constructed mesh gives accurately the bulk resistance shown in Figs. (7-12), 

and this means that a crystal consisting of (30x30) atoms enables one to study the bulk 

properties of the crystal in a good way. But, as we approach the edge then the measured 

resistance exceeds the calculated one and this is due to the edge effect. Also, one can 

see from the figures that the measured resistance is symmetric in the perfect mesh, 

which is expected.  

         Fig.10 and Fig.12 show that the measured resistance along the [01] direction is 

nearly symmetric within experimental error, which is expected due to the fact that there 

is no broken bond along this direction, and this is in agreement with the theoretical 

result. Finally, our values are in good agreement with the bulk values calculated by 

Cserti’s method.  
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Fig. 3 The calculated resistance between )0,0(=i and )0,( xjj = along the [10] 

direction of the perfect (squares) and the perturbed (circles) square lattice as   a function 

of xj . The ends of the removed bond are )0,0(=oi and )0,1(=oj . 
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Fig. 4 The calculated resistance between )0,0(=i and )0,( xjj = along the [10] 

direction of the perfect (squares) and the perturbed (circles) square lattice as   a function 

of xj . The ends of the removed bond are )0,1(=oi and )0,2(=oj . 
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Fig. 5 The calculated resistance between )0,0(=i and ),0( yjj = along the [01] 

direction of the perfect (squares) and the perturbed (circles) square lattice as a function 

of yj . The ends of the removed bond are )0,0(=oi and )0,1(=oj . 
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Fig. 6 The calculated resistance between )0,0(=i and ),0( yjj = along the [01] 

direction of the perfect (squares) and the perturbed (circles) square lattice as a function 

of yj . The ends of the removed bond are )0,1(=oi and )0,2(=oj .  
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Fig. 7 The resistance between )0,0(=i and )0,( xjj =  of the perfect square lattice as a 
function of xj ; calculated (squares) and measured (circles) along the [10] direction. 
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Fig. 8 The resistance between )0,0(=i and ),( yx jjj = of the perfect square lattice as a 

function of xj and yj ; calculated (squares) and measured (circles)   along the [11] 

direction. 
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Fig. 9 The resistance between )0,0(=i and )0,( xjj = of the perturbed square lattice as 

a function of xj ; calculated (squares) and measured (circles) along the [10] direction.  

The ends of the removed bond are )0,0(=oi and )0,1(=oj .  
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Fig. 10 The resistance between )0,0(=i and ),0( yjj = of the perturbed square lattice as 
a function of yj ; calculated (squares) and measured (circles) along the [01] direction. 
The ends of the removed bond are )0,0(=oi and )0,1(=oj . 



  76

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
(l,

m
)/R

The Site

 
Fig. 11 The resistance between )0,0(=i and )0,( xjj = of the perturbed square lattice as 

a function of xj ; calculated (squares) and measured (circles) along the [10] direction. 

The ends of the removed bond are )0,1(=oi and )0,2(=oj . 
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Fig. 12 The resistance between )0,0(=i and ),0( yjj = of the perturbed square lattice as 

a function of yj ; calculated (squares) and measured (circles) along the [01] direction.  

The ends of the removed bond are )0,1(=oi and )0,2(=oj . 
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5.2 Simple Cubic (SC) Lattice 

         The results of the resistance for the three- dimensional lattice (SC) are shown in 

Figs. (13-26). Figures (13-17) show the theoretical results, and Figs.(18-26) show the 

experimental ones. 

         Figure 13 shows the resistance against the site ( nml ,, ) along the [100] direction 

for both a perfect infinite and perturbed SC (i.e. the bond between )0,0,0(0 =i and 

)0,0,1(0 =j is broken). It is seen from the figure that the resistance is symmetric 

(i.e. )0,0,()0,0,( lRlR oo −= ) for the perfect case due to inversion symmetry of the lattice 

while for the perturbed case the symmetry is broken, hence the resistance is not 

symmetric.  As ( nml ,, ) goes away from the origin the resistance approaches its finite 

value for both cases. 

         Figure 14 shows the resistance against the site ( nml ,, ) along the [010] direction 

for a perfect infinite and perturbed SC (i.e. the bond between )0,0,0(0 =i and 

)0,0,1(0 =j is broken) lattice. The figure shows that the resistance is symmetric for the 

perfect and perturbed cases, since there is no broken bond along this direction. As 

( nml ,, ) goes away from the origin the resistance approaches its finite value for both 

cases. 

        In Figs. (15-17), the same behavior as in the above figures is seen except that the 

broken bond is shifted (i.e. the bond between )0,0,1(0 =i and )0,0,2(0 =j is broken). 

The resistance along ]100[ direction is not symmetric in the perturbed case since the 

broken bond is taken to be along that direction. 

         From Figs. (13-17), as the broken bond is shifted from the origin along [100] 

direction then the resistance of the perturbed SC approaches that of the perfect lattice. 

Also, one can see that the perturbed resistance is always larger than the perfect one. 
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Figure 18 shows the measured and calculated resistances of the perfect SC lattice 

against the site ( nml ,, ) along the [100] direction. It is seen from the figure that the 

measured resistance is symmetric within the experimental error 

(i.e. )0,0,()0,0,( lRlR oo −= ) due to inversion symmetry of the mesh. The measured 

resistance behaves the same along the directions [010], [001] and [111]. 

         Figure 21 shows the measured and calculated resistance values of the perturbed 

(i.e. the bond between )0,0,0(0 =i and )0,0,1(0 =j is broken) SC lattice against the site 

( nml ,, ) along the [100] direction. It is seen from the figure that the measured resistance 

is not symmetric (i.e. )0,0,()0,0,( lRlR oo −≠ ) due to the removed bond. The measured 

resistance along the [010], [001] and [111] directions is symmetric within experimental 

errors due to inversion symmetry of the mesh, as shown in Figs. ( 21-23). 

         Fig.24 shows the measured and calculated resistance of the perturbed (i.e. the 

bond between )0,0,1(0 =i and )0,0,2(0 =j is broken) SC lattice against the site ( nml ,, ) 

along the [100] direction. It is seen from the figure that the measured resistance is not 

symmetric (i.e. )0,0,()0,0,( lRlR oo −≠ ) due to the removed bond.  

         Figures (25-26) show the measured and calculated resistance values of the 

perturbed (i.e. the bond between )0,0,1(0 =i and )0,0,2(0 =j is broken) SC lattice 

against the site ( nml ,, ) along the [010] and [111] directions. It is seen from the figures 

that the measured resistance is symmetric within the experimental error due to the 

inversion symmetry of the mesh. From Figs. (18-26) the (8x8x8) constructed SC mesh 

gives the measured bulk resistance nearly exactly as those calculated. This also shows 

that one can study the bulk properties of a crystal consisting of (8x8x8) atoms 

accurately. In addition, as we approach the surface of the SC mesh the measured 

resistance exceeds the calculated due to surface effect. 
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Fig. 13 The resistance on the perfect (squares) and the perturbed (circles) SC between 

)0,0,0(=i and )0,0,( xjj = along the [100] direction as a function of xj . The ends of the 

removed bond are )0,0,0(=oi and )0,0,1(=oj . 
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Fig. 14 The resistance on the perfect (squares) and the perturbed (circles) SC between 

)0,0,0(=i and )0,,0( yjj = along the [010] direction as a function of yj . The ends of the 

removed bond are )0,0,0(=oi and )0,0,1(=oj . 
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Fig. 15 The resistance on the perfect (squares) and the perturbed (circles) SC between 

)0,0,0(=i and )0,0,( xjj =  along the [100] direction as a function of xj . The ends of 

the removed bond are )0,0,1(=oi and )0,0,2(=oi . 
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Fig. 16 The resistance on the perfect (squares) and the perturbed (circles) SC between 

)0,0,0(=i and )0,,0( yjj = along the [010] direction as a function of yj . The ends of the 

removed bond are )0,0,1(=oi and )0,0,2(=oi . 
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Fig. 17 The resistance on the perfect (squares) and the perturbed (circles) SC between 

)0,0,0(=i and ),,( zyx jjjj =  along the [111] direction as a function of j . The ends of 

the removed bond are )0,0,1(=oi and )0,0,2(=oi . 
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Fig. 18 The resistance between )0,0,0(=i and )0,0,( xjj =  of the perfect SC lattice as a 

function of xj ; calculated (squares) and measured (circles) along the [100] direction. 
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Fig. 19 The resistance between )0,0,0(=i and )0,,0( yjj =  of the perfect SC lattice as 

a function of yj ; calculated (squares) and measured (circles) along the [010] direction. 
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Fig. 20 The resistance between )0,0,0(=i and ),,( zyx jjjj =  of the perfect SC lattice 

as a function of j ; calculated (squares) and measured (circles) along the [111] direction. 
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Fig. 21 The resistance between )0,0,0(=i and )0,0,( xjj = of the perturbed SC as a 

function of xj ; calculated (squares) and measured (circles) along the [100] direction.  

The ends of the removed bond are )0,0,0(=oi and )0,0,1(=oj . 
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Fig. 22 The resistance between )0,0,0(=i and )0,,0( yjj = of the perturbed SC as a 

function of j ; calculated (squares) and measured (circles) along the [010] direction.  

The ends of the removed bond are )0,0,0(=oi and )0,0,1(=oj . 
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Fig. 23 The resistance between )0,0,0(=i and ),,( zyx jjjj = of the perturbed SC as a 

function of j ; calculated (squares) and measured (circles) along the [111] direction.  

The ends of the removed bond are )0,0,0(=oi and )0,0,1(=oj . 
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Fig. 24 The resistance between )0,0,0(=i and )0,0,( xjj = of the perturbed SC as a 

function of xj ; calculated (squares) and measured (circles) along the [100] direction.  

The ends of the removed bond are )0,0,1(=oi and )0,0,2(=oj . 
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Fig. 25 The resistance between )0,0,0(=i and )0,0,( yjj = of the perturbed SC as a 

function of yj ; calculated (squares) and measured (circles) along the [010] direction.  

The ends of the removed bond are )0,0,1(=oi and )0,0,2(=oj . 
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Fig. 26 The resistance between )0,0,0(=i and ),,( zyx jjjj = of the perturbed SC as a 

function of j ; calculated (squares) and measured (circles) along the [111] direction.  

The ends of the removed bond are )0,0,1(=oi and )0,0,2(=oj . 
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CONCLUSION           
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         In this concluding chapter the highlights of the thesis are first 

summarized (Section 6.1), and then some open problems and possible 

extension of this work are presented (Section 6.2). 

6.1 General Summary 

         This work aimed at calculating the resistance between two adjacent points in an 

infinite network of identical resistors (i.e. square and SC networks) theoretically and 

experimentally for both the perfect and perturbed cases. 

         Theoretically, the resistance between adjacent points in a perfect infinite square 

lattice is written in terms of the LGF at the origin and its derivatives, or by using the so-

called recurrence formulae which is simpler. The resistance in a perfect infinite SC 

lattice is expressed rationally in terms of the LGF at the origin using some recurrence 

formulae. 

         Experimentally, the resistance between any two points in a finite square and SC 

networks is measured for the first time. The bulk values obtained experimentally are 

very close to those obtained theoretically; while as approaching the edge or the surface 

of the constructed networks the observed resistances exceed those obtained theoretically 

due to the edge or the surface effect. It is shown that for large separation between the 

two sites the resistance in infinite perfect and perturbed square lattice diverges while for 

infinite perfect and perturbed SC lattices the resistance approaches a finite value.  

         The theoretical approach used in this thesis may have several advantages:  

(i) It can be used for more complicated lattice structures such as body- and face-  

centered cubic lattices. (ii) The results derived by this method reflect the symmetry of 

the lattice structures. (iii) From the equation for the Green's function one can, in 

principle, derive some of the so-called recurrence formulae for the resistances between 

arbitrary grid points of an infinite lattice. (iv) Finally, our approach for networks of 
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resistors may serve as a good example for introducing the Green's function method as 

well as many basic concepts such as the Brillouin zone (BZ) used in solid state physics. 

We therefore feel that the Green's function method is of some physical interest. 

6.2 Open Problems 

         There are many areas where one can extend the present work:  

- One can consider the case where more complicated perturbation is introduced. To do 

this, one has to write the current contribution at any site ir
r due to the bonds ( oo ji ) and 

( oolk ). Write the current at the site ir
r , then removing the above two bonds and writing 

Ohm’s and Kirchhoff’s laws as before. Finally, we write Dyson’s equation for the new 

perturbed case and then solve it. 

- The problem can be extended to finite lattice and semi infinite lattice 

structures. 

- The Green's function method can be applied to complex systems such as 

inductivity, capacitance and other combinations. 

- One can study finite lattice structures in one dimension, such as ladder 

structure. 
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 APPENDIX A 

The Asymptotic Form of the Lattice Green’s Functions for a Square 

Lattice 
 
 

In this appendix we derive the asymptotic form of the lattice Green’s function for a 

square lattice. The lattice Green’s function at site 0=rr is divergent since 0)( =KE
r

 

for 0=K
r

. Therefore we calculate the asymptotic form of )()0( rGG oo
r

− . Starting from 

Eq.(2.21) the LGF for site 21 amanr rrr
+=  in a square lattice becomes  
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The integral over x can be obtained from [Cserti, 2000] so,  

∫∫
−−

=
−−

=−
−

ππ

π ππ 0 sinh
}){exp(1

2
)}exp(){exp(1

22
1),()0(

s
Cosysndy

Sinhs
imysndymnGG oo .       A2 

The same result was obtained by [Venezian, 1994]. 

A similar method was used in [Chaikin’s book, 1995] in the case of a continuous 

medium in two dimensions. To calculate A2, we break the integral into three parts: 
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where s satisfies CosyCoshs −= 2 .                                                                               A3 
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The first part 1I can be expressed by the integral exponential )(zEin [Abramowitz et.al, 

1972]: 
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where )(zEin is defined by 
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z

t
tdtzEin  

For large values of its argument, ,)( γ+≈ LnzzEin where ...5772.0=γ is the 

Euler-Mascheroni constant. Thus, for large n and m  1I can be approximated by  
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Using (A3) the integral 2I  can be evaluated exactly: 
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In the integral 3I the integrand is close to zero for small values of  y  and 

s since ,ySinhss ≈≈ while for larger values of y  and s the exponentials are  

negligible, therefore .03 ≈I  

Finally, we find that the LGF for large arguments, i.e.,  
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APPENDIX     B 

DIVERGENCE OF THE RESISTANCE FOR A PERFECT SQUARE LATTICE 

         The resistance between the origin and any lattice site ),( ml  in a perfect square 

lattice is given in Eq. (3.29) as (providing that there is a large separation between the 

origin and the site ),( ml ) 

)
2
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π

.                                                                       B1 

Take the limit of Eq. (B1) as ∞→l . Thus, we can write 
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The value of )1( ∈+Ln  can be expanded as [Mary Boas, 1983] 
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Substituting Eq. (B3) into Eq. (B2) we obtains 
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So, as ∞→l then the resistance in a perfect square lattice goes to infinity. The same 

thing can be said if ∞→m . Therefore, we conclude that as the separation between the 

origin and the site ),( ml goes to infinity then the resistance diverges to infinity.  

 

 

 

 

 



  100

APPENDIX C 

The Asymptotic form of the Perturbed Resistance for a Square Lattice 

 

Starting with the final expression for the asymptotic behavior of the resistance of the 

square perfect lattice i.e. 

              )
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Now, using the above equation we wrote the resistance between the origin and the 

sites ),( oji , ),( oij , ),( oii , and ),( ojj respectively.   
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By substituting Eq. (C2) into the following formula 
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Now taking the limit of the Eq. (C5) as both i and j goes to infinity and using L’ 

Hopitals rule, then the second term cancels out⇒  
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APPENDIX     D 

ASYMPTOTIC FORM OF THE RESISTANCE FOR A SC LATTICE 

 

         The resistance between the origin and any lattice site ),,( nml in a perfect SC 

lattice is given in Eq. (3.27) as: 
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Now, the LGF for a perfect SC lattice is given as [Economou, 1983] 
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Taking the limit of Eq. (D2) as ∞→l , then we may write 

dxdydz
zyxE

nzmylxnmlG LimLim
l

o
l

∫ ∫ ∫ ++−
=

∞→∞→

π π π

π 0 0 0
3 )coscos(cos

coscoscos)1(),,(                            D3 

                            nzdydzmydx
zyxE

lxLim
l

coscos]
)coscos(cos

cos[)1(
0 0 0

3 ∫ ∫ ∫ ++−
=

∞→

π π π

π
   D4 

Now, let us take I to be  

dx
zycoxE

lxI Lim
l

∫ ++−
=

∞→

π

0 )coscos(
cos ; 

   dxlxxLim
l

∫
∞→

=
π

φ
0

cos)( .                                                                                               D5 

In the theory of Fourier series, we have the so-called Riemann’s lemma i.e.:  

0cos)( →∫
∞→

dxpxx
b

ap
Lim φ .                                                                                            D6 

From Eq. (D6), we conclude that 0=I . Thus, Eq. (D4) becomes 

0),,( →
∞→

nmlGo
l

Lim .                                                                                                    D7 
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The same thing can be done for ∞→m  and for ∞→n . Thus, we conclude that the 

LGF for a perfect SC lattice goes to zero as any of l , or m , or n  goes to infinity. 

Finally, Eq. (D1) becomes 

)0,0,0(
),,(

o
o G

R
nmlR

→ .                                                                                                D8 

So the resistance in a perfect SC lattice goes to a finite value for large separation 

between the origin and the site ),,( nml .  
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ـصــلخم  

  
  

  ــة غريـنـى دالــق علــتطـبي- ات لا نهائيةـة شـبكيـمقـاومب حسـا

  

                        

  
ـالبــالط دادـإع  

 ـــعدـــــــ أســادـــــــــجهـ

  إشــــراف

  جميــــــــل خليفــــــــــة. د. أ

 

 
 

بعدين وفي ثلاثة أبعاد، لقـد تـم حسـاب المقـاومـة الكهـربـائـية لشبكيات لا نهائية في 

  الحالة المثالية للشبكيات اللانهائية: وتناول البحث حالتين هما. وذلك باستخدام دالة غرين

للشبكيات، حيث تم إزالة رابطة بين نقطتين )  المشابة(، والحالة اللامثالية)بعدين وثلاثة أبعاد  ( 

  .شبكيتين

 تربط المقاومة الكهربائية لشبكية لانهائية وجرى توضيح كيفية اشتقاق العلاقة الرئيسة التي

أما بالنسبة لحساب المقاومة ). المثالية واللامثالية  ( نباستخدام دالة غرين لكلا الحالتين السابقتي

الأولى  باستخدام قيم دالة غرين عند نقاط : الكهربائية للشبكية الثنائية فقد تم استعمال طريقتين

  .خدام بعض علاقات التكرارشبكية محددة، والثانية باست

وتم التعبير عن المقاومة الكهربائية لشبكيات لا نهائية  ثلاثية الابعاد بشكل نسبي وبدلالة دالة 

كما تم التأكد من الحساب النظري ببناء شبكية ثنائية الأبعاد . غرين عند نقطة الاصل فقط 

مقاومة ) 88x8x(تكون من وأخرى ثلاثية الأبعاد ت مقاومة متماثلة) 20x20(تتكون من  

 .متماثلة، وقد بينت النتائج العملية تقارباً ممتازاً مع النموذج النظري

 

 

 

 


