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Capacitance between two points on an infinite grid
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Abstract. The capacitance between two adjacent nodes on an infinite square grid of identical capacitors
can easily be found by superposition, and the solution is found by exploiting the symmetry of the grid. The
mathematical problem presented in this work involves the solution of an infinite set of linear, inhomogeneous
difference equations which are solved by the method of separation of variables.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 61.50.Ah Theory of crystal structure,
crystal symmetry; calculations and modeling – 84.37.+q Electric variable measurements (including voltage,
current, resistance, capacitance, inductance, impedance, and admittance, etc.)

1 Introduction

The electric circuit networks has been studied well by
Kirchhoff’s [1] more than 150 years ago, and the electric-
circuit theory is discussed in detailed by Van der Pol
and Bremmer [2] where they derived the resistance be-
tween any two arbitrary lattice sites. Later on, at the
ends of the eighties of the last century the problem is
revived by Zemanian [3], where he investigated the resis-
tance between two arbitrary points in an infinite triangle
and hexagonal lattice networks of identical resistor using
Fourier series. For hexagonal networks, he discovered a
new method of calculating the resistance directly from the
networks.

The problem is studied again by many authors [4–11].
For example, Cserti [8] and Cserti et al. [9] introduced in
their papers how to calculate the resistance between ar-
bitrary nodes for different lattices where they presented
numerical results for their calculations. In recent works,
we used Cserti’s method to calculate theoretically the re-
sistance between arbitrary sites in an infinite square and
Simple Cubic (SC) lattices and experimental comparison
with the calculated values are presented [10,11].

Finally, Wu [12] studied the resistance of a finite re-
sistor network where the resistance between two arbitrary
nodes is obtained in terms of the eigenvalues and eigen-
functions of the Laplacian matrix associated with the fi-
nite network.

Little attention has been paid to infinite networks con-
sisting of identical capacitances C. Van Enk [13] studied
the behavior of the impedance of a standard ladder net-
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work of capacitors and inductors where he analyzed it as a
function of the size of the network. In this paper we inves-
tigated analytically and numerically the capacitance be-
tween arbitrary lattice sites in an infinite square grid using
the superposition principle. Also, the asymptotic behavior
is studied for large separation between the two sites. An
investigation of infinite complicated lattices and of lattices
with missing capacitor (bond) is in progress.

The physical situation is illustrated in Figure 1. An
infinite number of identical capacitors of capacitance C are
connected to form an infinite square grid. The problem is
to find the capacitance between arbitrarily spaced nodes.
The basic approach used here is similar to that used by
Paul [14].

Let a charge Q enter the grid at a node r0 and let it
comes out of the grid at a distant point. Removing the
return point to infinity then the problem is invariant un-
der 90◦ rotation, so the charge flowing through each of the
four capacitors connected to the node will be equal. There-
fore each one of them will carry a charge of Q

4 . Thus, the
resulting voltage drop between node r0 and an adjacent
node r will be Q

4C .
Now, consider the case where a charge Q entering the

grid at a distant point and exiting at the adjacent node, r.
Again, the charge flowing will be Q

4 , and the voltage drop
from r0 to r will be given by Q

4C .
The superposition of the above two problems results in

a new problem where a charge Q entering the node r0 and
exiting the adjacent node r with a net voltage drop equal
to Q

2C . The distant point is eliminated since the net charge
there is zero, therefore the capacitance between adjacent
nodes is 2C.
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2 Node voltages analysis

Consider an infinite square network consisting of identical
capacitors such as that shown in Figure 1. Let the nodes
be numbered from minus infinity to plus infinity in each
direction, and let the voltage at the node (m, n) be de-
noted by Vm,n. Applying Kirchhoff’s laws at node (m, n).
Thus, one may write:

Qm,n = (Vm,n − Vm,n+1)C + (Vm,n − Vm,n−1)C
+ (Vm,n − Vm+1,n)C + (Vm,n − Vm−1,n)C. (1)

If at node (m, n) the charge equal to zero, then equa-
tion (1) reduces to:

4Vm,n = Vm,n+1 + Vm,n−1 + Vm+1,n + Vm−1,n. (2)

Now, let a charge Q enter the node (0, 0) and leave at
infinity. Then

Qm,n = 0, unless m = 0 and n = 0, Q0,0 = Q. (3)

Or, we may write equation (3) as:

Qm,n =

{
Q, m = n = 0

zero, otherwise.
(4)

Equations (1, 2) are the finite difference equivalent of
Poisson’s and Laplace’s equations, respectively.

3 Solution by separation of variables

Although the method of separation of variables is com-
monly applied to partial differential equations having suit-
able boundary conditions, it is equally applicable to dif-
ference equations [15].

Consider
Vm,n = exp(mα + inβ). (5)

Substituting equation (5) into equation (2), we obtained
the following:

4 exp(mα + inβ) =
exp((m + 1)α + inβ) + exp((m − 1)α + inβ)

+ exp(mα + i(n + 1)β) + exp(mα + i(n − 1)β). (6)

The above equation can be rewritten as:

4 exp(mα + inβ) = exp(mα + inβ)(exp(α)
+ exp(−α) + exp(iβ) + exp(−iβ)). (7)

Thus, equation (2) is satisfied provided that:

coshα + cosβ = 2. (8)

Noting that our aim is to solve the problem with a source
at (0,0), this implies that:

Vm,n = Vn,m = V−m,n = Vm,−n = V−m,−n. (9)

Fig. 1. An infinite number of identical capacitors of capaci-
tance C are connected to form an infinite square grid.

Therefore, take

Vm,n = exp(− |m|α) cos nβ + exp(− |n|α) cosmβ. (10)

The above functions Vm,n do not satisfy the source-free
difference relation given by equation (2) along the lines
n = 0 and m = 0. This is due to the absolute value sign
in the exponential terms, so there will be residual charges
entering or leaving the grid at each node along these lines.

To find the external charges Qm,n which produce the
voltage pattern Vm,n, we may write from equation (1):

Q0,0

C
= 4V0,0 − V0,1 − V0,−1 − V1,0 − V−1,0

= 8 − 4(cosβ + exp(−α)). (11)

Using equation (8), then equation (11) can be simpli-
fied as:

Q0,0

C
= 4 sinhα. (12)

In a similar way, for n �= 0

Q0,n

C
= 4V0,n − V0,n+1 − V0,n−1 − V1,n − V−1,n

= 2 cosnβ(2 − cosβ − coshα)

+ 2 exp(|n|α){2 − cosβ − coshα}. (13)

Again, using equation (8) we can simplify equation (13) as:

Q0,n

C
= 2 cosnβ sin hα. (14)

4 Charge entering at (0,0)

The assumed node voltage pattern Vm,n(β) requires exter-
nal charges Qm,n not only at node (0,0) but at all nodes
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for which either m = 0 or n = 0. Thus, it is necessary to
form a superposition of such voltages with different val-
ues of β, to suppress all external charges except the one
at (0,0).

Now, let Vm,n(β) having the following form:

Vm,n =

π∫
0

F (β)Vm,n(β)dβ. (15)

where the limits of the integral have been chosen to cover
the entire applicable range of values of β. The function
F (β) is an amplitude function that must be chosen to
make Q0,0 = Q and Q0,n = 0, when n �= 0.

Substituting equation (15) into equation (1), we ob-
tained:

Qm,n

C
=

π∫
0

F (β)Qm,n(β)dβ. (16)

From equations (12, 13), we have:

Q0,0

C
=

π∫
0

[F (β)4 sin hα]dβ (17)

and
Q0,n

C
=

π∫
0

[F (β)2 sin hα cosnβ]dβ (18)

where Q0,n = Q0,−n = Qn,0 = Q−n,0 (i.e. Q0,n is sym-
metric).

The expression for F (β) can be obtained by inspec-
tion as:

F (β) =
Q

C(4π sinhα)
(19)

which satisfies the above condition. Thus, equation (15)
becomes:

Vm,n =
Q

4πC

π∫
0

Vm,n(β)
sin hα

dβ =
Q

4πC

×
π∫

0

(exp(− |m|α) cos nβ + exp(− |n|) cosmβ)
sin hα

dβ.

(20)

Note, that α is a function of β. They are related by equa-
tion (8).

5 Capacitance between two points in a large
grid

We mentioned earlier that the capacitance between (0,0)
and (m, n) could be obtained directly from the solution
of the problem in which the charge Q enters at (0,0) and

Table 1. Numerical values of Cm,n in units of C for an infinite
square grid.

(m,n) Cm,n/C (m,n) Cm,n/C (m,n) Cm,n/C
(0,0) ∞ (6,2) 0.907753 (9,1) 0.822545
(1,0) 2 (6,3) 0.892285 (9,2) 0.818628
(1,1) 1.5708 (6,4) 0.874193 (9,3) 0.812497
(2,0) 1.37597 (6,5) 0.85517 (9,4) 0.804631
(2,1) 1.29326 (6,6) 0.836326 (9,5) 0.795539
(2,2) 1.1781 (7,0) 0.882207 (9,6) 0.785687
(3,0) 1.16203 (7,1) 0.879628 (9,7) 0.775459
(3,1) 1.13539 (7,2) 0.872324 (9,8) 0.765148
(3,2) 1.08177 (7,3) 0.861357 (9,9) 0.754964
(3,3) 1.02443 (7,4) 0.847985 (10,0) 0.801699
(4,0) 1.04823 (7,5) 0.833344 (10,1) 0.800666
(4,1) 1.03649 (7,6) 0.818295 (10,2) 0.797649
(4,2) 1.00814 (7,7) 0.803421 (10,3) 0.792868
(4,3) 0.972869 (8,0) 0.850222 (10,4) 0.786636
(4,4) 0.937123 (8,1) 0.848397 (10,5) 0.779303
(5,0) 0.974844 (8,2) 0.843152 (10,6) 0.771206
(5,1) 0.968523 (8,3) 0.835079 (10,7) 0.762645
(5,2) 0.951831 (8,4) 0.824942 (10,8) 0.753862
(5,3) 0.929041 (8,5) 0.813496 (10,9) 0.745047
(5,4) 0.90391 (8,6) 0.801381 (10,10) 0.736338
(5,5) 0.878865 (8,7) 0.789079
(6,0) 0.922313 (8,8) 0.776929
(6,1) 0.918443 (9,0) 0.823894

leaves at infinity. In terms of the node voltages, the ca-
pacitance Cm,n can be written as:

Cm,n =
Q

2(V0,0 − Vm,n)
. (21)

Using equation (20), one may write equation (21) as:

Cm,n =
2πC

π∫
0

(2 − exp(− |m|α) cosnβ − exp(− |n|α) cos mβ)
sin hα

dβ

.

(22)

Or, one may write Cm,n (see Appendix A) as:

Cm,n =
πC

π∫
0

(1 − exp(− |n|α) cosmβ)
sinhα

dβ

. (23)

The integrals in equations (22, 23) have to be evaluated
numerically. Results of Cm,n for values of (m, n) ranging
from (0,0) – (10,10) are presented in Table 1 below, and
here are some special cases.
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(a) C0,0

Using equation (22) with n = m = 0. Then

C0,0 =
2πC

π∫
0

(2 − exp(−0) cos 0 − exp(−0) cosm0)
sinhα

dβ

=
2πC

0
= ∞. (24)

as expected. This can be explained as a parallel capaci-
tance with zero separation between its plates.

(b) C0,1

Again, using equation (22) with n = 0, m = 1. Thus

C0,1 =
2πC

π∫
0

(2 − cosβ − exp(−α))
sin hα

dβ

= 2C. (25)

where we have used 2 − cosβ − exp(−α) = sin hα.
The above result is the same as mentioned at the end

of the introduction. We may explain this result as two
identical capacitors connected together in parallel.

(c) Asymptotic form for large m or n

When either m or n are large, the exponential terms given
in equation (23) become negligible except when α is very
small. When α is very small;

cosβ = 2 − coshα ≈ 1 − α2

2
. (26)

So that
α ≈ sinhα − β. (27)

Suppose m is large, then equation (23) can be rewritten as:

Cm,n

C
= π

⎡
⎢⎢⎣ 1{

π∫
0

(1−exp(−|m|β) cos nβ)
β

+
1

π∫
0

(1/ sin hα−1)
β

+
1

π∫
0

exp(−|m|β) cos nβ
β

− 1
π∫
0

exp(−|m|β) cos nβ
sin hα

}
dβ

⎤
⎥⎥⎦ .

(28a)

= π

(
1
I1

+
1
I2

+
1
I3

)
. (28b)

The first integral can be expressed in terms of the expo-
nential integral Ein(z) [16]

Ein(z) =

z∫
0

(1 − exp(−t))
t

dt;

=

z∫
0

(1 − exp(−βz/π))
β

dβ. (29)

So, I1 = Re{Ein[π(n + im)]}.
The second integral can be integrated numerically, and

it is found to be I2 = −0.1049545. In the third integral
the exponentials are negligible except for small values of
α and β, and for those values α ≈ sin hα ≈ β. So, I3 can
be neglected. Thus, equation (28) becomes:

Cm,n

C
=

π

Re{Ein[π(n + im)]} − π

0.1049545
. (30)

For large values of its argument, Ein(z) → ln z + 0.57721.
Therefore, equation (30) can be rewritten as:

Cm,n

C
=

π

2 ln(n2 + m2) + 4 lnπ + 0.22038855
. (31)

For reasonable values of m and n, the asymptotic form
(i.e. Eq. (31)) gives an excellent approximation, and from
this equation we can show that as any of m and n goes
to infinity then Cm,n

C → 0, which can be explained as a
parallel capacitance with infinite separation between its
plates. Finally, it is clear from equation (23) that Cm,n =
C−m,−n which is expected due to the inversion symmetry
of the infinite square grid.

6 Results and discussion

In this work, the capacitance between the site (0,0) and
the site (m, n); in an infinite square grid consisting of iden-
tical capacitors is calculated using the superposition of
charge distribution. The capacitance Cm,n is expressed in
an integral form which can be evaluated numerically or
analytically.

The asymptotic form for the capacitance as m or/and
n goes to infinity is investigated where it is shown that it
goes to zero.

In Figures 2–5 the capacitance is plotted against the
site (m, n). Figure 2 shows a three dimensional plot of
the capacitance as a function of m and n. One can see
from the figure that as m or/and n increases then Cm,n

decreases up to zero at infinity as expected before (i.e. see
Eq. (31)).

Figures 3–5 show the capacitance Cm,n as a function of
the site (m, n) along the directions [10], [01] and [11]. From
these figures we can see that the capacitance is symmetric
along these directions, and this is due to the inversion
symmetry of the infinite square grid. Also, the figures show
how the capacitance Cm,n goes to zero as any of m or n
goes to infinity.
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Fig. 2. The capacitance Cm,n in terms of m and n for an
infinite square grid.

Fig. 3. The capacitance Cm,n in terms of the site along [10]
direction.

Fig. 4. The capacitance Cm,n in terms of the site along [01]
direction.

Fig. 5. The capacitance Cm,n in terms of the site along [11]
direction.

Appendix A

Instead of using the functions Vm,n defined in equa-
tion (10), let us use the following functions

Wm,n = exp(− |m|α) cosβ. (A.1)

Equation (A.1) is a source free everywhere except a long
the line m = 0. Thus, the external charge Q0.n can be
written as:

Q0,n

C
= 2 cosnβ sin hα. (A.2)

Now, let Vm,n be given as:

Vm,n =

π∫
0

F (β)Wm,n(β)dβ. (A.3)

The corresponding expression for the external charge is

Q0,n

C
=

π∫
0

F (β)2 sin hα cosnβdβ. (A.4)

Using Fourier cosines series, one can write (using
Eq. (A.4))

2πF (β) sin hα =
Q0,0 + 2

∑
n

Q0,n cosnβ

C
. (A.5)

For our case considered here

2πF (β) sin hα =
Q

C
. (A.6)

Or, we may write

F (β) =
Q

2πC sin hα
. (A.7)

Substituting equations (A.1, A.7) into equation (A.3), we
obtained:

Vm,n =
Q

2πC

π∫
0

exp(− |m|α) cosnβ

sin hα
dβ. (A.8)
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Finally, the capacitance Cm,n can be obtained by inserting
equation (A.8) into equation (21). Thus we get:

Cm,n

C
=

πC
π∫

0

1 − exp(− |m|α) cosnβ

sin hα
dβ

. (A.9)
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