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The capacitance between any two arbitrary lattice sites in an infinite square lattice is
studied when one bond is removed (i.e. perturbed). A connection is made between the
capacitance and the lattice Green’s function of the perturbed network, where they are
expressed in terms of those of the perfect network. The asymptotic behavior of the
perturbed capacitance is investigated as the separation between the two sites goes to in-
finity. Finally, numerical results are obtained along different directions and a comparison
is made with the perfect capacitances.
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1. Introduction

The calculation of the resistance of an infinite network of identical resistors is

a classic well-studied problem in the electric circuit theory.1–3 Despite this, the

above-mentioned problem is still of interest and it brings the attention of many

authors4–6 to study and investigate it.

At the beginning of this century, this problem arose again in many publica-

tions.7,8 The methods used in studying this problem vary from superposition of

current distribution,4,5 random walk theory6 and lattice Green’s function (LGF)

method.7,8

In a recent work, the problem for many lattices for both the perfect and per-

turbed cases using Cserti’s7,8 method has been studied:

(i) Asad9 and Asad et al.
10 studied the perfect and perturbed (i.e. where one

bond is removed) square and simple cubic (SC) infinite lattices mathematically

and experimentally. There was a good agreement between the mathematical and

the experimental results, especially for the bulk values. Also, there was a good
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agreement between our calculated values and those calculated by other previous

authors.4–8

(ii) Asad et al.
11 studied the infinite perturbed (i.e. where two bonds are re-

moved) square lattice mathematically. Numerical results are obtained and a com-

parison with those obtained in Ref. 9. is carried out.

The LGF defined in our work is related to the Green’s function (GF) of the

tight-binding Hamiltonian (TBH).12 The properties of the LGF for SC lattice have

been studied in detail especially when impurities are often introduced,13–17 where in

these references some numerical results are presented and some recurrence formulae

are used to calculate other values of the LGF.

The analysis of the capacitance of an infinite network of identical capacitors

has been arising recently.18–20 Asad et al.
19 used the LGF method to calculate

the capacitance between arbitrary lattice sites in a perfect infinite square lattice

consisting of identical capacitors. While Asad et al.
20 used the superposition of

charge distribution in calculating the capacitance between two points in an infinite

square grid of identical capacitors. There was excellent agreements between the

calculated results in these two papers.

In this work, we shall use the LGF approach to determine the capacitance for

the so-called perturbed lattice obtained by removing one bond (capacitor) from the

perfect infinite lattice. The content of this paper is helpful for electric circuit design

and the method is instructive. As an example (see Fig. 1), consider an infinite

square lattice consisting of identical capacitances C. Removing one bond from this

perfect lattice results in a perturbed lattice.

2. Perfect Lattice

We reviewed the formalism of the perfect infinite network using Dirac’s notation.

Fig. 1. Perturbation of an infinite square lattice consisting of identical capacitances C by remov-
ing the bond between the sites ~rio and ~rjo. The capacitance C(i, j) is calculated between arbitrary
lattice sites ~ri and ~rj .
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Consider a perfect d-dimensional infinite lattice consisting of identical capacitors

each of capacitance C. All lattice points are specified by the position vector ~r given

in the form

~r = l1~a1 + l2~a2 + · · · + ld~ad , (2.1)

where

l1, l2, . . . , ld are integers (positive, negative or zero),

and

~a1,~a2, . . . ,~ad are independent primitive translation vectors.

Let the potential at the site ~ri be V (~ri) and assuming a charge Q enters the site

~ri and a charge −Q exits the site ~rj , while the charges are zero at all other lattice

sites. Thus, one may write:

Qm = Q[δmi − δmj ] for all m. (2.2)

Then, according to Ohm’s and Kirchhoff’s laws, we may write:

Q(~ri)

C
=

∑

~n

[V (~ri) − V (~ri + ~n)] , (2.3)

where ~n are the vectors from site ~r to its nearest neighbors (~n = ±ai, i = 1, 2, . . . , d).

One can form two state vectors, V and Q at the site ~ri such that:

V =
∑

i

|i〉Vi ;

Q =
∑

i

|i〉Qi ,
(2.4)

where Vi = V (~ri) and Qi = Q(~ri).

Here we assumed that |i〉, associated with the site ~ri, forms a complete or-

thonormal set, i.e. 〈i|k〉 = δik and
∑

i |i〉〈i| = 1. Using Eqs. (2.4) and (2.3) one

gets:

∑

j

(zδij − ∆ij)〈j|V =
〈i|Q

C
. (2.5)

z is the number of neighbors of each lattice site (e.g. z = 2d for a d-dimensional

hypercubic lattice) and

∆kl is defined as:

∆kl =

{

1, ~rk, ~rl are nearest neighbors,

zero , otherwise.
(2.6)

The summation in Eq. (2.5) is taken over all lattice sites. Multiplying Eq. (2.5) by

|i〉 and summing over i, one gets:

∑

i,j

|i〉(∆ij − zδij)〈j|V =
−Q

C
. (2.7)
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Or one may write:

LoV =
−Q

C
, (2.8)

where Lo =
∑

i,j |i〉(∆ij − zδij)〈j|.

Lo is the so-called lattice Laplacian.

Similar to the definition used in Economou,12 the LGF for an infinite perfect

lattice can be defined as:

LoGo = −1 . (2.9)

The solution of Eq. (2.9), which is a Poisson-like equation, in its simple form, can

be given as:

V = −
L−1

o Q

C
=

GoQ

C
. (2.10)

Inserting Eq. (2.2) into Eq. (2.10), we obtain:

Vk = 〈k|V =
〈k|GoQ

C
;

=
1

C

∑

m

〈k|Go|m〉Qm ;

=
Q

C
[Go(k, i) − Go(k, j)] , (2.11)

where Go(l, m) = 〈l|Go|m〉 is the matrix element of the operator Go in the basis

|l〉.

Finally, the capacitance between the sites ~ri and ~rj is then given as:

1

Co(i, j)
=

Vi − Vj

Q
=

2

C
[Go(i, i) − Go(i, j)] . (2.12)

The above formula can be rewritten as:

Co(i, j) =
C

2[Go(i, i) − Go(i, j)]
, (2.13)

where we have used the fact that the LGF is symmetric (i.e. Go(l, m) = Go(m, l)).

It is interesting to study the asymptotic form of the capacitance for large sep-

aration between the sites ~ri and ~rj . Using Eq. (2.30) in Refs. 19 and 20, one can

write

Co(i, j)

C
=

1

1

π

(

Ln
√

(jx − ix)2 + (jy − iy)2 + γ +
Ln8

2

)

. (2.14)

As the separation between the sites ~ri and ~rj goes to infinity, one finds that

Co(i, j)

C
→ 0 . (2.15)
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3. Perturbed Lattice

The charge contribution δQi at the site ~ri due to the bond (iojo) is given by

δQi

C
= δiio

(Vio − Vjo) + δijo
(Vjo − Vio) ;

= 〈i|io〉(〈io| − 〈jo|)V + 〈i|jo〉(〈jo| − 〈io|) ;

= 〈i|(|io〉 − |jo〉)(〈io| − 〈jo|)V ;

= 〈i|L1V , (3.1)

where the operator L1 has the form

L1 = (|io〉 − |jo〉)(〈io| − 〈jo|) . (3.2)

Now, removing the bond (iojo) from the perfect lattice the charge Qi at the site ~ri

is given as:

(−LoV )i −
1

C
δQi =

−Qi

C
. (3.3)

Thus, Ohm and Kirchhoff’s laws for the perturbed lattice may be written as:

Lo1V =
−Q

C
, (3.4)

where

Lo1 = Lo + L1 . (3.5)

Similar to the perfect lattice, the LGF Go1 for the perturbed lattice is defined as:

Lo1Go1 = −1 . (3.6)

Therefore, Eq. (3.4) becomes

V =
Go1Q

C
. (3.7)

Note that Eq. (3.7) is similar to Eq. (2.10). Here the operator Lo1 is now a sum of

Lo associated with the perfect lattice and a perturbation given by L1.

To calculate the capacitance between the sites ~ri and ~rj , we assume the charge

to be given as in Eq. (2.2). Inserting Eq. (2.2) into Eq. (3.7) we get:

Vk = 〈k|V =
〈k|Go1Q

C
;

=
1

C

∑

m

〈k|Go1|m〉Qm ;

=
Q

C
[Go1(k, i) − Go1(k, j)] . (3.8)
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Thus, the capacitance between the lattice sites ~ri and ~rj is

1

Co1(i, j)
=

Vi − Vj

Q
;

=
1

C
[Go1(i, i) − Go1(i, j) + Go1(j, j) − Go1(j, i)] . (3.9)

The above formula can be rewritten as:

Co1(i, j) =
C

[Go1(i, i) − Go1(i, j) + Go1(j, j) − Go1(j, i)]
. (3.10)

Note here that Go1(i, i) 6= Go1(j, j) since the translational symmetry is broken,

but Go1(i, j) = Go1(j, i). Our problem of finding the capacitances reduces to the

calculation of the perturbed LGF, because once we calculate it then from Eq. (3.10)

we find the perturbed capacitances on the networks.

Instead of the above idea, in the following we write the perturbed capacitance

of the networks in terms of the perfect ones. Using Eqs. (2.5) and (2.6) we get:

(Lo + L1)Go1 = −1 . (3.11a)

Or it can be rewritten as:

Go1 = −(Lo + L1)
−1 . (3.11b)

Multiplying both sides of Eq. (3.11a) by Go we obtain the so-called Dyson’s

equation:

Go1 = Go + GoL1Go1 = Go + GoL1Go + GoL1GoL1Go + · · · . (3.12)

To solve the above formula, one can use the method presented by Economou.12

Inserting Eq. (3.2) into the above equation, one gets:

Go1(i, j) = 〈i|Go1|j〉

= Go(i, j) +
[Go(i, io) − Go(i, jo)][Go(io, j) − Go(jo, j)]

1 − 2[Go(io, io) − Go(io, jo)]
. (3.13)

Finally, the capacitance between ~ri and ~rj can be obtained in terms of the

perfect capacitances by using Eqs. (3.13), (3.10) and (2.13). Thus, we get after

some simply straightforward algebra

Co1(i, j)

C
=

1

1

Co(i, j)
+

[

1

Co(i, jo)
+

1

Co(j, io)
−

1

Co(i, io)
−

1

Co(j, jo)

]2

4

[

1−
1

Co(io, jo)

]

. (3.14)

This is our final result for the perturbed capacitance between the sites ~ri and

~rj in which the bond (iojo) is removed.
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To study the asymptotic behavior of the capacitance in an infinite perturbed

square lattice for large separation between the sites ~ri and ~rj , one can easily show

from Eq. (3.14) and the fact that Co → 0 (see Refs. 19 and 20) that also Co1 → 0.

For symmetry reasons, the capacitance between ~rio
and ~rjo

in an infinite perfect

d-dimensional lattice is Co(io,jo)
C

= d, if d � 1. Then, using Eq. (3.14) the capaci-

tance between the two ends of the removed bond is Co1(io,jo)
C

= d− 1. For a square

lattice (d = 2) the capacitance is C as mentioned in the introduction.

4. Numerical Results

In this section, numerical results are presented for an infinite square lattice, includ-

ing both the perfect and the perturbed case. The capacitance between the origin

Table 1. The calculated capacitance between the ori-

gin and the site j = (jx, jy), for an infinite square lat-
tice in which the bond between the sites io = (0, 0) and
jo = (1, 0) is broken.

j = (jx, jy)
C01(i,j)

C
j = (jx, jy)

C01(i,j)
C

(1, 0) 1 (0, 1) 1.7667
(2, 0) 1.0092 (0, 2) 1.2054
(3, 0) 0.9421 (0, 3) 1.0249
(4, 0) 0.8849 (0, 4) 0.9314
(5, 0) 0.8408 (0, 5) 0.8714
(6, 0) 0.8063 (0, 6) 0.8285
(7, 0) 0.7785 (0, 7) 0.7956
(8, 0) 0.7556 (0, 8) 0.7692
(9, 0) 0.7362 (0, 9) 0.7475
(10, 0) 0.7195 (0, 10) 0.7291
(11, 0) 0.7050 (0, 11) 0.7132
(12, 0) 0.6921 (0, 12) 0.6993
(13, 0) 0.6807 (0, 13) 0.6870
(14, 0) 0.6703 (0, 14) 0.6760
(15, 0) 0.6610 (0, 15) 0.6661
(0, 0) ∞ (0, 0) ∞

(−1, 0) 1.8610 (0,−1) 1.7667
(−2, 0) 1.2597 (0,−2) 1.2054
(−3, 0) 1.0601 (0,−3) 1.0249
(−4, 0) 0.9563 (0,−4) 0.9314
(−5, 0) 0.8902 (0,−5) 0.8714
(−6, 0) 0.8433 (0,−6) 0.8285

(−7, 0) 0.8076 (0,−7) 0.7956
(−8, 0) 0.7793 (0,−8) 0.7692
(−9, 0) 0.7561 (0,−9) 0.7475
(−10, 0) 0.7365 (0,−10) 0.7291
(−11, 0) 0.7198 (0,−11) 0.7132
(−12, 0) 0.7051 (0,−12) 0.6993
(−13, 0) 0.6923 (0,−13) 0.6870
(−14, 0) 0.6808 (0,−14) 0.6760
(−15, 0) 0.6704 (0,−15) 0.6661
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and the lattice site (l, m) in an infinite perfect square network has been calculated

in Refs. 19 and 20 (Asad et al.).

On the perturbed square lattice the capacitance can be calculated from

Eq. (3.14), and the calculated values of the perfect infinite square lattice men-

tioned above. In this work, the site ~ri is fixed while the site ~rj is moved along the

line of the removed bond. Here we considered two cases: first, when the removed

bond is between io = (0, 0) and jo = (1, 0), where, our calculated values of the ca-

pacitances are arranged in Table 1. In the second case, the removed bond is shifted

to be between io = (1, 0) and jo = (2, 0), the calculated values of the capacitances

are arranged in Table 2.

The capacitance between the sites of the removed bond is equal to C as shown

in Table 1. This capacitance can be considered as connected in parallel with a single

Table 2. The calculated capacitance between the ori-

gin and the site j = (jx, jy), for an infinite square lat-
tice in which the bond between the sites io = (1, 0) and
jo = (2, 0) is broken.

j = (jx, jy)
C01(i,j)

C
j = (jx, jy)

C01(i,j)
C

(1, 0) 1.8610 (0, 1) 1.9838
(2, 0) 1.0092 (0, 2) 1.3546
(3, 0) 1.0379 (0, 3) 1.1398
(4, 0) 0.9813 (0, 4) 1.0267
(5, 0) 0.9284 (0, 5) 0.9545
(6, 0) 0.8858 (0, 6) 0.9032
(7, 0) 0.8516 (0, 7) 0.8642
(8, 0) 0.8235 (0, 8) 0.8331
(9, 0) 0.7999 (0, 9) 0.7920
(10, 0) 0.7923 (0, 10) 0.7861
(11, 0) 0.7624 (0, 11) 0.7677
(12, 0) 0.7470 (0, 12) 0.7516
(13, 0) 0.7334 (0, 13) 0.7374
(14, 0) 0.7212 (0, 14) 0.7247
(15, 0) 0.7102 (0, 15) 0.7133
(0, 0) ∞ (0, 0) ∞

(−1, 0) 1.9828 (0,−1) 1.9838
(−2, 0) 1.3593 (0,−2) 1.3546
(−3, 0) 1.1460 (0,−3) 1.1398
(−4, 0) 1.0328 (0,−4) 1.0267
(−5, 0) 0.9601 (0,−5) 0.9545
(−6, 0) 0.9081 (0,−6) 0.9032

(−7, 0) 0.8685 (0,−7) 0.8642
(−8, 0) 0.8369 (0,−8) 0.8331
(−9, 0) 0.8110 (0,−9) 0.7920
(−10, 0) 0.7891 (0,−10) 0.7861
(−11, 0) 0.7704 (0,−11) 0.7677
(−12, 0) 0.7534 (0,−12) 0.7516
(−13, 0) 0.7396 (0,−13) 0.7374
(−14, 0) 0.7268 (0,−14) 0.7247
(−15, 0) 0.7152 (0,−15) 0.7133
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capacitor of capacitance C, which gives a result of 2C (the capacitance between two

adjacent sites in an infinite perfect network of identical capacitances C).

In Figs. 2–5 the capacitance is plotted against the site, for both the perfect and

perturbed cases along [10] and [01] directions. Figures 2 and 3 show the capacitance

against the site along [10] direction. It is seen from those two figures that the
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Fig. 2. The capacitance on the perfect (squares) and the perturbed (circles) square infinite lattice
between i = (0, 0) and j = (jx, 0) along the [10] direction as a function of jx. The ends of the

removed bond are io = (0, 0) and jo = (1, 0).
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Fig. 3. The capacitance on the perfect (squares) and the perturbed (circles) square infinite lattice

between i = (0, 0) and j = (jx, 0) along the [10] direction as a function of jx. The ends of the
removed bond are io = (1, 0) and jo = (2, 0).



January 19, 2007 10:59 WSPC/140-IJMPB 03597

208 R. S. Hijjawi et al.

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
C

(l
,m

)/
C

The Site

Fig. 4. The capacitance on the perfect (squares) and the perturbed (circles) square infinite lattice
between i = (0, 0) and j = (0, jy) along the [01] direction as a function of jy. The ends of the
removed bond are io = (0, 0) and jo = (1, 0).

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

C
(l

,m
)/

C

The Site

Fig. 5. The capacitance on the perfect (squares) and the perturbed (circles) square infinite lattice
between i = (0, 0) and j = (0, jy) along the [01] direction as a function of jy. The ends of the
removed bond are io = (1, 0) and jo = (2, 0).

perturbed capacitance is not symmetric along [10] due to the fact that the inversion

symmetry of the lattice is broken along this direction. Also, as the broken bond is

shifted away from the origin, the perturbed capacitance approaches the perfect one

more rapidly. Figures 4 and 5 display the capacitance against the site along [01]

direction. As shown from these two figures, the inversion symmetry of the perturbed
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capacitance is not affected because there is no broken bond along this direction.

From Figs. 4 and 5 one can see that as the broken bond along [10] direction is shifted

away from the origin, the perturbed capacitance along [01] direction approaches the

perfect one more rapidly.

Finally, one can see from Figs. 2–5 that for large separation between the sites ~ri

and ~rj , the perturbed capacitance goes to a finite value (i.e. Co1 → 0) as mentioned

before in Sec. 3.
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