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Abstract. The capacitance between any two arbitrary lattice sites of an infinite square network consisting
of identical capacitors is studied analytically and numerically for a perturbed network. The perturbation
is as a result of removing the bonds (i0j0) and (k0l0) from the perfect network. The equivalent capacitance
is expressed in terms of the Lattice Green’s Function (LGF) of the perturbed network. Solving Dyson’s
equation we express the LGF and the capacitance of the perturbed network in terms of those of the
infinite perfect network. The asymptotic behavior of the perturbed capacitance is also studied. Finally,
some numerical results are presented for the perturbed infinite square lattice, and a comparison is carried
out for those of the perturbed and perfect infinite square network.

PACS. 02.70.Bf Finite-difference methods – 05.50.+q Lattice theory and statistics – 61.72.-y Defects and
impurities in crystals; microstructure

1 Introduction

A classic and important problem in the electric circuit
theory that has attracted the attention of many authors
over many years is analyzing the electric circuit and
the consideration of network resistances and impedances.
Kirchhoff’s [1] was the first one who formulated and stud-
ied the electric networks more than 150 years ago. The
electric circuit theory is discussed in detail in a classic
book by Van der Pol and Bremmer [2]. The basic prob-
lem in studying the electric circuit is the evaluation of the
equivalent resistances and impedances which; in principle;
can be carried out using traditional, but often tedious,
analysis such as Kirchhoff’s and Ohm’s laws, there has
been no fundamental solution.

In their book Van der Pol and Bremmer [2] derived
the resistance between nearby points on the square lattice.
Aitchson [3] gives an elegant and elementary solution for
the problem of finding the resistance between two adja-
cent grid points of an infinite square lattice in which all
the edges represent identical resistances R, and the result
given in his work is R

2 . Bartis [4] introduced how com-
plex systems can be treated at the undergraduate level
and he showed how to calculate the resistance between
adjacent nodes of many lattices of 1-ohm resistors. Dur-
ing the 30 years that followed Bartis [4] work many au-
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thors [5–11] studied the resistance between adjacent sites
of infinite lattices, where they used different methods (i.e.
as an example; superposition of current distribution [5,6],
and random walk theory [7]).

Later on, an important method [12–17] was used to
calculate the effective resistance between any two arbi-
trary lattice points in many infinite lattices. The method
is based on the LGF and it was introduced by Cserti [12].
The importance of this method lies in the facts that:
(i) it can be used straightforwardly for complicated lat-
tice structure (i.e. Body Centered Lattice-BCC-, and Face
Centered Lattice-FCC-). (ii) The results presented by
this method reflect the symmetry of the lattice structure.
(iii) Some recurrence formulae for the resistance in infinite
lattices can be derived using the LGF equations. (iv) Fi-
nally, the LGF method can be applied for both perfect
infinite lattices, and for perturbed infinite lattices. Re-
cently, Wu [18] obtained the resistance between two arbi-
trary nodes in a resistor network in terms of the eigenval-
ues and eigenfunctions of the Laplacian matrix associated
with the network. Explicit formulae for two point resis-
tances are deduced in his paper for regular lattices in one,
two, and three-dimensions under various boundary con-
ditions. Osterberg and Inan [19] extended Aitchison [3]
and Bartis [4] work to the general problem of finding the
effective resistance between two adjacent nodes of any d-
dimensional infinite resistive lattice.
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Fig. 1. Perturbation of an infinite square lattice consisting of
identical capacitances C by removing the bond between the
sites �ri0, �rj0 and the bond between the sites �rk0, �rl0. The ca-
pacitance C(i, j) is calculated between arbitrary lattice sites �ri

and �rj .

The analysis of the capacitance of an infinite net-
work of identical capacitors has been investigated re-
cently [20–24]. The impedance of a standard ladder net-
work of capacitors and inductors is studied by Van
Enk [20], where the behavior of the impedance of a stan-
dard ladder network of capacitors and inductors is ana-
lyzed as a function of the size of the network. This behav-
ior may be unstable in the absence of dissipation so that
the limit of an infinite network is not well defined. Stan-
dard textbooks do not always treat this case correctly. In
a previous work [21], we used the LGF method to cal-
culate the capacitance between arbitrary lattice sites in a
perfect infinite square lattice consisting of identical capac-
itors, some numerical results were given and the asymp-
totic behavior was also studied when the separation be-
tween the two sites goes to infinity. We have also [22] used
the superposition of charge distribution in calculating the
capacitance between two points in an infinite square grid
of identical capacitors. Tzeng and Wu [23] introduced a
formulation to determine the impedance between any two
sites in an impedance network, where some numerical ex-
amples were given. In a recent work [24], we introduced
the perturbed network of identical capacitors, where the
LGF method is used to calculate the capacitance between
arbitrary lattice sites in a perturbed infinite square lattice
consisting of identical capacitors.

This work is organized as follows. In Section 2, we re-
view the perfect case of an infinite square network of iden-
tical capacitors using Dirac’s notation. In Section 3, the
capacitance between arbitrary lattice sites �ri and �rj in
the perturbed network is investigated. As an example (see
Fig. 1), consider an infinite square lattice consisting of
identical capacitances C. Removing two bonds from this
perfect lattice results in a perturbed lattice. The prob-
lem is finding the equivalent capacitance C(i,j)

C . Finally,

in Section 4, some numerical results are presented along
different directions, and a comparison is carried out with
the capacitances of the perfect network.

2 Perfect case

In this section, we review the formalism of the perfect
infinite d-dimensional network using Dirac’s notation.

Consider a perfect d-dimensional infinite lattice con-
sisting of identical capacitors of capacitance C each, and
take all the lattice points to be specified by the position
vector �r given in the form:

�r = l1�a1 + l2�a2 + . . . + ld�ad (2.1)

where l1, l2, . . . , ld are integers (positive, negative or zero),
and �a1,�a2, . . . ,�ad are independent primitive translation
vectors.

Let the potential at the site �ri be V (�ri) and assuming
a charge +Q enters the site �ri and a charge −Q exits the
site �rj , while the charges are zero at all other lattice sites.
Thus, we may write:

Qm = Q[δmi − δmj] for all m. (2.2)

Then, according to Ohm’s and Kirchhoff’s laws we may
write:

Q(�ri)
C

=
∑
�n

[V (�ri) − V (�ri + �n)] (2.3)

where �n are the vectors from site �r to its nearest neighbors
(�n = ±ai, i = 1, 2, . . . , d). One can form two state vectors,
V and Q at the site �ri such that:

V =
∑

i

|i〉Vi

Q =
∑

i

|i〉Qi (2.4)

where Vi = V (�ri) and Qi = Q(�ri).
Here we assumed that |i〉, associated with the site �ri,

forms a complete orthonormal set, i.e. 〈i|k〉 = δik and∑
i

|i〉〈i| = 1. Using equations (2.4) and (2.3) one gets:

∑
j

(zδij − ∆ij) 〈j|V =
〈i|Q
C

(2.5)

z is the number of neighbors of each lattice site (e.g.
z = 2d for a d-dimensional hypercubic lattice) and ∆kl

is defined as:

∆kl =

{
1, �rk, �rl are nearest neighbors

zero, otherwise.
(2.6)

The summation in equation (2.5) is taken over all lat-
tice sites. Multiplying equation (2.5) by |i〉 and summing
over i, one gets:∑

i,j

|i〉 (∆ij − zδij) 〈j|V =
−Q

C
. (2.7)
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Or one may write:

L0V =
−Q

C
(2.8)

where
L0 =

∑
i,j

|i〉 (∆ij − zδij) 〈j|

L0 is the so-called lattice Laplacian.
Similarly to the definition used in Economou [25], the

LGF for an infinite perfect lattice can be defined as:

L0G0 = −1. (2.9)

The solution of equation (2.9), which is a Poisson-like
equation, in its simple form, can be given as:

V = −L−1
0 Q

C
=

G0Q

C
. (2.10)

Inserting equation (2.2) into equation (2.10), we obtained:

Vk = 〈k|V =
〈k|G0Q

C
,

=
1
C

∑
m

〈k|G0 |m〉Qm,

=
Q

C
[G0(k, i) − Go(k, j)] (2.11)

where G0(l, m) = 〈l|G0 |m〉 is the matrix element of the
operator G0 in the basis |l〉.

Finally, the capacitance between the sites �ri and �rj in
an infinite d-dimensional network is then given as:

1
C0(i, j)

=
Vi − Vj

Q
=

2
C

[G0(i, i) − G0(i, j)]. (2.12)

The above formula can be rewritten as:

C0(i, j) =
C

2[G0(i, i) − G0(i, j)]
(2.13)

where we have make used of the symmetry of the LGF.
Note that the above formalism is valid for any infinite

network consisting of identical capacitors.
Using the above result, the equivalent capacitance be-

tween the origin and the site (l, m) in an infinite square
network can easily be calculated by expressing G0(l, m) in
terms of G0(0, 0) and its derivatives [26]. Or, by using the
so-called recurrence formulae presented in reference [22].
The same results are obtained using the charge distribu-
tion method [23].

For comparison reasons some of the calculated values
in reference [22,23] are presented in Table 1.

To study the asymptotic form of the capacitance for
large separation between the two lattices sites �ri and �rj

in an infinite square network one can write [24]:

C0(i, j)
C

=
1

1
π

(
Ln

√
(jx − ix)2 + (jy − iy)2 + γ +

Ln8
2

) .

(2.14)

As the separation between the sites �ri and �rj goes to in-
finity then one finds that

C0(i, j)
C

→ 0. (2.15)

The above result can be explained as a parallel capacitance
with infinite potential difference between its plates, which
is obvious due to the large separation between the two
sites which means that the potential difference goes to
infinity (C = Q/V ).

3 Perturbed case

In this section, the capacitance between the sites �ri and �rj

in an infinite networks consisting of identical capacitors is
derived when two bonds from the perfect infinite network
are removed (i.e. the network is perturbed as in Fig. 1).

The charge contribution δQi1 at the site �ri due to the
bond (i0j0) is given by:

δQi1

C
= δii0(Vi0 − Vj0 ) + δij0(Vj0 − Vi0 )

= 〈i|i0〉 (〈i0| − 〈j0|)V + 〈i|j0〉 (〈j0| − 〈i0|)V
= 〈i| (|i0〉 − |j0〉)(〈i0| − 〈j0|)V

δQi1

C
= 〈i|L1V (3.1)

where the operator L1 has the form

L1 = (|i0〉 − |j0〉) (〈i0| − 〈j0|) (3.2)

and 〈n|m〉 = δnm is used.
Replacing the bond (i0j0) by (k0l0) then, the charge

contribution δQi2 at the site �ri due to the bond (k0l0) can
be given according to equation (3.1) as:

δQi2

C
= 〈i|L2V (3.3)

where the operator L2 has the form

L2 = (|k0〉 − |l0〉) (〈k0| − 〈l0|) . (3.4)

Now, removing the bonds (i0j0) and (k0l0) from the infi-
nite perfect network then, one can write the charge Qi at
the site �ri as:

(−L0V )i − δi1

C
− δi2

C
=

Qi

C
. (3.5)

Or, simply;

LV = −Qi

C
(3.6)

where L = L01 + L, and L01 = L0 + L1.
Similarly to the case of an infinite perfect lattice, the

LGF for the infinite perturbed lattice (i.e. the lattice
formed after removing two bonds) can be written as:

LG = −1. (3.7)
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Table 1. Calculated values for the capacitance of an infinite square lattice between the origin and the site j = (jx, 0), for a perfect
square lattice (C0(i, j)/C); perturbed square lattice due to removing only the bond between (0, 0) and (1, 0)−(C01(i, j)/C)−;
perturbed square lattice due to removing the bonds between (0, 0), (1, 0) and (1, 0), (2, 0)−(C1(i, j)/C)−; perturbed square
lattice due to removing the bonds between (0, 0), (1, 0) and (2, 0), (3, 0)−(C2(i, j)/C)−; and finally, perturbed square lattice
due to removing the bonds between (1, 0), (2, 0) and (2, 0), (3, 0)−(C3(i, j)/C).

j = (jx, 0) C0(i, j)/C C01(i, j)/C C1(i, j)/C C2(i, j)/C C3(i, j)/C

(10, 0) 0.8014 0.7195 0.7163 0.7171 0.7195

(9, 0) 0.8238 0.7362 0.7304 0.7324 0.7300

(8, 0) 0.8502 0.7556 0.7459 0.7498 0.7527

(7, 0) 0.8822 0.7785 0.7625 0.7693 0.7709

(6, 0) 0.9223 0.8063 0.7797 0.7911 0.7887

(5, 0) 0.9748 0.8408 0.7956 0.8129 0.8000

(4, 0) 1.0482 0.8849 0.8029 0.8227 0.7817

(3, 0) 1.1620 0.9421 0.7745 0.7502 0.6398

(2, 0) 1.3759 1.0092 0.6124 0.9922 0.9537

(1, 0) 2 1 0.8999 0.9651 0.9706

(0, 0) ∞ ∞ ∞ ∞ ∞
(−1, 0) 2 1.8610 1.7145 1.8273 1.8395

(−2, 0) 1.3759 1.2597 1.2142 1.2496 1.2565

(−3, 0) 1.1620 1.0601 1.0391 1.0554 1.0599

(−4, 0) 1.0482 0.9563 0.9454 0.9537 0.9563

(−5, 0) 0.9748 0.8902 0.8845 0.8888 0.8896

(−6, 0) 0.9223 0.8433 0.8404 0.8425 0.8417

(−7, 0) 0.8822 0.8076 0.8064 0.8072 0.8049

(−8, 0) 0.8502 0.7793 0.7789 0.7792 0.7754

(−9, 0) 0.8238 0.7561 0.7560 0.7561 0.7509

(−10, 0) 0.8014 0.7365 0.7365 0.7366 0.7303

To find the equivalent capacitance between any lattice
sites �ri and �rj , we assume the charge distribution to be as
in equation (2.2).

Now, the simplest solution of equation (3.6) is

V = −Qi

C
L−1. (3.8)

Using equation (3.7), then equation (3.8) becomes:

V =
Qi

C
G. (3.9)

To obtain the potentials at different sites, insert equa-
tion (2.10) into equation (3.9) one gets;

Vk =
Q

C
[G(k, i) − G(k, j)]. (3.10)

Using equations (2.10) and (2.11), the capacitance be-
tween the two lattice sites �ri and �rj can be written as

1
C(i, j)

=
Vi − Vj

Q
. (3.11)

Inserting equation (3.10) into equation (3.11) we obtain:

C

C(i, j)
= [G(i, i) − G(i, j) + G(j, j) − G(j, i)] . (3.12)

Note here that G(i, i) �= G(j, j) since that the transla-
tional symmetry is broken due to the removed two bonds
(i0j0) and (k0l0), but G(i, j) = G(j, i).

According to Cserti et al. [13], the perturbed Green’s
function is given by:

G01(i, j) = 〈i|G01 |j〉 = G0(i, j)

+
[G0(i, i0) − G0(i, j0)] [G0(i0, j) − G0(j0, j)]

1 − 2 [G0(i0, i0) − G0(i0, j0)]
. (3.13)

The matrix elements of G for two removed bonds can be
expressed in terms of the matrix elements of G01 by iter-
ation procedure:

G(i, j) = G01(i, j)

+
[G01(i, k0) − G01(i, l0)] [G01(k0, j) − G01(l0, j)]
1 − [G01(k0, k0) + G01(l0, l0) − 2G01(l0, k0)]

.

(3.14)

Finally, inserting equation (3.14) into equation (3.12)
then, the equivalent capacitancebetween any two lattice



J.H. Asad et al.: Infinite 2D square network of identical capacitors with two missing bonds 261

sites �ri and �rj in the perturbed network (i.e. two bonds
are removed) can be written as:

C

C(i, j)
= G01(i, i) + G01(j, j) − 2G01(i, j)

+
1

1 − [G01(k0, k0) + G01(l0, l0) − 2G01(k0, l0)]

×
[
[G01(i, k0) − G01(i, l0)] [G01(k0, i) − G01(l0, i)]

+ [G01(j, k0) − G01(j, l0)] [G01(k0, j) − G01(l0, j)]

× [G01(i, k0) − G01(i, l0)] [G01(k0, j) − G01(l0, j)]

+ [G01(j, k0) − G01(j, l0)] [G01(k0, i) − G01(l0, i)]
]
.

(3.15)

Equation (3.15) consists of three parts, part I is

Part I = G01(i, i) + G01(j, j) − 2G01(i, j),

and after some lengthily but straight-forward algebra it
becomes:

Part I =
C

C01(i, j)
=

1
C0(i, j)

+

[
1

C0(i, j0)
+

1
C0(j, i0)

− 1
C0(i, i0)

− 1
C0(j, j0)

]2

4
[
1 − 1

C0(i0, j0)

] .

(3.16)

Equation (3.16) is exactly the same as that in refer-
ence [24], which is due to removing the bond (i0j0).

Taking j0 → i0, equation (3.16) reduces to equa-
tion (2.13). The perturbed problem is reduced into the
perfect one.

Part II is:

Part II =
1

1 − [G01(k0, k0) + G01(l0, l0) − 2G01(k0, l0)]
.

(3.17)
Comparing part II with part I, we can write:

1
1 − [G01(k0, k0) + G01(l0, l0) − 2G01(k0, l0)]

=

1

1 − 1
C′

01(k0, l0)

. (3.18)

Part III is:

Part III =
[
[G01(i, k0)−G01(i, l0)] [G01(k0, i)−G01(l0, i)]

+ [G01(j, k0) − G01(j, l0)] [G01(k0, j) − G01(l0, j)]

− [G01(i, k0) − G01(i, l0)] [G01(k0, j) − G01(l0, j)]

− [G01(j, k0) − G01(j, l0)] [G01(k0, i) − G01(l0, i)]
]

=

[
[G01(i, k0) − G01(i, l0)] − [G01(j, k0) − G01(j, l0)]

]2

.

(3.19)

Insert equation (3.13) into equation (3.19), one gets after
some straight forward but lengthy algebra:

Part III =
[{

G0(i, k0) + G0(j, l0) − G0(i, l0) − G0(j, k0)

+
1

1 − 2[G0(i0, i0) − G0(i0, j0)]
(G0(i, i0) + G0(j, j0)

− 2G0(i, j0))(G0(j0, l0) + G0(j0, k0)

− G0(i0, l0) − G0(i0, k0))
}2]

. (3.20)

Inserting equation (2.12) into the above equation and
making use of the symmetry of the perfect LGF, one gets:

Part III =

⎡
⎢⎢⎣
⎧⎪⎪⎨
⎪⎪⎩

1
C0(j, k0)

+
1

C0(i, l0)
− 1

C0(j, l0)
− 1

C0(j, k0)
2

+
1

1 − 1
C0(i0, j0)

×

⎛
⎜⎜⎝

2
C0(i, j0)

− 1
C0(i, i0)

− 1
C0(j, j0)

2

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

1
C0(i0, k0)

+
1

C0(i0, l0)
− 1

C0(j0, l0)
− 1

C0(j0, k0)
2

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

2⎤
⎥⎥⎦ .

(3.21)
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C(i, j)

C
=

1

1

C01(i, j)
+

1

1 − 1

C′
01(k0, l0)

⎧⎪⎪⎨
⎪⎪⎩CI(ij; k0l0) +

1

1 − 1

C0(i0, j0)

CII(ij; i0j0)CIII(ij; k0l0)

⎫⎪⎪⎬
⎪⎪⎭

2
. (3.22)

C′
01(k0, l0)

C
=

1

1

C0(k0, l0)
+

[
1

C0(k0, j0)
+

1

C0(l0, i0)
− 1

C0(k0, i0)
− 1

C0(l0, j0)

]2

4

[
1 − 1

C0(i0, j0)

]
(3.23)

Finally, from equations (3.16), (3.18) and (3.21), equa-
tion (3.15) becomes:

see equation (3.22) above

where C′
01(k0, l0) is the capacitance between the two ends

of the second removed bond (k0, l0) as affected from the
first removed bond (i0, j0):

see equation (3.23) above

where CI(ij; k0l0), CII(ij; i0j0), and CIII(i0j0; k0l0) are de-
fined as follows:

CI(ij; k0l0) =
1

C0(j, k0)
+

1
C0(i, l0)

− 1
C0(j, l0)

− 1
C0(i, k0)

2
(3.24)

CII(ij; i0j0) =

2
C0(i, j0)

− 1
C0(i, i0)

− 1
C0(j, j0)

2
(3.25)

CIII(i0j0; k0l0) =
1

C0(i0, k0)
+

1
C0(i0, l0)

− 1
C0(j0, l0)

− 1
C0(j0, k0)

2
. (3.26)

From equation (3.22), one can see that C(i, j) is always
less than C01(i, j), and from equation (3.16) C01(i, j) is
always less than C0(i, j). This means that C(i, j) is always
less than C0(i, j).

To check our result. Taking l0 → k0 and j0 → i0,
then one can see that equation (3.16) reduces to equa-
tion (2.13). This means that the perturbed problem is re-
duced to the perfect one.

Finally, to study the asymptotic behavior of the equiv-
alent capacitance C(i, j) as i or/and j goes to infin-
ity, then from the definitions of CI(ij; k0l0), CII(ij; i0j0),
CIII(i0j0; k0l0) and from equations (2.15) and (3.22) one
finds that:

C(i, j) → C01(i, j) → C0(i, j) → 0. (3.27)

This means, that the effect of the removed bonds vanishes.

4 Numerical results and discussion

In this section, numerical results are presented for an infi-
nite square lattice including both the perfect and the four
perturbed cases (i.e. the bond between the sites (0, 0) and
(1, 0) is removed alone, the two bonds between the sites
(0, 0), (1, 0) and (1, 0), (2, 0) are removed, the two bonds
between the sites (0, 0), (1, 0) and (2, 0), (3, 0) are removed
and finally, the two bonds between the sites (1, 0), (2, 0)
and (2, 0), (3, 0) are removed). The capacitance between
the origin and the site j = (jx, 0) in both an infinite per-
fect and perturbed square network is calculated.

For the infinite square network, we [21,22] calculated
the capacitance between the origin and the lattice site j =
(jx, 0) (i.e. (C0(i, j)/C)) using two different methods (i.e.
LGF method and Charge distribution method); some of
the calculated values are shown in Table 1 for comparison
reasons.

On the perturbed (i.e. only the bond between the
sites (0, 0) and (1, 0) is removed) square lattice the ca-
pacitance between the origin and the site j = (jx, 0) (i.e.
(C01(i, j)/C)) has been calculated in reference [24] and
some of the calculated values are shown in Table 1 for
comparison reasons.

In this work, the site �ri is fixed (i.e. taken to be (0, 0))
while the site �rj is moved along the line of the removed
bonds (i.e. [10]-direction). Here we considered three cases;
first, when the two removed bonds are between the sites
i0 = (0, 0), j0 = (1, 0) and k0 = (1, 0), l0 = (2, 0), where,
our calculated values of the capacitances (i.e. (C1(i, j)/C))
are arranged in Table 1. In the second case, the two
removed bonds are taken to be between i0 = (0, 0),
j0 = (1, 0) and k0 = (2, 0), l0 = (3, 0), again our cal-
culated values of the capacitances (i.e. (C2(i, j)/C)) are
arranged in Table 1. Finally, the two removed bonds are
taken to be between i0 = (1, 0), j0 = (2, 0) and k0 = (2, 0),
l0 = (3, 0), again our calculated values of the capacitances
(i.e. (C3(i, j)/C)) are arranged in Table 1.

In Figures 2–4 the capacitance for both the perfect and
the above three perturbed cases are plotted as a function
of jx. It is clear from these figures that the perturbed
capacitance is not symmetric along [10]-direction due to
the fact that the inversion symmetry of the lattice is bro-
ken along this direction as a result of removing the two
bonds, while the perfect capacitance is symmetric along
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Fig. 2. The capacitance on the perfect (�) and the perturbed
(•) square infinite lattice between i = (0, 0) and j = (jx, 0)
along the [10]-direction as a function of jx. The removed bonds
are between i0 = (0, 0), j0 = (1, 0) and k0 = (1, 0), l0 = (2, 0).

Fig. 3. The capacitance on the perfect (�) and the perturbed
(•) square infinite lattice between i = (0, 0) and j = (jx, 0)
along the [10]-direction as a function of jx. The removed bonds
are between i0 = (0, 0), j0 = (1, 0) and k0 = (2, 0), l0 = (3, 0).

that direction since there is no broken bond along this di-
rection. Also, one can see that the capacitance when two
bonds are broken is always smaller than that when one
bond is broken which in turn is always smaller than the
perfect capacitance as mentioned before. In general, one
can say that as the number of broken bonds increases in
an infinite square lattice the perturbed capacitance de-
creases (i.e. approaches the perfect one, but never de-
creases than it). Remember that the capacitance between
the two ends of the removed bond (i.e. in the case where
one bond is removed) is equal to C, and this is explained
in reference [21]. While the capacitance between the ends
of the broken bond (i0j0) in the present of any other re-
moved bond is never equal to C, this can be explained as
in the first case there is an inversion symmetry around the
broken bond, but in the second case the inversion symme-
try around the broken bond (i0j0) is now broken due to
the presence of the another broken bond.

From the calculated values and Figures 2–4, one can
see that as the second removed bond (k0l0) is shifted away

Fig. 4. The capacitance on the perfect (�) and the perturbed
(•) square infinite lattice between i = (0, 0) and j = (jx, 0)
along the [10]-direction as a function of jx. The removed bonds
are between i0 = (1, 0), j0 = (2, 0) and k0 = (2, 0), l0 = (3, 0).

from the first broken bond (i0j0), then the calculated ca-
pacitance C(i, j) increases and approaches those of the
calculated values for C01(i, j) more rapidly and for large
separation between the two sites �ri and �rj then C(i, j) →
C01(i, j) → C0(i, j) more rapidly (i.e. see calculated val-
ues for C2(i, j), C1(i, j), C01(i, j) and C0(i, j)). Also, when
the two broken bonds are shifted away together from the
origin then the calculated capacitance C(i, j) increases
and approaches those of the calculated values for C01(i, j)
more rapidly and for large separation between the two
sites �ri and �rj then C(i, j) → C01(i, j) → C0(i, j) more
rapidly (i.e. see calculated values for C3(i, j), C1(i, j),
C01(i, j) and C0(i, j)).

Finally, as moving along the site j = (−jx, 0) we can
see from Figures 2–4, that the calculated values C01(i, j),
C1(i, j), C2(i, j) and C3(i, j) are very close specially when
the separation between the two sites �ri and �rj increases.
This is due to the fact that there are no broken bonds
along this direction.

We feel that the content of this manuscript is help-
ful for electric circuit design and the method is instruc-
tive for electrical engineering. The method presented in
this manuscript demonstrates a clear way for evaluating
the equivalent capacitance of a network. Estimation of the
edge contribution remains as a challenging problem, to be
considered in future work.
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