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The capacitance between arbitrary nodes in perfect infinite networks of identical capaci-
tors is studied. We calculate the capacitance between the origin and the lattice site (l, m)
for an infinite linear chain, and for an infinite square network consisting of identical ca-
pacitors using the Lattice Green’s Function. The asymptotic behavior of the capacitance
for an infinite square lattice is investigated for infinite separation between the origin and
the site (l, m). We point out the relation between the capacitance of the lattice and the
van Hove singularity of the tight- binding Hamiltonian. This method can be applied
directly to other lattice structures.
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1. Introduction

The study of the electric circuit theory is a new old goal for authors, and the electric-

circuit theory is discussed in detail in a text by Van der Pol and Bremmer.1 In Doyle

and Snell’s book2 the connection between random walks and electric networks is

presented. One can find in their book many interesting results and useful references.

The first attempt to study the electric circuit was done by Kirchhoff3 more than

150 years ago. Past efforts have been focused mainly on analyzing infinite networks

consisting of identical resistances R.4–9 Little attention has been paid to infinite

networks consisting of identical capacitances C.

In this paper, we present a general formalism for computing the capacitance

between arbitrary lattice points using the Lattice Green’s Function (LGF). This

method has the following advantages: (i) it can be used directly for complicated
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lattice structures such as body and face centered cubic lattices. (ii) Some recurrence

formulae for the capacitance can be derived from the equation of the LGF for an

infinite square lattice.

Economou10 gives an excellent introduction to the LGF in his book of which

the LGF presented is related to the tight-binding Hamiltonian (TBH). The LGF

for several lattice structures has been studied well11–17 by many authors.

Below we shall point out that the capacitance in a given lattice of capacitors

is related to the Green’s function of the TBH at the energy level in which the

density of states is singular. This singularity is one of the van Hove singularities

of the density of states.18–20 In a forthcoming publication we plan to study finite

networks of identical capacitances and investigate effects of lattice defects.

2. Hypercubic Lattice

Consider a d-dimensional lattice which consists of all lattice points specified by the

position vector r given in the form

r = l1a1 + l2a2 + · · · + ldad (2.1)

where l1, l2, . . . , ld are integers (positive, negative or zero)

and a1, a2, . . . , ad are independent primitive translation vectors.

If all the primitive translation vectors have the same magnitude, i.e., |a1| = |a2| =

· · · = |ad| = a, then the lattice is called hypercubic lattice. Here a is the lattice

constant of the d-dimensional hypercube.

In the network of capacitors we assume that all the capacitances of the hyper-

cube are identical, say C. Our aim is to find the capacitance between the origin and

a given lattice point ro of the infinite hypercube. To do this, we assume the charge

entering the origin (Q) and the charge exiting the lattice point ro to be (−Q) and

zero otherwise. Thus one can write:

Q(r) = Q[δr,o − δr,ro
] . (2.2)

Similarly, the potential at the site ro will be denoted as V (ro). Now, according to

Ohm and Kirchhoff’s laws we may write:

Q(r)

C
=

∑

n

[V (r) − V (r + n)] (2.3)

where n are the vectors from site r to its nearest neighbors (n = ±ai, i = 1, 2, . . . , d).

Using the lattice Laplacian1 defined as:

∆(r)f(r) =
∑

n

[f(r + n) − f(r)] (2.4)

then, Eq. (2.3) can be rewritten as:

∆(r)V (r) =
−Q(r)

C
. (2.5)
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The capacitance between the origin and the lattice site ro is

Co(ro) =
Q(r)

V (0) − V (ro)
. (2.6)

To find the capacitance defined by Eq. (2.6), one has to solve Eq. (2.5) which is a

Poisson-like equation and it may be solved by using the LGF as:

V (r) =
1

C

∑

r′

Go(r − r′)Q(r′) , (2.7)

where the LGF is defined as:

∆(r′)Go(r − r′) = −δr′,r . (2.8)

Finally, the capacitance between the origin and the lattice site ro can be written in

terms of the LGF. Using Eqs. (2.2), (2.6) and (2.7) we obtained:

Co(ro) =
C

2[Go(0) − Go(ro)]
(2.9)

where we have used the fact that the LGF is even, i.e. Go(−r) = Go(r). Equa-

tion (2.9) is our principal result for the capacitance. The LGF defined by Eq. (2.8)

can be written as:4

Go(r) = vo

∫

K∈BZ

ddK

(2π)d

exp(iKr)

E(K)
(2.10)

where vo = ad is the volume of the unit cell of the d-dimensional hypercube and

E(K) = 2

d
∑

i=1

(1 − CosKai) . (2.11)

Using Eqs. (2.9) and (2.10) in d-dimensions the capacitance between the origin and

the lattice site ro in an integral form is:

Co(ro) =
C

2vo

∫

K∈BZ
ddK

(2π)d

1−exp(iK·ro)
E(K)

. (2.12)

If the lattice point is specified by ro = l1a1 + l2a2 + · · ·+ ldad, then the above result

can be simplified as:

Co(ro) =
C

∫ 2π

−2π
dx1

2π
· · ·

∫ 2π

−2π
dxd

2π

1−exp{i(l1x1+···+ldxd)}

2
∑

d

i=1
(1−Cos xi)

. (2.13)

From Eq. (2.13) one can see that the capacitance does not depend on the angles

between the unit vectors a1, a2, . . . , ad. Physically this means that the hypercube

can be deformed without change of the capacitance between any two lattice points.

The capacitance in topologically equivalent lattice is the same. Also, the LGF for

a d-dimensional hypercube can be written as:

Go(l1, l2, . . . , ld) =

∫ π

−π

dx1

2π
· · ·

∫ π

−π

dxd

2π

exp(il1x1 + il2x2 + · · · + ildxd)

2
∑d

i=1(1 − Cosxi)
. (2.14)
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2.1. Linear chain

Consider a linear chain consisting of identical capacitors C. The capacitance be-

tween the origin and the site l can be obtained from the general result given in

Eq. (2.13) by taking d = 1. Thus:

Go(l) =
C

∫ π

−π
dx
2π

1−exp(ilx)
1−Cos x

. (2.15)

The above integral can be evaluated by the method of residues5 and gives the

following result:

Go(l) =
C

l
. (2.16)

The above result can be interpreted as the capacitance of l capacitances C in series.

The charge flows only between the two sites separated by a finite distance and the

two semi-infinite segments of the chain do not affect the capacitance.

For l = 0, i.e. the origin, then according to Eq. (2.16) the capacitance is infinity.

This is obvious because the potential difference at a point equal zero.

2.2. Square lattice

The capacitance between the origin and the lattice site ro = la1 + ma2 in a two-

dimensional lattice can be obtained from Eq. (2.13) by taking d = 2. That is:

Go(l, m) =
C

∫ π

−π
dx
2π

∫ π

−π

dy

2π

1−exp{i(lx+my)}
2−Cos x−Cos y

(2.17)

=
C

∫ π

−π
dx
2π

∫ π

−π

dy

2π

1−Cos(lx+my)
2−Cos x−Cos y

. (2.18)

From the above formula one can see that Co(0, 0) = ∞. This is expected due to the

fact that the potential difference at the same point is zero.

The energy dependent LGF of the TBH for a square lattice is given as:10

Go(t; l, m) =

∫ π

−π

dx

2π

∫ π

−π

dy

2π

Cos(lx + my)

t − Cosx − Cos y
. (2.19)

Comparing Eq. (2.18) with Eq. (2.19), and taking t = 2, one gets:

Co(l, m) =
C

2[Go(0, 0) − Go(l, m)]
. (2.20)

Using the above formula, one can calculate the capacitance Co(0, 0) which is triv-

ial, i.e. Co(0, 0) = ∞. The same result was obtained above using Eq. (2.18). The

capacitance between two adjacent sites (i.e. (1, 0)) is:

Co(1, 0) =
C

2[Go(0, 0) − Go(1, 0)]
. (2.21)



September 26, 2005 11:48 WSPC/140-IJMPB 03240

Infinite Network of Identical Capacitors by Green’s Function 3717

The LGF for a square lattice Go(1, 0) can be expressed in terms of Go(0, 0) using

the recurrence formula as:14

Go(1, 0) =
1

2

[

tGo(0, 0) − 1

2

]

(2.22)

where t = 2.

Substituting Eq. (2.22) into Eq. (2.21), one finds:

Co(1, 0) = 2C . (2.23)

Again the same result is obtained above. Finally, the capacitance between the origin

and the second nearest neighbors (i.e. (1, 1)) is:

Co(1, 1) =
C

2[Go(0, 0) − Go(1, 1)]
. (2.24)

The LGF Go(1, 1) can be expressed in terms of Go(0, 0) and its derivative using the

recurrence formula as:14

Go(1, 1) =

(

t2

2
− 1

)

Go(0, 0) − t

2
(4 − t2)G′

o(0, 0) (2.25)

and

G′
o(0, 0) =

−E
(

2
t

)

πt(t − 2)
− 1

πt2
K

(

2

t

)

(2.26)

where K( 2
t
) and E( 2

t
) are the elliptic integrals of the first kind and second kind

respectively, and t = 2, is the energy.

Substituting Eqs. (2.25) and (2.26) into Eq. (2.24), we get

Co(1, 1) =
πC

2
. (2.27)

This is the same result as obtained above. In general, one can use the above method

to calculate the capacitance between the origin and any other lattice site (l, m).

Using the asymptotic expansion of the elliptic integral then Go(0, 0) shows log-

arithmic singularities. They are determined by the critical points of tight binding

energy band,

∂E

∂K
= 0

where K is the electronic wave vector, known as the Van Hove singularities.21

Using the recurrence formulae for the LGF derived by Morita15 for an infinite

square lattice and Eq. (2.20) with t = 2, we obtained the following recurrence

formulae for the capacitance:

1

Co(m + 1, m + 1)
=

(

4m

2m + 1

)

1

Co(m, m)
−

(

2m − 1

2m + 1

)

1

Co(m − 1, m − 1)
;

1

Co(m + 1, m)
=

2

Co(m, m)
− 1

Co(m, m − 1)
;
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1

Co(m + 1, 0)
=

4

Co(m, 0)
− 1

Co(m − 1, 0)
− 2

Co(m, 1)
;

1

Co(m + 1, p)
=

4

Co(m, p)
− 1

Co(m − 1, p)

− 1

Co(m, p + 1)
− 1

Co(m, p − 1)
(2.28)

for 0 < p < m.

To study the asymptotic behavior of the capacitance in an infinite square lattice

for large values of l or/and m, we need first to find the asymptotic form of the LGF

and this form was derived in Cserti.4 The result was given as:

Go(r) = Go(0) − 1

2π

(

Ln
|r|
a

+ γ +
Ln 8

2

)

(2.29)

where γ = 0.5772 is the Euler–Mascheroni constant.22

Inserting Eq. (2.29) into Eq. (2.9), one gets:

Co(l, m) =
C

1
π
(Ln

√
l2 + m2 + γ + Ln 8

2 )
. (2.30)

From the above formula (which is only valid for large values of l or/and m) we note

that as the separation between the origin and the lattice site (l, m) goes to infinity

the capacitance goes to zero. This can be thought of as a capacitor with parallel

plates and the separation between them is too large. Note that the capacitance

behaves inversely to the resistance.

Note that Eq. (2.30) is valid only for large values of l or/and m. For l = m = 0,

one has to use Eq. (2.18) or Eq. (2.20) as explained above where we obtained

Co(0, 0) = ∞.

3. Numerical Results

In this section, we shall present some numerical results for the square lattice. Us-

ing the four recurrence formulae [i.e. Eq. (2.28)] and the following known values,

Co(0, 0) = ∞, Co(1, 0) = 2C and Co(1, 1) = πC
2 , we calculated the capacitance

exactly for arbitrary sites. Table 1 below shows some of our calculated values.

In Fig. 1 the capacitance Co(l, m) is plotted as a function of l and m for an

infinite square lattice. One can see from the figure that by increasing the distance

between the origin and the site (l, m) then the capacitance approaches zero.

Figure 2 shows the capacitance Co(l, m) along [10] direction. One can see that

the capacitance is symmetric due to the inversion symmetry of the lattice. Also,

as the separation between the origin and the site (l, m) increases the capacitance

decreases where it goes to zero for infinite separation and this is consistent with

Eq. (2.30).

Finally, it is worth mentioning that a similar analysis of the capacitance can

be carried out for cubic lattices. Recently, Glasser and Boersma23 expressed the
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Table 1. Numerical values of Co(l, m) in units of C for an
infinite square lattice.

(l,m)
Co(l,m)

C
(l, m)

Co(l, m)

C
(l, m)

Co(l,m)

C

(0, 0) ∞ (5, 4) 0.9039 (8, 2) 0.8432

(1, 0) 2 (5, 5) 0.8789 (8, 3) 0.8351

(1, 1) 1.5708 (6, 0) 0.9223 (8, 4) 0.8250

(2, 0) 1.3759 (6, 1) 0.9184 (8, 5) 0.8135

(2, 1) 1.2933 (6, 2) 0.9078 (8, 6) 0.8014

(2, 2) 1.1781 (6, 3) 0.8923 (8, 7) 0.7891

(3, 0) 1.1620 (6, 4) 0.8742 (8, 8) 0.7769

(3, 1) 1.1354 (6, 5) 0.8552 (9, 0) 0.8238

(3, 2) 1.0818 (6, 6) 0.8363 (9, 1) 0.8226

(3, 3) 1.0244 (7, 0) 0.8822 (9, 2) 0.8186

(4, 0) 1.0482 (7, 1) 0.8796 (9, 3) 0.8125

(4, 1) 1.0365 (7, 2) 0.8723 (9, 4) 0.8046

(4, 2) 1.0081 (7, 3) 0.8614 (9, 5) 0.7955

(4, 3) 0.9729 (7, 4) 0.8480 (9, 6) 0.7857

(4, 4) 0.9371 (7, 5) 0.8333 (9, 7) 0.7755

(5, 0) 0.9748 (7, 6) 0.8183 (9, 8) 0.7652

(5, 1) 0.9685 (7, 7) 0.8034 (9, 9) 0.7550

(5, 2) 0.9518 (8, 0) 0.8502 (10, 0) 0.8014

(5, 3) 0.9290 (8, 1) 0.8484 (10, 1) 0.8009

−100

100−100

−50

0

50

100

0.5
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0.6
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−50

0

50

Fig. 1. The capacitance Co(l, m) in terms of l and m for an infinite square lattice.
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Fig. 2. The capacitance Co(l, m) in terms of the site along 10 direction.

exact values for cubic LGF rationally. Using their results one can calculate the

capacitance for an infinite cubic lattices.
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