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Abstract.  
 

In this paper, we investigate the existence of nontrivial solutions for the 
equation  γ(G□H) = γ(G) γ(H)  fixing one factor. For the complete bipartite graphs  
Km,n; we characterize all nontrivial solutions when  m = 2, n ≥ 3 and prove the 
nonexistence of solutions when m, n ≥ 3. In addition, it is proved that the above 
equation has no nontrivial solution if  H  is one of the graphs obtained from Cn, the 
cycle of length  n,  either by adding a vertex and one pendant edge joining this vertex 

to any  v �V(Cn), or by adding one chord joining two alternating vertices of  Cn . 
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1. Introduction.  
 

All graphs considered in this paper are simple and finite. Let G be a graph 
with vertex and edge sets V(G) and  E(G), respectively. The open neighborhood of       
v ∈ V(G)   is  N(v) ={u: uv ∈ E(G)}  and the open neighborhood of a subset  X  of 
vertices is ).( )( vNXN Xv∈∪=  Similarly,  the closed neighborhood  N[v] = N(v) ∪ {v}  
and  N[X] = N(X) ∪ X.  A subset  D  of  V(G) is called a dominating set of  G  if for 
each  x ∈ V(G) – D, there is  y ∈ D  such that  xy ∈ E(G). The domination number,  
γ(G) = min {D : D is a dominating set of G}, where Ddenotes the number of 
elements of  D. A dominating set with smallest cardinality will be called a  γ(G)-set or 
simply, a γ-set. The cartesian product  G□H of two graphs  G  and  H  is the graph 
with vertex set   V(G□H) = V(G) × V(H)  and two vertices  in V(G□H)  are adjacent if 
and only if  they are equal in one coordinate and adjacent in the other. The two graphs 
G  and  H  are called the factors of the graph G□H. We think of the vertices of G□H 
as being laid out in a matrix form where for  u ∈ V(G),  the row {(u, v) : v ∈ V(H)} 
induces a subgraph of  G□H , which is isomorphic to H. This graph will be denoted  
by uH . Similarly, for v ∈ V(H), the column {(u,v) : u ∈ V(G)} induces the subgraph 

vG  of  G□H. Clearly, GGv ≅ .   
 
The interest in dominating the cartesian product of two graphs stems from a 

conjecture suggested by V.G. Vizing in 1963 [10], which states that  for any two 
graphs G  and  H, γ(G□H)  is not less than  γ(G) γ(H). Most of the progress to resolve 
this conjecture has been to show that the conjectured inequality holds when some 
structural properties are imposed on one or both graphs. While, for the general case, 
this conjecture is still open. 
 
 Several authors considered the problem of determining pairs of graphs for 
which the conjectured lower bound is attained. Jacobson and Kinch [4] studied the 
case when both factors are trees.  Fink  et. al [3] proved that equality holds when both 
factors have domination number half their order. On the other hand, Hartnell and Rall 
[5] gave five instances of infinite families of graphs for which Vizing’s conjecture 
holds with equality. For more about equality, the interested reader may refer to the 
survey article by Hartnell and Rall [6] and to the more recent articles [2] and [8]. In 
[6], the authors posed the following problem: can we characterize the graphs  H  that 
satisfy the equation 

                                         γ(G□H) = γ(G) γ(H),                                               (1) 
 

when  G  is some fixed graph?. Later on, the same authors answered this question in 
the affirmative for G = K2 [8]. They further proved that Vizing’s conjecture holds 
strictly for the star graph K1,m ; m ≥ 2, [7]. Moreover, they pointed out that for any 
generalized comb H, γ(K2,m□H) = 2γ(H) ; m ≥ 2, [6]. El-Zahar, Khamis, and Nazzal [2] 
gave a characterization of graphs H  when G =C4 ≅ K2,2. They also considered 
equation (1) when one factor of the cartesian product is a cycle. This motivates the 
investigation of nontrivial solutions for equation (1) when G  is either the complete 
bipartite graph  Km,n, where m ≥ 2  and  n ≥ 3, or  G  is the graph obtained from the 
cycle of any length as described below.  
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The main results of the present paper are given as follows: in section 3,           
a characterization of all nontrivial solutions for equation (1) in case of  G = K2,n;  n ≥3, 
is given. On the other hand, it is shown that Vizing’s conjecture holds strictly if         
G = Km,n for  m, n ≥ 3. In section 4, it is proved that equation (1) has no nontrivial 
solution if G is the graph obtained from  Cn  either by adding one vertex and a pendant 

edge joining this vertex to any  v� �V(Cn), or by adding one chord joining two 
alternating vertices of  Cn. For ease of reference, those graphs will be called nC ′′  and  

nC ′ , respectively. Section 5 is dedicated to the study of more graphs with domination 
number 2, where we either give solutions for equation (1), or else, prove the 
nonexistence of nontrivial solutions. 

 
2. Preliminaries.      
 

Before proceeding, some previous results and some related ideas are presented. 
  
Theorem 2.1 [2]. Let  D  be a γ-set for  G. Then there is a vertex   v ∈ V(G) – D   such 
that  v  is adjacent to at most two vertices of  D.                                                         □ 
                                                                                                                                          

    Theorem 8 of [1] states that cycles,  Cn; 3≥n , satisfy Vizing’s conjecture. The 
proof of this theorem made use of the fact that if  D  is a γ-set  for  Cn□H; n ≥ 6, then 
the  graph Cn-3□H and a corresponding γ( Cn-3□H)-set, "D , may be constructed  from 
Cn□H and D, respectively. This is simply done if two successive rows in  V(Cn□H) are 
deleted  and then the two rows adjacent to the deleted ones are identified. Here the 
rows corresponding to the vertices of  Hn-1 and Hn  are deleted and then the vertices  
corresponding to H1 and Hn-2 are identified. According to this construction, the 
following corollary is obtained. 

 
 

Corollary 2.2 [1].  For any connected graph   H  and  n ≥ 6, 

                                                 γ(Cn□H)  ≥  γ(Cn-3□H) +  γ(H).                                    □     

 

Obviously, if Cn and Cn-3 in corollary 2.2 are replaced by nC ′′  and 3−′′nC , 
respectively, the resulting inequality is valid, as long as we keep away from the vertex 
adjacent to the newly added vertex either in the deletion or in the identification 
process. An analogous result holds for the graph nC ′  described above. This proves the 
following corollary: 

 

Corollary 2.3. For any connected graph  H  and  n ≥ 6, the following inequalities hold:  

(i)  γ( nC ′ □H)  ≥  γ( 3−′nC □H) +  γ(H), and 

(ii)  γ( nC ′′ □H) ≥  γ( 3−′′nC □H) +  γ(H).                                                                           □ 

 

        Let  G  be a fixed connected graph with domination number 2. To gain some 
insight in the case when the lower bound of Vizing’s conjecture can actually be 
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achieved, we are going to recall and extend the proof of  El-Zahar and Pareek [1] that 
graphs with domination number 2 satisfy Vizing’s conjecture.  
 
     Let  G  be a connected graph for which  equation  (1) is satisfied. Assume that  A  
is a minimum dominating set for the product  G□H.  

 

Define:                  { }0) ( : )(0 =∩ ∈= AGVHVyB y , 

                              { }1) ( : )(1 =∩ ∈= AGVHVyB y , and 

                         { }2) ( : )(2 ≥∩ ∈= AGVHVyB y .  

    Evidently, 210 BBB ∪∪  is a partition of  V(H). Since  γ(G)=2, V(G)  can be 
partitioned into  V1  and V2  such that each of the sets  V1  and  V2  is a dominating set 
of  G ; the complementary graph of G, [1]. In fact, for the graphs which are under 
consideration in this paper, several such partitions exist; those different partitions are 
employed to investigate the existence of solutions for equation (1). For our purposes, 
assume V(G) has the following two different partitions: 

V(G)  = V1 ∪  V2    and    V(G)  = 1V ′ ∪ 2V ′   . 
 

For  i = 1, 2;  let         
                                 { }iyi VxwithyxAGVByB ∈=∩∈=  )},,{( ) (  : 11 , and  

                                    { }iyi VxwithyxAGVByB ′∈=∩∈=′  )},,{( ) ( :  11
.  

 
It can be shown that each one of the sets iBB 12 ∪  and iBB 12 ′∪ ;  i =1,2, is a 

dominating set of  H, and thus, it has cardinality greater than or equal to γ(H). In 
particular,  )(112 HBB γ≥∪  and )(122 HBB γ≥∪ , [1]. This implies that   

2γ(H)=|A|≥ )(22 12 HBB γ≥+ . Therefore, 112 BB ∪ = )(122 HBB γ=∪ , and 

{ }2) ( : )(2 =∩ ∈= AGVHVyB y . Hence,  |B11| = |B12|. Considering the second 

partition and applying a similar argument, one can get 1211 BB ′=′  = |B11|  = |B12|. 
 
For each  v ∈ V(G),  let 

                                   ( ) ( ) ( ){ }{ }yvAGVHVyF yv ,: =∩∈= . 
 
Then, for  i =1, 2;  

                                  B1i = U
iVv

vF
∈

 and  U
iVv

vi FB
′∈

=′1 .  

 
Thus, the following equality holds: 
 

                                     ∑∑∑∑
′∈′∈∈∈

===
2121 Vv

v
Vv

v
Vv

v
Vv

v FFFF .                                      (2) 
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3. The Graphs  Km,n □ H ; m ≥ 2 and  n ≥ 3. 
 
      We are now ready to investigate the existence of solutions for equation (1) for 
some fixed graphs  G  with domination number 2. 

  
If one factor of the cartesian product is K2,n, then the results of [6] and [2] imply 

that both K2 and C4, respectively, are solutions for equation (1). For any graph  H  
having at least 4 vertices, a characterization of H for which Vizing’s conjecture holds 
with equality is given as follows: 
                            

Theorem 3.1. Let H be a connected graph  of order at least four. Then H  satisfies 
γ(K2,n □H) = 2γ(H);  n ≥ 3, if and only if   H  is either  C4  or a generalized comb.  

 
Proof.  Assume H is a connected graph with order at least four and let A be a 
minimum dominating set for  K2,n□H  with cardinality 2γ(H).                                                                                 
     
       Since  γ(K2,n) = 2,  there is a partition of  V(K2,n)  into V1  and V2  such that each 

of the sets V1 and V2 is a dominating set of  ,2 nK . In fact, V(K2,n) has several such 

partitions each of which satisfies this property. Note that  ,2 nK = K2 ∪ Kn , and label 
the vertices of  K2   by  u1 , u2 , and those of  Kn  by  v1 , v2 , … , vn. Consider the 
following partitions of  V(K2,n): 
 
   V1 = {u1 , v1},    V2 = {u2, v2 , … , vn}, and 
   1V ′  = {u1 , v1, v2},  
    

2V ′  = {u2, v3 , … , vn}. 
 
As a result of equality (2), one can conclude that  
 

                        
21111 vvuvu FFFFF ∪∪=∪ , and hence, 0

2
=vF . 

 
 Considering other different partitions gives: 
 

0=
ivF , for each i; i=1, 2, …, n, and also deduce that  

21 uu FF = . Now, the 

following two cases are studied. 
 
Case 1: 

1uF =
2uF = ∅. This means that  B2   is a γ(H)-set. Note that  B0 ≠ ∅.  If not, then 

H  is a null graph which contradicts the hypothesis of the theorem. So, let  x0 ∈ B0. 
Then, in order that  

0xG  must be dominated by  A,  x0  would be adjacent to at least 3 
distinct vertices in  B2, since n ≥ 3, which contradicts Theorem 2.1. 
 
Case 2: Each of 

1uF and 
2

 uF is nonempty set. Suppose B0 ≠ ∅, and consider the vertex  

x0∈B0.  Note that  x0  is adjacent to exactly two vertices in B2. Thus x0 is adjacent to at 
least one vertex in one of the sets 

21
   and  uu FF , as well as the two vertices say  

y1,y2∈B2. Without loss of generality, assume 0x  is adjacent to 1x
iuF∈ . But then, the 
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set } {  ) } ,{ -( 0212 1
xyyFB u ∪∪  would be a γ(H)-set with smaller cardinality. So, 

B0=∅. Therefore, |V(H)|= |B1| +|B2| but, 2γ(H) = |B1| + 2|B2| and so γ(H) >½ ( )HV , 

which is a contradiction. This implies that  B2 = ∅. Consequently, V(H)=B1 and   
2γ(H)=|B1|=|V(H)|, that is, H is either  C4  or a generalized comb. Conversely,  if  H  is 
a generalized comb, denote the set of end vertices of  H  by  U  and let  W = V(H) - U. 
Clearly, the set  ({u1}×U) ∪ ({u2}×W)  is a γ-set for K2,n□H  with cardinality  2γ(H). 
Also, if  H = C4, then the set ({u1}×{1,3}) ∪ ({u2}×{2,4})  is a γ-set for  K2,n□C4  with 
cardinality 2γ( 4C ).                                                                                                       □                                   

                                                                 
The above theorem implies that a sharp lower bound is attained infinitely often 

for the graph K2,n. However, the next theorem shows that this is not the case for the 
complete bipartite graph, Km,n  where m, n ≥3. 
 
Theorem 3.2.  For any connected graph  H  of order at least four, γ(Km,n□H) >  2γ(H);  
m, n ≥ 3. 
 
Proof. The graph Km,n has domination number 2 and thus it satisfies Vizing’s 
conjecture, so it remains to prove that equality does not hold. 
 
          Suppose  H  is a graph for which  γ(Km,n□H) = 2γ(H). Let  A  be a minimum 
dominating set for  Km,n□H  such that | A| =  2 γ(H). Observe that  nmK , = Km ∪ Kn , let  
V(Km)={u1, u2, . . ., um}  and  V(Kn)={v1, v2, . . . , vn}. Consider the following partitions 
of  V(Km,n), where each of the sets  kV   and  kV ′ ;  k =1,2,  is a dominating set for nmK , : 
 
 V1= {u1, v1},    V2 = {u2, . . . , um , v2, . . . , vn }, and 

1V ′ ={u1, u2, v1, v2},  2V ′ = {u3, . . . , um , v3, . . . , vn }. 
 
This implies that  0

22
== vu FF . Considering other different partitions, it can easily 

be realized that 0=
iuF  for all  i ; 1≤ i ≤ m, and 0=

jvF  for all  j; 1≤ j ≤ n.  It 

follows that  B1= ∅,   and hence,  B2    is a γ(H)-set.  Now, any   y∈ V(H) - B2  must be 
adjacent to at least 3 distinct vertices in   B2, otherwise; not all vertices of the column 

yG  would be dominated by  A. This contradicts Theorem 2.1, and thus the result 
follows.                                                                                                               □  
 
4. The Graphs  nC′ □H  and  nC ′′ □H.  
 

Now, the effect of adding one chord joining two alternating vertices of Cn is 
studied; any cycle of length n. Assume that V(Cn)= {1,2,…,n}. For the case n = 4;  
γ( 4C ′ ) = 1, therefore, equation (1) has no solution [7]. A similar result holds for 3C ′′ .  

For the graph 5C ′  (see Fig.1.), the result is addressed in the following lemma.    
 
Lemma 4.1.  For any connected graph H  of order at least four,  γ( 5C ′ □H) > 2γ(H).  
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Fig. 1. 

 
Proof. Assume that there exists a graph  H  such that  γ( 5C ′ □H) = 2γ(H) and let  A  be 

a minimum dominating set for  5C ′ □H with cardinality 2γ(H). Consider the following 

partitions of   ( )5CV ′ : 
                         

1)  V1   = {1, 5},  V2 = {2, 3, 4}, 
2)  1V ′  = {1, 2, 5}, 2V ′   = {3, 4},  and 

3)  1V ′′  ={1, 2, 3},      2V ′′ = {4, 5}.   
 
This implies that  F2 = ∅,  | F1| = | F4|  and | F3| = | F5|. Now, the following two cases 
are tackled. 
 
Case 1: F5≠∅, then F3≠∅. For each i  such that  1≤i ≤5,  let  Ai = {x∈V(H) : (i , x)∈A}. 
Note that  F5 ⊆ N(A2).  If not, then for some y ∈ F5, the vertex (2, y) would not be 
dominated by  A. Since F2 = ∅ and  F5 ⊆ N(A2),  then  y  is adjacent to some vertex  
z∈B2, this  implies that the set (B2∪ F1∪ F5) -{z} dominates H  and has cardinality 
γ(H)–1 which is a contradiction. 

 
Case 2:  F5  = ∅, then   F3 = ∅. Furthermore, if   F4 = ∅, then F1 = ∅, consequently, 
B2 is γ(H)-set, which leads to a contradiction. So,  F4  ≠ ∅ and  F4 ⊆ N(A2) which 
again leads to a contradiction. Therefore, for the graph  5C ′ , there exists no graph  H  
for which Vizing’s lower bound is sharp.                                                                     □ 
 

Note that the graph  4C ′′  is a spanning subgraph of  5C ′  with the same 
domination number. This implies that 
 

Corollary 4.2. For any connected graph  H   of order at least four, 
 γ( 4C ′′ □H) > 2γ(H).                                                             □                                                                             

                                                  
 
Lemma 4.3.  For any connected graph  H  of order at least  4,  γ( 6C ′ □H) > 2γ(H). 
 
Proof. The graph  6C ′  and its complement are shown in Fig.2 . 
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Fig. 2. 

 
Considering different partitions of  V( 6C ′ )  into V1 ∪  V2   where eac

and  V2  is a dominating set of  6C ′  yields B1=∅, and thus  B2   is a γ
leads to a contradiction. So, the result is follows.                         □ 
                                                                                      
     Let us remark here that a similar result of the above could be ob
chord joining vertex 1 to vertex 5 is added to the graph  6C ′   of  lem

 
The following corollary is an immediate result of lemma 4.3. 
 

Corollary 4.4. For any connected graph  H  of order at least 4,  γ(C
 
           To this point, it has been shown that for  n = 4, 5, 6;  γ( nC ′ □

and for n = 3, 4, 5;  γ( nC ′′ □H)  >  γ( nC ′′ )γ(H). The general cases a
corollary 2.3. This can be stated as follows. 
 
Theorem 4.5.  For any connected graph  H of order at least 4,   
                               γ( nC ′ □H)  >  γ( nC ′ )γ(H); n ≥ 4,  and 

                               γ( nC ′′ □H)  >  γ( nC ′′ )γ(H);  n ≥ 3.                            
 
5.  More Graphs with Domination Number 2. 
 
       In this section, two results which are immediate consequences
section 3 are demonstrated. Let  1G   be a graph obtained from  C
chords { }3,1  and{ }5,2 , while 2G  be a graph obtained from  6C   by 
{1,3}, {2,6}, {3,5}, and {4,6}, which are shown in Fig.3. Then s
equation (1) are given in the following lemma.  

  

 
Fig. 3. 

Lemma 5.1. Let  G   be a graph  1G   or 2G  and let  H  be either  C4

comb. Then  γ(G□H) = γ(G)γ(H). 
 

4 
h of the sets V1  

(H)-set, which 

tained if  another 
ma 4.3.  

5′′ □H) > 2γ(H). □ 

H) > γ( nC ′ )γ(H), 

re obtained using 

                      □              

 of the results of 

5   by adding the 

adding the chords 
ome solutions for 

  or a generalized 



 9

Proof. The two mentioned graphs 1G   and  2G  are supergraphs of  K2,3 and K2,4, 
respectively, with the same order and domination number. So, if n = 3, 4, then 
                                              γ(G□H)  ≤ γ( K2,n□H) = 2γ(H),    

where  H  is either  C4  or a generalized comb.                                                           □ 
 

Corollary 5.2. Let  G  be the graph obtained from C6  by adding at least one of the 
chords {i,i+3} where  i = 1, 2, 3. Then,  for any connected graph  H; γ(G□H)> 2γ(H). 
 
Proof.  Note that if all three mentioned chords are added to  C6  then  G is isomorphic 
to  K3,3. Thus the result follows from theorem 3.2. On the other hand, if not all three 
chords are added, then  G  is a spanning subgraph of  K3,3  with the same domination 
number and hence  
                                           γ(G□H) ≥  γ(K3,3□H)  > 2γ(H).                                       □ 
 

We end this section with the following result concerning the graph                 
Q3=C4□K2, since  γ(Q3)=2. 
 
Theorem 5.3.  For any connected graph  H  of order at least 4, γ(Q3□H) > 2γ(H). 
 
Proof. The graph Q3 and its complement are shown in Fig. 4. 
 

 
Fig. 4 

 
Consider the following partitions of  V(Q3) : 
 

1)   V1= {1, 4},             V2 = {2,  3, 5, 6, 7, 8}, 
2)  1V ′ = {2, 3},  2V ′ = {1, 4, 5, 6, 7, 8},  and 

3)  1V ′′ = {3,5},  2V ′′ ={1, 2, 4, 6, 7, 8,}. 
 
Which implies that for each i; i = 1, 2, . . ., 8,  Fi    is empty. So, B1 is empty, and thus  
B2   is a  γ-set for  H  which leads to a contradiction.                                                     □   
 
 

This shows that if one factor of the Cartesian product is Q3 then the lower 
bound of  Vizing’s conjecture is not attained. However, considering the graph  Q4 = 
Q3□ K2, proves that the upper bound, given in [10], is actually achieved, since  4= 
|V(K2 )| γ(Q3) ≥ γ(Q3 □K2) = γ(Q4) = 4. 
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