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Abstract In this paper we study the fractional Lagrangian of Pais–Uhlenbeck oscillator.
We obtained the fractional Euler–Lagrangian equation of the system and then we studied
the obtained Euler–Lagrangian equation numerically. The numerical study is based on the
so-called Grünwald–Letnikov approach, which is power series expansion of the generating
function (backward and forward difference) and it can be easy derived from the Grünwald–
Letnikov definition of the fractional derivative. This approach is based on the fact, that
Riemman–Liouville fractional derivative is equivalent to the Grünwald–Letnikov derivative
for a wide class of the functions.
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1 Introduction

As it is known the Pais–Uhlenbeck oscillator is used to describe a higher derivative the-
ory [1]. In field theories higher derivative were introduced in order to get rid of ultravio-

D. Baleanu (�)
Department of Mathematics and Computer Science, Faculty of Arts and Sciences, Cankaya University,
06530, Ankara, Turkey
e-mail: dumitru@cankaya.edu.tr

D. Baleanu
Institute of Space Sciences, P.O. Box, MG-23, 76900, Magurele-Bucharest, Romania

I. Petras
BERG Faculty, Technical University of Kosice, B. Nemcovej 3, 04200 Kosice, Slovakia

J.H. Asad
Department of Physics, Tabuk University, P.O. Box 741, Tabuk 71491, Saudi Arabia

M.P. Velasco
Departamento de Matematica Aplicada, Facultad de Matematicas, Universidad Complutense de Madrid,
Madrid, 28040, Spain

mailto:dumitru@cankaya.edu.tr


Int J Theor Phys

let divergences [2]. It is thought that higher-order theories would possess propagators hav-
ing poles with non-positive residues (i.e. non-positive norms) and would therefore threaten
the unitarity of the theory. But an interesting solution to such difficulty has been recently
proposed in [3] by finding a quantum transformation which gives its Hamiltonian a non-
Hermitian, PT symmetric form.

During the last decades the fractional calculus that is an extension of classical calcu-
lus was subjected to an intense debate in various fields of science and engineering [4–10].
Many authors have paid a considerable attention to the formulation of the fractional Euler–
Lagrange problem. Riewe investigated non-conservative Lagrangian and Hamiltonian me-
chanics and for those cases formulated a version of the Euler–Lagrange equations [11].
Further works on Lagrangian and Hamiltonian approaches can be found in Refs. [12–16]
and the references therein. Since the fractional Euler–Lagrange equations contain both the
left and the right fractional derivatives the analysis of them is a new and interesting subject
for both mathematical and physical point of view.

This type of equations is obtained when the minimum action principle and fractional
integration by parts rule are applied. In our knowledge very few results were reported on
this type of new fractional equations.

Numerical analysis of fractional differential equations appeared in many researches
[17–20]. For example, recently, Podlubny [21], and Podlubny et al. [22] introduces how
to numerically solve differential equations using matrix form representation.

This manuscript is focused on fractional Euler–Lagrange equation of the Pais–Uhlenbeck
oscillator.

This paper is organized as follows:
In Sect. 2, the basic definitions of fractional derivatives are discussed briefly. In Sect. 3,

we study the fractional Pais–Uhlenbeck model. In Sect. 4, numerical analysis of the corre-
sponding fractional Euler–Lagrange equation is carried out. The paper closes with conclud-
ing remarks.

2 Basic Tools

In this section, we briefly review the definitions of the fractional derivatives.
These definitions are used in the Lagrangian formulation and the solution of examples

leading to the equation of motion of the fractional order.
The left Riemann–Liouville fractional integral is defined as follows [4, 5]

aI
α
t x(t) = 1

�(α)

∫ t

a

(t − τ)α−1x(τ)dτ. (1)

The right Riemann–Liouville fractional integral has the form

t I
α
b x(t) = 1

�(α)

∫ b

t

(τ − t)α−1x(τ)dτ. (2)

The left Riemann–Liouville fractional derivative reads as
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x f (x) = 1
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d
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a

f (τ )

(x − τ)α
dτ. (3)

The right Riemann–Liouville fractional derivative is given by
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dτ. (4)
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Here α is the order of the derivative such that 0 < α ≤ 1,� denotes the Euler’s Gamma
function. When α becomes an integer, these derivatives become

aD
α
x f (x) =

(
d

dx

)α

f (x),

xD
α
b f (x) =

(
− d

dx

)α

f (x); α = 1,2, . . . , (5)

namely, we recover the usual classical derivatives.

3 The Model

The model of the Pais–Uhlenbeck oscillator consists of a one dimensional harmonic oscil-
lator Lagrangian plus a term quadratic in acceleration [1].

In a series of recent papers the Pais–Uhlenbeck model has been introduced and studied
in many details [23–26]. The model is interesting by itself and in connection with gravity,
since it involves a differential equation of order higher than two. More explicitly, this model
is characterized by the following fourth-order differential equation:

d4x

dt4
+ (w1 + w2)

d2x

dt2
+ w2

1w
2
2x = 0, (6)

where w1 and w2 are real numbers. The quantization of this model, if not properly per-
formed, gives rise to some peculiarities like ghosts (i.e. negative norm states) and a Hamil-
tonian which is not bounded from below. In [23] and references therein the authors propose
a strategy to quantize the model which cures these problems, at least if w1 �= w2. A differ-
ent quantization strategy is proposed, which produces a self-adjoint Hamiltonian which is
bounded from below was suggested in [24]. In order to see other possibilities we recommend
Refs. [25, 26].

It was shown that a complex canonical transformation takes the fourth order derivative
Pais–Uhlenbeck oscillator into two independent harmonic oscillators, which means that this
model has energy bounded from below, unitary time-evolution and no negative norm states,
or ghosts.

For these reasons the model is interesting to be analyzed.
In this section we will study the so-called Pais–Uhlenbeck oscillator. Its classical La-

grangian is given as

LPU = 1

2
˙̇x2 − (w2

1 + w2
2)

2
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1w
2
2

2
x2. (7)

The above Lagrangian can be generalized and written in fractional form as:

LF
PU = 1

2
(aD
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t x)2 − w2

1 + w2
2

2
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t x]2 + w2
1w

2
2

2
x2 (8)

for an appropriate space of functions [4].
By using the fractional integration by parts the fractional Euler–Lagrange equation can

be obtained as follows
∂L

∂x
+ tD

α
b

∂L

∂aD
α
t x

+ tD
2α
b

∂L

∂aD
2α
t x

= 0. (9)

Now, making use of (8) we can rewrite (9)

(w2
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2α
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2α
t x = 0. (10)



Int J Theor Phys

The above equation is a fractional differential equation containing a composition of left and
right fractional derivatives. Now, our aim is to obtain a numerical solution for (10). We
notice that when α → 1, we obtained the classical Euler–Lagrange equation from (1).

4 Numerical Results of Fractional Euler–Lagrange Equation

For numerical solution of the linear fractional-order equation (10) we can use the decom-
position to its canonical form with substitution x ≡ x1. We obtain the set of equation in the
form:

aD
α
t x1 = x2

tD
α
b x2 = x3

aD
α
t x3 = x4

tD
α
b x4 = −(w2

1w
2
2)x1 + (w2

1 + w2
2)x3

(11)

where we can set four initial conditions x1(0), x2(0), x3(0), x4(0). Instead left and right side
Riemann–Liouville fractional derivatives (3) and (4) in the set of (11) can be used the left
and right Grünwald–Letnikov derivatives, which are equivalent to the Riemann–Liouville
fractional derivatives for a wide class of the functions [5]. The Grünwald–Letnikov deriva-
tives can be defined by using upper and lower triangular strip matrices (Podlubny’s matrix
approach) or we can directly apply the formula derived from the Grünwald-Letnikov defini-
tions, backward and forward, respectively, for discrete time step kh, k = 1, 2, 3, . . . . Le us
consider the second approach, which works very well for linear as well as for nonlinear frac-
tional differential equations [27]. Then, general numerical solution of the fractional linear
differential equation with left side derivative in the form

aD
α
t x(t) = f (x(t), t) (12)

can be expressed for discrete time tk = kh in the following form:

x(tk) = f (x(tk), tk)h
α −

k∑
i=m

cix(tk−i ) (13)

where m = 0 if we do not use a short memory principle, otherwise it can be related to
memory length. The binomial coefficients ci, i = 1,2,3, . . . , can be calculated according
to relation

ci =
(

1 − 1 + α

i

)
ci−1 (14)

for c0 = 1. Similarly we can derive a solution for an equation with right side fractional
derivative.

In Fig. 1(a)–(f) are depicted the simulation results of (10) for various parameters w1,w2,
and order α, where a = b = 0, for total simulation time 5 s and computational step h = 0.

5 Conclusions

Fractional Euler–Lagrange equations are new kind of fractional differential equations which
combine the left and the right fractional derivative. These kind of fractional differential
equations are of a new type and finding the numerical solutions of them is an intriguing
issue. Particularly, when we fractionalize a Lagrangian corresponding to a theory having
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Fig. 1 Simulation results for various parameters and fractional derivative orders

higher order derivatives a natural question is what is the numerical behavior of the obtained
Euler–Lagrange equations. On this line of taught in this paper we investigated the numeri-
cal solutions of the fractional Pais–Uhlenbeck Euler–Lagrange equation. For this reason we
started with a classical Lagrangian and then we fractionalized it and we obtained the frac-
tional Euler–Lagrange equation. After that we investigated numerically the solution of the
fractional Euler–Lagrange equation. The numerical results depicted in Fig. 1 show clearly
that for various values of the parameters w1 and w2 the behaviors of the fractional Euler–
Lagrange equation strongly depend on the order of the fractional derivative. For each graph
we provided the classical solution of the equations and five different cases for the value of
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the parameters w1, w2 and α. For example, in Fig. 1d the classical solution is constant but
the presence of both left and right derivatives makes the solution of the fractional having
decaying behaviors.
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