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Abstract. We give several matrix versions of the inequalities ab + ba > 1 and aa > e−e−1
for

positive scalars a and b . For instance, for all positive definite matrices A,B , any Hermitian

matrix X , and any unitarily invariant norm,
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where a and b are the smallest eigenvalues of A and B , respectively.

1. Introduction

Let Mn(C) be the algebra of all n×n complex matrices. For a matrix A∈Mn(C) ,

let λ1(A), ...,λn(A) be the eigenvalues of A repeated according to multiplicity. The

singular values of A , denoted by s1(A), ...,sn(A) , are the eigenvalues of the matrix

|A| = (A∗A)1/2
arranged in decreasing order and repeated according to multiplicity. A

Hermitian matrix A ∈ Mn(C) is said to be positive semidefinite if x∗Ax > 0 for all

x ∈ Cn and it is called positive definite if x∗Ax > 0 for all x ∈ Cn with x 6= 0. The

direct sum of matrices A1, ...,Am ∈ Mn(C) is the matrix ⊕m
i=1Ai =













A1 0 · · · 0

0 A2

. . .
...

...
. . .

. . . 0

0 · · · 0 Am













.

For two matrices A1,A2 ∈ Mn(C), we write A⊕B instead of ⊕2
i=1Ai .

The usual matrix norm ‖·‖ , the Schatten p -norm ( p > 1), and the Ky Fan k -

norms ‖·‖(k) (k = 1, ...,n) are the norms defined on Mn(C) by ‖A‖ = sup{‖Ax‖ : x ∈

C,‖x‖ = 1} , ‖A‖p = ∑
n
j=1 s

p
j (A) , and ‖A‖(k) = ∑

k
j=1 s j (A) , k = 1, ...,n . It is known

that (see, e.g., [1, p. 76]) for every A ∈ Mn(C) we have

‖A‖ = s1 (A) (1.1)
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and for each k = 1, ...,n, we have

‖A‖(k) = max

∣
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k

∑
j=1

y∗jAx j

∣

∣

∣

∣

∣

, (1.2)

where the maximum is taken over all choices of orthonormal k -tuples x1, ...,xk and

y1, ...,yk . In fact, replacing each y j by z jy j for some suitable complex number z j of

modulus 1 for which z jy
∗
jAx j =

∣

∣

∣
y∗jAx j

∣

∣

∣
, implies that the k -tuple z1y1, ...,zkyk is still

orthonormal, and so an identity equivalent the identity (1.2) can be seen as follows:

‖A‖(k) = max
k

∑
j=1

∣

∣y∗jAx j

∣

∣ , (1.3)

where the maximum is taken over all choices of orthonormal k -tuples x1, ...,xk and

y1, ...,yk .

A unitarily invariant norm |||·||| is a norm defined on Mn(C) that satisfies the

invariance property |||UAV |||= |||A||| for every A ∈ Mn(C) and every unitary matrices

U,V ∈ Mn(C) . It is known that

|||A⊕A||| > |||B⊕B||| for every unitarily invariant norm

if and only if

|||A||| > |||B||| for every unitarily invariant norm.

Also,

|||A⊕B||| = |||B⊕A||| =
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∣

for every unitarily invariant norm. Typical examples of unitarily invariant norms are

the usual matrix norm, the Schatten p -norms, and the Ky Fan k -norms. For further

properties and examples of unitarily invariant norms, the reader is referred to [1], [9],

or [10].

An elementary inequality (see [8, p. 281]) for positive scalars a, b, asserts that

ab + ba > 1. (1.4)

It can be easily seen that the inequality (1.4) can be written as: If a and b are positive

real numbers such that a > b > 0, then

ab + ba
> 1 (1.5)

with equality if and only if b = 0.

In Section 2 of this paper, we give new inequalities for singular value powers of

matrices that present generalizations of the inequality (1.5). In Section 3, we extend our

generalizations of the inequality (1.4) for several matrices and we give singular value

inequalities of convex functions. In Section 4, we derive new singular value inequalities

for the direct sums of matrices.
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2. Matrix versions of the inequality (1.5)

In this section we derive inequalities for matrices that present generalizations of

the inequality (1.5). First we need the following lemma.

LEMMA 2.1. Let A,B,X ,Y ∈ Mn(C) such that A and B are positive definite.

Then

s j

(

X∗Asn(B)X +Y∗Bsn(A)Y
)

> min
(

s2
j (X) ,s2

n (Y )
)

(2.1)

for j = 1, ...,n.

Proof. Since B is positive definite, then Y ∗Bsn(A)Y > sn

(

Y ∗Bsn(A)Y
)

In , and since

A is positive definite we have

s j

(

X∗Asn(B)X +Y∗Bsn(A)Y
)

> s j

(

X∗Asn(B)X + sn

(

Y ∗Bsn(A)Y
)

In

)

= s j

(

X∗Asn(B)X

)

+ sn

(

Y ∗Bsn(A)Y

)

> s
sn(B)
n (A)s2

j (X)+ s
sn(A)
n (B)s2

n (Y )

> min
(

s2
j (X) ,s2

n (Y )
)

(

s
sn(B)
n (A)+ s

sn(A)
n (B)

)

> min
(

s2
j (X) ,s2

n (Y )
)

(by the inequality (1.4))

for j = 1, ...,n . �

Applications of Lemma 2.1 can be seen in the following two results.

COROLLARY 2.2. Let A,B,X ,Y ∈ Mn(C) such that A and B are positive defi-

nite. Then

X∗Asn(B)X +Y ∗Bsn(A)Y > min
(

s2
j (X) ,s2

n (Y )
)

In.

Proof. Since X∗Asn(B)X +Y ∗Bsn(A)Y is positive semidefinite, we have

X∗Asn(B)X +Y∗Bsn(A)Y > sn

(

X∗Asn(B)X +Y ∗Bsn(A)Y
)

In

> min
(

s2
j (X) ,s2

n (Y )
)

In

(by The inequality (2.1)),

as required. �

The following result presents a natural generalization of the inequality (1.4).

COROLLARY 2.3. Let A,B ∈ Mn(C) such that A and B are positive definite.

Then

Asn(B) + Bsn(A) > In. (2.2)
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REMARK 2.4. In view of the proof of Lemma 2.1, a matrix version of the inequal-

ity (1.5) can be stated as follows: If A,B ∈ Mn(C) such that A is positive definite and

B is positive semidefinite, then

Asn(B) + Bsn(A)
> I

with equality if and only if B = 0.

Now, we need the following Fan Dominance Theorem [1, p. 93].

LEMMA 2.5. Let A,B∈Mn(C) . If ‖A‖(k) 6 ‖B‖(k) for k = 1, ...,n, then |||A|||6

|||B||| for every unitarily invariant norm.

The following result is our first main result. It presents a natural generalization of

the inequality (1.4) in the setting of unitarily invariant norms.

THEOREM 2.6. Let A,B,X ∈ Mn(C) such that A,B are positive definite and X

is Hermitian. Then
∣
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Asn(B)X + XBsn(A)

∣

∣
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∣

∣

∣

∣

∣

∣
> |||X ||| (2.3)

for every unitarily invariant norm with equality if and only if X = 0 .

Proof. Since X is Hermitian, then there is an orthonormal basis {e j} of Cn con-

sists of eigenvectors corresponding to the eigenvalues {λ j(X)} arranged in a way such

that |λ1(X)| > · · · > |λn(X)| . Since s j(X) =
∣

∣λ j(X)
∣

∣ for j = 1, ...,n , then

∥

∥

∥
Asn(B)X + XBsn(A)

∥

∥

∥

(k)
>

k

∑
j=1

∣

∣

∣
e∗j

(

Asn(B)X + XBsn(A)
)

e j

∣

∣

∣

(by the identity (1.3))

=
k

∑
j=1

∣

∣

∣

(

e∗jA
sn(B)Xe j + e∗jXBsn(A)e j

)∣

∣

∣

=
k

∑
j=1

∣

∣

∣

(

e∗jA
sn(B)Xe j +(Xe j)

∗
Bsn(A)e j

)∣

∣

∣

=
k

∑
j=1

∣

∣

∣
λ j(X)e∗j

(

Asn(B) + Bsn(A)
)

e j

∣

∣

∣

=
k

∑
j=1

∣

∣λ j(X)
∣

∣

∣

∣

∣
e∗j

(

Asn(B) + Bsn(A)
)

e j

∣

∣

∣

>

k

∑
j=1

s j(X) (by Corollary (2.3))

= ‖X‖(k) (2.4)

for k = 1, ...,n. Now, the result follows from the inequality (2.4) and Lemma 2.5.
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For the equality case, suppose that equality holds in the inequality (2.3). Then

s
p
j (X)e∗j

(

Asn(B) + Bsn(A)
)

e j = s
p
j (X) (2.5)

for j = 1, ...,n . Corollary (2.3) implies that e∗j

(

Asn(B)X + XBsn(A)
)

e j > 1 for j =

1, ...,n . So, the identity (2.5) implies that s j(X) = 0 for j = 1, ...,n . This means that

X = 0. The converse is trivial, and the proof is complete. �

REMARK 2.7. In the setting of the Schatten p -norms, a particular case of Theo-

rem 2.6 is the following: If A,B,X ∈ Mn(C) such that A,B are positive definite and X

is Hermitian, then
∣

∣

∣

∣

∣

∣
Asn(B)X + XBsn(A)

∣

∣

∣

∣

∣

∣

p
> ||X ||p (2.6)

for p > 1 with equality if and only if X = 0.

In fact, the inequality (2.6) can be derived from Corollary 2.3 and Theorem 8 in [7],

where Theorem 8 in [7] must be understood for Hermitian operators X .

Applications of Theorem 2.6 can be seen in the following three results.

COROLLARY 2.8. Let A,B,X ∈ Mn(C) such that A and B are positive definite.

Then
∣
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∣
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∣

(

Asn(B)X + XBsn(A)
)

⊕
(

XAsn(B) + Bsn(A)X
)
∣

∣

∣

∣

∣

∣

∣

∣

∣
> |||X ⊕X ||| (2.7)

for every unitarily invariant norm with equality if and only if X = 0 .

Proof. Let Ã =

[

A 0

0 A

]

, B̃ =

[

B 0

0 B

]

, and X̃ =

[

0 X

X∗ 0

]

. Then Ã , B̃ are positive

definite and X̃ is Hermitian. It follows, from Theorem 2.6, that
∣

∣

∣

∣

∣

∣

∣

∣

∣
Ãsn(B̃)X̃ + X̃B̃sn(Ã)

∣

∣

∣

∣

∣
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∣

∣
>
∣

∣

∣

∣

∣

∣X̃
∣

∣

∣

∣

∣

∣ (2.8)

for every unitarily invariant norm. Since
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∣

∣
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∣
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∣
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∣
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∣

∣
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[

0 Asn(B)X + XBsn(A)

Asn(B)X∗ + X∗Bsn(A) 0

]∣

∣

∣

∣

∣

∣
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∣

∣
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∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

Asn(B)X∗ + X∗Bsn(A) 0

0 Asn(B)X + XBsn(A)

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

∣

∣

∣

(

Asn(B)X∗ + X∗Bsn(A)
)

⊕
(

Asn(B)X + XBsn(A)
)∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

∣

∣

∣

(

Asn(B)X + XBsn(A)
)

⊕
(

XAsn(B) + Bsn(A)X
)∣

∣

∣

∣

∣

∣

∣

∣

∣
(2.9)

and

∣

∣

∣

∣

∣

∣X̃
∣

∣

∣

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

0 X

X∗ 0

]
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |||X ⊕X ||| , (2.10)
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then the inequality (2.7) follows from the inequality (2.8) and the identities (2.9), (2.10).

Equality holds in the inequality (2.7) if and only if equality holds in the inequality (2.8)

and by the equality condition of Theorem 2.6, the last assertion is equivalent to saying

X̃ = 0, that is X = 0. �

COROLLARY 2.9. Let A,X ∈ Mn(C) such that A is positive definite. Then

∣

∣

∣

∣

∣

∣

∣

∣

∣
Asn(A)X + XAsn(A)

∣

∣

∣

∣

∣

∣

∣

∣

∣
> |||X ||| (2.11)

for every unitarily invariant norm with equality if and only if X = 0 .

Proof. In Corollary 2.8, replacing B by A , we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

Asn(A)X + XAsn(A)
)

⊕
(

Asn(A)X + XAsn(A)
)∣

∣

∣

∣

∣

∣

∣

∣

∣
> |||X ⊕X |||

for every unitarily invariant norm. So,

∣
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∣

∣
Asn(A)X + XAsn(A)

∣

∣

∣

∣

∣

∣

∣

∣

∣
> |||X |||

for every unitarily invariant norm. �

COROLLARY 2.10. Let A,B,X ∈ Mn(C) such that A and B are positive definite.

Then

|||Aα X + XBα ||| > |||X ||| (2.12)

for every unitarily invariant norm with equality if and only if X = 0 , where α =
min{sn(A),sn(B)} .

Proof. Let A =

[

A 0

0 B

]

and X̃ =

[

0 X

X∗ 0

]

. Then A is positive definite and X̃ is

Hermitian. It follows, from Corollary 2.10, that

∣

∣

∣

∣

∣

∣

∣

∣

∣
A

sn(A )X̃ + X̃A
sn(A )

∣

∣

∣

∣

∣

∣

∣

∣

∣
>
∣

∣

∣

∣

∣

∣X̃
∣

∣

∣

∣

∣

∣

= |||X ⊕X ||| . (2.13)

Since sn(A ) = min(sn(A),sn(B)) = α , then

|||Aα X + XBα ||| =
∣

∣

∣

∣

∣

∣

∣

∣

∣
A

sn(A )X̃ + X̃A
sn(A )

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

0 Aα X + XBα

BαX∗ + X∗Aα 0

]
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |||(BαX∗ + X∗Aα)⊕ (AαX + XBα)|||

= |||(AαX + XBα)⊕ (Aα X + XBα)||| . (2.14)

Now, the result follows from the inequalities (2.13) and (2.14). �
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REMARK 2.11. It should be mentioned here that optimal inequalities with sharp

constants related to the inequalities (2.11) and (2.12) will be given at the end of this

section.

In order to give another type of inequalities related to the inequality (1.4), we need

the following lemma.

LEMMA 2.12. Let a be a positive real number. Then aa > e−e−1
with equality if

and only if a = e−1 .

Proof. Let f (x) = xx,x ∈ (0,∞) . Then the minimum value of f occurs only at

x = e−1 . Thus, aa = f (a) > f (e−1) = e−e−1
with equality if and only if a = e−1 . �

Based on Lemma 2.12, we have the following result. Its proofs is similar to that

of Lemma 2.1.

LEMMA 2.13. Let A,B,X ,Y ∈ Mn(C) such that A and B are positive definite.

Then

s j

(

X∗Asn(A)X∗ +Y ∗Bsn(B)Y ∗
)

> 2e−e−1

min
(

s2
j (X) ,s2

n (Y )
)

(2.15)

for j = 1, ...,n.

The following two Corollaries follow from Lemma 2.13 by using proofs similar to

those of Corollaries 2.2, 2.3.

COROLLARY 2.14. Let A,B,X ,Y ∈ Mn(C) such that A and B are positive defi-

nite. Then

X∗Asn(A)X∗ +Y ∗Bsn(B)Y ∗
> 2e−e−1

min
(

s2
j (X) ,s2

n (Y )
)

In.

COROLLARY 2.15. Let A,B ∈ Mn(C) be positive definite. Then

Asn(A) + Bsn(B) > 2e−e−1
In.

The following is our second main result in this section. It follows by a proof

similar to that of Theorem 2.6.

THEOREM 2.16. Let A,B,X ∈ Mn(C) such that A,B are positive definite and X

is Hermitian. Then
∣

∣

∣

∣

∣

∣

∣

∣

∣
Asn(A)X + XBsn(B)

∣

∣

∣

∣

∣

∣

∣

∣

∣
> 2e−e−1

|||X ||| (2.16)

for every unitarily invariant norm.

Applications of Theorem 2.16 can be seen in the following three results.
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COROLLARY 2.17. Let A,B,X ∈ Mn(C) such that A and B are positive definite.

Then

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

Asn(A)X + XBsn(B)
)

⊕
(

Bsn(B)X + XAsn(A)
)
∣

∣

∣

∣

∣

∣

∣

∣

∣
> 2e−e−1

|||X ⊕X ||| (2.17)

for every unitarily invariant norm.

COROLLARY 2.18. Let A,X ∈ Mn(C) such that A is positive definite. Then

∣

∣

∣

∣

∣

∣

∣

∣

∣
Asn(A)X + XAsn(A)

∣

∣

∣

∣

∣

∣

∣

∣

∣
> 2e−e−1

|||X ||| (2.18)

for every unitarily invariant norm.

COROLLARY 2.19. Let A,B,X ∈ Mn(C) such that A and B are positive definite.

Then

|||Aα X + XBα ||| > 2e−e−1
|||X ||| (2.19)

for every unitarily invariant norm, where α = min{sn(A),sn(B)} .

REMARK 2.20. It can be seen that the inequalities (2.18) and (2.19) are optimal

with sharp constants. Since e−e−1
> 1

2
, then the inequalities (2.18) and (2.19) are better

than the inequalities (2.11) and (2.12).

3. Extensions for several matrices

This section is devoted to generalize our results in Section 2. First, we start by the

following generalization of the inequality (1.4).

LEMMA 3.1. Let a1, ...,am be positive real numbers. Then ∑
m
i=1 a

am+1−i

i > m
2

.

Proof. We have two cases for m :

Case 1. If m is even, then

m

∑
i=1

a
am+1− j

j =
m/2

∑
i=1

(

a
am+1− j

j + a
a j

m+1− j

)

>
m/2

∑
i=1

1 (by the inequality (1.4))

=
m

2
.
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Case 2. If m is odd, then

m

∑
i=1

a
am+1− j

j = a
a m+1

2
m+1

2

+

m−1
2

∑
i=1

(

a
am+1−i

i + a
a j

m+1− j

)

> e−e−1
+

m−1
2

∑
i=1

1 (by Lemma 2.12)

= e−e−1

+
m−1

2

>
m

2

(

since e−e−1

>
1

2

)

,

this completes the proof of the lemma. �

Based on Lemma 3.1, we have the following generalizations of Lemma 2.1, Corol-

laries 2.2, and 2.3. The proofs will follow by arguments similar to those used in Section

2.

LEMMA 3.2. Let Ai,Xi ∈ Mn(C) , i = 1, ...m, such that each Ai is positive defi-

nite. Then

s j

(

m

∑
i=1

X∗
i A

sn(Am+1−i)
i Xi

)

>
mc j

2
, (3.1)

for j = 1, ...,n, where c j = min{s2
j(X1),s

2
n(X2), ...,s

2
n(Xm)}.

Applications of Lemma 3.2 can be seen in the following three results.

COROLLARY 3.3. Let Ai,Xi ∈ Mn(C) , i = 1, ...m, such that each Ai is positive

definite. Then
m

∑
i=1

X∗
i A

sn(Am+1−i)
i Xi >

mcn

2
In, (3.2)

where c j = min{s2
j(X1),s

2
n(X2), ...,s

2
n(Xm)}.

COROLLARY 3.4. Let Ai,Xi ∈ Mn(C) , i = 1, ...m, such that each Ai is positive

definite. Then
m

∑
i=1

A
sn(Am+1−i)
i >

m

2
In, (3.3)

where c j = min{s2
j(X1),s

2
n(X2), ...,s

2
n(Xm)}.

We close this section by the following conjecture.

CONJECTURE 3.5. Let a1, ...,am be positive real numbers and let σ be a permu-

tation of the set {1, ...,m} . Then

m

∑
i=1

a
aσ(i)

i >
m

2
. (3.4)
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In particular,
(

m−1

∑
i=1

a
ai+1

i

)

+ aa1
m >

m

2
.

If the inequality (3.4) is true, then other matrix type inequalities related to the inequali-

ties (3.1), (3.2), and (3.3) can be obtained.

In the rest of this section we apply our results that we obtained in this section

to some known results for convex functions. First, we need the following lemma [2].

Other related results can be found in [3] and [4]. Also, all convex functions here are

assumed to be continuous.

LEMMA 3.6. Let Ai,Xi ∈ Mn(C) , i = 1, ...m, such that each Ai is Hermitian and

∑
m
i=1 X∗

i Xi = I . If f is a monotone convex function, then

s j

(

m

∑
i=1

X∗
i f (Ai)Xi

)

> s j

(

f

(

m

∑
i=1

X∗
i AiXi

))

for j = 1, ...,n.

Our third main result in this section can be stated as follows.

THEOREM 3.7. Let Ai,Xi ∈ Mn(C) , i = 1, ...m, such that each Ai is positive def-

inite and ∑
m
i=1 X∗

i Xi = In . If f is a monotone convex function on [0,∞) , then

s j

(

m

∑
i=1

X∗
i f
(

A
sn(Am+1−i)
i

)

Xi

)

> f
(mc j

2

)

(3.5)

for j = 1, ...,n, where c j = min{s2
j(X1),s

2
n(X2), ...,s

2
n(Xm)}.

Proof.

s j

(

m

∑
i=1

X∗
i f
(

A
sn(Am+1−i)
i

)

Xi

)

> s j

(

f

(

m

∑
i=1

X∗
i A

sn(Am+1−i)
i Xi

))

(by Lemma 3.6)

= f

(

s j

(

m

∑
i=1

X∗
i A

sn(Am+1−i)
i Xi

))

> f
(mc j

2

)

(by Theorem 3.2),

this proves the inequality (3.5). �

Applications of Theorem 3.7 can be seen in the following two results.
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COROLLARY 3.8. Let Ai,Xi ∈ Mn(C) , i = 1, ...m, such that each Ai is positive

definite and ∑
m
i=1 X∗

i Xi = In . If f is a monotone convex function on [0,∞) , then

m

∑
i=1

X∗
i f
(

A
sn(Am+1−i)
i

)

Xi > f
(mcn

2

)

In, (3.6)

where c j = min{s2
j(X1),s

2
n(X2), ...,s

2
n(Xm)}.

COROLLARY 3.9. Let Ai ∈ Mn(C) , i = 1, ...m, such that each Ai is positive def-

inite. If f is a monotone convex function on [0,∞) , then

m

∑
i=1

f
(

A
sn(Am+1−i)
i

)

> f
(m

2

)

In. (3.7)

REMARK 3.10. A result of J.-C. Bourin [2] asserts the following: Let A,X ∈
Mn(C) such that A is Hermitian and X is contractive. If f is a monotone convex

function such that f (0) 6 0, then

s j (X
∗ f (A)X) > s j ( f (X∗AX)) (3.8)

for j = 1, ...,n . Thus, a result related to the inequality (3.8) can be stated as follows:

Let Ai,Xi ∈ Mn(C) , i = 1, ...m, such that each Ai is positive definite and ∑
m
i=1 X∗

i Xi 6

In . If f is a monotone convex function on [0,∞) such that f (0) 6 0, then

s j

(

m

∑
i=1

X∗
i f
(

A
sn(Am+1−i)
i

)

Xi

)

> f
(mc j

2

)

(3.9)

for j = 1, ...,n , where c j = min{s2
j(X1),s

2
n(X2), ...,s

2
n(Xm)} . In fact, the inequality

(3.9) follows by applying the inequality (3.8) to the partitioned matrices A = ⊕m
i=1Ai

and X =











X1 0 · · · 0

X2 0 · · · 0
...

...
. . .

...

Xm 0 · · · 0











and observing that X is contractive.

Applications of Theorem 3.7 can be seen in the following two results.

COROLLARY 3.11. Let Ai,Xi ∈ Mn(C) , i = 1, ...m, such that each Ai is positive

definite and ∑
m
i=1 X∗

i Xi = In . Then

s j

(

m

∑
i=1

X∗
i

(

eA
sn(Am+1−i)
i − In

)

Xi

)

> s j

(

e
mc j

2 −1
)

for j = 1, ...,n, where c j = min{s2
j(X1),s

2
n(X2), ...,s

2
n(Xm)} .

Proof. The result follows from Theorem 3.7 by letting f (t) = et −1. �
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COROLLARY 3.12. Let Ai,Xi ∈ Mn(C) , i = 1, ...m, such that each Ai is positive

definite and ∑
m
i=1 X∗

i Xi = In . Then

m

∑
i=1

X∗
i eA

sn(Am+1−i)
i Xi >

(

e
mc j

2 −1
)

In +
m

∑
i=1

X∗
i Xi,

where c j = min{s2
j(X1),s

2
n(X2), ...,s

2
n(Xm)} .

4. Singular values and direct sums

In this section, we give singular value inequalities related to the inequality (2.2)

that involve direct sums of matrices. In order to do that, we need the following lemma

[1, p. 62] that constitute the Wely’s inequalities.

LEMMA 4.1. Let A,B ∈ Mn(C) are positive semidefinite. Then

s j (A + B) 6 sk (A)+ s j−k+1 (B) (4.1)

for j,k = 1, ...,n with k 6 j , and

s j (A + B) > sk (A)+ s j−k+n (B) (4.2)

for j,k = 1, ...,n with k > j .

The following result presents a variation of Lemma 4.1 for several matrices.

LEMMA 4.2. Let A1, ...,Am ∈ Mn(C) be positive semidefinite. Then

(1)

s j

(

m

∑
i=1

Ai

)

6 skm−1
(Am)+

m

∑
i=1

ski−1−ki+1(Ai) (4.3)

for j = 1, ...,n, where ki 6 ki−1 , i = 1, ...,m−1 with k0 = j .

(2)

s j

(

m

∑
i=1

Ai

)

> skm−1
(Am)+

m

∑
i=1

ski−1−ki+n(Ai) (4.4)

for j = 1, ...,n, where ki > ki−1 , i = 1, ...,m−1 with k0 = j .
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Proof.

(1)

s j

(

m

∑
i=1

Ai

)

6 sk1

(

m

∑
i=2

Ai

)

+ sk0−k1+1 (A1)

(by the inequality (4.1))

6 sk2

(

m

∑
i=3

Ai

)

+ sk1−k2+1 (A2)+ sk0−k1+1 (A1)

6 skm−2
(Am + Am−1)+ skm−3−km−2+1 (Am−2)+ · · ·+ sk0−k1+1 (A1)

6 skm−1
(Am)+

m−1

∑
i=1

ski−1−ki+1(Ai),

this proves the inequality (4.3).

(2)

s j

(

m

∑
i=1

Ai

)

> sk1

(

m

∑
i=2

Ai

)

+ sk0−k1+n (A1)

(by the inequality (4.2))

> sk2

(

m

∑
i=3

Ai

)

+ sk1−k2+n (A2)+ sk0−k1+n (A1)

> skm−2
(Am + Am−1)+ skm−3−km−2+n (Am−2)+ · · ·+ sk0−k1+n (A1)

> skm−1
(Am)+

m−1

∑
i=1

ski−1−ki+n(Ai),

as required. �

It is shown in [6] that if X ,Y ∈ Mn(C) , then

s j(X ⊕Y ) >
1

2
s j (X +Y) (4.5)

for j = 1, ...,n . A natural generalization of the inequality (4.5) has been recently given

in [5] as follows.

LEMMA 4.3. Let X1, ...,Xm ∈ Mn(C) . Then

s j (⊕
m
i=1Xi) >

1

m
s j

(

m

∑
i=1

Xi

)

(4.6)

for j = 1, ...,n.

Based on Lemmas 4.2 and 4.3, we have the following result. It is our main result

in this section.
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THEOREM 4.4. Let Ai,Xi ∈ Mn(C) , i = 1, ...,m such that each Ai is positive

definite and for j ∈ {1, ...,n} let k0, ...,km−1 be positive integers satisfying k0 = j,
ki > ki−1 , i = 1, ...,m−1. Then

s j

(

⊕m
i=1X∗

i A
sn(Am+1−i)
i Xi

)

>
α j

2
(4.7)

for j = 1, ...,n, where α j = min{s2
km−1

(Xm) ,s2
ki−1−ki+n(Xi) : i = 1, ...,m−1} .

Proof. Let j ∈ {1, ...,n} . Then

s j

(

⊕m
i=1X∗

i A
sn(Am+1−i)
i Xi

)

>
1

m
s j

(

m

∑
i=1

X∗
i A

sn(Am+1−i)
i Xi

)

(by Lemma 4.3)

>
1

m
s j

(

m

∑
i=1

sn

(

A
sn(Am+1−i)
i

)

X∗
i Xi

)

=
1

m
s j

(

m

∑
i=1

s
sn(Am+1−i)
n (Ai)X∗

i Xi

)

>
1

m

(

s
sn(A1)
n (Am) s2

km−1
(Xm)+

m−1

∑
i=1

s
sn(Am+1−i)
n (Ai)s2

ki−1−ki+n(Xi)

)

(by the inequality (4.4))

>
α j

m

(

s
sn(A1)
n (Am)+

m−1

∑
i=1

s
sn(Am+1−i)
n (Ai)

)

=
α j

m

m

∑
i=1

s
sn(Am+1−i)
n (Ai)

>
α j

2
(by Lemma 3.1),

as required. �

An application of Theorem 4.4 is the following.

COROLLARY 4.5. Let Ai ∈ Mn(C) , i = 1, ...,m such that each Ai is positive def-

inite. Then

s j

(

⊕m
i=1A

sn(Am+1−i)
i

)

>
1

2
(4.8)

for j = 1, ...,n.

REMARK 4.6. The inequality (4.8) is not true for j > n . This can be demonstrated

by the following example. Let A1 = [1] and A2 =
[

1
4

]

be 1×1 matrices. Then n = 1
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and m = 1. So, by taking j = 2, we have

s2

(

A
sn(A2)
1 ⊕A

sn(A1)
2

)

= s2

([

1 0

0 1
4

])

=
1

4

�
1

2
.
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