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Abstract. A review of the theoretical approach for calculating the resistance between two arbitrary lattice
points in an infinite square lattice (perfect and perturbed cases) is carried out using the lattice Green’s
function. We show how to calculate the resistance between the origin and any other site using the lattice
Green’s function at the origin, Go(0, 0), and its derivatives. Experimental results are obtained for a finite
square network consisting of 30×30 identical resistors, and a comparison with those obtained theoretically
is presented.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 61.50.Ah Theory of crystal structure,
crystal symmetry; calculations and modeling Crystal growth – 84.37.+q Measurements in electric variables
(including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.)

1 Introduction

It is an exiting question to find the resistance between two
adjacent lattice points of an infinite square lattice where
all the edges represent identical resistors R. This problem
was studied well in many references [1–7], where for find-
ing the resistance between two arbitrary grid points of an
infinite square lattice they used a method based on the
principle of superposition of current distributions [3–5].
One can find a full discussion for the electric circuit in van
der Pol and Bremmer [1]. In the 1970’s Montgomery [8] in-
troduced a method for measuring the electrical resistivity
of an isotropic material, where he prepared a rectangu-
lar prism with edges in principal crystal directions with
electrodes on the corners. Based on Montgomery paper,
Logan et al. [9] developed Montgomery’s method, where
they introduced potential series for computing the current
flow in the rectangular block.

Recently Cserti [10] and Cserti et al. [11] studied the
problem in which they used a alternative method based
on the Lattice Green’s Function (LGF) which enables us
to calculate the resistance between any two arbitrary sites
in a perfect and perturbed infinite square lattice.

The LGF has many applications in physics such as
describing the interaction between the electrons which is
mediated by the Phonons [12], studying the effect of impu-
rities on the transport properties of metals [13], studying
the transport in inhomogeneous conductors [14], study-
ing the phase transition in classical two-dimensional lat-
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tice coulomb gases [15], and finally resistance calcula-
tion [10,11]. The LGF for the two-dimensional lattice
has been studied well [16–19], and in these references the
reader can find useful papers.

The LGF presented in this paper is related to the LGF
of the Tight-Binding Hamiltonian (TBH) [13]. In the fol-
lowing we show how to calculate the resistance between
the origin and any other site using Go(0, 0) and its deriva-
tives. The resistance between the origin and a lattice site
(l, m) in a constructed finite perfect square mesh (30× 30
resistors) is measured. Also, the resistance between the
origin and a lattice site (l, m) in the same constructed
mesh, when one of the resistors is broken (i.e. perturbed)
is measured. Finally, a comparison is carried out between
the measured resistances and those calculated by Cserti’s
method [10,11]. We believe that investigation of the resis-
tance of square network of resistors should be interested
in the field of arrays of Josephson junctions of high TC

superconducting materials [20–22]. The investigation of
electrophysical properties of such systems in the normal
state before superconducting transition, and the content
of this manuscript is helpful for electric circuit design and
the method is instructive.

2 Theoretical results

2.1 Perfect square lattice

In an infinite square lattice consisting of identical resis-
tances R, the resistance between the origin and any lattice
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point (l, m) can be calculated using [10]

Ro(l, m) = R[Go(0, 0) − Go(l, m)] (1)

where Go(0, 0) is the LGF of the infinite square lattice at
the origin, and Go(l, m) is the LGF at the site (l, m).

First of all, the resistance between two adjacent points
can easily be obtained as

Ro(1, 0) = R[Go(0, 0) − Go(1, 0)]. (2)

Go(1, 0) can be expressed as (see Appendix A)

Go(1, 0) =
1
2
[tGo(0, 0) − 1]; t = 2, (3)

where t is the energy, and t = 2 refers to the energy of
the infinite square lattice at which the density of states
(the imaginary parts of the LGF) is singular (Van Hove
singularities) [23–25].

Thus, equation (2) becomes

Ro(1, 0) = R

[
Go(0, 0) − Go(0, 0) +

1
2

]
=

R

2
. (4)

So,

Ro(1, 0) = Ro(0, 1) =
R

2
.

(due to the symmetry of the lattice.)

The same result was obtained by Venzian [3], Atkinson
et al. [4], and Cserti [10].

To calculate the resistance between the origin and the
second nearest neighbors (i.e. (1, 1)) then

Ro(1, 1) = R[Go(0, 0) − Go(1, 1)]. (5)

Go(1, 1) can be expressed in terms of Go(0, 0) and G′
o(0, 0)

as (see Appendix A)

Go(1, 1) =
(

t2

2
− 1

)
Go(0, 0) − t

2
(4 − t2)G′

o(0, 0), (6)

Go(0, 0) =
2
πt

K

(
2
t

)
and

G
′
o(0, 0) =

−E
(

2
t

)
π t(t − 2)

− 1
π t2

K

(
2
t

)
, (7)

where K(2/t) and E(2/t) are the elliptic integrals of the
first kind and second kind respectively.

Substituting the last two expressions into equation (4),
one obtains

Ro(1, 1) =
2R

π
. (8)

Again our result is the same as Cserti [10] and
Venezain [3].

Finally, to find the resistance between the origin and
any lattice site (l, m) one can use the above method, or we
may use the recurrence formulae presented by Cserti [10]
(i.e. Eq. (32)).

So, using equation (32) in Cserti [10] and the known
values of Ro(0, 0) = 0, Ro(1, 0) = R/2 and Ro(1, 1) =
2R/π we calculate exactly the resistance for arbitrary
sites. The same result was obtained by Atkinson et al. [4],
and below are some calculated values:

Ro(2, 0)
R

= 0.7267,
Ro(3, 0)

R
= 0.8606, and

Ro(4, 0)
R

= 0.9539.

For large values of l or/and m the resistance between the
origin and the site (l, m) is given as [10]

Ro(l, m) =
R

π

(
Ln

√
l2 + m2 + γ +

Ln 8
2

)
(9)

where γ = 0.5772 is the Euler-Mascheroni constant [26].
Venezain obtained the same result [3].

Finally, as l or m goes to infinity then the resistance
in a perfect infinite square lattice divergence.

2.2 Perturbed square lattice (a bond is broken)

The resistance between the sites i and j of the perturbed
infinite square lattice where the bond between the sites
io and jo is broken can be calculated using [11]

R(i, j) = Ro(i, j)

+
[Ro(i, jo) + Ro(j, io) − Ro(i, io) − Ro(j, jo)]2

4[R − Ro(io, jo)]
, (10)

where i = (ix, iy), J = (jx, jy), io = (iox, ioy) and jo =
(jox, joy).

The resistance between the ends of the removed bond
(i.e. R(io, jo)) is equal to R [11].

To calculate the resistance in the perturbed network,
one has to specify clearly the ends of the removed bond.
For example, when the broken bond is taken to be be-
tween the sites io = (0, 0) and jo = (1, 0) we found using
equation (10) that:

R(1, 0)
R

= 1.0000,
R(2, 0)

R
= 0.9908,

R(3, 0)
R

= 1.0614, and
R(4, 0)

R
= 1.1300.

Now, if the broken bond is shifted and taken to be between
the sites io = (1, 0) and jo = (2, 0) we found again using
equation (10) that:

R(1, 0)
R

= 0.5373,
R(2, 0)

R
= 0.9908,

R(3, 0)
R

= 0.9634, and
R(4, 0)

R
= 1.0189.

For large separation between the two sites, then

R(i, j) = Ro(i, j) +

[
R
π Ln

√
i2j2+i2i2o+j2

oj2+j2
oi2o

i2j2+i2j2
o+i2oj2+i2oj2

o

]2

4[R − Ro(i, j)]
. (11)
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Now, as i or/and j goes to infinity then

R(i, j) → Ro(i, j), (12)

that is, the perturbed resistance between arbitrary sites
goes to the perfect resistance as the separation between
the two sites goes to infinity.

3 Experimental results

To study the resistance of a finite square lattice experi-
mentally we constructed a finite square network of identi-
cal (30×30) carbon resistors, each have a value of (1 KΩ)
and a tolerance of (1%).

3.1 Perfect case

Using the constructed network, the resistance between the
origin and the site (l, m) is measured (using two-point
probe). Below are some measured values:

Ro(1, 0)
R

= 0.4997,
Ro(2, 0)

R
= 0.7283,

Ro(3, 0)
R

= 0.8642, and
Ro(4, 0)

R
= 0.9616.

The above measured values are very close to those calcu-
lated in Section 2.1.

3.2 Perturbed case

In this section the bond between the sites io = (0, 0) and
jo = (1, 0) is removed and the resistance between the sites
i = (0, 0) and j = (jx, jy) is measured using the same
network. Below are some measured values:

R(1, 0)
R

= 1.0020,
R(2, 0)

R
= 0.9939,

R(3, 0)
R

= 1.0670, and
R(4, 0)

R
= 1.1410.

Now, the broken bond is shifted to be between the sites
io = (1, 0) and jo = (2, 0). Again we measure the resis-
tance between the sites i = (0, 0) and j = (jx, jy), and
below are some measured values:

R(1, 0)
R

= 0.5372,
R(2, 0)

R
= 0.9939,

R(3, 0)
R

= 0.9689, and
R(4, 0)

R
= 1.0290.

As shown, one can see that there is an excellent agreement
between the measured and the calculated values.

Fig. 1. The resistance between i = (0, 0) and j = (jx, 0) of the
perfect square lattice as a function of jx; calculated (squares)
and measured (circles) along the [10] direction.

Fig. 2. The resistance between i = (0, 0) and j = (jx, jy) of
the perfect square lattice as a function of jx and jy ; calculated
(squares) and measured (circles) along the [11] direction.

4 Results and discussion

From the figures shown the resistance in an infinite
square lattice is symmetric under the transformation
(l, m) → (−l,−m) due to the inversion symmetry of the
lattice. However, the resistance in the perturbed infinite
square lattice is not symmetric due to the broken bond,
except along the [01] direction since there is no broken
bond along this direction.

Also, one can see that the resistance in the perturbed
infinite square lattice is always larger than that in a per-
fect lattice and this is due to the positive second term in
equation (10). But as the separation between the sites in-
creases the perturbed resistance goes to that of a perfect
lattice.

The constructed mesh gives accurately the bulk resis-
tance shown in Figures 1–6, and this means that a crystal
consisting of (30 × 30) atoms enables one to study the
bulk properties of the crystal in a good way. But, as we
approach the edge then the measured resistance exceeds
the calculated one and this is due to the edge effect. Also,
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Fig. 3. The resistance between i = (0, 0) and j = (jx, 0) of
the perturbed square lattice as a function of jx; calculated
(squares) and measured (circles) along the [10] direction. The
ends of the removed bond are io = (0, 0) and jo = (1, 0).

Fig. 4. The resistance between i = (0, 0) and j = (0, jy) of
the perturbed square lattice as a function of jy; calculated
(squares) and measured (circles) along the [01] direction. The
ends of the removed bond are io = (0, 0) and jo = (1, 0).

one can see from the figures that the measured resistance
is symmetric in the perfect mesh, which is expected.

Figures 4 and 6 show that the measured resistance
along the [01] direction is nearly symmetric within ex-
perimental error, which is expected due to the fact that
there is no broken bond along this direction, and this is
in agreement with the theoretical result.

Finally, our values are in good agreement with the bulk
values calculated by Cserti’s method [10,11]. Derivation of
the resistance of a finite square lattice is under investiga-
tion in order to compare with the realistic experimental
results.

Fig. 5. The resistance between i = (0, 0) and j = (jx, 0) of
the perturbed square lattice as a function of jx; calculated
(squares) and measured (circles) along the [10] direction. The
ends of the removed bond are io = (1, 0) and jo = (2, 0).

Fig. 6. The resistance between i = (0, 0) and j = (0, jy)
of the perturbed square lattice as a function of jy ; calculated
(squares) and measured (circles) along the [01] direction. The
ends of the removed bond are io = (1, 0) and jo = (2, 0).

Appendix A

The LGF for two-dimensional lattice is defined by [11]

G(m, n, t) =
1
π2

π∫
0

π∫
0

Cos mx Cos ny

t − (Cos x + Cos y)
dxdy, (A.1)

where (m, n) are integers and t is a parameter.
By executing a partial integration with respect to x

in equation (A.1), we obtained the following recurrence
relation [20]:

G′(m + 1, n) − G′(m − 1, n) = 2mG(m, n), (A.2)

where G′(m, n) expresses the first derivative of G(m, n)
with respect to t. Taking derivatives of equation (A.2) with
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respect to t, we obtained recurrence relations involving
higher derivatives of the GF.

Putting (m, n) = (1, 0), (1, 1), and (2,0) in equa-
tion (A.2), respectively we obtained the following rela-
tions:

G′(2, 0) − G′(0, 0) = 2G(1, 0), (A.3)

G′(2, 1) − G′(1, 0) = 2G(1, 1), (A.4)

G′(3, 0) − G′(1, 0) = 4G(2, 0). (A.5)

For m = 0 we obtain [10,21,22]

2tG(0, n)−2δ0n−2G(1, n)−G(0, n+1)−G(0, n−1) = 0.
(A.6)

Insert n = 0 in equation (A.6) we find the well-known
relation

G(1, 0) =
1
2
[tG(0, 0) − 1], (A.7)

for m �= 0 we have

G(m + 1, n) − 2tG(m, n) + G(m − 1, n)
+ G(m, n + 1) + G(m, n − 1) = 0. (A.8)

Substituting (m, n) = (1, 0), (1, 1), and (2, 0) in equa-
tion (A.8), respectively we obtained the following
relations:

G(1, 1) = tG(1, 0) − 1
2
G(0, 0) − 1

2
G(2, 0), (A.9)

G(2, 1) = (t2 − 1)G(1, 0) − t

2
G(0, 0) − t

2
G(2, 0), (A.10)

G(3, 0) =
(

3
2
t − t3

)
G(0, 0) + 3tG(2, 0)−

(
1 − 2t2

2

)
.

(A.11)

Now, by taking the derivative of both sides of
equation (A.11) with respect to t, and using
equations (A.3–A.5), we obtained the following ex-
pressions:

G(2, 0) = (4t − t3)G′(0, 0) + G(0, 0) − t, (A.12)

G(1, 1) =
(

t2

2
− 1

)
G(0, 0) − t

2
(4 − t2)G′(0, 0), (A.13)

G(2, 1) =
t

2
(t3 − 3)G(0, 0) − t2

2
(4 − t2)G′(0, 0) − 1

2
,

(A.14)

G(3, 0) =
t

2
(9 − 2t2)G(0, 0) + 3t2(4 − t2)G′(0, 0)

−
(

1 + 4t2

2

)
. (A.15)

Again, taking the derivative of both side of equa-
tion (A.12) with respect to t, and using equations (A.3)
and (A.7), we obtained the following differential equation
for G(0, 0):

t(4−t2)G′′(0, 0)+(4−3t2)G′(0, 0)−tG(0, 0) = 0, (A.16)

where G′′(0, 0) is the second derivative of G(0, 0).

By using the following transformations G(0, 0) =
Y (x)/t and x = 4/t2 we obtain the following differential
equation [23–25]:

x(1 − x)
d2Y (x)

dx2
+ (1 − 2x)

dY (x)
dx

− 1
4
Y (x) = 0. (A.17)

This is called the hypergeometric differential equation
(Gauss’s differential equation). So, the solution is [25]

Y (x) = 1F2(1/2, 1/2; 1; x) = (2/π)K(2/t),

then,

G(0, 0, t) =
2
πt

K

(
2
t

)
. (A.18)

By using equation (A.18) we can express G′(0, 0) and
G′′(0, 0) in terms of the complete elliptic integrals of the
first and second kind.

G′(0, 0, t) =
2
π

E(2
t )

4 − t2
,

G′′(0, 0, t) =
2

πt(t2 − 4)

[
E

(
2
t

)
[3t2 − 4] − K

(
2
t

)]
.

(A.19)

K(2/t) and E(2/t) are the complete elliptic integrals of
the first and second kind, respectively. So that, the two-
dimensional LGF at an arbitrary site is obtained in closed
form, which contains a sum of the complete elliptic inte-
grals of the first and second kind.
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