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Remarks on Perturbation of Infinite Networks
of Identical Resistors
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The resistance between arbitrary sites of infinite square network of identical resistors
is studied when the network is perturbed by removing two bonds from the perfect
lattice. A connection is made between the resistance and the lattice Green’s function
of the perturbed network. By solving Dyson’s equation the Green’s function and the
resistance of the perturbed lattice are expressed in terms of those of the perfect lattice.
Some numerical results are presented for an infinite square lattice.
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1. INTRODUCTION

A classic problem in electric circuit theory studied by many authors over many
years is computation of the resistance between two nodes in a resistor network.
Besides being a central problem in electric circuit theory, the computation of
resistances is also relevant to a wide range of problems ranging from random walk
(Doyle and Snell, 1984; Lovăz, 1996), theory of harmonic functions (Van der Pol
and Bremmer, 1955) to first-passage processes (Redner, 2001).

The connection with these problems originates from the fact that electrical
potentials on a grid are governed by the same difference equations as those oc-
curring in the other problems. For this reason, the resistance problem is often
studied from the point of view of solving the difference equations, which is most
conveniently carried out for infinite networks.

Kirchhoff (1847) formulated the study of electric networks more than
150 years ago, and the electric–circuit theory has been discussed in detail by
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Van der Pol and Bremmer (1955) in which they derived the resistance between
nearby points on the square lattice. Bartis (1967) introduced how complex systems
can be treated at the elementary level and showed how to calculate the effective
resistance between adjacent nodes of a square, triangular, honeycomb and kagome
lattices of one-ohm resistors.

Venezian (1994) showed that the resistance between adjacent sites on an
infinite square grid of equal resistors can easily be found by the superposition
of current distribution. The mathematical problem involves the solution of an
infinite set of linear, inhomogeneous difference equations which are solved by the
method of separation of variables. Numerical results for the resistances between
the sites (0, 0) and (l, m) in units of R are presented. Atkinson and Van Steenwijk
(1999) calculated the resistance between two arbitrary sites in an infinite square
lattice of identical resistors. Their method is generalized to infinite triangular- and
hexagonal-lattices in two dimensions, and also to infinite cubic and hypercubic-
lattices in three and more dimensions.

Monwhea (2000) introduced a mapping between random walk problems and
resistor network problems, where his method was used to calculate the effective
resistance between any two sites in an infinite two-dimensional square lattice
of unit resistors and the superposition principle was used to find the effective
resistances on toroidal- and cylindrical–square-lattices.

Recently, Cserti (2000) introduced an alternative method based on the LGF
rather than using the superposition distribution of current, where the resistance
for d-dimensional hypercubic- rectangular- triangular- and honeycomb-lattices of
resistors is discussed in detail. Recurrence formulae for the resistance between
arbitrary lattice points of the square lattice have been given in his paper. The
resistance between arbitrary nodes of infinite networks of resistors is studied when
the network is perturbed by removing one bond from the perfect lattice (Cserti
et al., 2002), where the resistance in a perturbed lattice is expressed in terms of
the resistance in a perfect lattice. Wu (2004) studied the finite networks consisting
of identical resistors using the so-called Laplacian matrix where he obtained
the resistance between two arbitrary lattice sites in terms of the eigenvalues and
eigenfunctions of the Laplacian. Wu’s obtained explicit formulae for the resistance
in one, two and three dimensions under various boundary conditions. Finally, Asad
et al. (2004) studied both the perfect and perturbed infinite square mesh using
Cseti’s method where they construct a finite network consisting of (30 × 30)
identical resistance. They obtained measurements for the resistance between the
origin and other lattice sites and they compared these measured values with those
obtained by Cserti’s method.

The properties of the Lattice Green’s Function (LGF) have been studied in
details (Morita and Horiguchi, 1972), especially when impurities are often intro-
duced. The LGF for square lattice has been studied well by many authors (Hijjawi,
2002; Morita and Horiguchi, 1971; Morita, 1971), the LGF for the rectangular
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Fig. 1. Perturbation of an infinite square lattice by removing two edges between sites (i0j0)
and (k0l0). The resistance R(i, j ) between arbitrary lattice points i and j.

lattice has been investigated (Katsura and Inawashiro, 1971). Recurrence relation,
which gives the LGF along the diagonal direction from a couple of values of
complete elliptic integrals of the first and second kinds for the rectangular and
square lattices, has been derived (Morita, 1971), and in these references the reader
can find useful papers.

In this work, we study the perturbation of infinite networks when two bonds
are broken. As an example (see Fig. 1), consider an infinite square lattice whose
edges represent identical resistances R removing two edges (bonds) from this
perfect lattice results in a perturbed lattice.

2. PERFECT CASE

Before starting with the formalism of the perturbed lattice, let us first review
the perfect case using Dirac’s notation. To do this, consider a perfect d-dimensional
infinite lattice made of identical resistances R, where all lattice points are specified
by the poison vector �r defined as

�r = l1�a1 + l2�a2 + · · · + ld �ad. (1)
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The potential at site ri be V (ri), the current entering at origin to be (+I ), and
the current exiting at a lattice point ri to be (−I ). One can form two vectors, V and
I such that

V =
∑

i

|i〉Vi. (2)

I =
∑

i

|i〉Ii . (3)

where

Vi = V (ri);

and

Ii = I (ri).

We assume that 〈i|k〉 = δik and
∑

i |i〉〈i| = 1. (i.e. |i〉 forms a complete
orthonormal set).

Using Eqs. (1) and (2), then according to Ohm’s and Kirchhoff’s laws one
gets (Cserti et al., 2002) ∑

j

(zδij − �ij )〈j |V = R〈i|I . (4)

Multiplying Eq. (4) by |i〉 and taking the sum over i, one gets

L0V = −IR (5)

where L0 = ∑
i,j |i〉(�ij − zδij )〈j | is the so-called lattice Laplacian.

z ≡ no. of nearest neighbors of each lattice site (i.e., z = 2d).

�kl =
{

1, rk, rl nearest neighbors

0, otherwise
(6)

The Lattice Green’s Function (LGF) is defined by Economou (1983) as

L0G0 = −1. (7)

The solution of Eq. (4) in its simplest form is

V = −R0L
−1
0 I = RG0Im. (8)

Assume a current +I enters at site �ri ,−I exits at site �rj and zero otherwise.
Thus, the current distribution may be written as

Im = I (δmi − δmj ), ∀m. (9)
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Substituting Eq. (8) into Eq. (7), one gets

Vk = 〈k|V =
∑
m

〈k|RG0Im|m〉 = RI[G0(k, i) − G0(k, j )]. (10)

The resistance between the sites ri and rj is

R0(i, j ) = Vi − Vj

R
(11)

Using Eq. (9) then Eq. (10) becomes

R0(i, j ) = 2R[G0(i, i) − G0(i, j )] (12)

where we have made use of the symmetry properties of the LGF.
To study the asymptotic behavior of the resistance in an infinite square lattice,

it has been shown (Cserti et al., 2002) that for large separation between the two
sites i and j the resistance becomes:

R0(i, j )

R
= 1

π

[
Ln

√
(jx − ix) + (jy − iy) + γ + Ln8

2

]
. (13)

Thus, as the separation between the two sites i and j goes to infinity the perfect
resistance in an infinite square lattice goes to infinity, the same result has been
showed in Doyle’s and Snell’s book (Doyle and Snell, 1984) without deriving the
asymptotic form.

3. PERTURBED CASE (TWO BONDS ARE BROKEN)

The current contribution δIi1 at the site ri due to the bond (i0j0) is given by

δIi1R = δii0 (Vi0 − Vj0 ) + δij0 (Vj0 − Vi0 ) = 〈i|i0〉(〈i0| − 〈j0|)V
+〈i|j0〉(〈j0| − 〈i0|)V = 〈i|(|i0〉 − |j0〉)(〈i0| − 〈j0|)V δIi1R = 〈i|L1V.

(14)

where the operator L1 is of a so-called “dyadic” form

L1 = (|i0〉 − |j0〉)(〈i0| − 〈j0|)
and 〈n|m〉 = δnm has been used.

Replacing the bond (i0j0) by (k0l0) then, the current contribution δIi2 at the
site ri due to the bond (k0l0) is given by

δIi2R = 〈i|L2V. (15)

where the operator L2 has the form

L2 = (|k0〉 − |l0〉)(〈k0| − 〈l0|). (16)
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Now removing the bonds (i0j0) and (k0l0) from the perfect lattice, then the current
Ii at the site ri is given by

(−L0V )i − Rδi1 − Rδi2 = RIi (17)

or

LV = −RIi (18)

where

L = L01 + L and L01 = L0 + L1.

The LGF for the perturbed lattice can be written as

LG = −1 (19)

To measure the resistance between ri and rj , we assume the current distribution
to be as given in Eq. (8).

Now, the simplest solution of Eq. (17) is

V = −RIiL
−1 (20)

From Eq. (19) L−1 = −G. Thus, Eq. (20) becomes

V = RIiG (21)

To obtain the potentials at different sites, insert Eq. (8) into Eq. (21) one gets

Vk = 〈k|V = R〈k|GIi
(22)

Vk = RI0[G(k, i) − G(k, j )].

Thus, the resistance between the site ri and rj is

R(i, j ) = Vi − Vj

I
. (23)

Inserting Eq. (22) into Eq. (23) one obtains

R(i, j ) = R[G(i, i) + G(j, j ) − G(j, i) − G(i, J )]. (24)

Now

LG = −1 ⇒ (L01 + L2)G = −1. (25)

Multiplying Eq. (25) by G01 ⇒
G01(L01G + L2G) = −G01;

G = G01 + G01L2G. (26)
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where G01(i, j ) is the LGF due to one broken bond, and it is given in Cserti et al.
(2002) as:

G01(i, j ) = 〈i|G01|j 〉 = G0(i, j ) + [G0(i, i0) − G0(i, j0)][G0(i0, j ) − G0(j0, j )]

1 − 2[G0(i0, i0) − G0(j0, j0)]
.

(27)

Equations (26) and (27) is called Dyson’s equation and its solution can be found
by the iteration method, and since L2 has a special form (e.g., Eq. (16)) then one
can apply the identity operator (Cserti et al., 2002)

(A + |x〉〈y|)−1 = A−1 − A−1|x〉〈y|A−1

1 + 〈y|A−1|x〉 (28)

From Eq. (25) we have

G = −(L01 + L2)−1. (29)

Using the above identity with A = L01, |x〉 = |k0〉 − |l0〉 and 〈y| = 〈k0| − 〈l0|.
Thus,

G = −L−1
01 + L−1

01 (|k0〉 − |l0〉)(〈k0| − 〈l0|)L−1
01

1 + (〈k0| − 〈l0|)L−1
01 (|k0〉 − |l0〉)

;

(30)

= G01 + G01(|k0〉 − |l0〉)(〈k0| − 〈l0|)G01

1 − [G01(k0, k0) − G01(k0, l0) − G01(l0, k0) + G01(l0, l0)]
.

The matrix element of G can be expressed with the matrix element of G01 as

G(i, j ) = 〈i|G|j 〉 ⇒ G(i, j ) = G01(i, j )

+ [G01(i, k0) − G01(i, l0)][G01(k0, j ) − G01(l0, j )]

1 − [G01(k0, k0) + G01(l0, l0) − 2G01(k0, l0)]
. (31)

Finally, the resistance between �ri and �rj can be obtained by using Eqs. (31) and
(24)

R(i, j )

R
= G(i, i) + G(j, j ) − G(i, j ) − G(j, i)

= G01(i, i) + [G01(i, k0) − G01(i, l0)][G01(k0, i) − G01(l0, i)]

1 − [G01(k0, k0) + G01(l0, l0) − 2G01(k0, l0)]
+ G01(j, j)

+ [G01(j, k0) − G01(j, l0)][G01(k0, j ) − G01(l0, j )]

1 − [G01(k0, k0) + G01(l0, l0) − 2G01(k0, l0)]
− 2G01(j, i)

+ [G01(j, k0) − G01(j, l0)][G01(k0, i) − G01(l0, i)]

1 − [G01(k0, k0) + G01(l0, l0) − 2G01(k0, l0)]

+ [G01(i, k0) − G01(i, l0)][G01(k0, j ) − G01(l0, j )]

1 − [G01(k0, k0) + G01(l0, l0) − 2G01(k0, l0)]
. (32)
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The above equation can be rewritten as

R(i, j ) = R[G01(i, i) + G01(j, j ) − 2G01(i, j )

+ 1

1 − [G01(k0, k0) + G01(l0, l0) − 2G01(k0, l0)]

× [[G01(i, k0) − G01(i, l0)][G01(k0, i) − G01(l0, i)]

+ [G01(j, k0) − G01(j, l0)][G01(k0, j ) − G01(l0, j )]

− 2[G01(i, k0) − G01(i, l0)][G01(k0, j ) − G01(l0, j )]]]. (33)

The above equation (i.e. Eq. (33)) can be rewritten as:

R(i, j ) = R[G01(i, i) + G01(j, j ) − 2G01(i, j )

+ 1

1 − [G01(k0, k0) + G01(l0, l0) − 2G01(k0, l0)]

× [[G01(i, k0) − G01(i, l0)] − [G01(j, k0) − G01(j, l0)]]2]. (34)

The above equation can be simplified as:

R(i, j ) = R01(i, j ) + R

1 − R′
01(k0,l0)

R

{([G01(i, k0) − G01(i, l0)]

− [G01(j, k0) − G01(j, l0)])}2 (35)

where R01(i, j ) is the resistance due to removing the bond (i0j0) only and it is
given as (Cserti et al., 2002):

R01(i, j ) = R

{
R0(i, j ) + [R0(i, j0) + R0(j, i0) − R0(i, i0) − R0(j, j0)]2

4[1 − R0(i0, j0)]

}
.

(36)

and R′
01(k0, l0) is the resistance between the two ends of the removed bond (k0l0)

as affected from the removed bond (i0j0). From Eq. (36) we may write:

R01(k0, l0) = R

{
R0(k0, l0) + [R0(k0, j0) + R0(l0, i0) − R0(k0, i0) − R0(l0, j0)]2

4[1 − R0(i0, j0)]

}
.

(37)

Inserting Eq. (31) into Eq. (36), one gets some straight forward but lengthy algebra
as the following

R(i, j ) = R01(i, j ) + R

1 − R′
01(k0,l0)

R

{G0(i, k0) + G0(j, l0) − G0(i, l0) − G0(j, k0)

+ 1

1 − 2[G0(i0, i0) − G0(i0, j0)]
(G0(i, i0) + G0(j, j0) − 2G0(i, j0))
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× (G0(j0, l0) + G0(j0, k0) − G0(i0, l0) − G0(i0, k0))}2. (38)

Inserting Eq. (12) into Eq. (38) and making use of the symmetry of the perfect
LGF (i.e. G0(n, n) = G0(m,m)), one yields

R(i, j ) = R01(i, j ) + R

1 − R′
01(k0,l0)

R

{
R0(j, k0) + R0(i, l0) − R0(j, l0) − R0(i, k0)

2R

+ 1

1 − R0(i0,j0)
R

(
2R0(i, j0) − R0(i, i0) − R0(j, j0)

2R

)

×
(

R0(i0, k0) + R0(i0, l0) − R0(j0, l0) − R0(j0, k0)

2R

)}2

(39)

This is our final result for the resistance between two arbitrary sites �ri and �rj of
the perturbed lattice in which the bonds (i0j0) and (k0l0) are removed.

To check our result, take k0 → 0 and l0 → 0 (i.e. reduce the problem to one
broken bond), one gets

R(i, j ) = R01(i, j )

= R

{
R0(i, j ) + [R0(i, j0) + R0(j, i0) − R0(i, i0) − R0(j, j0)]2

4[1 − R0(i0, j0)]

}
(40)

which is the result obtained in Cserti et al. (2002) due to removing the bond (i0j0)
alone.

Our final form for the resistance in the perturbed lattice is valid for any lattice
structure in which each cell has only one lattice site. This is due to the fact that the
explicit form of the lattice Laplacian defined above was not used in the derivation
of Eq. (39).

Again, for large separation between the sites i and j the resistance in an
infinite perturbed square lattice goes to infinity.

4. NUMERICAL RESULTS

In this section, numerical results are presented for an infinite square lattice
including both the perfect and perturbed cases. The resistance between the origin
and the lattice site (l, m) is calculated in Asad et al. (2004) using the so-called
recurrence formulae for the resistance of an infinite square lattice presented in
Cserti (2000).

On the perturbed square lattice—where two bonds are broken—the resistance
can be calculated from Equation (39). In this work, the site �ri is fixed while the site
�rj is moved along the line of the removed bond. Here we considered three cases;
first, when the first removed bond is between i0 = (0, 0) and j0 = (1, 0), whereas
the second broken bond is between k0 = (1, 0) and l0 = (2, 0). Our calculated
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Table I. Calculated Values for the Resistance of an Infinite Square Lattice Between the
Origin and the Site j = (jx, 0), for a Perfect Lattice (R0(i, j )/R); Perturbed Lattice due
to the Broken Bond Between (0, 0) and (1, 0) -(R01(i, j )/R)-; Perturbed Lattice due to
Removing the Bonds Between (0, 0), (1, 0) and (1, 0), (2, 0) -(R1(i, j )/R)-; Perturbed
Lattice due to Removing the Bonds Between (0, 0), (1, 0) and (2, 0), (3, 0) -(R2(i, j )/R)-
and Finally, Perturbed Lattice due to Removing the Bonds Between (1, 0), (2, 0) and (2, 0),

(3, 0) -(R3(i, j )/R)-

j = (jx, 0) R0(i, j )/R R01(i, j )/R R1(i, j )/R R2(i, j )/R R3(i, j )/R

(0, 0) 0 0 0 0 0
(1, 0) 0.5 1 1.11114 1.03612 1.03026
(2, 0) 0.72676 0.99085 1.633 1.00781 1.04855
(3, 0) 0.86056 1.06142 1.29119 1.33293 1.56294
(4, 0) 0.95399 1.13006 1.24534 1.21548 1.2792
(5, 0) 1.0258 1.18929 1.25686 1.23009 1.24999
(6, 0) 1.08423 1.24015 1.28246 1.26407 1.26797
(7, 0) 1.13352 1.28438 1.31149 1.29979 1.29704
(8, 0) 1.17616 1.32339 1.34071 1.33376 1.3285
(9, 0) 1.21375 1.35825 1.36905 1.36535 1.36985
(10, 0) 1.24735 1.38971 1.39613 1.39458 1.38983
(−1, 0) 0.5 0.53733 0.58326 0.54726 0.54363
(−2, 0) 0.72676 0.79381 0.82357 0.80025 0.79586
(−3, 0) 0.86056 0.94322 0.9624 0.94751 0.9435
(−4, 0) 0.95399 1.04566 1.05775 1.0485 1.04572
(−5, 0) 1.0258 1.12329 1.13059 1.12513 1.12414
(−6, 0) 1.08423 1.18580 1.1899 1.18693 1.18812
(−7, 0) 1.13352 1.23811 1.24013 1.23876 1.24238
(−8, 0) 1.17616 1.28307 1.28384 1.28339 1.28962
(−9, 0) 1.21375 1.32251 1.32266 1.32263 1.33158
(−10, 0) 1.24735 1.35762 1.35762 1.35764 1.36937

values of the resistance (i.e. R1(i, j )/R) are arranged in Table I. In the second
case, the first broken bond is taken between i0 = (0, 0) and j0 = (1, 0), whereas
the second broken bond is between k0 = (2, 0) and l0 = (3, 0). Our results (i.e.
R2(i, j )/R) are arranged in Table I. Finally, we consider the case where the first
removed bond is between i0 = (1, 0) and j0 = (2, 0), whereas the second broken
bond is between k0 = (2, 0) and l0 = (3, 0). Again our calculated values of the
resistance (i.e. R3(i, j )/R) are arranged in Table I below.

In Figs. 1–3 the resistance for the perfect and the above three perturbed cases
are plotted as functions of jx . While, in Fig. 4 the resistance is plotted as functions
of jx for the perturbed lattices (i.e., case one and case three above).

One can see that the resistance when two bonds are broken is always larger
than that when one bond is broken. This is due to the positivity of the second
term in Eq. (39). This also means that the resistance when two bonds are broken
is always larger than the perfect resistance, and in general, one can say that; as
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Fig. 2. The resistance between i = (0, 0) and j = (jx, 0) along the [10] direction of
the perfect (squares) and the perturbed (circles) square lattice as a function of jx . The
ends of the removed bonds are i0 = (0, 0) and j0 = (1, 0), k0 = (1, 0) and l0 = (2, 0).

Fig. 3. The resistance between i = (0, 0) and j = (jx, 0) along the [10] direction of
the perfect (squares) and the perturbed (circles) square lattice as a function of jx . The
ends of the removed bonds are i0 = (0, 0) and j0 = (1, 0), k0 = (2, 0) and l0 = (3, 0).
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Fig. 4. The resistance between i = (0, 0) and j = (jx, 0) along the [10] direction
of the perfect (squares) and the perturbed (circles) square lattice as a function of
jx . The ends of the removed bonds are i0 = (1, 0) and j0 = (2, 0), k0 = (2, 0) and
l0 = (3, 0).

Fig. 5. The resistance between i = (0, 0) and j = (jx, 0) along the [10] direction
of the perturbed (squares) and the shifted perturbed (circles) square lattice as a
function of jx . The ends of the removed bonds for the perturbed are i0 = (0, 0)
and j0 = (1, 0), k0 = (1, 0) and l0 = (2, 0) while for the shifted perturbed are
i0 = (1, 0) and j0 = (2, 0), k0 = (2, 0) and l0 = (3, 0).
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the number of broken bonds increases in an infinite square lattice the perturbed
resistance increases.

Finally, from Figs. 1–4 one can see that the resistance in a perturbed infinite
square lattice is not symmetric under the transformation jx → −jx . This is due
to the fact that the inversion symmetry of the lattice has been broken. It can also
be seen from the figures that increasing the distance between the sites �ri and �rj the
resistance tends to that of the perfect lattice. (Fig. 5).
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