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Lattice Green’s Function for the Face
Centered Cubic Lattice

R. S. Hijjawi,1 J. H. Asad,2 A. Sakaji,3 and J. M. Khalifeh2,4

An expression for the Green’s function (GF) of face centered cubic (FCC) lattice is
evaluated analytically and numerically for a single impurity problem. The density of
states (DOS), phase shift and scattering cross section are expressed in terms of complete
elliptic integrals of the first kind.
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1. INTRODUCTION

The lattice Green’s function (LGF) is defined as (Economou, 1983)

G(E) = �

(2π )d

∫
IBZ

F(�k)

E − E(�k)
d�k (1.1)

E(�k) is a dispersion relation, F(�k) is an appropriate function, � is the volume
of the crystal in real space, d is the dimension, and IBZ denotes that the inte-
gration is restricted to the first Brillouin zone (Economou, 1983; Katsura et al.,
1971).

Many quantities of interest in solid state physics can be expressed in terms
of LGF, for example, statistical model of ferromagnetism such as Ising model
(Brout, 1960), Heisenberg model (Mattis, 1965), and spherical model (Berlin and
Kac, 1952); lattice dynamics (Montroll, 1956), random walk theory (Montroll
and Wiess, 1965; Domb and Joyce, 1972), and band structure (Li et al., 1989).
In a recent work we have evaluated analytically and numerically GF, density
of states (DOS), phase shift, and scattering cross section for the following
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cases:

(i) One and two dimensional lattices (Sakaji et al., submitted),
(ii) Glasser cubic lattice (Sakaji et al., 2002a),

(iii) Body Centered Cubic lattice (Sakaji et al., 2002b),
(iv) General Glasser case (Hijjawi and Khalifeh, 2002).

In this paper we report on the single impurity LGF. The paper is organized as
follows: Section 2 is devoted to the general definition of the diagonal LGF and its
form inside and outside the band for the FCC lattice in terms of complete elliptic
integrals of the first kind. This section also contains the formulae for the DOS,
phase shift and scattering cross section for the point defect case. In Section 3 we
present the results and discussion.

2. THE FCC LATTICE GREEN’S FUNCTION

The diagonal GF for the FCC lattice with nearest neighbor interaction is
defined as (Joyce, 1971; Morita and Horiguci, 1971a; Morita and Horiguci, 1971b;
Inoue, 1974; Mano, 1975; Mano, 1974; Doniach and Sondheimer, 1974)

G0(L , L; E) = 1

π3

∫ π

0

∫ π

0

∫ π

0

× dkx dky dkz

E − cos(kx ) cos(ky) − cos(kx )cos(kz) − cos(ky)cos(kz)
, E > 3 (2.1)

Integrating the above equation and using the method of analytic continuation
(Inoue, 1974; Mano, 1975; Mano, 1974), the diagonal GF outside the band has the
form

G0(L , L; E) = 4

π2(E + 1)
K (k+) K (k−), E > 3 (2.2)

where

k2
± = 1

2

(
1 ∓ 4

√
E

(E + 1)3/2
− (E − 1)

√
(E − 3)

(E + 1)3/2

)
, (2.3)

GF outside and inside the band can be written as (all mathematical Manipulations
are given in Appendix A).

G0(L , L , ; E)

=
{ 4

π2 (E+1) K (k+)K (k−), E > 3

2
π2 (E+1) [(Z2

+ + 1)(Z2
− + 1)]

−1
4 (K (v+)K (u−) + K (v−)K (u+) + i[K (v+)K (u+) − K (v−)K (u−)]), −1 < E < 0

}
,

(2.4)
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where

Z2
∓ = 4

√−E

(E + 1)3/2

(
− (E − 1)

4

√−E + 3

−E
∓ 1

)
, (2.5)

and

ν2
± = 1

2

(
1 ±

√
Z2−

Z2− + 1

)
(2.6)

µ2
± = 1

2

(
1 ±

√
Z2+

Z2+ + 1

)
(2.7)

Therefore, the DOS is

DOSo(E) = 2

π3(E + 1)

[
(Z2

− + 1)(Z2
+ + 1)

] −1
4 [K (v+)K (u+)

−K (v−)K (u−)] , −1 < E < 0 (2.8)

where K(v±) and K(u±) are the complete elliptic integrals of the first kind.
Consider the case of a tight-binding Hamiltonian whose perfect periodicity

is destroyed due to the presence of the point defect at the L site. This situation can
be thought of physically as arising by substituting the host atom at the L-site by
a foreign atom (Economou, 1983; Doniach and Sondheimer, 1974) having a level
lying ε′ higher than the common level of the host atoms (L). Normally, this atom
is close to the host in the same series of the periodic table.

Thus, our diagonal GF of the FCC lattice for the single impurity case can be
written as

G (L , L , E)

=




4K (k+ )K (k− )
π2 (E+1)−4ε′ K (k+ )K (k− ) ; E > 3

π2
2 (E+1)[(Z2++1)(Z2−+1)]

1
4 K [(ν+ )K (µ− )+K (ν− )K (µ+ )+i(K (ν+ )K (µ− )−(ν+ )K (µ+ ))]−2ε′ [K 2 (ν+ )+K 2 (ν− )][K 2 (µ+ )+K 2 (µ− )]

[ π2

2 (E + 1)((Z2+ + 1)(Z2− + 1))
1
4 − ε′(K (ν+)K (µ−) + K (ν−)K (µ+))]2 + ε2[K (ν+)K (µ+) − K (ν−)K (µ−)]2




,

−1 < E < 0 (2.9)

and the corresponding DOS can be written as:

DOS (E)

=
π2

2 (E + 1)[(Z2
+ + 1)(Z2

− + 1)]
1
4 (K (ν+)K (µ−) − K (ν+)K (µ+))

[ π2

2 (E + 1)((Z2+ + 1)(Z2− + 1))
1
4 − ε′(K (ν+)K (µ−) + K (ν−)K (µ+))]2 + ε2[K (ν+)K (µ+) − K (ν−)K (µ−)]2

,

−1 < E < 0 (2.10)
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The S-wave phase shift, δ0, is defined as (Doniach and Sondheimer, 1974):

tanδo = πDOS0(E)
1
ε′ − ReG0(E)

, (2.11)

Here, ReG0(E) refers to the real part the GF inside the band. After some
mathematical manipulations, we obtain:

tanδ0 = K (v+)K (u+) − K (v−)K (u−)

π2(E+1)[(Z2++1)(Z2−+1)]
1
4

2ε′ − (K (v+)K (u−) + K (v−)K (u+))
, (2.12)

The cross section, σ , is defined as (Doniach and Sondheimer, 1974):

σ = 4π

P2

π2[DOS0(E)]2[
ReG0(E) − 1

ε′
]2 + π2[DOS0(E)]2

, (2.13)

Here, P refers to the electron momentum.
Therefore, the cross section becomes

σ = 4π

P2

× [K (v+)K (u+) − K (v−)K (u−)]2[
K (v+)K (u−) + K (v−)K (u+) − π2(E+1)[(Z2++1)(Z2−+1)]

1
4

2ε′

]2

+ [K (v+)K (u+) − K (v−)K (u−)]2.

(2.14)

3. RESULTS AND DISCUSSION

Our results for the face centered cubic lattice are shown in Figs. 1–9. Figures
1 and 2 show real and imaginary parts of GF for the pure lattice. It diverges as E
goes to minus one. Figure 3 shows the DOS for the pure lattice. The DOS has the

Fig. 1. Real part of Green’s function for the perfect FCC lattice.
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Fig. 2. Imaginary part of Green’s function for the perfect FCC lattice.

same behavior as above apart from a constant. Figure 4 shows the DOS for the
face centered cubic lattice with single impurity for different potential strengths ε′

(−0.6, − 0.2,0.0,0.2, and 0.6). For ε′ = 0.0 it diverges as E goes to minus one.
The peak value varies with the potential strengths and reaches its maximum at
ε′ = 0.2. We see from the above figure that the divergence of the DOS is removed
by adding point defects due to the presence of additional terms in the denominator
coming from the impurity potential. For ε′ enclosed between 0.5 to 0.7 and −1
to −0.2, the curves inflect around E = − 0.5. Figure 5 shows the DOS for the
FCC in three-dimensions with one axis representing potential strengths ε′ varying
between −1 and 1 (arbitrary units) whereas the second axis is energy scale varying
between −1 and 0 as indicated in the formalism.

The phase shift, δ0, is defined as the shift in the phase of the wave function due
to the presence of the impurity potential. Figure 6 displays, δ0, for the FCC with

Fig. 3. The density of states (DOS) for the perfect FCC lattice.
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Fig. 4. The density of states (DOS) for the FCC lattice
with single impurity for different potential strengths ε′
(−0.6, −0.2, 0.0, 0.2, and 0.6).

single impurity for different potential strengths ε′ (−0.6, −0.2, 0.0, 0.2, and 0.6).
For ε′ = 0.0, δ0, vanishes as the potential is turned off (perfect lattice). The phase
shift is always negative for all negative potential strengths ε′ the same behavior
occurs for ε′ ≥ 0.95. In the range between ε′ = 0.0 and ε′ = 0.4, δ0, is positive.
In the range ε′ between 0.4 and 0.94 we have discontinuity as shown in Fig. 6.
The phase shift is separated into two regions around the discontinuity point: a right
hand region where δ0 is positive and decreases as E increases and a left hand region

Fig. 5. Three-dimensional density of states (DOS) for the FCC lattice
with single impurity for different potential strengths ε′ varying between
−1 and 1(arbitrary units).
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Fig. 6. The phase shift, δ0, for the FCC lattice with single im-
purity for different potential strengths ε′ (−0.6, −0.2, 0.0, 0.2,
and 0.6).

in which δ0 is negative and increases as E increases (the discontinuity point moves
to the right by increasing ε′).

Figure 7 shows the phase shift, δ0, in three dimensions for the face centered
cubic lattice with single impurity for different potential strengths ε′ varying be-
tween −1 and 1 (arbitrary units).

The cross section, σ, is defined as the area an impurity atom presents to
the incident electron. Figure 8 shows the cross section for single substitutional
impurity with different potential strengths, ε′. The peak value varies with the

Fig. 7. The phase shift, δ0, in three dimensions for the FCC lat-
tice with single impurity for different potential strengths ε′ varying
between −1 and 1(arbitrary units).
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Fig. 8. The cross section, σ , for the FCC lattice with single
impurity for different potential strengths ε′ (−0.6, −0.2, 0.0,
0.2, and 0.6).

potential strength, it increases as ε′ increases in range between 0.0 < ε′ < 1.0 and
increases as ε′ decreases in range between −1.0 < ε′ < 0.0. The cross section is
related to some physical quantities such as the mobility and resistivity in metals.
Figure 9 shows the cross section, σ , in three dimensions for the face centered cubic
lattice with single impurity for different potential strengths ε′ varying between −1
and 1(arbitrary units).

Fig. 9. The cross section, σ , in three dimensions for the FCC lattice with
single impurity for different potential strengths ε′ varying between −1
and 1(arbitrary units).
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APPENDIX A: DERIVATION OF GREEN’S FUNCTION FOR
THE FACE CENTERED CUBIC LATTICE INSIDE THE BAND

In this Appendix we derive an expression for GF inside the band in terms of
complete elliptic integral of the first kind.

GF for the face centered cubic lattice outside the band is given by (Joyce,
1971; Morita and Horiguci, 1971; Morita and Horiguci, 1971; Inoue, 1974; Mano,
1975; Mano, 1974):

G0(L , L; E) = 4

π2(E + 1)
K (k+)K (k−), (A1)

where

k2
± = 1

2
(1 + X∓), (A2)

X∓ = ∓ 4
√

E

(E + 1)3/2
− (E − 1)

√
(E − 3)

(E + 1)3/2
, (A3)

Or in the range E enclosed between −1 and 0

k2
± = 1

2
(1 + Z∓), −1 < E < 0 (A4)

where

Z∓ = 4i
√−E

(E + 1)3/2

(
− (E − 1)

4

√−E + 3

−E
∓ 1

)
, (A5)

The complete elliptic integral of the first kind is expressed as

K (k) = π

2
2 F1

(
1

2
,

1

2
, 1, k2

)
(A6)

where
2 F1( 1

2 , 1
2 , 1, k2) is the Gauss hypergeometric function

Substituting (A6) in (A1) we have

G0(E) = 2 F1
(

1
2 , 1

2 ; 1; k2
+
)

2 F1
(

1
2 , 1

2 ; 1; k2
−
)

E + 1
(A7)

Using the following transformations (Bateman Manuscript Project, 1963):

2 F1

(
1

2
,

1

2
; 1;

1 + Z∓
2

)
= 


(
1
2

)
(



(
3
4

))2 2 F1

(1

4
,

1

4
;

1

2
; Z2

∓
)

+ 2Z∓



(
1
2

)
(



(
1
4

))2 2 F1

(3

4
,

3

4
;

3

2
; Z2

∓
)

, (A8)
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With

2 F1(a, b; c; Z2
∓) = (1 − Z2

∓)−a
2 F1

(
a, c − b; c;

Z2
∓

Z2∓ − 1

)
(A9)

2

(

1
2

)
(



(
3
4

))2 2 F1

(
1

4
,

1

4
;

1

2
;

Z2
∓

Z2∓ − 1

)
= 2 F1

(
1

2
,

1

2
; 1;

1

2

(
1 +

√
Z2∓

Z2∓ − 1

))

+ 2 F1

(
1

2
,

1

2
; 1;

1

2

(
1 −

√
Z2∓

Z2∓ − 1

))
, (A10)

2

( − 1

2

)
(



(
1
4

))2

√
Z2∓

Z2∓ − 1
2 F1

(
3

4
,

3

4
;

3

2
;

Z2
∓

Z2∓ − 1

)
= 2 F1

(
1

2
,

1

2
; 1;

1

2

(
1 −

√
Z2∓

Z2∓ − 1

))

− 2 F1

(
x

1

2
, x

1

2
; 1;

1

2

(
1 +

√
Z2∓

Z2∓ − 1

))
, (A11)

Substituting (A8), (A9), (A10) and (A11) in (A7) we obtain

G0 (L , L , E) = 2

π2(E + 1)

[
(Z2

+ + 1)(Z2
− + 1)

] −1
4 (K (v+)K (u−)

+ K (v−)K (u+) + i(K (v+)K (u+) − K (v−)K (u−))), (A12)

where

v2
± = 1

2

(
1 ±

√
Z2−

Z2− + 1

)
(A13)

u2
± = 1

2

(
1 ±

√
Z2+

Z2+ + 1

)
(A14)

If we have a single impurity then GF is defined as (Economou, 1983):

G(L , L , E) = G0(L , L , E)

1 − ε′G0(L , L , E)
(A15)

After some mathematical manipulation Eq. (A15) becomes.

G(L , L , E)

=
π2

2 (E + 1)
[
(Z2

+ + 1)(Z2
− + 1)

] 1
4 [K (ν+)K (µ−) + K (ν−)K (µ+) + i(K (ν+)K (µ−) − K (ν+)K (µ+))] − 2ε′ [K 2(ν+) + K 2(ν−)

] [
K 2(µ+) + K 2(µ−)

]
[

π2

2 (E + 1)((Z2+ + 1)(Z2− + 1))
1
4 − ε′(K (ν+)K (µ−) + K (ν−)K (µ+))

]2
+ ε2 [K (ν+)K (µ+) − K (ν−)K (µ−)]2

.

(A16)
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Thus, the S-phase shift and scattering cross section can be evaluated in terms
of complete elliptic integrals of the first kind as shown in the text.
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