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Resistance Calculation for an infinite Simple Cubic
Lattice Application of Green’s Function

J. H. Asad,1 R. S. Hijjawi,2 A. Sakaji,3,4 and J. M. Khalifeh1∗

It is shown that the resistance between the origin and any lattice point (l, m, n) in an
infinite perfect Simple Cubic (SC) lattice is expressible rationally in terms of the known
value of G0(0, 0, 0). The resistance between arbitrary sites in an infinite SC lattice is
also studied and calculated when one of the resistors is removed from the perfect lattice.
The asymptotic behavior of the resistance for both the infinite perfect and perturbed
SC lattice is also investigated. Finally, experimental results are obtained for a finite
SC network consisting of 8 × 8 × 8 identical resistors, and a comparison with those
obtained theoretically is presented.
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1. INTRODUCTION

The calculation of the resistance between two arbitrary grid points of infinite
networks of resistors is a new-old subject (Van der Pol and Bremmer, 1955; Doyle
and Snell, 1984; Venezian, 1994; Atkinson and Van Steenwijk, 1999; Aitchison,
1964; Bartis, 1967; Monwhea, 2000).

Recently, Cserti (2000) and Cserti et al. (2002) studied the problem where
they introduced a method based on the Lattice Green’s Function (LGF) which is an
alternative approach to using the superposition of current distributions presented
by Venezian (1994) and (Atkinson and Van Steenwijk, 1999).

The LGF for cubic lattices has been investigated by many authors (Morita
and Horiguchi, 1975; Joyce, 1971; Sakaji et al., 2002; Hijjawi and Khalifeh, 2002;
Sakaji et al., 2002; Hijjawi and Khalifeh, 2002; Morita and Horigucih, 1971;
Inoue, 1975; Mano, 1975; Katsura and Horiguchi, 1971; Glasser, 1972), and the
so-called recurrence formulae which are often used to calculate the LGF of the SC
at different sites are presented (Glasser, 1972; Horiguchi, 1971).
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The values of the LGF for the SC lattice have been recently exactly evaluated
(Glasser and Boersma, 2000), where these values are expressed in terms of the
known value of the LGF at the origin.

In this paper; we calculate the resistance between two arbitrary points in a
perfect and perturbed (i.e. a bond is removed) infinite SC lattice using Cserti’s
method (Cserti, 2000; Cserti et al., 2002). The resistance between the origin and
a lattice site (l, m, n) in a constructed finite perfect SC mesh (8 × 8 × 8 resistors)
is measured. Also, the resistance between the origin and a lattice site (l, m, n)
in the same constructed mesh, when one of the resistors is removed (i.e. per-
turbed) is measured. Finally, a comparison is carried out between the measured
resistances and those calculated by Cserti’s method (Cserti, 2000; Cserti et al.,
2002).

The LGF presented here is related to the LGF of the Tight-Binding
Hamiltonian (TBH) (Economou and Green’s Function in Quantum Physics, 1983).

2. THEORETICAL RESULTS

2.1. Perfect SC Lattice

In this section we express the resistance in a perfect infinite SC network of
identical resistors between the origin and any lattice site (l, m, n) rationally as:
(Cserti, 2000; Glasser and Boersma, 2000)

R0(l, m, n)

R
= ρ1g0 + ρ2

π2g0
+ ρ3 (1)

where g0 = G0(0, 0, 0) is the LGF at the origin andρ1, ρ2, ρ3 are related to r1, r2, r3

or Duffin and Shelly’s (Glasser and Boersma, 2000; Duffin and Shelly, 1958)
parameters λ1, λ2, λ3 as

ρ1 = 1 − r1 = 1 − λ1 − 15

12
λ2; (2)

ρ2 = −r2 = 1

2
λ2; (3)

ρ3 = −r3 = 1

3
λ3. (4)

Various values of r1, r2, r3 are shown in Glasser and Boersma (Glasser and
Boersma, 2000) [Table I] for (l, m, n) ranging from (0, 0, 0) − (5, 5, 5). To obtain
other values of r1, r2, r3 one has to use the relation (Horiguchi, 1971)

G0(l + 1, m, n) + G0(l − 1, m, n) + G0(l, m, +1, n) + G0(l, m − 1, n)+
G0(l, m, n + 1) + G0(l, m, n − 1) = −2δl0δm0δn0 + 2EG0(l, m, n).

(5)

where E = 3, is the energy.
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Table I. Values of the resistance in a perfect infinite SC lattice for arbitrary sites

Site l, m, n ρ1 ρ2 ρ3
R0(l,m,n)

R = ρ1g0 + ρ2
π2g0

+ ρ3

000 0 0 0 0
100 0 0 1/3 0.333333
110 7/12 1/2 0 0.395079
111 9/8 −3/4 0 0.418305
200 −7/3 −2 2 0.419683
210 5/8 9/4 −1/3 0.433598
211 5/3 −2 0 0.441531
220 −37/36 29/6 0 0.449351
221 31/16 −21/8 0 0.453144
222 3/8 27/20 0 0.460159
300 −33/2 −21 13 0.450371
310 115/36 85/6 −4 0.454415
311 15/4 −21/2 2/3 0.457396
320 −271/48 119/8 1/3 0.461311
321 161/36 −269/30 0 0.463146
322 −19/16 213/40 0 0.467174
330 −47/3 1046/25 0 0.468033
331 38/3 −148/5 0 0.469121
332 −26/9 1012/105 0 0.471757
333 51/16 −1587/280 0 0.475023
400 −985/9 −542/3 92 0.464885
410 531/16 879/8 −115/3 0.466418
411 11/2 −357/5 12 0.467723
420 −2111/72 13903/300 6 0.469777
421 245/16 −1251/40 −1 0.470731
422 −32/3 1024/35 0 0.473076
430 −2593/48 28049/200 −1/3 0.473666
431 1541/36 −110851/1050 0 0.474321
432 −493/32 4617/112 0 0.476027
433 667/72 −8809/420 0 0.478288
440 −5989/36 620161/1470 0 0.477378
441 4197/32 −919353/2800 0 0.477814
442 −2927/48 31231/200 0 0.479027
443 571/32 −119271/2800 0 0.480700
444 −69/8 186003/7700 0 0.482570
500 −9275/12 −3005/2 2077/3 0.473263
510 11653/36 138331/150 −348 0.473986
511 −271/4 −5751/10 150 0.474646
520 −2881/16 15123/200 229/3 0.475807
521 949/12 −27059/350 −24 0.476341
522 −501/8 4209/28 2 0.477766
530 −3571/18 1993883/3675 −8 0.478166
531 1337/8 −297981/700 4/3 0.478565
532 −2519/36 187777/1050 0 0.479693
533 2281/48 −164399/1400 0 0.481253
540 −18439/32 28493109/19600 1/3 0.480653
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Table I. Continued

Site l, m, n ρ1 ρ2 ρ3
R0(l,m,n)

R = ρ1g0 + ρ2
π2g0

+ ρ3

541 1393/3 −286274/245 0 0.480920
542 −7745/32 1715589/2800 0 0.481798
543 5693/72 −4550057/23100 0 0.483012
544 −1123/32 560001/6160 0 0.484441
550 −196937/108 101441689/22050 0 0.483050
551 12031/8 −18569853/4900 0 0.483146
552 −1681/2 5718309/2695 0 0.483878
553 5175/16 −2504541/3080 0 0.484777
554 −24251/312 −1527851/7700 0 0.485921
555 9459/208 −12099711/107800 0 0.487123
600 −34937/6 −313079/25 5454 0.478749
610 71939/24 160009/20 −9355/3 0.479137
633 18552/72 −747654/1155 0 0.483209
644 −388051/1872 23950043/46200 0 0.486209
655 13157/78 −5698667/13475 0 0.488325
700 −553847/12 5281913/50 44505 0.482685

In some cases one may need to use the recurrence formulae (i.e. Equation
(5)) two or three times to calculate different values of r1, r2, r3 for (l, m, n) beyond
(5, 5, 5). Various values of ρ1, ρ2, ρ3 are shown in Table I.

The value of the LGF at the origin (i.e. G0(0, 0, 0)) was first evaluated by
Watson in his famous paper (Watson, 1939), where he found that

G0(0, 0, 0) =
(

2

π

)2

(18 + 12
√

2 − 10
√

3 − 7
√

6)[K (k0)]2 = 0.505462.

with k0 = (2 − √
3)(

√
3 − √

2) and K (k) = ∫ π
2

0 dθ 1√
1−k2 Sin2θ

is the complete el-
liptic integral of the first kind.

A similar result was obtained by Glasser and Zucker (1977) in terms of gamma
function.

The asymptotic behavior (i.e. as l, or m, or n → ∞) of the resistance in a
perfect infinite SC is (see Appendix A)

R0(l, m, n)

R
→ g0 . (6)

2.2. Perturbed SC Lattice

In this section, we calculate the resistance between any two lattice sites in
an infinite SC network of identical resistors, when one of the resistors (i.e. bonds)
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Table II. Calculated and measured values of the resistance between the sites i = (0, 0, 0) and j =
( jx , jy , jz), for a perturbed simple cubic lattice (i.e. the bond between i0 = (0, 0, 0) and j0 = (1, 0, 0)

is broken)

The Site R(i, j)
R

R(i, j)
R The Site R(i, j)

R
R(i, j)

R
j = ( jx , jy , jz) Theoretically Experimentally j = ( jx , jy , jz) Theoretically Experimentally

(0,0,0) 0 0 (−1,0,0) 0.356208 0.3559
(1,0,0) 0.5 0.5009 (−2,0,0) 0.454031 0.4565
(2,0,0) 0.485733 0.4904 (−3,0,0) 0.4526508 0.5003
(3,0,0) 0.500062 0.5151 (−4,0,0) 0.467337 0.5699
(4,0,0) 0.510257 0.5806 (0,−1,0) 0.360993 0.3606
(0,1,0) 0.360993 0.3615 (0,−2,0) 0.457943 0.4611
(0,2,0) 0.457943 0.4612 (0,−3,0) 0.491033 0.5040
(0,3,0) 0.491033 0.5041 (0,−4,0) 0.506167 0.5735
(0,4,0) 0.506167 0.5735 (0,0,−1) 0.360993 0.3613
(0,0,1) 0.360993 0.3611 (0,0,−2) 0.457943 0.4615
(0,0,2) 0.457943 0.4613 (0,0,−3) 0.491033 0.5043
(0,0,3) 0.491033 0.5042 (0,0,−4) 0.506167 0.5736
(0,0,4) 0.506167 0.5737 (−1,−1,−1) 0.454367 0.4560
(1,1,1) 0.4659804 0.4203 (−2,−2,−2) 0.50009 0.5170
(2,2,2) 0.503597 0.4780 (−3,−3,−3) 0.5158855 0.5854
(3,3,3) 0.517510166 0.5458 (−4,−4,−4) 0.5237707 0.8974
(4,4,4) 0.524705 0.8579

between the sites i0 = (i0x , i0y , i0z) and j0 = ( j0x , j0y , j0z) is removed (Cserti
et al., 2002), where

R(i, j) = R0(i, j) + [R0(i, j0) + R0( j, i0) − R0(i, i0) − R0( j, j0)]2

4[R − R0(i0, j0)]
(7)

As an example; let us assume that the bond between i0 = (0, 0, 0) and
j0 = (1, 0, 0) is removed. So, we calculate the resistance between any two sites.
Our results are arranged in Table II, and for example:

The resistance between the sites i = (0, 0, 0) and j = (1, 0, 0) is

R(1, 0, 0) = R

2
. (8)

i.e. the resistance between the two ends of the removed bond is R
2 , which is a

predictable result (Cserti et al., 2002).
Now, if the removed bond is shifted and set between the sites i0 = (1, 0, 0)

and j0 = (2, 0, 0), then one can find the resistance between any two sites i.e.
i = (ix , iy , iz) and j = ( jx , jy , jz)). Using Equation (7) again one obtains the re-
sults arranged in Table III.
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Table III. Calculated and measured values of the resistance between the sites i = (0, 0, 0) and
j = ( jx , jy , jz), for a perturbed SC lattice (i.e. the bond between i0 = (1, 0, 0) and j0 = (2, 0, 0)

is broken)

The Site R(i, j)
R

R(i, j)
R The Site R(i, j)

R
R(i, j)

R
j = ( jx , jy , jz) Theoretically Experimentally j = ( jx , jy , jz) Theoretically Experimentally

(0,0,0) 0 0 (−1,0,0) 0.334495 0.3345
(1,0,0) 0.356208 0.3552 (−2,0,0) 0.421618 0.4247
(2,0,0) 0.485733 0.4903 (−3,0,0) 0.452650 0.4656
(3,0,0) 0.461555 0.4757 (−4,0,0) 0.467337 0.5342
(4,0,0) 0.470021 0.5389 (0,−1,0) 0.334191 0.3338
(0,1,0) 0.334191 0.3346 (0,−2,0) 0.421552 0.4247
(0,2,0) 0.421552 0.4247 (0,−3,0) 0.452738 0.4656
(0,3,0) 0.452738 0.4657 (0,−4,0) 0.467467 0.5348
(0,4,0) 0.467467 0.5347 (−1,−1,−1) 0.420168 0.4185
(1,1,1) 0.419799 0.4218 (−2,−2,−2) 0.462590 0.4795
(2,2,2) 0.460461 0.4812 (−3,−3,−3) 0.477628 0.5479
(3,3,3) 0.477922 0.5494 (−4,−4,−4) 0.485253 0.8602
(4,4,4) 0.485476 0.8616

For large separation between the sites i and j the resistance in an infinite
perturbed SC lattice becomes (see Appendix B).

R(i, j)

R
→ R0(i, j)

R
= g0. (9)

That is, the resistance between the sites i and j in an infinite perturbed SC
lattice goes to a finite value.

3. EXPERIMENTAL RESULTS

To study the resistance of the SC lattice experimentally we constructed a
three-dimensional SC finite network consisting of (8 × 8 × 8) identical resistors,
each has a value of (1 k�) and tolerance (1%).

3.1. Perfect Case

Using the constructed perfect mesh we measured the resistance between the
origin and the site (l, m, n) along the directions [100], [010], [001], and [111]. Our
results are arranged in Table IV.

3.2. Perturbed Case

To measure the resistance for the perturbed case we removed the bond be-
tween i0 = (0, 0, 0) and j0 = (1, 0, 0) in the constructed mesh, then we mea-
sured the resistance between the site i = (0, 0, 0) and the site j = ( jx , jy , jz)
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Table IV. Calculated and measured values of the resistance between the origin and an arbitrary site
in a perfect SC lattice

The Site R0(l,m,n)
R

R0(l,m,n)
R The Site R0(l,m,n)

R
R0(l,m,n)

R ly
(l,m,n) Theoretically Experimentally (l,m,n) Theoretically Experimentally

(0,0,0) 0 0 (−1,0,0) 0.3333 0.3333
(1,0,0) 0.3333 0.3331 (−2,0,0) 0.419683 0.4230
(2,0,0) 0.419683 0.4227 (−3,0,0) 0.450371 0.4635
(3,0,0) 0.450371 0.4633 (−4,0,0) 0.464885 0.5321
(4,0,0) 0.464885 0.5323 (0,−1,0) 0.3333 0.3337
(0,1,0) 0.3333 0.3331 (0,−2,0) 0.419683 0.4228
(0,2,0) 0.419683 0.4228 (0,−3,0) 0.450371 0.4634
(0,3,0) 0.450371 0.4623 (0,−4,0) 0.464885 0.5322
(0,4,0) 0.464885 0.5321 (0,0,−1) 0.3333 0.3335
(0,0,1) 0.3333 0.3334 (0,0,−2) 0.419683 0.4231
(0,0,2) 0.419683 0.4230 (0,0,−3) 0.450371 0.4635
(0,0,3) 0.450371 0.4634 (0,0,−4) 0.464885 0.5324
(0,0,4) 0.464885 0.5325 (−1,−1,−1) 0.418305 0.4204
(1,1,1) 0.418305 0.4203 (−2,−2,−2) 0.460159 0.4772
(2,2,2) 0.460159 0.4774 (−3,−3,−3) 0.475023 0.5464
(3,3,3) 0.475023 0.5461 (−4,−4,−4) 0.482570 0.8583
(4,4,4) 0.482570 0.8581

along the directions [100], [010], [001], and [111]. Our results are arranged in
Table II.

Now, the removed bond is shifted, i0 = (1, 0, 0) and j0 = (2, 0, 0), then we
again measured the resistance between the site i = (0, 0, 0) and the site
j = ( jx , jy , jz) along the directions [100], [010], [001], and [111]. Our results
are arranged in Table III.

4. RESULTS AND DISCUSSION

From the Figures shown the resistance in an infinite SC lattice is symmetric
under the transformation (l, m) → (−l, −m) due to the inversion symmetry of the
lattice. However, the resistance in the perturbed infinite SC lattice is not symmetric
due to the removed bond.

Also, one can see that the resistance in the perturbed infinite SC lattice is
always larger than that in a perfect lattice and this is due to the positive second
term in Equation (7). But as the separation between the sites increases the perturbed
resistance goes to that of a perfect lattice more rapidly. This means that the effect
of the perturbation decreases.

Figure 1 shows the resistance against the site (l, m, n) along the [100] direction
for both a perfect infinite and perturbed SC (i.e. the bond between i0 = (0, 0, 0) and
j0 = (1, 0, 0) is broken). It is seen from the figure that the resistance is symmetric
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Fig. 1. The resistance on the perfect (squares) and the perturbed (circles) SC between i = (0, 0, 0)
and j = ( jx , 0, 0) along the [100] direction as a function of jx . The ends of the removed bond are
i0 = (0, 0, 0) and j0 = (1, 0, 0).

(i.e. R0(l, 0, 0) = R0(−l, 0, 0)) for the perfect case due to the inversion symmetry
of the lattice while for the perturbed case the symmetry is broken so, the resistance
is not symmetric. As (l, m, n) goes away from the origin the resistance approaches
its finite value for both cases.

Figure 2 shows the resistance against the site (l, m, n) along the [100] direction
for both a perfect infinite and perturbed SC (i.e. the bond between i0 = (1, 0, 0) and
j0 = (2, 0, 0) is removed). It is seen from the figure that the resistance is symmetric
(i.e. R0(l, 0, 0) = R0(−l, 0, 0)) for the perfect case due to inversion symmetry of
the lattice while for the perturbed case the symmetry is broken, hence the resistance
is not symmetric. As (l, m, n) goes away from the origin the resistance approaches
a finite value for both cases.

Figure 3 shows the measured and calculated resistances of the perfect SC
lattice against the site (l, m, n) along the [100] direction. It is seen from the fig-
ure that the measured resistance is symmetric within the experimental error (i.e.
R0(l, 0, 0) = R0(−l, 0, 0)) due to inversion symmetry of the mesh.

Figure 4 shows the measured and calculated resistance values of the perturbed
(i.e. the bond between i0 = (0, 0, 0) and j0 = (1, 0, 0) is broken) SC lattice against
the site (l, m, n) along the [100] direction. It is seen from the figure that the
measured resistance is not symmetric (i.e. R0(l, 0, 0) 
= R0(−l, 0, 0)) due to the
removed bond.

Figure 5 shows the measured and calculated resistance of the perturbed (i.e.
the bond between i0 = (1, 0, 0) and j0 = (2, 0, 0) is broken) SC lattice against the
site (l, m, n) along the [100] direction. It is seen from the figure that the measured
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Fig. 2. The resistance on the perfect (squares) and the perturbed (circles) SC between i = (0, 0, 0)
and j = ( jx , 0, 0) along the [100] direction as a function of jx . The ends of the removed bond are
i0 = (1, 0, 0) and i0 = (2, 0, 0).

resistance is not symmetric (i.e. R0(l, 0, 0) 
= R0(−l, 0, 0)) due to the removed
bond.

From Figs. (1–5) the (8 × 8 × 8) constructed finite SC mesh gives the mea-
sured bulk resistance nearly same as those calculated. This also shows that one can

Fig. 3. The resistance between i = (0, 0, 0) and j = ( jx , 0, 0) of the perfect SC lattice as a function
of jx ; calculated (squares) and measured (circles) along the [100] direction.
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Fig. 4. The resistance between i = (0, 0, 0) and j = ( jx , 0, 0) of the perturbed SC as a function of
jx ; calculated (squares) and measured (circles) along the [100] direction. The ends of the removed
bond are i0 = (0, 0, 0) and j0 = (1, 0, 0).

study the bulk properties of a crystal consisting of (8 × 8 × 8) atoms accurately.
In addition, as we approach the surface of the SC mesh the measured resistance
exceeds the calculated due to surface effect.

Fig. 5. The resistance between i = (0, 0, 0) and j = ( jx , 0, 0) of the perturbed SC as a function of
jx ; calculated (squares) and measured (circles) along the [100] direction. The ends of the removed
bond are i0 = (1, 0, 0) and j0 = (2, 0, 0).
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APPENDIX A

Asymptotic Form of the Resistance for an Infinite Perfect SC Lattice

The resistance between the origin and any lattice site (l, m, n) in an infinite
perfect SC lattice is given as (Cserti, 2000):

R0(l, m, n)

R
= [G0(0, 0, 0) − G0(l, m, n)] (A1)

Now, the LGF for a perfect SC lattice is given as [Economou, 1983]

G0(l, m, n) =
(

1

π3

) π∫
0

π∫
0

π∫
0

cos lx cos my cos nz

E − cos x − cos y − cos z
dxdydz (A2)

Taking the limit of Equation (A2) as l → ∞, then we may write

Lim
l→∞

Go(l, m, n) =
(

1

π3

)
Lim
l→∞

π∫
0

π∫
0

π∫
0

cos lx cos my cos nz

E − (cos x + cos y + cos z)
dxdydz

(A3)

=
(

1

π3

) π∫
0

π∫
0

[Lim
l→∞

π∫
0

cos lx

E − (cos x + cos y + cos z)
dx] cos my cos nzdydz

(A4)
Now, take I to be

I = Lim
l→∞

π∫
0

cos lx
E−(cox+cos y+cos z) dx ;

= Lim
l→∞

π∫
0

φ(x) cos lxdx .

(A5)

In the theory of Fourier series, we have the so-called Riemann’s lemma i.e.:

Lim
p→∞

b∫
a

φ(x) cos pxdx → 0. (A6)

From Equation (A6), we conclude thatI = 0. Thus, Equation (A4) becomes

Lim
l→∞

Go(l, m, n) → 0. (A7)

The same thing can be done for m → ∞ and for n → ∞. Thus, we conclude
that the LGF for a perfect SC lattice goes to zero as any of l, or m, or n goes to
infinity. Finally, Equation (A1) becomes

R0(l, m, n)

R
→ G0(0, 0, 0). (A8)
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So the resistance in a perfect SC lattice goes to a finite value for large sepa-
ration between the origin and the site (l, m, n).

APPENDIX B

Asymptotic Form of the Resistance for an Infinite Perturbed SC Lattice

The resistance between the site i = (ix , iy , iz) and the site j = ( jx , jy , jz) in
an infinite perturbed SC lattice is given as:

R(i, j) = R0(i, j) + [R0(i, j0) + R0( j, i0) − R0(i, i0) − R0( j, j0)]2

4[R − R0(i0, j0)]
. (B1)

where the resistor between the sites i0 = (i0x , i0y , i0z) and j0 = ( j0x , j0y , j0z) is
broken.

Substituting Equation (A1) into the nominator of Equation (B1), we get

R(i, j) = R0(i, j) + R[−G0(i, j0) − G0( j, i0) + G0(i, i0) + G0( j, j0)]2

4[R − R0(i0, j0)]
. (B2)

Now, taking the limit of Equation (B2) as i or j goes to infinity and using
Equation (A7). Thus, we obtain:

R(i, j) = Ro(i, j) + zero

4[R − R0(i0, j0)]
. (B3)

Finally, using Equation (A8) and Equation (B3), one gets:

R(i, j) = R0(i, j) → G0(0, 0, 0). (B4)

Thus, we conclude that as the separation between sites i and j goes to infinity
then, the perturbed resistance goes to the perfect resistance (i.e. it goes to a finite
value).
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