
Discussiones Mathematicae
General Algebra and Applications 34 (2014) 167–181
doi:10.7151/dmgaa.1222

SOME PROPERTIES OF THE ZERO DIVISOR GRAPH

OF A COMMUTATIVE RING

Khalida Nazzal

Department of Mathematics

Palestine Technical University-Kadoorie

Tulkarm, West Bank, Palestine

e-mail: k.nazzal@ptuk.edu.ps

and

Manal Ghanem

Department of Mathematics

Jordan University, Amman 11942 Jordan

e-mail: m.ghanem@ju.edu.jo

Abstract

Let Γ(R) be the zero divisor graph for a commutative ring with identity.
The k-domination number and the 2-packing number of Γ(R), where R is an
Artinian ring, are computed. k-dominating sets and 2-packing sets for the
zero divisor graph of the ring of Gaussian integers modulo n, Γ(Zn[i]), are
constructed. The center, the median, the core, as well as the automorphism
group of Γ(Zn[i]) are determined. Perfect zero divisor graphs Γ(R) are
investigated.
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1. Introduction

The zero divisor graph of a commutative ring R was first introduced by Beck [11]
whose primary interest was coloring a graph with vertex set R, and two vertices
are adjacent if their product is zero. Anderson and Livingston [8] restricted the
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vertex set to Z∗(R), the set of nonzero zero divisors of R, this graph is denoted
by Γ(R). Since then, Γ(R), as well as other types of graphs associated with rings,
have been extensively studied by many authors. For a survey of zero divisor
graphs, the reader may refer to [5]. Abu Osba et al. [2] introduced the zero divisor
graph for the ring of Gaussian integers modulo n, in which the number of vertices,
the diameter, and the girth are found, as well as a complete characterization of
the n for which Γ(Zn[i]) is Eulerian or planar. Further properties of Γ(Zn[i]) are
investigated in [3]. The complement of Γ(Zn[i]) is studied in [1]. On the other
hand, Nazzal and Ghanem investigated the line graph of Γ(Zn[i]) and Γ(Zn[i]),
extensively in [25] and [18] respectively. A formula for the degree of each vertex
in Γ(Zn[i]) is given in [18].

The set of Gaussian integers, denoted by, Z[i], is defined by Z[i] = {a + bi :
a, b ∈ Z and i =

√
−1}. Clearly, Z[i] is a ring under the usual complex operations.

A Gaussian prime integer is a unit multiple of one of the following: 1+i, or a prime
integer q in Z which is congruent to 3 (mod 4), or a+ bi, a− bi, where a2+ b2 = p
and p is a prime integer in Z which is congruent to 1 (mod 4). Throughout this
paper, p and pj denote prime integers which are congruent to 1 modulo 4, while q
and qj denote prime integers which are congruent to 3 modulo 4. Let 〈n〉 be the
principal ideal generated by n in Z[i], where n is a natural number greater than
1, and let Zn = {0, 1, 2, 3, 4, . . . , n − 1} be the ring of integers modulo n. The
factor ring Z[i]/〈n〉 is isomorphic to Zn[i] = {a+ bi : a, b ∈ Zn}. Obviously, Zn[i]
with addition and multiplication modulo n is a ring. This ring is called the ring
of Gaussian integers modulo n. The zero divisor graph of a commutative ring
R, denoted by Γ(R), is the graph whose vertex set is the set of all nonzero zero
divisors of R, denoted by Z∗(R), and edge set E(Γ(R)) = {xy : x, y ∈ Z∗(R) and
xy = 0}. To avoid triviality throughout this paper, Zn[i] will be different from
Z2[i] or Zq[i], since Γ(Z2[i]) is K1 and Γ(Zq[i]) is K0.

For a connected graph G, the distance d(u, v) between two vertices u and v is
the minimum of the lengths of all u−v paths of G. The eccentricity of a vertex v
in G is the maximum distance from v to any vertex in G. The radius of G, rad(G),
is the minimum eccentricity among the vertices of G. The open neighborhood of
a vertex x in G is the set N(x) = {y : xy ∈ E(G)} while the closed neighborhood
of a vertex x in G is the set N [x] = N(x) ∪ {x}. The minimum degree of G
denoted by δ(G) is defined by min{deg(x) : x ∈ V (G)}.

In this article, we present our work as follows: in Section two, a complete
characterization for the center, the median, and the core of Γ(Zn[i]) is given.
In Section three, the k-domination and 2-packing numbers for Γ(R), where R
is a commutative Artinian ring with unity, are determined. In particular, k-
dominating sets and 2-packing sets for Γ(Zn[i]) are constructed. In section four,
the automorphism group of Γ(Zn[i]) is studied. Finally, in Section five, perfect
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zero divisor graphs are investigated. In particular perfect Γ(Zn) and perfect
Γ(Zn[i]) are studied.

2. The center, the median and the core of Γ(Zn[i])

The center of G is the set of all vertices of G with minimum eccentricity. For
any vertex x of a connected graph G, the status of x, denoted by s(x), is the
sum of the distances from x to the other vertices of G. The set of vertices with
minimal status is called the median of the graph. The center of Γ(Zn[i]) when
n is a power of a prime is studied in [25], where it was shown that the center of
Γ(Z2m [i]) consists of one vertex, namely {(1+i)2m−1} and the center of Γ(Zqm[i])
is the set {aqm−1 + bqm−1i : a, b ∈ U(Zq)} − {0}. Note that Zpm[i] ∼= Zpm ×Zpm,
the center of Γ(Zpm ×Zpm) is the set {(x, y) : x, y ∈ Z(Zpm)}− {(0, 0)}. Here we
will find the center for the general case. Let n and m be positive integers. Let
R = R1 × R2 × · · · × Rn × F1 × F2 × · · · × Fm where each Rj is a commutative
Artinian local ring with unity that is not a field and each Fj is a field. For each
j = 1, 2, . . . ,m, define the ideal Ij = {0}×{0}× · · · ×Fj ×{0}× · · · × {0}. Then
the center of Γ(R) is the set C = J(R) ∪ (

⋃m
j=1 Ij) − {(0, 0, . . . , 0)}, where J(R)

is the Jacobson radical of R, [26].

If Mj is the maximal ideal of Rj, then J(R) = M1 ×M2 × · · · ×Mn × {0} ×
{0}×· · ·×{0}. Now, let us study the maximal ideals of the factors in the Artinian
decomposition of Zn[i] where n = 2m

∏r
j=1 p

rj
j

∏s
j=1 q

sj
j

∏t
j=1 qj with sj ≥ 2. The

maximal ideal in Z2m [i] is 〈1 + i〉. For Zqm [i], the maximal ideal is 〈q〉, while
Zpm[i] ∼= Zpm × Zpm and the maximal ideal in Zpm is 〈p〉. Thus each p

rj
j in the

decomposition of n gives rise to two factors in the Artinian decomposition of Zn[i].
If the Artinian decomposition of Zn[i] = R1 ×R2 × · · · ×Rl ×F1 ×F2 × · · · ×Ft,
then R1 = Z2m [i] if n is even. Otherwise, Rj is either of the form Zqm [i] or Zpm

and Fj = Zq[i] for some q. Thus if l is the number of local rings in the Artinian
decomposition of Zn[i], then J(R) = {(z1, z2, . . . , zl, 0, 0, . . . , 0) : zj ∈ Z(Rj)}.
Thus, the following theorem is obtained.

Theorem 2.1. If the Artinian decomposition of Zn[i] = R1 × R2 × · · · × Rl ×
F1 × F2 × · · · × Ft, where n is divisible by at least two distinct primes, then

the center of Γ(Zn[i]) is given by C = {(z1, z2, . . . , zl, 0, . . . , 0) : zj ∈ Z(Rj)}
∪(⋃t

j=1 Ij)−{(0, 0, . . . , 0)}, where Ij = {0}×{0}× · · · ×Zqj [i]×{0}× · · · × {0}.

If n = p or n = q1q2, then Γ(Zn[i]) is complete bipartite and ecc(v) = 2 for each
vertex in Γ(Zn[i]). Hence, the center of Γ(Zn[i]) is V (Γ(Zn[i])); i.e., in this case,
V (Γ(Zn[i])) is self-centered.

The eccentricity of each vertex in Γ(Zn[i]), when n is a power of a prime, is
determined in [25]. If n 6= q1q2, and n is divisible by at least two distinct primes,
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then, diam(Γ(Zn[i])) = 3, [3], this together with the above theorem give the
eccentricity of each vertex in Γ(Zn[i]) when n is divisible by at least two distinct
primes.

Corollary 2.2. If n is divisible by at least two distinct primes, n 6= q1q2 and

v ∈ V (Γ(Zn[i])), then ecc(v) = 2, if v ∈ C, otherwise ecc(v) = 3, where C is the

center of Γ(Zn[i]).

The cardinality of the center of Γ(Zn[i]), when n is divisible by at least two
distinct primes, could easily be computed using appropriate formulas for the
cardinality of each Z(Rj) given in [2].

Corollary 2.3. The cardinality of the center of Γ(Zn[i]) is

(1) 1, if n = 2m,

(2) q2 − 1, if n = qm,

(3) p2m−2 + 2pm−1 − 2pm−1 − 1, if n = pm, m ≥ 2.

(4) (
∏l

j=1 |Z(Rj)|)+(
∏t

j=1 qj)−1, if Zn[i] = R1×R2×· · ·×Rl×F1×F2×· · ·×Ft,

where n is divisible by at least two distinct primes.

The relationship between the center and the median of Γ(R) is investigated by
Redmond [26], who proved that if R is a finite commutative ring with unity that
is not an integral domain, then the median and the center of Γ(R) are equal if
the radius of Γ(R) is at most 1, and the median is a subset of the center if the
radius is 2. Now, we study the median of Γ(Zn[i]).

Theorem 2.4.

(1) The median of Γ(Z2m [i]) is {(1 + i)2m−1} and the median of Γ(Zqm[i]) is

{αqm−1 + βqm−1i : α, β ∈ U(Zq)} − {0},m ≥ 2.

(2) The median of Γ(Zp[i]) is Z∗(Zp[i]).

(3) if n = q1q2 . . . qt, t ≥ 2 and q1 < q2 < · · · < qt, then the median of Γ(Zn[i])
is the set {(u, 0, 0, . . . , 0) : u ∈ U(Zq1 [i])}.

(4) Let Zn[i] = R1 × R2 × · · · × Rl × F1 × F2 × · · · × Ft, l ≥ 1, be the Ar-

tinian decomposition of Zn[i]. Let S = {s : 1 < s < l, |Z∗(Rs)|
∏

j 6=s |Rj | =
max{|Z∗(Rk)|

∏

j 6=k |Rj | : 1 ≤ j, k ≤ l}}. If Zn[i] is not local, then the

median of Γ(Zn[i]) is given by {y : y = (yj)
l+t
j=1 where if j ∈ S, then

yj = uz, u ∈ U(Rj) and, ann(z) = Z(Rj), otherwise, yj = 0}.

Proof. (1) If R is local, then Γ(R) has a vertex or set of vertices each of which
is adjacent to all other vertices. Thus, in this case, the median is equal to the
center. So, the median of Γ(Z2m [i]) is {(1+ i)2m−1}, and the median of Γ(Zqm[i])
is {αqm−1 + βqm−1i : α, β ∈ U(Zq)} − {(0)},m ≥ 2, [25].
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(2) If Zn[i] is not local, then from [3] the radius of Γ(Zn[i]) is 2. Note that if x
is in the center of Γ(Zn[i]), then the eccentricity of x is 2. Hence, s(x) =deg(x)+
2(|Z∗(R)|−deg(x) − 1), thus s(x) = 2|Z∗(R)|−deg(x) − 2. Therefore, vertices
in the median of Γ(Zn[i]) are precisely those vertices of the center of maximum
degree in Γ(Zn[i]). Since Γ(Zp[i]) is regular graph then the median of Γ(Zp[i]))
is Z∗(Zp[i]).

(3) The result holds by the argument in the proof of (2) and the fact that
vertices of maximum degree are vertices in the given set.

(4) Since Rj is local, it contains an element z, such that ann(z) = Z(Ri).
Again, using similar argument to the proof of (2) and then finding vertices of
maximum degree in Γ(Zn[i]), the result holds.

The chromatic number of a graph G, χ(G), is the minimum number k such that
G can be colored using k different colors with no two adjacent vertices having the
same color. The clique number, ω(G), of a graph G is the maximum order among
the complete subgraphs of G. A graph G is a core if any homomorphism from G
to itself is an automorphism. Also, a subgraph H of G is called a core of G if H
is a core itself, and there is a homomorphism from G to H. If R is a ring such
that its chromatic number and clique number coincide, i.e., χ(Γ(R)) = ω(Γ(R)).
Then, the core of Γ(R) is the maximal clique in Γ(R), [16]. On the other hand,
χ(Γ(Zn[i])), and ω(Γ(Zn[i])), when n is a power of a prime are computed in, [3]
and [18] respectively. Furthermore, the maximal clique, when n is a power of a
prime, is determined in [18] comparing the results in the two papers, we see that,
χ(Γ(Zn[i])), and ω(Γ(Zn[i])) are equal, and so we get,

Corollary 2.5. The core of Γ(Zn[i]) is the maximal complete subgraph of

Γ(Zn[i]) induced by the following set,

(1)

S =
⋃

⌈m
2
⌉≤k,j≤m

{α2j + β2ki : α ∈ U(Z2m−j ), β ∈ U(Z2m−k)} − {0}, if m is even,

and S ∪ 2⌊
m
2
⌋ if m is odd, where n = 2m,m ≥ 2.

(2)

S =
⋃

⌈m
2
⌉≤k,j≤m

{αqj + βqki : α ∈ U(Zqm−j ), β ∈ U(Zqm−k)} − {0}, if m is even,

and S ∪ q⌊
m
2
⌋ if m is odd, where n = qm,m ≥ 2.

(3)

S =
⋃

⌈m
2
⌉≤k,j≤m

{(αpj , βpk) : α ∈ U(Zpm−j), β ∈ U(Zpm−k)}−{(0, 0)}, if m is even,
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and S ∪ (p⌊
m
2
⌋, p⌈

m
2
⌉) if m is odd, where n = pm,m ≥ 2.

Since Γ(Zn[i]) is a complete graph if and only if n = q2, [2], the following corollary
is obtained.

Corollary 2.6. Γ(Zn[i]) is a core if and only if n = q2.

3. Multiple domination and 2-packing of Γ(R)

The domination number of the zero divisor graph of a commutative Artinian ring,
with identity that is not a domain and with radius at most one is also one. While
if the radius is 2, then the domination number of Γ(R) is equal to the number
of factors in the Artinian decomposition of R [16]. A subset S of the vertex set
V (G) of a graph G is a 2-packing if for each u, v ∈ S, N [u] ∩ N [v] = φ. The
2-packing number, ρ(G), is the cardinality of a maximum packing. A subset D
of the vertex set V (G) of a graph G is a dominating set in G if each vertex of
G, not in D, is adjacent to at least one vertex of D. The minimum cardinality
of all dominating sets in G, γ(G), is called the domination number of G. A set
D is a k-dominating set for a graph G, if each vertex in V (G)\D is dominated
by at least k vertices in D. The minimum cardinality of a k-dominating set is
denoted by γk(G). A set D is a k-tuple dominating set for a graph G, if each
vertex in V (G) is dominated by at least k vertices in D, the minimum cardinality
of a k-tuple dominating set is denoted by γ×k(G), [19].

The next theorem gives the k-domination number Γ(R), where R is a com-
mutative Artinian ring with unity that is not a domain.

Theorem 3.1. Let R be a commutative Artinian ring with unity that is not a

domain, R = R1×R2×· · ·×Rn×F1×F2×· · ·×Fm. Suppose that if n ≥ 1, then
k ≤ |center(Γ(Rj))|, j = 1, . . . , n, and if m ≥ 1, then k ≤ |Fj

∗|, j = 1, . . . ,m.

Then the k-domination number is equal to k(m+ n).

Proof. If R is local and k ≤ | center(Γ(R))|, then since each vertex in the center
of Γ(R) dominates all other vertices, we have γk(Γ(R)) = k. Now, if R is not
local, let R = R1 ×R2 × · · · ×Rn × F1 × F2 × · · · × Fm. Let Yj = {yjt}kt=1 where
yjt = (0, 0, . . . , 0, xjt, 0, . . . , 0) such that xjt ∈ center(Γ(Rj)) and j = 1, . . . , n
and Zs = {zst}kt=1, where zst = (0, 0, . . . , 0, ust, 0, . . . , 0) such that ust ∈ Fs

∗ and
s = 1, . . . ,m.

Let D = (
⋃n

j=1 Yj) ∪ (
⋃m

s=1 Zs). Clearly D is a k-dominating set of Γ(R). So,
γk(Γ(R)) ≤ k(m+ n).

Now, let tj = (1, 1, . . . , 1, 0, 1, . . . , 1) where 0 is in the ith position. Then
N(ti) = {(0, 0, . . . , 0, xi, 0, . . . , 0), where xi ∈ Ri

∗, if i ≤ l and xi ∈ Fi
∗ otherwise}.

Thus, any k-dominating set D́ of Γ(R) must contain k vertices of N [ti] for each i.
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Note that N [tj ] ∩ N [tl] = φ, for l 6= j. Thus, if D́ is a k-dominating set, then
|D́| ≥ k(m+ n), hence equality holds.

Since each vertex in the suggested k-dominating set D is also k-dominated by D,
we have the following corollary

Corollary 3.2. Let R be a commutative Artinian ring with unity that is not

a domain, R = R1 × R2 × · · · × Rn × F1 × F2 × · · · × Fm. Suppose that if

n ≥ 1, then k ≤ |center(Γ(Rj))|, j = 1, . . . , n, and if m ≥ 1, then k ≤ |Fj
∗|,

j = 1, . . . ,m. Then γ×k(Γ(R)) = kγ(Γ(R)) which is k times the number of

factors in the Artinian decomposition of R.

Corollary 3.3. Let R be a commutative Artinian ring with unity that is not a

domain, then the 2-packing number ρ(Γ(R)) = γ(Γ(R)).

Proof. If R is local, then Γ(R) has a vertex which is adjacent to every other
vertex, so ρ(Γ(R)) = 1. Now, assume R is not local, let R = R1×R2×· · ·×Rn×
F1 × F2 × · · · × Fm where n + m ≥ 2 is the Artinian decomposition of R. Let
ti = (1, 1, . . . , 1, 0, 1, . . . , 1) where 0 is in the ith position. Since N [tj ]∩N [tl] = φ,
for j 6= l. Thus, the set T = {ti : i = 1, 2, . . . , n + m} is a 2-packing set with
γ(Γ(R)) vertices. On the other hand, for any graph G, ρ(G) ≤ γ(G), (Theorem
2.13, [19]) and so, equality holds.

Next, we move to the multiple domination and 2-packing of Γ(Zn[i]). The dom-
ination number of Γ(Zn[i]), n =

∏m
j=1 π

rj
j , where π′

js are Gaussian prime in-
tegers and r′js are positive integers, was determined in [25] to be the number
m of distinct prime factors of n, if n is odd and m − 1 if n is even. Be-
sides, it was shown that a minimum dominating set for Γ(Zn[i]) is D = {Pj =

πr1
1 πr2

2 . . . π
rj−1
j . . . πrm

m : j = 1, 2, . . . ,m}. Note that for each j = 1, 2, . . . ,m, the
vertex πj is only adjacent to Pj in D, and N(πj) = {u Pj : u ∈ U(Zn)} besides,
δ(Γ(Zn[i])) =deg(πr), for some r ≤ m. On the other hand N [πj] ∩ N [πl] = φ
for j 6= l. Thus, γk(Γ(Zn[i]) ≥ kγ(Γ(Zn[i])). Since the collection of k-unit mul-
tiples of each Pj , where j = 1, 2, . . . ,m, also k-dominates V (Γ(Zn[i])), we have
γk(Γ(Zn[i])) ≤ kγ(Γ(Zn[i])). Thus the following theorem is obtained.

Theorem 3.4. If n =
∏m

j=1 π
rj
j , where π′

js are Gaussian prime integers and r′js
are positive integers, and k ≤ δ(Γ(Zn[i])), then

(1) γk((Γ(Zn[i])) = kγ(Γ(Zn[i])) =

{

km, if n is odd;

k(m− 1), if n is even.

(2) γ×k(Γ(Zn[i])) = γk(Γ(Zn[i])) = kγ(Γ(Zn[i])).

Graphs with equal 2-packing number and domination number are of special im-
portance, in the same spirit of the above theorem, the following result is obtained.
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Theorem 3.5. If G is a connected graph for which ρ(G) = γ(G), then γk(G) =
kγ(G), where k ≤ δ(G).

The domination number of the complement of Γ(R) where R = R1 ×R2 and R1

and R2 are commutative rings with unity is 2, [18]. The following theorem gives
the k-domination number of Γ(R).

Theorem 3.6. Let R = R1 ×R2, where R1 and R2 are commutative rings with

unity such that |reg(Ri)| ≥ k, for i = 1, 2. Then γk(Γ(R)) = kγ(Γ(R)) = 2k.

Proof. Let u1, u2, . . . , uk ∈ reg(R1) and v1, v2, . . . , vk ∈ reg(R2). The set S =
{(ui, 0), (0, vi) : i = 1, . . . , k} is a k-dominating set with 2k vertices. Suppose
that there is a k-dominating set B with less than 2k vertices, then there exists
u ∈ reg(R1) or v ∈ reg(R2) such that either (u, 0) or (0, v) is dominated by less
than k vertices in B. Thus the result holds.

The Cartesian product of two graphs G and H, G�H, is the graph whose vertex
set is V (G) × V (H) and two vertices in G�H are adjacent if they are equal in
one coordinate and adjacent in the other coordinate [19]. A graph G is said to
satisfy Vizing’s conjecture if for any graph H, we have γ(G�H) ≥ γ(G)γ(H). A
graph G, for which ρ(G) = γ(G), satisfies Vizing’s conjecture, [20]. Another class
of graphs which satisfies Vizing’s conjecture are graphs with domination number
2, [17]. Thus the following corollary is obtained.

Corollary 3.7.

(1) If R is a commutative Artinian ring with unity that is not a domain, then

Γ(R) satisfies Vizing’s conjecture.

(2) If R = R1 × R2, where R1 and R2 are commutative rings with unity, then

Γ(R) satisfies Vizing’s conjecture.

4. The automorphism group of Γ(Zn[i])

A graph automorphism f of a graph G is a bijection f : G → G which preserves
adjacency. The set Aut(G) of all graph automorphisms of G forms a group under
the usual composition of functions called the automorphism group of G.

We are going to determine the automorphism group for Γ(Zn[i]), where n is a
power of a prime integer. We use the notation wr to denote the wreath product.

Theorem 4.1.

(1) Aut(Γ(Z2m [i])) ∼=
∏2m−1

j=1 S22m−j−1 , m ≥ 2.

(2) Aut(Γ(Zq2 [i])) ∼= Sq2−1, and Aut(Γ(Zqm[i])) ∼=
∏2m−1

j=1 Snk
,m ≥ 3
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where nk = 2(q − 1)(q2m−1 − qm+k−2)− (q − 1)2q2m−2k−2.

(3) Aut(Γ(Zp[i])) ∼= Sp−1wrS2. And for m ≥ 2, Aut(Γ(Zpm[i]))

∼=
[(

m−1
∏

k=1

Snmk
×

m−1
∏

k=1

(Sn0k
)wrS2

]

×
[

m−2
∏

j=1

m−1
∏

k=j+1

Snjk
wrS2

)]

×
m−1
∏

k=1

Snkk
, nkj

= (p− 1)2p2m−k−j−2.

Proof. (1) From [3], we have Γ(Z2m [i]) ∼= Γ(Z22m). Thus the result holds by
Theorem 31 of [22].

(2) Since Γ(Zq2 [i]) = Kq2−1, then Aut (Γ(Zq2 [i])) ∼= Sq2−1. Now, we study the
case n = qm,m ≥ 3. Let Akj = {αqj + βqki : α ∈ U(Zqm−j ), β ∈ U(Zqm−k), 1 ≤
j, k ≤ m}. Clearly, the sets Akj , not both k, j = m, partition V (Γ(Zqm [i])).
Note that N(αqr + βqsi) =

⋃

k,j≥m−min(r,s)Akj. For k = 1, . . . ,m. Let Nk =
{αqr + βqsi : α ∈ U(Zqm−r), β ∈ U(Zqm−s) and min(r, s) = k}, then two vertices
in Γ(Zqm[i]) have the same neighborhood, and the same degree, if and only if
they belong to the same set Nk. Let nk = |Nk|, then easy calculations gives nk =
2(q−1)(q2m−1−qm+k−2)−(q−1)2q2m−2k−2. Thus, Aut (Γ(Zqm [i])) ∼=

∏m
k=1 Snk

.
(3) Γ(Zp[i]) = Kp−1,p−1 and hence Aut(Γ(Zp[i])) ∼= Sp−1wrS2. Now, we

study the Automorphism group of Γ(Zpm × Zpm). Let Akj = {(αpj , βpk) : α ∈
U(Zpm−j ), β ∈ U(Zpm−k), 0 ≤ j, k ≤ m}. The sets Akj , not both k, j = m or 0,
partition V (Γ(Zpm×Zpm)). Two vertices have the same neighborhood if and only
if they belong to the same set Akj, and two vertices x and y have the same degree
if and only if x, y ∈ Ajk ∪ Akj . Let nkj = |Akj|, then nkj = (p − 1)2p2m−k−j−2.
For each k = 1, . . . ,m − 1, vertices in each A00 permute to give Snk0

and ver-
tices in each Akm permute to give Snkm

. Let G1 be the graph induced by
(
⋃m−1

k=1 Amk) ∪ (
⋃m−1

k=1 A0k). The automorphism group of G1 is (
∏m−1

k=1 Snmk
) ×

(
∏m−1

k=1 Snk0
). Another copy of G1 is induced by (

⋃m−1
k=1 Akm) ∪ (

⋃m−1
k=1 Ak0).

Therefore, Aut(2G1) ∼= (
∏m−1

k=1 Snmk
×
∏m−1

k=1 Sn0k
) wr S2. For 1 ≤ j < k ≤ m−1,

the set Akj induces a graph which is isomorphic to 〈Ajk〉. If j < ⌈m2 ⌉, then Akj is
an independent set, otherwise, 〈Akj〉 is a complete graph. Thus, Aut(Γ(Zpm [i])) ∼=
[(
∏m−1

k=1 Snmk
×∏m−1

k=1 Sn0k
) wr S2]× [

∏m−2
j=1

∏m−1
k=j+1(Snjk

wr S2)]×
∏m−1

k=1 Snkk
.

5. Perfect zero divisor graphs

A graph G is perfect if the chromatic number of every induced subgraphH equals
the size of the largest clique of that subgraph, i.e., for every H ⊆ G, ω(H) =
χ(H), otherwise G is called an imperfect graph. In 1960, Berge [12] formulated
two conjectures about perfect graphs. The week perfect graph conjecture which
states that a graph is perfect if and only if its complement is perfect. This
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conjecture was proved in 1972 by Lovász, [23]. The second conjecture is the
strong perfect graph conjecture and states that a graph is perfect if and only
if it contains, as an induced subgraph, neither an odd cycle of length at least
five nor its complement, it was not until 2002 that this conjecture was settled by
Chudnovsky et al., [15].

In this section we investigate which zero divisor graphs are perfect. In partic-
ular, we study when the zero divisor graphs Γ(Zn) and Γ(Zn[i]) are perfect.

A graph G is called P4-free if it does not contain a P4 as an induced subgraph.
And a graph is called slightly triangulated if it contains no induced odd cycle
of length at least five and every induced subgraph H contains a vertex whose
neighborhood in H does not contain a P4. A graph G is called a murky graph if
it contains no C5, P6 or P6 as an induced subgraph.

The following theorem provides some tools for proving that a graph is perfect.

Theorem 5.1.

(1) If G is a P4-free graph, then G is perfect, [13].

(2) If G is slightly triangulated graph, then G is perfect, [24].

(3) If G is murky graph, then G is perfect, [21].

Theorem 5.2.

(1) If n = tm, t is prime, then Γ(Zn) is perfect.

(2) If n = 2m, then Γ(Zn[i]) is perfect.

(3) If n = qm, then Γ(Zn[i]) is perfect.

Proof. (1) The graph Γ(Ztm) is p4-free graph. To show this, let v1− v2− v3− v4
be an induced P4 subgraph of Γ(Ztm). Then vj = ajt

mj where (aj , t) = 1 and
mj+mj+1 ≥ m for j = 1, 2, 3, 4. Hence, m1 ≤ m4 gives m ≤ m1+m2 ≤ m2+m4

and m1 ≥ m4 gives m1 +m3 ≥ m3 +m4 ≥ m. Thus, v2 and v4 are adjacent or
v1 and v3 are adjacent, a contradiction.

(2) Since, Γ(Z2m [i]) ∼= Γ(Z22m), from part (1) the result holds.
(3) Let v ∈ Γ(Zqm [i]). Then 0 6= v = αqa + βqbi, were α, β ∈ U(Zq) and

N(v) = {cqr+dqsi : r, s ≥ m−min{a, b}}, [25]. Now assume that v1−v2−v3−v4
is an induced P4 subgraph of Γ(Zqm [i]). Then vj = αjq

aj +βjq
bj i, where αj, βj ∈

U(Zq). So, v1 and v3 are adjacent or v2 and v4 are adjacent, a contradiction. So
Γ(Zqm [i]) is P4 free graph and hence it is perfect.

Chiang-Hsieh et al., [14] proved that if (R,m) is local ring such that |R| = tn,
where t is prime, and mn−1 6= 0 then Γ(R) ∼= Γ(Ztn). So, Γ(R) is a perfect graph.
This together with the above theorem gives the following corollary.

Corollary 5.3. If (R,m) is local ring such that |R| = tn, where t is prime and

mn−1 6= 0, then Γ(R) is perfect.
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Theorem 5.4. Let R = R1 ×R2. Then

(1) If R1 and R2 are integral domains, then Γ(R) is perfect.

(2) If R1 is an integral domain and R2 is non-integral domain such that for every

a, b ∈ Z(R2) where a, b need not be distinct, ab = 0, then Γ(R) is perfect.

(3) If R1 and R2 are non-integral domains such that for every a, b ∈ Z(Ri),
where a, b need not be distinct, ab = 0, then Γ(R) is perfect.

Proof. (1) Since Γ(R) is acomplete bipartite graph it is perfect

(3) Assume that R1 and R2 are non-integral domain such that for every
a, b ∈ Z(Ri), where a, b need not be distinct, ab = 0. Then Γ(R) is a slightly
triangulated graph. To show this, note that any induced P4 graph of Γ(R) is one
of the following,

(a, v) − (b, 0)− (0, c) − (u, 0) where a, b ∈ Z∗(R1), c ∈ R2
∗

and u ∈ U(R1), v ∈ U(R2),

(a, v) − (b, 0)− (0, c) − (u, d) where a, b ∈ Z∗(R1), c, d ∈ Z∗(R2)

and u ∈ U(R1), v ∈ U(R2),

(u, x)− (0, y) − (z, 0) − (0, v) where x, y ∈ Z∗(R2), z ∈ R1
∗

and u ∈ U(R1), v ∈ U(R2),

or

(u, x)− (0, y) − (z, 0) − (w, v) where x, y ∈ Z∗(R2), z, w ∈ Z∗(R1)

and u ∈ U(R1), v ∈ U(R2).

So, Γ(R) has no induced cycle Cn, for n ≥ 5. Also, for every (t, s) ∈ V (Γ(R)),
N((t, s)) does not contain a P4 subgraph, since N((t, s))∩{(r, v) : r ∈ Z(R1), v ∈
U(R2)} = φ or N((t, s)) ∩ {(u, r) : r ∈ Z(R2), u ∈ U(R1)} = φ.

Corollary 5.5.

(1) For n = tm1

1 tm2

2 , where t1, t2 are primes and 1 ≤ m1,m2 ≤ 2, Γ(Zn) is

perfect.

(2) For n = p or n = p2 or n = 2qm1 or n = qm1

1 qm2

2 , where 1 ≤ m1,m2 ≤ 2,
Γ(Zn[i]) is perfect.

Proof. (2) Note that, Zpm [i] ∼= Zpm × Zpm and Z2qm[i] ∼= Z4 × Zqm[i].

Theorem 5.6. If R = R1×R2×R3, where R1, R2 and R3 are integral domains,

then Γ(R) is a perfect graph.
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Proof. Assume that R = R1 × R2 × R3, where R1, R2 and R3 are integral
domains. Then it easy to verify that any P4 path of Γ(R) is one of the following,

(a1, a2, 0) − (0, 0, b3)− (c1, 0, 0) − (0, d2, d3),

(a1, a2, 0) − (0, 0, b3)− (0, c2, 0) − (d1, 0, d3),

or
(a1, 0, a3)− (0, b2, 0) − (c1, 0, 0) − (0, d2, d3),

where ai, bi, ci, di ∈ R∗
i . So Γ(R) has no induced cycle Cn, n ≥ 5 and there is

no vertex v ∈ Γ(R) such that N(v) contains a P4. Hence Γ(R) is a slightly
triangulated graph and thus Γ(R) is perfect.

Corollary 5.7.

(1) For n = t1t2t3, where t1, t2, t3 are primes, Γ(Zn) is perfect.

(2) For n = qp or n = q1q2q3, Γ(Zn[i]) is perfect.

If R is a product of four integral domains, then Γ(R) is not a slightly triangulated
graph since N((0, 0, 0, 1)) contains (1, 1, 0, 0)− (0, 0, 1, 0)− (1, 0, 0, 0)− (0, 1, 1, 0)
as an induced subgraph. However, the next theorem shows that Γ(R) is perfect.

Theorem 5.8. If R =
∏4

i=1Ri where Ri is an integral domain for i = 1, 2, 3 and

4, then Γ(R) is perfect.

Proof. Let a = (ai), b = (bi), c = (ci), d = (di), e = (ei), f = (fi) ∈ Z∗(R).
Suppose that a− b− c− d− e is an induced P5 subgraph of Γ(R). Then a has at
least two non-zero components. So, we have the following two cases:

Case 1. a has exactly two non-zero components, say a1 and a2. Then b =
(0, 0, b3, 0) or b = (0, 0, 0, b4) implies that ed 6= 0 since bd 6= 0 and be 6= 0, a
contradiction while b = (0, 0, b3, b4), gives c = (c1, 0, 0, 0) or c = (0, c2, 0, 0). Let
c = (c1, 0, 0, 0), then d = (0, d2, d3, 0) and e = (e1, 0, 0, e4) or d = (0, d2, 0, d4) and
e = (e1, 0, e3, 0).

Case 2. a has exactly three non-zero components, say a1, a2 and a3. Then
b = (0, 0, 0, b4). Since bd 6= 0be, we have d4 6= 0 6= e4. So, ed 6= 0, a contradiction.

Now, it is easy to verify that Γ(R) has no C5 or P6 as an induced subgraph.
Moreover Γ(R) has no induced P6 path. To show this let a− b− c− d− e− f be
an induced path of Γ(R). Then we have three cases:

Case 1. a has exactly one non-zero component, say a1. Then b1 6= 0. If b
has only two non zero components say b = (b1, b2, 0, 0), then c = (0, c2, c3, c4)
gives e = (0) since be = ec = 0 and c = (0, c2, c3, 0) or c = (0, c2, 0, c4) gives
d = (0, 0, d3, d4) and f = (0), a contradiction.
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And if b has three non-zero components, say b = (b1, b2, b3, 0), then bd = 0 and
cd 6= 0 gives c4 6= 0. But ec = eb = 0 implies that e = (0), a contradiction.

Case 2. a has exactly two non-zero components, say a1 and a2. Then ae =
be = ce = ac = 0 and ab 6= 0 6= bc, yields e = (0), a contradiction.

Case 3. a has exactly three non zero components, say a1, a2 and a3. Then
ac = 0 and ad = 0 implies that c = (0, 0, 0, c4) and d = (0, 0, 0, d4). Since ed 6= 0
we have ec 6= 0, a contradiction. So, Γ(R) is a murky graph and hence it is
perfect.

Corollary 5.9.

(1) For n = t1t2t3t4, where t1, t2, t3, t4 are primes, Γ(Zn) is perfect.

(2) For n = q1q2p or n = q1q2q3q4 or n = p1p2, Γ(Zn[i]) is perfect.

Theorem 5.10. If S is an integral domain ring and R = Zpm × S, then Γ(R) is
a perfect graph.

Proof. Let u, v ∈ U(S) and w ∈ U(Zpm). Then any induced P4 path of Γ(R)
has one of the following forms:

(ps, 0)− (0, u) − (pt, 0)− (pl, v) or (ps, u)− (pt, 0) − (0, u)− (w, 0).

Any induced P4 path of Γ(R) has one of the following forms:

(0, u) − (ps, v)− (pr, 0)− (pl, 0) or (ps, u)− (pt, v)− (pr, 0)− (pl, 0).

So there is no C5 or a P6 induced subgraph of Γ(R) or Γ(R).

Corollary 5.11.

(1) For n = t1t
m
2 , where t1, t2 are primes, Γ(Zn) is perfect.

(2) For n = q1q
m
2 or n = 2mq, Γ(Zn[i]) is perfect.

Theorem 5.12. If R = R1×R2×R3, where R1 and R2 are non-integral domains,
then Γ(R) is imperfect.

Proof. Let x, y ∈ Z∗(R1) and a, b ∈ Z∗(R2) such that xy = 0 in R1 and ab = 0
in R2. Then (1, 0, 0) − (0, a, 1) − (x, c, 0) − (y, 0, 1) − (0, 1, 0) is an induced C5

subgraph of Γ(R). So Γ(R) is imperfect.

Theorem 5.13. If R = R1 ×R2 and Γ(Ri) is an imperfect graph for i = 1 or 2,
then Γ(R) is imperfect.

Proof. Suppose that R = R1×R2 and Γ(R1) is imperfect graph. Then Γ(R1) or
Γ(R1) has an induced odd cycle of length at least five. But v1−v2−v3−· · ·−vn is a
cycle of length n of Γ(R1) (Γ(R1)) if and only if (v1, 0)−(v2, 0)−(v3, 0)−· · ·−(vn, 0)
is a cycle of length n of Γ(R) (Γ(R1)). So Γ(R) is imperfect.
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Alternative proofs of part (1) of Theorem 5.4 and Theorem 5.6 could be ob-
tained from Theorems 5.8 and 5.13 since

∏4
i=1 Ri

∼=
∏3

i=1Ri×R4 and
∏3

i=1Ri
∼=

∏2
i=1 Ri ×R3. We conclude that

∏3
i=1 Ri and

∏2
i=1 Ri are perfect graphs.

As a consequence of Theorem 5.12, 5.13 , we have the following.

Theorem 5.14. If R =
∏n

i=1 Ri, n ≥ 5, then Γ(R) is imperfect.

Proof. By induction,

(i) For n = 5, Γ(R) is imperfect graph since R ∼= (R1 ×R2)× (R3 ×R4)×R5.

(ii) Assume that
∏m

i=1 Ri,m ≥ 5 is imperfect graph. Then,
∏m+1

i=1 Ri
∼=

(
∏m

i=1Ri)×Rm+1 is imperfect.

Corollary 5.15.

(1) For n =
∏m

i=1 ti
mi , where m ≥ 5 , Γ(Zn) is imperfect.

(2) For n = 2kqm1

1 qm2

2 where m1 ≥ 2, n = pm1

1 pm2

2 where m1 ≥ 2, n =
qm1

1 qm2

2 qm3

3 where m1,m2 ≥ 2, n = qm1

1 qm2

2 qm3

3 qm4

4 where m1 ≥ 2, n =

2k
∏m

i=1 q
mi

∏l
i=1 p

ni

i , n = 2k
∏l

i=1 p
mi

i where l ≥ 2, n =
∏l

i=1 p
ni

i , l ≥ 3 or

n =
∏m

i=1 ti
mi , where m ≥ 5, Γ(Zn[i]) is imperfect.
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[13] G. Chartrand and L. Leśniak, Graphs and Digraphs, 2 ed., Wadsworth and Brooks
(Monterey, California, 1986).

[14] H. Chiang-Hsieh, H. Wang and N. Smith, Commutative rings with toroidal zero-

divisor graphs, Houston J. Math. 36 (1) (2010) 1–31.

[15] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect

graph theorem, Ann. Math. 164 (1) (2006) 51–229. doi:10.4007/annals.2006.164.51

[16] N. Cordova, C. Gholston and H. Hauser, The Structure of Zero-divisor Graphs
(Sumsri, Miami University, 2005).

[17] M. El-Zahar and C. Pareek, Domination number of products of graphs, Ars Combin.
31 (1991) 223–227.

[18] M. Ghanem and K. Nazzal, On the line graph of the complement graph for the ring

of Gaussian integers modulo n, Open J. Disc. Math. 2 (1) (2012) 24–34.

[19] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamental of Domination in
Graphs (Marcel Dekker, New York, 1998).

[20] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced
Topics, Marcel Dekker, Inc. (New York, 1998).

[21] R.B. Hayward, Murky graphs, J. Combin. Theory (B) 49 (1990) 200–235.

[22] Ph.S. Livingston, Structure in Zero-Divisor Graphs of Commutative Rings, Masters
Theses, University of Tennessee (Knoxville, 1997).

[23] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Disc. Math. 2
(1972) 253–267.

[24] T.F. Maire, Slightly triangulated graphs are perfect, Graphs Combin. 10 (1994)
263–268.

[25] K. Nazzal and M. Ghanem, On the line graph of the zero divisor graph for the ring

of Gaussian integers modulo n, Int. J. Comb. (2012) 13 pages.

[26] S.P. Redmond, Central sets and Radii of the zero divisor graphs of commutative

ring, Commun. Algebra 34 (2006) 2389–2401.

Recived 10 March 2014
Revised 30 September 2014

http://dx.doi.org/10.1006/jabr.1998.7840
http://dx.doi.org/10.1016/0021-8693(88)90202-5
http://dx.doi.org/10.4007/annals.2006.164.51

