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Abstract. An infinite regular three-dimensional network is composed of identical resistors each of resistance
R joining adjacent nodes. What is the equivalent resistance between the lattice site �ri and the lattice
�rj site, when two bonds are removed from the perfect network? Three cases are considered here, and some
numerical values are calculated. Finally, the asymptotic behavior of the equivalent resistance is studied for
large distances between the two sites.

PACS. 02.70.Bf Finite-difference methods – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) –
61.72.-y Defects and impurities in crystals; microstructure

1 Introduction

A classic problem in electric circuit theory studied by nu-
merous authors over many years is the computation of the
resistance between two nodes in a resistor network [1,2].
Besides being a central problem in electric circuit the-
ory, the computation of resistances is also relevant to a
wide range of problems ranging from random walks [3,4],
the theory of harmonic functions [5], first-passage pro-
cesses [6], to lattice Green’s functions (LGF) [1,2,7]. The
connection with these problems originates from the fact
that electrical potentials on a grid are governed by the
same difference equations as those occurring in other prob-
lems. For this reason, the resistance problem is often stud-
ied from the point of view of solving the difference equa-
tions, which is most conveniently carried out for infinite
networks. In the case of LGF approach which is presented
by Cserti [1,7], efforts have been focused mainly on infinite
lattices.

Since the year 2004, the problem of calculating the
equivalent resistance between two nodes in a resistor net-
works arose again in many papers. For example, see some
efforts below:

We calculated the equivalent resistance between any
two lattice sites, using Cserti’s method for both the square
and Simple Cubic Lattices (SC) [2,8,9]. In our work two
cases (i.e. perfect and perturbed) are investigated numer-
ically and analytically, in addition to an experimental in-
vestigation. There is a good agreement between the math-
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ematical and the experimental results, especially for the
bulk values. Our results also agree with those carried out
by others [1,7,10–13].

Osterberg and Inan [14] studied the impedance be-
tween adjacent lattice sites for infinite D-dimensional re-
sistive lattices where they have shown how one can find
the total effective resistance between two adjacent sites
of any D-dimensional resistive lattice. Little attention has
been paid to finite networks, even though the latter are
those occurring in real life. Wu [15] investigated this prob-
lem and presented a general formulation for computing
two-point resistances in finite networks. In particular, he
showed how to obtain the resistance between two arbitrary
nodes in a resistor network in terms of the eigenvalues and
eigenfunctions of the Laplacian matrix associated with the
network. Explicit formulae for two-point resistances were
deduced for regular lattices in one, two and three dimen-
sions under various boundary conditions including that of
a Mobius strip and a Klein bottle.

The LGF for cubic lattices has been investigated by
many authors [16–27], and the so-called recurrence for-
mulae which are often used to calculate the LGF of the
SC at different sites are presented [19,20]. The values of
the LGF for the SC lattice have been recently exactly eval-
uated [24], where these values are expressed in terms of
the known value of the LGF at the origin. The LGF de-
fined in our work is related to the Green’s Function (GF)
of the tight-binding Hamiltonian (TBH) [28].

In this work, we study the perturbed infinite SC lattice
when two bonds from the infinite SC network are removed
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using the LGF method, presented by Cserti [1,7]. Numeri-
cal results are obtained and a comparison with those of the
perfect infinite SC lattice and with those of the perturbed
(i.e. due to removing one bond) is carried out. Also, the
asymptotic behavior is investigated for large separation
between the sites in the perturbed SC lattice.

2 Perfect case

Consider a perfect SC network consisting of identical resis-
tors each with resistance R, and assume that all the lattice
points to be specified by the position vector �r given in the
form

�r = l1�a1 + l2�a2 + ... + ld�ad (1)

where l1, l2, ..., ld are integers (positive, negative or zero),
and �a1,�a2, ...,�ad are independent primitive translation
vectors.

If all the primitive translation vectors have the same
magnitude, i.e., |�a1| = |�a2| = ... = |�ad| = a, then the
lattice is called hypercubic lattice. Here a is the lattice
constant of the d-dimensional hypercube.

The equivalent resistance between the origin (0, 0, 0)
and any other lattice site (l, m, n) has been expressed
as [7]:

Ro(l, m, n) = R[Go(3; 0, 0, 0)− Go(3; l, m, n)] (2)

where in previous studies [1,7], it has been assumed that a
current (+I) enters at the origin and a current (−I) exits
at a lattice point �r, and zero otherwise. Thus:

I(�r ′) =

⎧
⎨

⎩

+I, �r ′ = 0
−I, �r ′ = �r
0, otherwise.

(3)

Also they [1,7] took the potential at the lattice point �r ′
to be V (�r ′).

It has been shown by Glasser et al. [29] that the LGF of
the SC lattice at any site (l, m, n) can be expressed ratio-
nally in terms of Go(3; 0, 0, 0) (i.e. LGF at the origin as):

Go(3; l, m, n) = r1go +
r2

π2go
+ r3. (4)

Substituting equation (4) into equation (2), one gets:

Ro(l, m, n)
R

= ρ1go +
ρ2

π2go
+ ρ3 (5)

where go is the LGF of the infinite SC lattice at the origin.
(i.e. go = Go(3; 0, 0, 0) = 0.505462.

ρ1, ρ2 and ρ3 are rational numbers related to r1, r2 and
r3(i.e. Duffin and Shelly’s parameter [30]) as:

ρ1 = 1 − r1 = 1 − λ1 − 15
12

λ2;

ρ2 = −r2 =
1
2
λ2;

Table 1. Calculated values of the resistance of an infinite SC
lattice between the sites i = (0, 0, 0) and j = (jx, 0, 0), for
a perfect lattice(Ro(i, j)/R); Perturbed lattice due to remov-
ing the bonds resistors between (0,0),(1,0) and (1,0), (2,0)–
(R1(i, j)/R)–; Perturbed lattice due to removing the bonds re-
sistors between (0,0),(1,0) and (2,0), (3,0)– (R2(i, j)/R)– and
Finally, perturbed lattice due to removing the bonds resistors
between (1,0),(2,0) and (2,0), (3,0)– (R1(i, j)/R)–.

j = (jx, jy , jz) R1(i, j)/R R2(i, j)/R R3(i, j)/R Ro(i, j)/R

(1,0,0) 0.500519 0.500003 0.501203 0.333333
(2,0,0) 0.649239 0.513809 0.489077 0.419683
(3,0,0) 0.523619 0.555946 0.585457 0.450371
(4,0,0) 0.523162 0.517208 0.52499 0.464885
(5,0,0) 0.527225 0.5194 0.523558 0.473263
(6,0,0) 0.530916 0.52325 0.526388 0.478749
(7,0,0) 0.533926 0.526501 0.52922 0.482685
(0,0,0) 0 0 0 0
(–1,0,0) 0.358484 0.356764 0.358965 0.333333
(–2,0,0) 0.455112 0.454693 0.456891 0.419683
(–3,0,0) 0.48983 0.489203 0.491365 0.450371
(–4,0,0) 0.505751 0.505226 0.507348 0.464885
(–5,0,0) 0.521301 0.514295 0.516399 0.473263
(–6,0,0) 0.52706 0.520128 0.522153 0.478749
(–7,0,0) 0.530963 0.524033 0.525774 0.482685

and
ρ3 = r3 =

1
3
λ3. (6)

Various values of ρ1, ρ2 and ρ3 are presented in [8,30] and
other values can be calculated using the following recur-
rence relation:

G0(E; l + 1, m, n)+ G0(E; l− 1, m, n)+ G0(E; l, m + 1, n)
+G0(E; l, m−1, n)+G0(E; l, m, n+1)+G0(E; l, m, n−1) =

− 2δl0δm0δn0 + 2EG0(E; l, m, n) (7)

where E = 3, is the energy of the infinite SC lattice at the
band.

In some cases one may use equation (7) several times
to calculate different values of ρ1, ρ2 and ρ3. Some calcu-
lated values for Ro(l, m, n) are quoted in Table 1 below
for comparison.

Finally, as the separation between the origin and the
lattice site (l, m, n) goes to infinity then equation (2) be-
comes [1,2] :

Ro(l, m, n)
R

→ go = 0.505462. (8)

The resistance between the origin and any lattice site
(l, m, n) in a perfect SC lattice goes to a finite value for
large separation between the two sites.

3 Perturbed SC network (two resistors
are missing)

In this section, consider again the perfect infinite SC net-
work specified in Section II. Our aim here is to find the
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equivalent resistance between the site i = (ix, iy, iz) and
the site j = (jx, jy, jz) when two resistors are removed.

First of all, let us consider the case when the resistor
between io and jo is missing. This case has been studied by
many authors [2,7,8,13] where they express the equivalent
resistance (i.e. Ro1(i, j)) in the perturbed lattice (i.e. the
bond (io, jo) is removed) in terms of the perfect resistance
(i.e. Ro(i, j)) as:

Ro1(i, j)
R

= Ro(i, j)

+
[Ro(i, jo) + Ro(j, io) − Ro(i, io) − Ro(j, jo)]2

4[1 − Ro(io, jo)]
. (9)

For large separation between the sites i and j, the above
equation becomes [2,7,8,13]:

Ro1(l, m, n)
R

→ Ro(i, j)
R

= go = 0.505462. (10)

Now, let us consider the case where the resistor between
the sites io and jo is removed in addition to the resistors
between the sites ko and lo. Here, we have to follow the
same procedure presented above when one bond only is
removed. The equivalent resistance (i.e. R(i, j)) between
the two lattice sites i = (ix, iy, iz) and j = (jx, jy, jz)
when the two bonds between the sites (io, jo) and (ko, lo)
are removed can be written as [13]:

R(i, j) = Ro1(i, j) +
R

1 − R′
o1(ko,lo)

R

×
{

Ro(j, ko) + Ro(i, lo) − Ro(j, io) − Ro(i, ko)
2R

+
1

1 − Ro(io,jo)
R

(
2Ro(i, jo) − Ro(i, io) − Ro(j, jo)

2R

)

×
{

Ro(io, ko) + Ro(io, lo) − Ro(jo, lo) − Ro(jo, ko)
2R

}}2

(11)

where Ro1(i, j) is defined in equation (9). and R′
o1(ko, lo)

is the resistance between the ends of the removed bond
(kolo) as affected from the removed bond (iojo), and from
equation (9) one can write it as:

R′
o1(ko, lo)

R
= Ro(ko, lo)+

[Ro(ko, jo) + Ro(lo, io) − Ro(ko, io) − Ro(lo, jo)]2

4[1 − Ro(io, jo)]
. (12)

To check our result, take ko → 0 and lo → 0, then equa-
tion (11) reduces to equation (9). This means that the two
broken bonds problem reduces to that of one broken bond.

It is important to study the asymptotic behavior of
the resistance as the separation between i and j goes to
infinity. In the case of the two removed resistors one can
easily show that equation (11) goes to:

R(i, j) → Ro1(i, j) → Ro(i, j) = go = 0.505462. (13)

4 Numerical results and discussion

In this section, numerical results are presented for an infi-
nite SC lattice including the perfect and both of the per-
turbed cases. The resistance between the sites i = (0, 0, 0)
and j = (jx, jy, jz) in an infinite perfect SC lattice is cal-
culated in [8].

For the case of one broken bond, one has to specify
exactly the two ends of the removed bond and then the
values of the perturbed resistance can be calculated us-
ing the calculated values of the perfect SC lattice (i.e.
Ro(i, j)) and equation (9). We considered two cases: First,
the bond between io = (0, 0, 0) and jo = (1, 0, 0) is re-
moved. Second, the removed bond is shifted and set be-
tween io = (1, 0, 0) and jo = (2, 0, 0). The resistance be-
tween the sites i = (0, 0, 0) and j = (jx, jy, jz)along the
directions [100], [010] and [111] is calculated. The values
are arranged in Tables 2 and 3 [8].

In the extended perturbed case, where two bonds are
broken, one has to specify the ends of the removed bonds
(iojo) and (kolo), use equation (11) and the calculated
values of Ro(i, j) and Ro1(i, j) to calculate the resistance
(R(i, j)) in the new perturbed SC lattice.

In this work we considered three cases:
– First case, the first removed bond is between io =

(0, 0, 0) and jo = (1, 0, 0), whereas the second broken bond
is between ko = (1, 0, 0) and lo = (2, 0, 0). Our calculated
values for the perturbed resistance (i.e. R1(i, j)) are ar-
ranged in Table 1 below.

– Second case, the first removed bond is between
io = (0, 0, 0) and jo = (1, 0, 0), whereas the second broken
bond is between ko = (2, 0, 0) and lo = (3, 0, 0). Our cal-
culated values for the perturbed resistance (i.e. R2(i, j))
are arranged in Table 1 below.

– Third case, the first removed bond is between io =
(1, 0, 0) and jo = (2, 0, 0), whereas the second broken bond
is between ko = (2, 0, 0) and lo = (3, 0, 0). Again, our cal-
culated values for the perturbed resistance (i.e. R3(i, j))
are arranged in Table 1 below.

In Figures 1–3, the resistance for the perfect and the
above three perturbed cases are plotted as a function of jx.
One can see that the equivalent resistance when two re-
sistors are removed is always larger than that when only
one resistor is removed. This is due to the positivity of the
second term in equation (7). This also means that the re-
quired resistance in the case where two resistors are broken
is always larger than the resistance in the perfect lattice.
In general, one can say that; as the number of removed
resistors increases in an infinite SC lattice the perturbed
resistance increases.

Finally, from Figures 1–3 one can see that the resis-
tance in a perturbed infinite SC lattice is not symmetric
under the transformation jx → −jx. This is due to the fact
that the inversion symmetry of the infinite lattice is bro-
ken. Also, as the separation between the sites i = (0, 0, 0)
and j = (jx, 0, 0)increases then the equivalent resistance
of the perturbed lattice tends to that of the perfect lattice.
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Fig. 1. The resistance between i = (0, 0, 0) and j = (jx, 0, 0)
along [100] direction of the perfect (circles) and the perturbed
infinite SC lattice (squares) as a function of jx. The ends of
the removed resistors are io = (0, 0, 0) and jo = (1, 0, 0), ko =
(1, 0, 0) and lo = (2, 0, 0).

Fig. 2. The resistance between i = (0, 0, 0) and j = (jx, 0, 0)
along [100] direction of the perfect (circles) and the perturbed
infinite SC lattice (squares) as a function of jx. The ends of
the removed resistors are io = (0, 0, 0) and jo = (1, 0, 0), ko =
(2, 0, 0) and lo = (3, 0, 0).
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