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ABSTRACT

Let A,B,C,X, and Y be nx n matrices such that A and B are
positive definite contractions. It is shown that if r > s,(A) and
t > s,(B), then

[A~X + XB~'|)5 + |AX + XB||5 < 4||AXB~" + A~ XB||3.

Moreover, if 0<Y < X < C+ Y < 2C, then

sj((c+x)*‘/2A(c+ Y)*”Z) < x(©)
ICI1 + /Sn—jziX)sn—jsi (V)

for i,j=1,...,n with i <j < 2i—1, where ||T||,, ||T||,s;(T), and
k(T) denote the Hilbert-Schmidt norm, the spectral matrix
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1. Introduction

Let M,,(C) be the algebra of all nx n complex matrices. The singular values
$1(A),...,sn(A) of a matrix A € M,(C) are the eigenvalues of the matrix
(A*A)l/ * arranged in decreasing order and repeated according to multiplicity.
A Hermitian matrix A € M,(C) is said to be positive semidefinite, written as
A >0, if x*Ax > 0 for all x € C" and it is called positive definite, written as
A>0, if x*Ax>0 for all x € C" with x # 0. The Hilbert-Schmidt norm (or
the Frobenius norm) | - ||, is the norm defined on M,(C) by |A|, =
(Z};l s]?(A))l/ ? A € M,(C). The Hilbert-Schmidt norm is unitarily invari-
ant, that is ||[UAV]||, = ||A||, for all A € M,(C) and all unitary matrices
U,V € M,,(C). Another property of the Hilbert-Schmidt norm is that
1Al = (7 []‘;-*Aei|2)1/2, where {¢;}/, and {f;};_, are two orthonormal
bases of C". The spectral matrix norm, denoted by || - ||, of a matrix A €
M, (C) is the norm defined by |[|A| = sup{||Ax| :x € C"||x|| =1} or
equivalently ||A|| = s;(A), For further properties of these norms, the reader is

CONTACT Omar Hirzallah @) o.hirzal@ju.edujo @ Department of Mathematics, The Hashemite University,
Zarqga, Jordan.

© 2019 Taylor & Francis Group, LLC


http://crossmark.crossref.org/dialog/?doi=10.1080/01630563.2019.1596952&domain=pdf&date_stamp=2019-03-29
https://doi.org./10.1080/01630563.2019.1596952
http://www.tandfonline.com

2 A. ABU-AS’AD AND O. HIRZALLAH

referred to [1] or [2]. A matrix A € M,(C) is called contraction if ||A]| < 1,
or equivalently, A*A < I,,, where I, is the identity matrix in M, (C).

In this paper, we introduce new norm and singular value inequalities for
matrices. In Section 2, we use a recent refinement of Young’s inequality for
scalars to introduce matrix inequalities for the Hilbert-Schmidt and the
spectral norms. In Section 3, we are interested in singular value inequalities
of some powers of matrices. In Section 4, we studied a scalar inequality of
Borwein and we give a matrix version of it.

2. Norm inequalities for matrices

The classical Young’s inequality for scalars asserts that if a and b be posi-
tive real number and « € (0,1), then

a*b' ™ <oa+ (1 —a)b (2.1)

with equality if and only if a= b. Improvements of the inequality (2.1)
have been given by several mathematicians (see, e.g., [3-9], and [10, 11]).
One of these improvements is the following [9]: If a and b be positive real
number and o € (0,1), then

2

a*b'* < oa+ (1 — o)b—min(a, 1 — o) (a'/? — b'/?) (2.2)

Based on the inequality (2.2), we have the following lemma.

Lemma 2.1. Let a,b € (0, 1]. Then
(@+b%) +(a+b)+ (co(l —a ) g1 - b‘1/2)2> < 2<% + é)
a
(2.3)
with equality if and only if a = b = 1, where ¢y = min(b,1 — b) and dy =
min(a, 1 — a). In particular,

b
ab+b“+(a+b)<2<g+5). (2.4)
Proof. Let a,b € (0, 1]. Then
at+pe
al—blb bl—ala
= +
a b (2.5)
_ (1—b)a + b—co(a/?> —1)° N (1—a)b + a—dy(b"/2 —1)°
- a b

(by the inequality (2.2))
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2480 (0l — a4 - b)), (26)
b a
Since 2ab < a* + b?, we have
a, b, (2.7)
b a

Now, the inequality (2.3) follows from the inequalities (2.6) and (2.7).
The equality conditions follow by applying the equality condition of the
inequality (2.1) to the inequality (2.5). O

Based on Lemma 2.1, we have the following matrix version of the
inequality (2.3) in the setting of the Hilbert-Schmidt norm.

Theorem 2.2. Let A,B,X € M,,(C) such that A and B are positive definite
contractions. If r > s,(A) and t > s,(B), then

2(AXB™!' + A~'XB)—(AX + XB)

2

ATX+XB7Y|, <
I + [, < _(CO(In —A71/2)2X+d0X(In _Bfl/z) )

(2.8)

2
with equality if and only if A= B =1I,, where ¢y = min(s,(B),1 — s;(B))
and dy = min(s,(A),1 —s1(A)).

Proof. Since A and B are positive definite, then there exist two orthonormal
bases {¢;}/_, and {fi};_, of C" such that Af; = s;(A)f; and Be; = s;(B)e; for
j=1,..,n Since A and B are positive definite contractions, then
si(A),sj(B) € (0,1] for j = 1,...,n. Now,

H 2(AXB™' + A"'XB)—(AX + XB) 2

—(CO (1, — A2)°X + doX (1, — B*1/2)2>
n 2(AXB™! + A"'XB)—(AX + XB)

= f €
z—:l - (co (, — A72)°X 4 doX (I, — B*1/2)2> (2.9)

i.j
2

:; —(c0(1_s.1/2(A) 2+do(1—s,1/2(3)>2)

Let ¢; = min(sj(B),1 —s;(B)) and d; = min(s;(A),1 — s;(A)) for i,j=
1,...,n. Since ¢ < ¢jand dy < d; for i,j = 1,...,n, it follows that
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2(AXB~' + A"'XB)—(AX + XB) 2

H (coltu = 412X + dox (1, — B12)°) |

5;(A) i(B
Z 2(45 + 48~ (5(4) +5:(8))

=2 (cj(l—sjl/z(ADz a,(1- 1/2(3))2>

(by the inequality (2.9))

> Zn:(sj_s"(m (A) + si_sj(A) (B))ZU;*Xe,-\z(by Lemma 2.1)
ij=1

> i(sﬁ“” W) +50) el

> z( C®) I Xl

_ ZU;.* (A7"X + XB "ei]?
ij=1

[j;*Xe,-|2

(2.10)

= lAX+ xB

For the equality conditions, it is clear that if A = B = I,, then equality
holds in the inequality (2.8). So suppose that equality holds in the inequal-
ity (2.8). Then, we have equality in the inequality (2.10) and by the equality
conditions of the inequality (2.3), we have s;(A) = sj(B) =1 for j=1,....n
So, by the spectral theorem of positive matrices we have A = B = I,,. O

An application of Theorem 2.2 can be seen as follows.
Corollary 2.3. Let A,B,X € M,,(C) such that A and B are positive definite
contractions. If r > s,(A) and t > s,(B), then

2 2
|A7"X + XB~'|)% + || AX + XBJ|3 + Hco(In — A2 X 4+ dox (1, — B?)

2
< 4||[AXB™' + A7'XB||3,

(2.11)

where ¢y = min(s,(B),1 —s,(B)) and dy = min(s,(A),1 —s,(A)). In par-
ticular,

|A™"X + XB~'||5 + ||AX + XB|); < 4||AXB~' + A"'XB|[3. (2.12)

Proof. Let {¢;}_, and {f;};_, be the two orthonormal bases of C" as given
in the proof of Theorem 2.2. Consequently,
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2 21|12
4| AXB™! +A’1XB||§—||AX+XB||§—HC0(IH ~ATY2X 4 dx (I, — BV?) Hz

S(A) Si 2 2
. 4(;(3) + Sjéfg) —(s5;(4) + 5i(B)) o
= Z 2 2 2 [f] Xei’
=1 —<c0<1 —sj‘l/Z(A)) +d0(1 —s,._l/z(B)> )
5(4) | s(B) 2
n 2(5,'(3) + S}(§)> - (S](A) + SI(B)) . 5
= Z —-1/2 2 -1/2 2 VJ Xei’
ij=1\ — c0<1 —s; (A)) +dy (1 —s; (B))
2(AXB~' + A~'XB)—(AX + XB) 2
- (co (I, — A72)°X + dox (1, — 371/2)2) ’
(2.13)
where the identity (2.13) follows from the identity (2.9). Now, the inequal-
ity (2.11) follows from the inequalities (2.8) and (2.13). O

3. Singular value inequalities for matrices

An elementary inequality for scalars that is equivalent to the arithmetic-
geometric mean inequality for scalars asserts that if a and b are two non-
zero positive real numbers, then

al+b!

(a+b)"" < (3.1)

with equality if and only if a= b.
We need the following essential lemma (see, e.g., [12, p. 63]).

Lemma 3.1. Let A, B € M,,(C) be positive definite. Then
si(A+ B) > sj(A) + s4(B)

forj=1,.. n
A matrix version of the inequality (3.1) can be seen as follows.

Lemma 3.2. Let A, B € M,,(C) be positive definite. Then
1
s (A+B) < (57(4) +5,'(8)
forj=1,.. n.

Proof. Since A and B are positive definite, Lemma 3.1 implies that
si(A + B) > sj(A) + s4(B)

for j=1,...,n, and so,
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(A +B) < (5(4) +5,(B))
< 411 ( "(A) +s,'(B )) (by the inequality (3.1))
forj=1,...,n. O

Based on Lemmas 2.1 and 3.2, we have the following result.

Theorem 3.3. Let A,B € M,(C) be positive definite contractions. If r <
sp(B) and t < s,(A), then

_i (cn(1 —s5. (A )) + dk<1 - Snl/z(B))>

for j,k=1,...n with k>j where c,=min(s,(B),1—s,(B)) and
dr = min(sg(A), 1 — sx(A)). In particular,

A+ B < (sj(A) +S”(—m>

1 (1(4) +,(8)
(3.2)

2\s(B) " 5(4)
forj=1,...,n

Proof. Since A and B are positive definite contractions, then s;(A),s;(B) €
(0,1],j =1,...,n and so A*B) 4 B*(4) < A" 1 B!, Consequently,

Sj—l(Ar +B)< sj_l(AS”(B) +BSk(A))

J

<5stn(B) (A) + 5@ (B))

B)(a) + S;S"(A) (B)> (since k > j)

<sk(A) N sn(3>> — 2 (s(4) + 5,(8))

sa(B)  sk(A)) 4

—i (cn(l B 5_1/2(A)> + dk<1 — s;l/Z(B)))

(by the inequality (2.3))

< l (s._l(AS"(B)) + _1(33" )) (by Lemma 3.2)

DN = =] =
oumny
w
>
L

IN

IN

for j,k =1,...,n with k > j. O

An application of Theorem 3.3 can be stated as follows.
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Corollary 3.4. Let A,B € M, (C) be positive definite contractions. If r <
sp(B) and t < s,(A), then

—1( g1 t 1 1 S(A) sn(B)
<A+B>+Z@meAm)£5ka+%uJ

for j=1,...,n. In particular,
(As—l—BS) S;( ( 2 )>

forj=1,...,n, where s = max(sn(B),sl(A)).

4. On Borwein inequality

Borwein inequality [13] (see also, [14, p. 283]) asserts that if a, b, x, and y
are positive real numbers such that a+b=1,a<b,y<x<1+y<2.
Then

a b 1

< .
1—|-x+l+y_1+x“yh

(4.1)

In this section, we introduce matrix versions of the Borwein inequality
(4.1). First, we start with the following lemma.

Lemma 4.1. Let a,b,c,x, and y be positive real numbers such that
a+b=1,a<by<x<c+y<2. Then

a b 1
+ < .
c+x c+y T c+xiyb

(4.2)

Proof. Let X =% and j =Z.Then the conditions y < x < c+y < 2¢ imply
that y <x <14y < 2. So,
a n b 1 a N b
c+x C—|—)/_C 1_|_§ 1+Z
c c
1/ a n b
Cc\l+x 14y
1 1
< T (by the inequality (4.1))
1

= pesv (since ¢t = ¢),

as required. O

The following lemma is given in [12, p. 62].
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Lemma 4.2. Let A,B € M, (C) be positive semidefinite. Then sj(A + B) <
si(A) + sj—iy1(B) fori,j=1,...,n with i <j.

Let x(A) be the condition number of a matrix A € M,(C), that is
k(A) = ||A|[||A]]. In the following result, we give a matrix version of the
inequality (4.2) that involves the condition number of a matrix.

Theorem 4.3. Let A,B,C,X,Y € M,(C) be positive definite such that
IAll + [|BIl = 1,A < B, and Y < X < C+Y < 2C. Then

1,1 - C
sj(A%(c+X) AL B(CH+Y) IB%> < lAK( ) B (4.3)
HCH + SnfjJri(X)SnfjJri(Y)
fori,j=1,...nwithi<j<2i—1. In particular, if C = I,,, then
1 — 1 1 — 1 1
s (Az(ln +X) AT+ B (I, + Y) 1Bz) < (4.4)
1+ Sﬂﬂﬂ(x)SﬂH(Y)
forij=1,...nwithi<j<2i—1.
Proof. Since Y < X <Y + C, then
sn_jti(Y) < sp_jpi(X)
and
sn—jri(X) < spjyi(Y 4 C)
< $u-j+i(Y) + ||C||(by Lemma 4.2).
So,
0 < spu—jsi(X)—sujri(Y) < [|C]. (4.5)
Lemma 4.1 together with the inequality (4.5) implies that
A B 1
S S S
H H + Sn—j+i ” H + Sn—jti HC” + 5n—j+i(X)5n—j+i(Y)
Since j < 2i—1, then n—j+i > n—i+ 1, and so
s (CT12XCTV?) > 5, 5, (C712XC712)
= s i(X12C1X12)
> 6,(C sy jui(X) (4.

_ 5n—j+i(X)
<]l
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Similarly,

» (Y)
i Crye2) s i T 4.8
e = 9

Now,

Sj(Al/Z(C+X)—1A1/2 +Bl/2(C+ Y)—lBl/Z)
Al2c-1/2 (In + C—1/2XC_1/2)71C_1/2A1/2
+B2C12(1, + CV2YC12) T V2B

< si (AI/ZC_I/Z (I, + C_I/ZXC_1/2)71C_1/2A1/2>

+5iin (Bl/chl/z (I + C71/2YC71/2)_1C71/231/2)
(by Lemma 4.2)

< ||AYC 2 IIC*”ZAI/ZHsi((In + C*I/ZXC”/Z)_I) (4.9)

+ HBI/ZC_I/zHHC_I/zBl/szj—i-H ((In + C—1/2YC_1/2)*1>
lAlllIC IBlIIC"l

14 sn_i+1(C‘1/2XC‘1/2) 14+ Sn_j_H(C_l/ZYC_I/Z)

< JANIC . Ble i

- Sn7j+j(X) Sn—j+i(Y)
I+ e 1+ T

- Al ||B]|
= [ICllllc| + ,
ICI + $n—jsi(X) ~ [|C|| 4 spji(Y)

Now, the result follows from the inequalities (4.6) and (4.9). O

(by the inequalities (4.7) and (4.8))

An application of Theorem 4.3 can be seen in the following result. First,
we need the following Lemma [15].

Lemma 4.4. Let A,C,X,Y € M,(C). Then 2s;(AB*) <sj(A*A+ B*B)
forj=1,..n

Corollary 4.5. Let A,C,X,Y € M, (C) be positive definite contraction such
that Y < X< C+Y <2C. Then

k(C)

1+ 5n7j+i(X)5n7j+i(Y)

Sj<(In+X)_1/2A(In+Y)_l/z) S

forij=1,...nwithi<j<2i—1.
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Proof. First, suppose that A is positive definite and ||A|| <1. Then, there
exists € > 0 such that D = A + ¢l is positive definite and ||D|| =31. In the
inequality (4.3) replacing A and B by D, we have
(D2 ((C+x)7 +(C+Y))D'?)
= 5;(DV*(C+ x)"'D'? + DY*(C + Y) ' D'/?)
- x(C)
= D D
1€l + 5,21 (X)sy 2 (Y)
_ K(C)
1€l + y/sn 4 (X5 ja()
for i,j=1,..,n with i <j<2i—1. Let Z= (C+X)'+ (C+Y)". Then,

Z is positive definite and we have

(D2 ((C+ X))+ (C+Y)!)D'?) = 5(D"V?zD"/?

1

(4.10)

1

(since D > A)

(4.11)
for j=1,...,n. Now, let A= (C+X)*1/2A1/2 and B = (C+ Y)fl/ZAl/z'
Then

2sj ((C +X)7A(C + Y)_1/2>
= 25]~(A1~3)
<5 (A*A + B*B)(by Lemma 4.4) (4.12)
= 5j<A1/2(C+X)_1A1/2 A2 (CHY) ' AY?)
=5;(A1224'?)
for j =1, ..., n. The inequalities (4.10), (4.11), and (4.12) imply that
x(C)

2sj((1n +X)2A@1, + Y)_l/z) < (4.13)
1+ \/snjii(X)sn—jri(Y)

Now, the general case when ||A]| <1 follows from the inequality (4.13)
by replacing A by 4. 0

We close this section with the following result related to the
inequality (4.4).
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Theorem 4.6. Let A,B,X,Y € M,,(C) be positive definite such that
0<X-Y<I,,Y<I, and si(A)<si(B) for some je{l,...,n} If
si(A) +sj(B) = 1, then

1
T s ")

(AL +X) " +5(B)(I, + V)™ L.

Proof.

S(AI+X) " +5B)I+Y)

< (s 1+ X)) + 5B (1 + 1)),

(s, s

1+5,(X)  1+s,(Y)
1
< : : I, (by the inequality (4.4)).
L+ X0 (v)
O
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