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Abstract 
 

Thermodynamic functions of ionic systems were evaluated analytically using the 
Green’s Function for body centered cubic lattice. The free energy density, 
chemical potential, pressure, Spinodals, and Coulomb ionic potentials, are 
expressed in terms of hyper geometric functions 3F2 and complete elliptic 
integrals. 
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1 Introduction 
 
     The Lattice Green's Function (LGF) is a basic function in the study of the 
solid state physics and condensed matter. It appears especially when impure solids 
are studied [Morita and Horiguchi, 1972]. Green was the first physicist who 
established the basic concepts of Green’s function in the potential theory, and his 
work was focused on solving Laplace's and Poisson's equations with different 
boundary conditions.  The use of Green’s function method plays an important 
role in many-body problems [Fetter and Walecka, 1971], especially in problems 
of solid state physics where an enormous progress has been realized. In the 
mathematical problem of quantum theory which consists of solving linear  



 

166                                                      J. H. Asad 
 
 
operator equations with given boundary conditions, Green's functions constitute 
the natural language to study boundary conditions.  
     Nowadays, Green’s function is one of the most important concepts in many 
branches of physics, as many quantities in solid state physics can be expressed in 
terms of LGF. In the following are some examples:  statistical model of 
ferromagnetism such as Ising model [McCoy and Wu, 1978], Heisenberg model 
[Dalton and Wood, 1967], spherical model [Lax, 1952], random walk theory 
[Montrol et. al, 1965], [Hughes, 1986], diffusion [Montet, 1973], band structure 
[Koster and Slater, 1954], Andersion localization in anisotropic systems, such are 
high Tc superconductors of anisotropic [11,12], resistance calculation for an 
infinite network of identical resistors [Cserti, 2000], [Cserti et. al, 2002], [Asad 
2004], and recently on lattice models of ionic systems [22-29].  
     The LGF for several structure lattices has been widely studied during the 
second half of the last century. The first attempts to study the LGF for the Body 
Centered Cubic (BCC) lattice have been carried out by [Maradudin et al., 1960]. 
They showed that the LGF for the BCC lattice at the origin )0,0,0(G can be 
expressed as a product of complete elliptic integrals of the first kind. One can find 
other useful investigations for the LGF of the BCC lattice in many references as 
[Joyce, 1971a and b and Inoue, 1975]. 
 
     In recent years, lattice models have attracted the attention of researchers as 
a tool for investigating thermodynamics and criticality in Coulomb systems 
[22,25]. The theoretical studies of lattice models of ionic systems need the LGF 
For the calculating thermodynamic functions. In this article we will apply the  
Green’s function for a body centered cubic lattice to Debye-Hückel (DH) theory 
in order to calculate  some thermodynamic properties of ionic systems such as 
total free energy density, chemical potential, pressure, Spinodals, and Coulomb 
ionic potentials [22,23] . 
 
     The diagonal Green’s function for Body Centered Cubic lattice (BCC) with 
nearest neighbors interaction is defined by [13,16,18,20]. 
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 Where ),0,0,0( EG  is real for 1≥E , and complex for 1≤E . 
After Solving this integral, and using the analytic continuation, the Green’s 
function at the origin can be written as [16, 20], 
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where K(k) is the complete elliptic integral of the first kind, and 
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2 Applications 
 
     The Debye-Hückel (DH) theory developed for dilute solutions of strong 
electrolytes of Coulomb systems[22-25]. Using the linearized lattice Poisson 
Boltzman equation, with the DH theory we can write the potential felt by an ion of 
charge qi at the origin due to all surrounding ions, electrostatic part of the free 
energy density, chemical potential, pressure, and Spinodals, (defied by setting the 
inverse of isothermal compressibility to zero)[22,23], calculating these functions,  
we will have a full information about the thermodynamics behavior of a lattice 
Coulomb system. In particular, the possibility of phase transitions and criticality 
by analyzing the spinodals [22,23].  
     The Electric potential felt by an ion of charge qi at the origin due to all 
surrounding ions which can be derived using linearized lattice Poisson Boltzman 
equation, with the DH theory as [22,23], 
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where P(x) is written in terms of LGF as [21]   
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where Γ is the gamma function, x=ka , 
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1βρ

= inverse Debye screening 

length, with Tkb/1=β ,v0=4a0 volume per site of BCC lattice (a0 is the 
nearest-neighbor distance), 
Using the LGF Eq.(1.2) and Eq. (2.1) , the electric potential for a BCC lattice has 
the form 
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The self-potential of an ion (in the absence of any screening) for BCC lattice can 
be written as [22,23] 
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=1.069789556517414 
≈1.070 Kobelev’s results [22]. 
 
Now the electrostatic part of the Helmholtz free energy which is very important 
for the determination of the thermodynamic behavior of the ionic systems, can be 
written as [22] 
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Using the LGF Eq.(1.2) and Eq. (2.4) , the free energy  for a BCC lattice has the 
form 
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Eq. (2.5) can be integrated , as in appendix A, the free energy  for a BCC lattice 
can be written in a closed form, in terms of elliptic integrals, and generalized 
hypergeometric function  3F2  as: 
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where 3F2 is the generalized hypergeometric function. 
The chemical potential is defined as: 
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By differentiate the free energy with respect to density, one can write the the 
electrostatic part of the chemical potential for each type of ion as [22]  
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where T* is the reduced temperature and defined by 

2q
TDak

T B=∗  

Using the LGF Eq.(1.2) and Eq. (2.7) , the chemical potential for a BCC lattice 
has the form 
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from the chemical potential and the free energy, we can write the electrostatic part 
of the pressure for a BCC lattice as [22,23] 
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Using the LGF Eq.(1.2) and Eq. (2.9) , the pressure for a BCC lattice can be 
written as: 
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Eq. (2.10) can be integrated , as in appendix A, the pressure  for a BCC lattice 
can be written in a closed form, in terms of elliptic integrals, and generalized 
hypergeometric function  3F2  as: 
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the thermodynamic description of the BCC lattice  at the critical region can be 
investigated by using the  Spinodals which is defined by 0)/( =∂∂ ρμρ  
[22,23] , using the chemical potential Eq.(2.7) , the Spinodals can be written as  
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Using the LGF Eq.(1.2) and Eq. (2.12) , the spinodal for a BCC lattice has the  
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form 
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Now the full thermodynamic description for the BCC lattice can be investigated 
using Eqs.(2.3, 2.6, 2.8, 2.11, 2.13). 
 
 
 
 
3 Results and Discussion 
 
 
     We have investigated the Green’s function for the body centered cubic 
lattice and derive some thermodynamic functions analytically which are useful in 
DH theory with Bjerrum clustering, cluster-ion interactions, phase transitions 
study, and electrolyte systems analysis[22,23]. 
We see from Figs. (1-5) the graphs of the thermodynamic functions, which are 
useful to understand the behavior of BCC lattice thermodynamically. 
Fig. 1 shows the gas-liquid coexistence curve predicted by pure DH theory, and 
from the graph we see that the maximum value occurs at  x=0.978965 and T* 
=0.0369823, which specifies the critical point for BCC lattice. Fig. (2) shows the 
behavior of the of  the potential felt by an ion as a function of x (x=ka), we see 
that when x becomes large the potential becomes small, and The self-potential of 
an ion (in the absence of any screening) for BCC lattice is 1.069789556517414 . 
Fig(3) shows the behavior of  free energy versus x. Fig. (4) give us an idea about 
the behavior of chemical potential versus x. Fig. (5) Shows the behavior of the 
pressure. 
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Fig. 1:  Predicted phase diagram of gas-liquid coexistence for BCC lattice (T* 
versus x) at arbitrary units 
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Fig. 2: The behavior of the potential felt by an ion as a function of x at arbitrary 
units. 
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Fig. 3: The behavior of free energy versus x, at arbitrary units. 
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Fig. 4: The behavior of chemical potential versus x, at arbitrary units. 
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Fig. 5: The behavior of the pressure versus x, at arbitrary units. 
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Appendix A 
 

 
Consider the following integral 
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using the LGF Eqs.( 1.2, 2.2), and expand the elliptic integral in terms of the 
generalized hypergeometric function , we can rewrite Eq. (A1) as: 
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by direct substitution , s=x2 , Eq. (A2) can be written as: 
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Since this function can be expanded as a uniform convergence series, by 
expanding the hypergeometric function in Eq. (A3) and integrate term by term we 
have, 
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