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Abstract

Let �(G) denote the domination number of a graph G and let Cn�G denote the cartesian product of Cn, the cycle of length n�3,
and G. In this paper, we are mainly concerned with the question: which connected nontrivial graphs satisfy �(Cn�G)= �(Cn)�(G)?
We prove that this equality can only hold if n ≡ 1 (mod 3). In addition, we characterize graphs which satisfy this equality when
n = 4 and provide infinite classes of graphs for general n ≡ 1 (mod 3).
© 2006 Elsevier B.V. All rights reserved.

MSC: 05C69

Keywords: Domination number; Cartesian product; Vizing’s conjecture

1. Introduction

Let G be a simple finite graph whose vertex set and edge set are denoted by V (G) and E(G), respectively. For
a vertex v ∈ V (G), the open neighborhood of v is NG(v) = {u : uv ∈ E(G)} and the open neighborhood of a
subset X ⊆ V (G) is NG(X) = ⋃

v∈XNG(v) − X. The respective closed neighborhoods are NG[v] = NG(v) ∪ {v} and
NG[X]=NG(X)∪X. A subset D of V (G) is called a dominating set of G if NG[D]=V (G). The domination number
�(G) of G is the minimum cardinality of a dominating set of G. Any dominating set of G with cardinality �(G) will be
called a �(G)-set or simply a �-set if the graph is clear from the context. For graphs G and H, the cartesian product
G�H is the graph with vertex set V (G�H)=V (G)×V (H) and edge set E(G�H)={(x1, y1)(x2, y2) : x1x2 ∈ E(G)

and y1 = y2 or x1 = x2 and y1y2 ∈ E(G)}.
In 1963, Vizing [10] conjectured that �(G�H)��(G) �(H). This conjecture remains open despite numerous results

proving its validity in special cases; see the survey article [5] and the more recent articles [1,9]. It seems natural to
ask then how sharp this conjecture, if true, is? In [5], Hartnell and Rall pointed out the existence of several infinite
families of graphs G, H which satisfy the equation �(G�H)= �(G)�(H). Clearly, if G or H is the trivial graph Kn; the
complement of the complete graph Kn of order n, then this equation is satisfied. So, if we are looking for solutions of
this equation, we should concentrate on nontrivial connected graphs. In this paper, nontrivial solutions of the equation
�(Cn�G) = �(Cn)�(G) are considered where Cn is the cycle of length n. In this direction, little progress has been

E-mail addresses: soheir_khamis@hotmail.com (S.M. Khamis), khalida_nazzal@hotmail.com (Kh.M. Nazzal).

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2006.07.003
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achieved. The case n = 3 is easy and follows from a result of [5]. Hartnell and Rall [5] mentioned without proof that
there is no solution when n=6. Further, they asked for a characterization of graphs that are solutions for the case n=4.

The main result of this paper is that the equation �(Cn�G) = �(Cn)�(G) has a nontrivial solution G if and only if
n ≡ 1 (mod 3). All solutions for the case of C4 are characterized. For n ≡ 1 (mod 3); n�7, infinite classes of solutions
are given. Then we show that any other solution, if exists, must be one of those that arise in the case n = 4. The paper
is organized as follows: in Section 2, some previous results and notations which will be needed are given. Section
3 is devoted to an investigation of graphs arising when n = 4. We prove in Section 4 the nonexistence of nontrivial
solution when n ≡ 0 or 2 (mod 3). Finally, in Section 5, infinite classes of graphs for general n ≡ 1 (mod 3) are
described.

2. Preliminaries

The demonstration of the original work of the paper depends on several previous results and some notations which
are given in the following paragraphs.

The corona of two graphs G and H is the graph G ◦ H formed from one copy of G and |G| copies of H, where the
ith vertex of G is adjacent to every vertex in the ith copy of H, see [7]. The corona G ◦ K1, traditionally known as
the generalized comb, has even order and domination number half its order. Graphs having no isolated vertices and
domination number half their order were characterized independently by Payan and Xuong [8], and Fink et al. [4] as
follows:

Theorem 2.1 (Fink et al. [4], Payan and Xuong [8]). For any graph G with even order and no isolated vertices,
�(G) = |G|/2 if and only if the components of G are the cycle C4 or the corona H ◦ K1 for any connected graph H.

In the following theorem, Hartnell and Rall [6] gave a characterization of graphs which satisfy �(G�K2) = �(G).

Theorem 2.2 (Hartnell and Rall [6]). For any connected graph G, �(G�K2)=�(G) if and only if G has a �-set D that
can be partitioned into two nonempty subsets D1 and D2 such that V (G)−NG[D1]=D2 and V (G)−NG[D2]=D1.

The next theorem, which is due to Fink and Jacobson [3], plays a crucial role in proving some results obtained in the
paper.

Theorem 2.3 (Fink and Jacobson [3]). Let D be a �-set for G. Then there is a vertex v ∈ V (G) − D such that v is
adjacent to at most two vertices of D.

The following proposition is an immediate consequence of the proof of Theorem 8 in [2]. Here and in what follows
the vertices of the cycle Cn will be denoted by 1, 2, . . . , n and interpreted modulo n.

Proposition 2.4. Let D be a dominating set for Cn�G. Define the sets

D′ = {x ∈ V (G) : (n − 1, x) ∨ (n, x) ∈ D} ∪ {x ∈ V (G) : (1, x) ∧ (n − 2, x) ∈ D},
and

D′′ = {(i, x) ∈ D : 1� i�n − 3} ∪ {(1, x) : (n − 2, x) ∈ D} ∪ {(1, x) : (n − 1, x) ∧ (n, x) ∈ D}.
Then,

(i) for n�4, D′ is a dominating set for G.
(ii) for n�6, D′′ is a dominating set for Cn−3�G.

As an immediate result of Proposition 2.4, we have

Corollary 2.5. For n�6, �(Cn�G)��(Cn−3�G) + �(G).
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Throughout the rest of this paper, the following terminology will be used: G will denote a connected nontrivial graph.
For simplicity, we use N( ) = NG( ) and N [ ] = NG[ ]. For x ∈ V (G), denote

(Cn)x = {(i, x) : 1� i�n} ⊂ V (Cn�G).

If D is a dominating set of Cn�G, define

Di = {x ∈ V (G) : (i, x) ∈ D} for each i; 1� i�n.

For 0�j �n, let

Bj = {x ∈ V (G) : |(Cn)x ∩ D| = j}
and

B∗
j = {x ∈ V (G) : |(Cn)x ∩ D|�j}.

For each i; 1� i�n, we have B0 ⊆ N(Di). Using the above notation and Proposition 2.4, one can easily conclude
that (Dn−1 ∪ Dn) ∪ (D1 ∩ Dn−2) is a dominating set for G. More generally, for each i; 1� i�n,

|(Di ∪ Di+1) ∪ (Di−1 ∩ Di+2)|��(G). (1)

3. The graph C4�G

In this section, we characterize those graphs G which satisfy �(C4�G) = 2�(G).
Let us assume that D is a dominating set of C4�G with |D| = 2�(G). Summing inequality (1) for i = 1 up to 4, we

get

4∑

i=1

|(Di ∪ Di+1) ∪ (Di−1 ∩ Di+2)|�4�(G). (2)

Consider x ∈ V (G). If x ∈ B1, then (C4)x contains exactly one vertex of D which contributes 2 to the sum on the
left-hand side of inequality (2). If x ∈ B∗

2 , then (C4)x contributes exactly 4 to this sum. Thus, 2|B1| + 4|B∗
2 |�4�(G).

On the other hand, |D|=∑4
i=1i|Bi | which implies that 2�(G)=|D|� |B1|+2|B∗

2 |. Consequently, |D|=|B1|+2|B∗
2 |.

In particular, both B3 and B4 are empty.
Now, we classify the resulting graphs, according to whether some of B0, B1, B2 are also empty, as follows: obviously,

there exists eight cases, some of which are ruled out immediately. Clearly, the two cases in which B1 = B2 = ∅ cannot
occur since D �= ∅. Also, if B0 = ∅ and B2 �= ∅, then �(G) > 1

2 |G| which contradicts the fact that G is connected.
So, there remain four cases to be considered. The resulting graphs in these cases will be called types 1–4 as indicated
below. Although the first three types can be considered as special cases of the fourth one. It is preferable to discuss
them separately first since their special structures are simple.

Type 1: B0 = ∅, B1 �= ∅, and B2 = ∅. In this case, we have �(G) = 1
2 |G| which implies by Theorem 2.1 that G is

either isomorphic to C4 or a generalized comb. It can easily be checked that �(C4�C4) = 4 = �(C4)
2 . Suppose that G

is a generalized comb, say G = H ◦ K1. Denote U = V (G) − V (H). In addition, let U = U ′ ∪ U ′′ be any partition of
U, W ′ = N(U ′) and W ′′ = N(U ′′). Define

D = {(1, x) : x ∈ U ′} ∪ {(2, x) : x ∈ W ′′} ∪ {(3, x) : x ∈ W ′} ∪ {(4, x) : x ∈ U ′′}.
Obviously, D is a dominating set of C4�G with cardinality 2 �(G).

Type 2: B0 �= ∅, B1 = ∅, and B2 �= ∅. Note that B2 is a �-set for G. Let F1 = D1 and F2 = B2 − F1. We shall now
prove that �(G�K2) = �(G) by showing that the partition F1 ∪ F2 of B2 satisfies the condition of Theorem 2.2. As
mentioned earlier, B0 ⊆ N(D1) which implies that V (G) − N [F1] = F2. Define U = {x ∈ B0 : N(x) ∩ B2 ⊂ F1}.
Suppose that U �= ∅. For any vertex x ∈ U and each i = 2, 3, 4, there exists a vertex yi ∈ Di such that xyi ∈ E(G).
By the definition of U, yi ∈ D1; i = 2, 3, 4. One can conclude that the three vertices y2, y3, y4 are distinct since yi = yj
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Fig. 1. An example of type 3.

would imply that D1 ∩ Di ∩ Dj �= ∅. Now, fix some x ∈ U and let y2, y3, y4 be the corresponding adjacent vertices.
The set (B2 − {y2, y3}) ∪ {x} is a dominating set for G with smaller cardinality. This contradiction shows that U = ∅.
Since U = ∅, we have V (G) − N [F2] = F1. Thus, �(G�K2) = �(G) as required. Clearly, �(G�K2) = �(G) implies
that �(C4�G) = 2�(G).

Type 3: B0 �= ∅, B1 �= ∅, and B2 = ∅. In this case, G contains four mutually disjoint subsets D1, . . . , D4 such that
for each i; 1� i�4, we have V (G) − Di−1 − Di+1 ⊂ N [Di] and Di ∪ Di+1 is a �(G)-set. Obviously, any graph G
having four subsets with these properties satisfies �(C4�G) = 2�(G). An example of such graphs is illustrated in Fig.
1, in which B0 = {v1, v2, v3}, and Di = {xi}, 1� i�4.

Type 4: B0 �= ∅, B1 �= ∅ and B2 �= ∅. The study of this case is complicated since graphs of this type may involve, in
some way or another, graphs of previous types. First, the graph C4�G may have two �-sets of different specified types.
For example, this occurs if |B0| = |B2|, which implies that �(G) = 1

2 |G|, and hence G is already of type 1. Moreover,
C4�G has a dominating set for which B1 = V (G). This situation occurs for C4�Gm; m�4, which are defined and
discussed in Section 5.

Second, let G′ and G′′ be two graphs of types 1 and 2, respectively. Suppose that G is obtained from G′ ∪ G′′ by
adding an edge from a vertex in G′ to another one in G′′ such that the domination number does not decrease, that is,
�(G)= �(G′)+ �(G′′). Then �(C4�G)= 2�(G) and G will be of the fourth type, see Fig. 2 in which B0 ={v1, v2, v3},
B1 = {x1, x2, x3, x4, y1, y3}, and B2 = {y12, y34}.

However, there are graphs which cannot be constructed directly from the previous three types, such graphs will
be called pure type 4. To illustrate the structure of those graphs in more detail, let us introduce some further related
notations. For 1� i, j �4, we define the following:

Fi = Di −
⋃

i �=j

Dj , F =
4⋃

i=1

Fi

Yij = Yji = Di ∩ Dj i �= j, Y =
4⋃

i=1

4⋃

j=i+1

Yij ,

X = B0, Xi = X ∩ N(Fi),

and

Xij = X ∩ N(Yij ).

Observe that:

(a) Fi ⊆ N(Di+2). Suppose on the contrary that x ∈ Fi and x /∈ N(Di+2). This implies that the vertex (i + 2, x) is
not dominated by D and hence the result follows.
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Fig. 2. A graph G of type 4 with �(G) = �(G′) + �(G′′).

Fig. 3. Examples of pure type 4.

(b) If each Fi �= ∅ and Z = ⋂4
i=1Xi �= ∅, then the subgraph induced by F ∪ Z, is of type 3.

(c) If Xij ∩ Xkl �= ∅; for {i, j} ∩ {k, l} = ∅, then the subgraph induced by (Yij ∪ Ykl) ∪ (Xij ∩ Xkl), is of type 2.

The main aspect of pure type 4 graphs is that at least one of the sets Xi ∩ Xj ∩ Xkl �= ∅ for some distinct i, j, k, and
l. For further illustration, consider the graphs G, H, and K in Fig. 3, where we labeled the vertices such that each of xi

and yi ∈ Fi , Fi does not contain any other vertex and Yij = {yij }; 1� i, j �4.
The graph G satisfies:

(a) X3 ∩ X4 ∩ X12 ⊂ X.
(b) the subgraph induced by F ∪ Z is of type 3.
(c) the subgraph induced by (Y12 ∪ Y34) ∪ (X12 ∩ X34) is of type 2.

On the other hand, in the graph H of Fig. 3, the set X1 ∩ X2 ∩ X34 = X. While in the graph K of this same Fig. 3,
F2 = F4 = ∅, and X1 ∩ X3 ∩ X24 = X.

Now, we give a characterization of all nontrivial solutions of the equation �(C4�G) = 2�(G) of type 4. Since, as we
mentioned above, the previous three types are special cases of the fourth one, this characterization is also valid for any
nontrivial solution.

Theorem 3.1. For any connected graph G, �(C4�G) = 2�(G) if and only if V (G) has four (not necessarily distinct)
subsets D1, D2, D3, and D4 such that for 1� i�4, the following conditions are satisfied:

(i) Each of the sets Ai = (Di ∪ Di+1) ∪ (Di−1 ∩ Di+2) is a �(G)-set.
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(ii) V (G) − N [Di] ⊆ Di−1 ∪ Di+1.
(iii) V (G) − N [Di ∪ Di+1] = Di−1 ∩ Di+2.

Proof. (i) The proof of the first statement follows directly from the above discussion. (ii) Assume that x /∈ N [Di], then
either (i − 1, x) or (i + 1, x) ∈ D, otherwise, (i, x) would not be dominated by D. Thus, x ∈ Di−1 ∪ Di+1.

(iii) It is obvious that if x /∈ N [Di ∪ Di+1], then both (i − 1, x) and (i + 2, x) ∈ D. To prove the reverse inclusion,
let x ∈ Di−1 ∩ Di+2 and assume that x ∈ N [Di ∪ Di+1]. Since any vertex z /∈ Ai which is dominated by x, is also
dominated by Di ∪ Di+1, the set Ai − {x} would be a �(G)-set with a smaller cardinality.

Conversely, assume V (G) has four (not necessarily distinct) subsets D1, D2, D3, and D4 which satisfy statements
(i)–(iii). We claim that the set D = ⋃4

i=1 ({i} × Di) is a dominating set of C4�G with cardinality 2�(G). To show this,
let (i, x) ∈ V (C4�G) − D. Set X = V (G) − ⋃4

i=1Di , Y = ⋃
i �=j Yij , and Fi = Di − ⋃

i �=jDj . If x ∈ X ∪ Fi+2, then
by statement (ii) the edge (i, x) (i, yi) ∈ E(C4�G) for some yi ∈ Di . Since G is of type 4 then Fj �= ∅ for some j ,
and Y �= ∅. Thus, if x ∈ Fi−1 ∪ Fi+1, then (i, x) is dominated either by (i − 1, x) or by (i + 1, x). Finally, if x ∈ Y ,
say x ∈ Ykl for some k, l; 1�k, l�4, then (C4)x is dominated by (k, x) and (l, x). Therefore, D is a dominating set of
C4�G.

Now, |D|=∑4
i=1 |{i}×Di |=∑4

i=1 |Di |. As a consequence of statements (i) and (iii) we get 2�(G)=|A1|+ |A3|=∑4
i=1 |Di | as required. �

It is interesting at this point to note that if V (G) = ⋃4
i=1Di = B1, then G is of type 1. If each Di ⊆ B2, then the

result is a graph of type 2. Moreover, if the sets D1, D2, D3, and D4 are mutually disjoint and
⋃4

i=1Di ⊂ V (G), then
we get a graph of type 3.

4. The graph Cn�G; n ≡ 0 or 2 (mod 3)

In this section, we consider first the cases n= 3 and 5. Although the next lemma is a result of [5], we give a different
proof based on Theorem 2.3.

Lemma 4.1. Let D be a dominating set for C3�G, where G is a connected nontrivial graph. Then |D| > �(G).

Proof. Suppose that |D| = �(G). Define A = {x ∈ V (G) : (C3)x ∩ D �= ∅}. Clearly, A is a dominating set for G. It
follows that A is a �(G)-set and |(C3)x ∩ D| = 1 for each x ∈ A. Let y ∈ V (G) − A. In order that (C3)y be dominated,
there must exist three distinct vertices: x1, x2, x3 ∈ A, adjacent to y such that (i, xi) ∈ D, which contradicts Theorem
2.3. �

For the case n = 5, we prove the following lemma.

Lemma 4.2. Let D be a dominating set for C5�G, where G is a connected nontrivial graph. Then |D| > 2�(G).

Proof. Suppose that |D| = 2�(G). Summing inequality (1) for i = 1.5, we get

∑5

i=1
|(Di ∪ Di+1) ∪ (Di−1 ∩ Di+2)|�5�(G). (3)

Consider a vertex x ∈ V (G). If |(C5)x ∩ D| = 1, then (C5)x contributes 2 to the sum on the left-hand side of (3). If
|(C5)x ∩ D| = 2, then this (C5)x contributes 3 or 5 depending on whether the two vertices of D on (C5)x are adjacent
or not. Finally, if |(C5)x ∩ D|�3, then (C5)x contributes 5. Therefore,

2|B1| + 5|B∗
2 |�5�(G) (4)

and also,

|B1| + 2|B∗
2 |� |D| = 2�(G).

Then we conclude that B1 = ∅ and |B∗
2 | = �(G). Hence, |(C5)x ∩ D| = 0 or 2 for every x ∈ V (G).
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Now any y ∈ V (G) − B2 must be adjacent to at least three vertices: x1, x2, x3 ∈ B2, otherwise, not all the vertices
of (C5)y would be dominated. Thus, B2 is a �(G)-set which contradicts Theorem 2.3. �

The above lemma implies that �(C5�G)�2�(G)+ 1. To show that this lower bound is sharp consider the following
example: let Gk be the graph with

V (Gk) = {x, y1, y2, . . . , yk−1} ∪ X,

the edge set of Gk is determined so that

(i) X is the open neighborhood of x with cardinality at least 2(k − 1).
(ii) {N(y1), N(y2), . . . , N(yk−1)} is a partition of X which do not contain any singleton.

(iii) Gk has no other edges joining its vertices.

Observe that �(Gk) = k. Let U be any �-set for C5. The set

D = (U × {y1, y2, . . . , yk−1}) ∪ (V (C5) − U) × {x}
is a �-set for C5�Gk with cardinality 2k + 1.

Finally, based on Lemmas 4.1 and 4.2 as well as the recursive inequality given in Corollary 2.5, we can easily deduce
the following theorem.

Theorem 4.3. For any connected nontrivial graph G and all n ≡ 0 or 2 (mod 3); n�3,

�(Cn�G) > �(Cn)�(G).

5. The graph Cn�G; n ≡ 1 (mod 3), n�7

Throughout this section assume that n ≡ 1 (mod 3), say, n = 3k + 1. We may assume that k�1, since the obtained
result is also applicable to C4. Let Gm denote the generalized comb Km ◦ K1 whose core is the complete graph Km,
m�3. Denote the vertices of Gm by v1, v2, . . . , v2m, where vi ; 1� i�m, has degree 1 and is adjacent to vm+i . While
the vertices vm+1, . . . , v2m induce Km.

Theorem 5.1. Suppose that m�n = 3k + 1, where k�1. Then �(Cn�Gm) = �(Cn)�(Gm).

Proof. Define the following subsets of V (Cn�Gm):

A1 =
n⋃

i=1

k−1⋃

j=0

{(2 + i + 3j, vi)}, A2 =
m⋃

i=n+1

k⋃

j=0

{(1 + 3j, vi)},

A3 =
n⋃

i=1

{(i, vi+m)} and D = A1 ∪ A2 ∪ A3.

We shall prove that D is a dominating set for Cn�Gm. First note that for each i; 1� i�n, the cycle (Cn)vi
contains

k vertices from A1 situated in such a way so that they dominate all of its vertices except (i, vi). The vertex (i, vi) is
dominated by (i, vi+m) ∈ A3. Each cycle (Cn)vi, n + 1� i�m, contains k + 1 vertices from A2 which dominate all of
its vertices. The set of vertices {(i, vj ) : 1� i�n, m + 1�j �m + n} is dominated by A3 since the core of the comb
is isomorphic to Km. Now |D| = m(k + 1) = �(Cn)�(Gm). This completes the proof of the theorem. �

Let us remark here that if m is a multiple of n then we can take the core of the comb to be Cm, the complement of Cm,
instead of Km and we still have the required equality. Another family of graphs could be obtained if we add r vertices,
where r �1, and more edges to the core Km to produce Km+r . In addition, more edges joining a pendant vertex vi ,
1� i�m, of Gm to a subset of the newly added r vertices could also be added provided that N [vi] ∩ N [vj ] = ∅ for all
i, I s.t., 1� i �= j �m.
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If G is a nontrivial graph which satisfies �(Cn�G)=�(Cn)�(G); n ≡ 1(mod 3) and n�7, then Corollary 2.5 implies
that �(C4�G) = �(C4)�(G), hence G is one of the four types considered in Section 3.

6. Conclusion

We have studied nontrivial solutions of the equation �(Cn�G) = �(Cn)�(G). We think that the equation �(G�H) =
�(G)�(H) deserves more attention, probably it interferes with the long-awaited proof of Vizing’s conjecture. We
conclude with a conjecture about such graphs. Call a minimum dominating set D of G excessive if there exists a vertex
v ∈ D such that N [D − {v}] = V (G) − {v}.

Conjecture. If G and H are two connected nontrivial graphs such that �(G�H) = �(G)�(H), then each of G and H
is either K2 or else has an excessive dominating set.

This conjecture is not only true for cycles, but also for all pairs of graphs known to satisfy equality in Vizing’s
conjecture. If D is an excessive �-set of G then there exist some v ∈ D such that N [D − {v}] = V (G) − {v}, this
vertex plays the role of an “absorbant” to the vertices in the dominating set of the Cartesian product which minimizes
the cardinality of such sets. In some sense, graphs with excessive dominating sets represent “threshold” to all graphs
satisfying Vizing’s conjecture.
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