
The Journal of Systems and Software 107 (2015) 187–203

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A small world based overlay network for improving dynamic

load-balancing

Eman Yasser Daraghmi, Shyan-Ming Yuan∗

DCS Lab, Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

a r t i c l e i n f o

Article history:

Received 5 January 2015

Revised 25 May 2015

Accepted 1 June 2015

Available online 9 June 2015

Keywords:

Diffusion

Distributed systems

Dynamic load-balancing

a b s t r a c t

Load-balancing algorithms play a key role in improving the performance of distributed-computing-systems

that consist of heterogeneous nodes with different capacities. The performance of load-balancing algorithms

and its convergence-rate deteriorate as the number-of-nodes in the system, the network-diameter, and the

communication-overhead increase. Moreover, the load-balancing technical-factors significantly affect the

performance of rebalancing the load among nodes. Therefore, we propose an approach that improves the

performance of load-balancing algorithms by considering the load-balancing technical-factors and the struc-

ture of the network that executes the algorithm. We present the design of an overlay network, namely, func-

tional small world (FSW) that facilitates efficient load-balancing in heterogeneous systems. The FSW achieves

the efficiency by reducing the number-of-nodes that exchange their information, decreasing the network di-

ameter, minimizing the communication-overhead, and decreasing the time-delay results from the tasks re-

migration process. We propose an improved load-balancing algorithm that will be effectively executed within

the constructed FSW, where nodes consider the capacity and calculate the average effective-load. We com-

pared our approach with two significant diffusion methods presented in the literature. The simulation results

indicate that our approach considerably outperformed the original neighborhood approach and the nearest

neighbor approach in terms of response time, throughput, communication overhead, and movements cost.

© 2015 Elsevier Inc. All rights reserved.

1

a

i

i

a

o

e

r

e

r

p

o

2

o

b

e

s

i

i

g

a

l

p

l

s

I

e

n

b

n

i

t

a

h

0

. Introduction

Load-balancing algorithms have become increasingly popular

nd powerful techniques in modern distributed computing systems

n recent years (Chang et al., 2014). They provide opportunities for

ncreasing the performance of large-scale computing systems and

pplications since they are designed to redistribute the workloads

ver the components of the distributed system in a way that ensures

xpanding resource utilization, maximizing throughput, minimizing

esponse time, and avoiding the overload situation (Abdelmaboud

t al., 2014). To achieve the goal of maximum performance, it is pre-

equisite to smoothly spread the load among the nodes to avoid, if

ossible, the situation where one node is heavily loaded with excess

f workloads while another node is lightly loaded or idle (Chwa et al.,

015; Luo et al., 2014).

Load-balancing algorithms can be categorized into either static

r dynamic (Cybenko, 1989; Fang and Wang, 2009). Static load-

alancing necessitates complete information of the entire distributed
∗ Corresponding author. Tel.: +886 3 5715900; fax: +886 3 5721490.

E-mail addresses: eman.yasser85@gmail.com (E.Y. Daraghmi), smyuan@cs.nctu.

du.tw, smyuan@gmail.com (S.-M. Yuan).

a

a

o

h

t

ttp://dx.doi.org/10.1016/j.jss.2015.06.001

164-1212/© 2015 Elsevier Inc. All rights reserved.
ystem and workloads information, whereas dynamic load balanc-

ng requires light assumption about the system or the workloads. As

n practical applications (i.e. real world networks) the workloads are

enerally not completely known, and each node has different capacity

nd runs at different speed, it is more efficient to employ the dynamic

oad balancing algorithms for practical applications. The diffusion ap-

roach (Hu and Blake, 1999; Luque et al., 1995) is one of the dynamic

oad balancing techniques that have received much attention by re-

earchers in the past decades to solve the load-balancing problem.

n standard diffusion approach, a system which has different nodes

xchanges workloads via the communication links between these

odes. The workloads are distributed among the nodes, and the load

alancing process works in sequential rounds. In every round, each

ode is allowed to balance its load with all its neighbors by exchang-

ng the workloads to balance the total system load globally, meaning

o minimize the load difference between the nodes with minimum

nd maximum load. The nearest-neighbor approach (Tada, 2011) is

nother dynamic technique that allows the nodes to communicate

nd migrate the excess workloads with their immediate neighbors

nly. Each node balances the workload among its neighbors in the

ope that after a number of iterations the entire system will approach
he balanced state.

http://dx.doi.org/10.1016/j.jss.2015.06.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.06.001&domain=pdf
mailto:eman.yasser85@gmail.com
mailto:smyuan@cs.nctu.edu.tw
mailto:smyuan@gmail.com
http://dx.doi.org/10.1016/j.jss.2015.06.001

188 E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203

l

a

b

c

T

a

r

n

p

a

a

p

o

o

(

o

b

i

h

f

a

i

o

l

o

c

s

t

d

c

d

a

f

a

s

a

b

i

l

d

e

b

t

b

n

n

Since load-balancing algorithms play an important role of im-

proving the performance of practical distributed computing systems,

researchers have been motivated to propose several dynamic algo-

rithms for balancing the workloads among nodes. However, dynamic

load-balancing algorithms still present fundamental challenges

when being executed at large-scale heterogeneous distributed

systems. Previous research (Hui and Chanson, 1999, 1996, 1997)

concluded that three structural factors, which refer to the structure

of the network that executes the load-balancing algorithm, decrease

the performance of any load-balancing algorithm as well as affect

the algorithm convergence rate. The factors are: (1) increasing the

number of nodes in the system (i.e. the number of the nodes that

exchange their workload information); (2) increasing the network

diameter which is defined as the longest shortest path between any

two nodes of the network; (3) increasing the communication over-

heads or the communication delays among the nodes. These factors,

from one hand, make it not feasible for a node to collect the load-

information of all other nodes in the system. Moreover, even if a node

collects the load-information of all other nodes in the system, this in-

formation will be not up to date when it is used (i.e. old information

may not reflect the current load of a node) as more communication

delays make this information old and thus the task of balancing the

load is significantly damaged. From the other hand, it is intuitive that

a network with longer diameter will take longer time to converge

as the number of iterations to propagate the workloads to all nodes

is proportional to the network diameter. Therefore, the first objective

of this research aims at improving the performance of load-balancing

algorithms by considering the structural factors of the network that

executes the algorithm.

In addition, previous studies concluded that (Zomaya et al., 2001)

technical load-balancing factors, which refer to the algorithm poli-

cies that should be considered when designing a load-balancing al-

gorithm, such as the load migration rule, affect the performance of

load-balancing algorithm. Therefore, these studies propose improved

algorithms that consider these factors to enhance the performance of

load-balancing (i.e. improvements include: the derivation of a faster

algorithm that transfers less workloads to achieve a balanced state

than other algorithms, or a mechanism for selecting and transferring

the workloads to other nodes). However, when applying a dynamic

load-balancing to practical distributed system, the functionality of

the node and the migrated task must be checked to ensure that the

node can process that received task. Thus, if the nodes distributed

randomly, some situations that affect the performance of the load-

balancing algorithm negatively may occur. For instance, ni is a node

in a practical distributed system. Since ni is overloaded, it migrates a

task to another lightly loaded node nj. When nj receives the migrated

task, the load-balancing algorithm runs at nj checks the scope of ser-

vices of node nj to ensure that the task can be processed by nj. Thus,

if the migrated task is out of nj services scope, then the task will be

migrated again to another node. Moreover, the task may be retuned

again to ni. Practically, re-migrating the task to another node de-

creases the performance of load-balancing algorithms because of the

task re-migration time delay. Increasing the number of re-migrating

task increases the time delay and thus decreases the performance of

load-balancing. Therefore, the second objective of this research aims at

improving the performance of load-balancing algorithms by decreasing

the time delay results from re-migrating tasks (i.e. re-migrating tasks

results from the node out of services scope). To achieve our goal, we con-

struct the FSW to allow nodes migrate tasks to other nodes that have

similar services scope.

In this research, we aim at improving the performance of load bal-

ancing algorithm by considering both the structural and the technical

load-balancing factors. We also consider the node services scope to

decrease the negative effect of tasks re-migration process. To achieve

our goal, we propose a two-stage approach that, first, designs an over-
ay network which employs both the concept of small world network

nd the node services scope, and then, proposes an improving load-

alancing to be applied within the overlay network.

First, practically, the nodes of practical distributed systems exe-

ute various computational-functions (each node has services scope).

hese computational-functions can be easily derived from the role of

node within the system and identified by k-element set (i.e. the

ole of the node within the system refers to the node services scope),

amely the functional set (FS). Each element in the set represents a

articular function that can be executed within the system. The FS of

node can be mapped to a point in a cluster and thus can be seen as

point in that cluster. In real-world distributed systems, each node

lays a key role within the system. For instance, the m-cafeteria rec-

mmendation system is a practical distributed system that consists

f several cafeteria nodes. Each cafeteria serves a menu, set of meal

i.e. the menu is considered as the FS of a cafeteria node, FS = {serving

range juice, serving butter waffle, etc.}). A user can via his/her mo-

ile phone request a meal from a cafeteria node, if a cafeteria node

s overloaded, then the request will be migrated to another node that

as similar functionality. Similar functionality is defined as the dif-

erence between the amount of functions in-common among nodes

nd the amount of functions unique to nodes. It is clear that functions

n common increase similarity, whereas functions that are unique to

ne node decrease similarity.

In fact, a small world (SW) network has a small average path

ength and large cluster coefficient properties. Thus, constructing an

verlay network that satisfies the small world network properties and

onsiders functional similarity minimizes the negative effects of the

tructural and technical factors (i.e. 1. decrease the number of nodes

hat exchange the workloads information, 2. minimize the network

iameter, 3. deteriorate the communication overhead, and 4. de-

rease the impact of out of services scope and thus decrease the time

elay results from re-migrating tasks). In this research, we construct

n overlay network based on the small world principle, namely, the

unctional small world (FSW) that supports efficient load-balancing

nd thus increasing the performance of distributed computing

ystems.

Second, this research also presents an efficient load-balancing

lgorithm that considers the capacity of each node and the load-

alancing technical factors, such as the initialization rule, the

nformation exchange rule, the load-measurement rule and the

oad-migration rule.

Precisely, the advantages of creating the FSW instead of randomly

istribute the nodes into clusters are: (1) simulating real world het-

rogeneous distributing systems which facilitate applying the load-

alancing algorithm to real world distributed system; (2) decreasing

he effect of time delay results from task re-migration that occurs

ecause of the node out of services scope.

In summary, this paper presents the design of the FSW overlay

etwork to support efficient dynamic load-balancing in heteroge-

eous systems. The primary contribution of this work is fourfold:

1. We adopt an effective clustering strategy that places nodes in

clusters based on the nodes functional similarity and satisfies the

properties of the small world principle.

2. We show a way of building a functional small world (FSW) overlay

network that supports dynamic load-balancing, which is scalable

to large network sizes yet adapts to dynamic membership and

content changes. For simplicity, we refer to the functional small

world overlay network as FSW in the rest of this paper.

3. We propose an efficient and improved dynamic diffusion load-

balancing algorithm to be executed in the constructed FSW.

4. We conduct extensive experiments to evaluate the performance

of proposed solution on various aspects, including throughput, re-

sponse time, communication overhead and movements cost.

E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203 189

2

2

m

c

(

b

w

i

c

t

n

n

a

a

s

s

c

2

a

e

1

Y

1

w

t

n

1

t

(

b

a

f

I

d

f

B

a

A

r

o

p

e

o

l

t

(

t

i

3

w

i

s

3

v

s

g

Table 1

The symbols used in the paper.

Symbol Description

FSW Functional small world

FS The functionality set

G The system that executes the load-balancing algorithm

N The nodes in the system

E The connection-links among nodes

AF All functions set

WL(ni) The set of assigned workloads for node ni

ci The capacity of node ni

ldi The load of node ni

Adj(ni) The set of neighbor nodes for node ni

Info The set stored the information of neighbor nodes for node ni

mig The array that store the amount of migrated workloads

li The effective-load of node ni

lavg The average effective-load

Nlower The set of assistant neighbors

LD The load difference

δi The excess workloads that node ni must migrate

αi The amount of workloads that node ni can accept

n

c

d

D

i

c

n

f

n

w

3

f

u

r

n

t

s

b

t

l

(

F

d

a

s

m

i

n

v

1

a

l

n

i

b

m

a

i

d

. Literature review

.1. Background on small world networks

A small-world network is a type of mathematical graph in which

ost of the nodes are not neighbors of one another, but these nodes

an be reached from every other by a small number of hops or steps

Daraghmi and Yuan, 2014). Many empirical graphs are well-modeled

y small-world networks. A certain category of small-world networks

ere identified as a class of random graphs by Watts and Strogatz

n 1998 (Watts and Strogatz, 1998). They noted that graphs could be

lassified according to two independent structural features, namely

he clustering coefficient, which is defined as the probability that two

eighbors of a node are neighbors themselves and average node-to-

ode distance (also known as average shortest path length). Watts

nd Strogatz measured that in fact many real-world networks have

small average shortest path length, but also a clustering coefficient

ignificantly higher than expected by random chance. A network is

aid to be small world if it has a small average path length and large

luster coefficient.

.2. Related works

Previous studies have proposed numerous load-balancing

lgorithms targeting at static, small-scale, homogeneous and/or het-

rogeneous environments (Aakanksha and Bedi, 2007; Hu and Blake,

999; Karger and Ruhl, 2004; Meyerhenke, 2009; Neelakantan, 2012;

agoubi and Meddeber, 2010). The diffusion approach (Hu and Blake,

999; Neelakantan, 2012) is a dynamic load-balancing technique

here each node simultaneously sends the excessive workloads

o its under loaded neighbors and receives workloads from its

eighbors with higher workload (Boillat, 1990; Cybenko, 1989). In

990, Boillat et al. (Boillat, 1990) presented a new approach to solve

he load balancing problem for parallel programs. In 1989, Cybenko

Cybenko, 1989) studied the diffusion schemes for dynamic load

alancing on a message passing multiprocessor networks. Elsasser et

l. (Elsässer et al., 2002) generalized the standard diffusion schemes

or homogenous networks to deal with the heterogeneous network.

n Bahi et al. (2007), the first order diffusion load balancing, relaxed

iffusion (RFOS) and generalized adaptive exchange (GAE) algorithms

or totally dynamic networks were investigated. In Aakanksha and

edi (2007), the authors proposed a modified version of diffusion

lgorithm for load balancing on dynamic networks. The authors in

dolphs et al. (2012) considered a neighborhood load balancing algo-

ithm in the context of selfish clients. They assumed that a network

f n processors is given, with m tasks assigned to the processors. The

rocessors may have different speeds and the tasks may have differ-

nt weights. Every task is controlled by a selfish user. The objective

f the user is to allocate his/her task to a processor with minimum

oad, where the load of a processor is defined as the weight of its

asks divided by its speed. Neighborhood load balancing algorithms

Akbari et al., 2012) are diffusion algorithm that have the advantage

hat they are very simple and that the vertices do not need any global

nformation to base their balancing decisions on.

. Functional small world (FSW) network

In this section, we present an overview of the functional small

orld (FSW) design and provide the technical details of construct-

ng the FSW overlay network. The notations used in this paper are

ummarized in Table 1.

.1. Overview

FSW plays two important roles: 1) an overlay network that pro-

ides connectivity among nodes, and 2) a distributed solution that

upports efficient dynamic load-balancing. In FSW, the nodes are or-

anized in accordance with the functionality set (FS) defined by each
ode in the system. Nodes with similar functionality sets form one

luster.

We based on the concept proposed by Tversky (Tversky, 1977) to

efine the relation of similar functionality employed in our research.

efinition 1 (Similar functionality). Generally, similar functional-

ty is defined as the difference between the amount of functions in-

ommon among nodes and the amount of functions unique to nodes.

Formally, given any nodes ni, nj ∈ N with a functionality set of each

ode FSi, FSj, the relation of similar functionality is defined by:

s(ni, n j) = |FSni
∩ FSn j

| − (|FSni
− FSn j

|) − (|FSn j
− FSni

|). There-

ore, nodes with s(ni, nj) < 0 are not similar, while nodes with s(ni,

j) ≥ 0 are similar.

For example, if A is a node, with FS = {1, 2, 3} and B is a node

ith FS = {2, 4, 1, 2, 3}, then according to our definition s(ni, n j) =
− 0 − 2 = 1, Thus, A and B have similar functionality. It is clear that

unctions in common increase similarity, whereas functions that are

nique to one node decrease similarity.

In practice, the practical distributed system is modeled as an undi-

ected graph G = (N, E), where N represents the set of heterogeneous

odes in the system, and E describes the connection-links among

hem. Each node i ∈ N has its role within the system and executes

everal functions, such as printing, computing, etc.; thus, each node

ased on its role within the system defines a set, namely, the func-

ionality set (FS). Since a small world network has two properties: (1)

ow average hop count between any two random chosen nodes, and

2) high clustering coefficient, our approach, in order to construct the

SW, categorizes the nodes in the system into two types: 1) an in-

omain node, and 2) a master node. The in-domain node represents

node in which located in one cluster and only has connections via

hort-links with all in-domain nodes placed in the same cluster and the

aster node of that cluster. The master node represents a node located

n one cluster and has a connection via short-links with all in-domain

odes placed in the same cluster and at the same time has connection

ia long-links with some master nodes located in other clusters. Fig.

shows an illustration example of FSW, where nodes n1, n4 and n6

re in-domain nodes, while nodes n2, n3 and n5 are master nodes. The

ong-links (i.e. blue lines in Fig. 1) creates connections among master

odes and is responsible for achieving the high clustering coefficient

n the network (property 2 in small world networks). Short-links (i.e.

lack lines) create connection among in-domain nodes, and among

aster nodes and in-domain nodes. Short-links and the long-links aim

t achieving the properties (1) and (2).

In our design, we also define the cluster-size M to be the max-

mum number of nodes that are allowed to form one cluster. Pre-

efining the cluster size is important to keep small number of nodes

190 E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203

Fig. 1. An example of FSW overlay network, where an in-domain node connects with

all in-domain nodes located in the same cluster, and the master node of that cluster,

while a master node connects with in-domain nodes located in the same cluster and

the other master nodes distributed among clusters. (For interpretation of the refer-

ences to color in the text, the reader is referred to the web version of this article.)

Table 2

The nodes and their

functionality sets.

Node FS

1 {X, C}

2 {X}

3 {A, C}

4 {X, A}

5 {C}

6 {A}

7 {C}

8 {C}

9 {X, C}

10 {A, C}

11 {X, A}

12 {A, C, X}

Fig. 2. The three steps of performing the functional-clustering task.

n

o

F

t

p

s

i

c

s

f

f

c

c

a

3

t

c

in one cluster and to maintain good clustering effect. In this research,

we adopt the guidelines proposed by Hui et al. (Hui et al., 2006) to

define the cluster size M. The authors suggested that the cluster size

ranges from 1 to 64 maintains good clustering effect. Practically, de-

signing a FSW overlay network plays an important role in decreasing

the number of nodes that will exchange the workloads information,

minimizing the network diameter, deteriorating the communication

overhead, and decreasing the time delay results from the task re-

migration process; therefore, this approach is efficient to be applied

not only for the entire system but also clustering inside the cluster to

increase the performance of the load-balancing algorithms.

In summary, a FSW overlay network can be formed as follows:

Each node maintains long-links to ensure the connectivity among

the master nodes (i.e. the connectivity among the clusters to provide

shortcuts to allow a node reach other nodes that execute similar func-

tionality and located in other clusters quickly) and/or short-links to

ensure the connectivity among the in-domain nodes and the connec-

tivity among the in-domain nodes and the master nodes so that a bal-

ancing message issued from any node can reach any other node in the

network. Via short-links and long-links, navigation and broadcasting

in the network can be performed efficiently. In the following sections,

we introduce our approach in details of designing and constructing a

FSW.

3.2. Constructing functional small world (FSW) overlay network

Constructing a FSW overlay network depicted above involves

three major tasks: 1) functional-clustering, 2) cluster-formation, and

3) overlay network construction.

3.2.1. Functional-clustering (FC)

In general, the functional-clustering (FC) task aims at 1) defining

the clusters (i.e. the number and the name of clusters) that should be

created within the overlay network based on the functional executed

within the system, and 2) adding the nodes initially to the cluster(s)

based on the in-common functions between the node and the clus-

ter. In other words, if there is at least one function in-common be-

tween the node and the cluster, then the node will be added initially

to that cluster. Note that: initially, in this step a node can be added to

more than one cluster, but finally in the next tasks a node will only

be added to one cluster.

This task is executed before or when a node joins the network.

Each node ni in the system defines its functionality set (FS), which

indicates the functions that a node can perform and execute within

the system, such as FSi = { f1, f2, . . . , fk}, where FSi is the function-

ality set of node n , f is a function that can be executed by node
i 1
i, and k is the number of functions that node ni can execute. In

ur manuscript, a cluster, namely, Clusteri, j,...,k has a functionality set

SClusteri, j,..,k
= {i, j, . . . , k}. Likewise, ClusterA has FS = {A}.

Following are the steps performed by the functional-clustering

ask:

1 Let AF (all functions) be the set of all functions executed in the

system AF = FS1 ∪ ∪ FSn = { f1, f2, . . . , fs}, where s is the total

number of functions executed within the system, and FSi is the

functionality set of node ni. In other words, AF is the union of all

FSs defined in the system.

2 For each function f ∈ AF, create a cluster, namely, clusterf.

3 Since each node ni has its functionality set FSi = { f1, . . . , fk},

in this step initially node ni will be simultaneously added to

cluster f1
, cluster f2

, . . . , cluster fk
. In other nodes, if a node ni exe-

cutes a function fa, then there is an in-common function between

a node ni and clusterA. Thus, the node ni will be added to clusterA.

Note that, the number of clusters that a node can be added to de-

ends on the number of functions that a node executes within the

ystem; a node that executes more than one function will be added

nitially to more than one cluster at the end of this task.

An example is shown below to illustrate in details the functional-

lustering (FC) task. Given a system G that includes 12 nodes. Table 2

hows the nodes and the FS of each node. The steps executed by the

unctional-clustering task are shown in Fig. 2.

As shown in Fig. 2, in this example, after performing the

unctional-clustering task, nodes will be added initially to the created

lusters (e.g. node 12 will be added initially to clusterA, clusterC and

lusterX since there is in-common functions between the node n12

nd the clusters clusterA, clusterC, clusterX).

.2.2. Cluster-formation

As shown in the functional-clustering (FC) task, a node ini-

ially can be added to more than one cluster. Therefore, the

luster-formation (CF) task is a key task to ensure that a node will

E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203 191

b

c

t

a

t

s

c

t

p

t

i

c

t

i

s

f

s

i

e added to only one cluster regarding the functional similarity. Ac-

ording to Definition 1, nodes are considered as similar nodes if

he amount of in-common functions among nodes is more than the

mount of functions unique to nodes.

This task aims at: 1) deciding the nodes that must finally be added

o the cluster, and 2) checking the cluster size; thus, if the cluster

ize exceeds M, which is a preset defined maximum cluster size, the

luster will be split into two clusters in order to maintain good clus-

ering effect. To determine the cluster size, we adopt the guidelines

roposed by Hui et al. (Hui et al., 2006). The authors suggested that
.

he maximum cluster size is 64 in order to maintain good cluster-

ng effect. If the cluster size exceeds M, the steps of the functional-

lustering task, and the cluster-formation task will be applied to split

hat cluster (i.e. Note, new clusters with new names, such as clusterA1

nstead if clusterA, will be created upon re-performing the tasks to

plit cluster(s)).

Following pseudo code shows the steps performed by the cluster-

ormation task. Note, |FS| is the number of elements in the functional

et. The steps executed by the cluster-formation (CF) task are shown

n Fig. 3.

192 E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203

Fig. 3. The steps performed by the cluster formation task, where the numbers in the left side indicate the step defined in the pesudo code.

Fig. 4. The results of performing the overlay network constructing task.

(

c

f

a

b

m

n

t

(

m

i

n

m

s

b

a

X

l

w

i

3.2.3. Overlay network construction

Fig. 4 shows the results of the overlay network-construction task.

This task constructs the FSW overlay network across the created clus-

ters (i.e. after performing the previous two tasks) to form a functional

small world network by:
1) Defining the in-domain nodes and the master nodes.

The size of the FS of each node located in one cluster will be

hecked (i.e. the number of functions that a node can execute); there-

ore, a node that has the largest FS size in clusteri will be defined as

master node for clusteri, and the other nodes located in clusteri will

e defined as the in-domain nodes for that cluster. Note, when two or

ore nodes have the largest FS size, then only one node from these

odes will be selected randomly as a master node for a cluster since

hat each cluster has only one master node.

2) Adding long-links and short-links among the nodes.

Long-links connect a master node located in one cluster with other

aster nodes located in other clusters based on the functional similar-

ty between theses master nodes (i.e. see Definition 1). For example,

10 is the master node of clusterA and has a FS = {A, C} and n12 is the

aster node of clusterAX and has a FS = {A, C, X}; thus, the functional

imilarity = (2)-(0)-(1) = 1 which means a long-link will be added

etween them. In contrast, n10 is the master node of clusterA and has

FS = {A, C} and n9 is the master node of clusterX and has a FS = {C,

}; thus, the functional similarity = (2)-(1)-(1) = −1 which means no

ong-link will be added between them.

Short-links connect the in-domain nodes located in one cluster

ith the other in-domain nodes located in the same cluster, and

t also connects the in-domain nodes located in a cluster with the

E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203 193

Table 3

The connection-links before and after constructing FSW overlay network.

ni FS Connection-links before constructing the FSW overlay network Ba After constructing FSW Ab

1 X, C {(1, 2), (1, 4), (1, 9), (1, 11), (1, 12), (1, 3), (1, 5), (1, 7), (1, 8), (1, 10)} 10 {(1, 2), (1, 9)} 2

2 X {(2, 1), (2, 4), (2, 9), (2, 11), (2, 12)} 5 {(2, 1), (2, 9)} 2

3 A, C {(3, 4), (3, 5), (3, 9), (3, 11), (3, 12), (3, 1), (3, 7), (3, 8), (3, 10), (3, 6)} 10 {(3, 6), (3, 10)} 2

4 X, A {(4, 2), (4, 1), (4, 9), (4, 11), (4, 12), (4, 3), (4, 5), (4, 7), (4, 8), (4, 10)} 10 {(4, 11), (4, 12)} 2

5 C {(5, 1), (5, 3), (5, 7), (5, 8), (5, 9), (5, 10), (5, 12)} 7 {(5, 7), (5, 8), (5, 10), (5, 9)} 4

6 A {(6, 4), (6, 10), (6, 11), (6, 12), (6, 3)} 6 {(6, 3), (6, 10)} 2

7 C {(7, 1), (7, 3), (7, 5), (7, 8), (7, 9), (7, 10), (7, 12)} 7 {(7, 5), (7, 8)} 2

8 C {(8, 1), (8, 3), (8, 7), (8, 5), (8, 9), (8, 10), (8, 12)} 7 {(8, 7), (8, 5)} 2

9 X, C {(9, 2), (9, 4), (9, 1), (9, 11), (9, 12), (9, 3), (9, 5), (9, 7), (9, 8), (9, 10)} 10 {(9, 1), (9, 2), (9, 5), (9, 12)} 4

10 A, C {(10, 4), (10, 5), (10, 9), (10, 11), (10, 12), (10, 1), (10, 7), (10, 8), (10, 3), (10, 6)} 10 {(10, 3), (10, 6), (10, 5), (10, 12)} 4

11 X, A {(11, 2), (11, 4), (11, 9), (11, 1), (11, 12), (11, 3), (11, 5), (11, 7), (11, 8), (11, 10)} 14 {(11, 12), (11, 4)} 2

12 A, C, X {(12, 1), (12, 2), (12, 3), (12, 4), (12, 5), (12, 6), (12, 7), (12, 8), (12, 9), (12, 10), (12, 11)} 11 {(12, 4), (12, 11), (12, 9), (12, 10)} 4

a B is the number of connection links before constructing FSW.
b A is the number of connection links after constructing FSW.

m

l

t

m

n

T

a

t

6

a

c

4

n

d

s

4

4

e

b

k

n

e

s

n

e

t

4

m

t

b

e

s

e

l

t

h

c

t

o

4

o

t

l

a

u

l

i

u

t

e

4

a

fi

o

i

e

a

c

s

f

a

t

t

f

m

n

w

t

m

g

2

w

4

r

W

o

o

S

4

r

aster node of the same cluster. In-domain nodes, master nodes, long-

inks and short-links play a key role in reducing the effect of the struc-

ural factors and transforming the network into a small world.

In order to show how our proposed design reduces the com-

unication overhead, we summarize the connection-links among

odes before and after constructing the FSW overlay network.

able 3 summarizes the nodes and their connection-links before and

fter constructing the FSW overlay network, where column 4 shows

he number of connection-links before constructing FSW and column

shows the number of connection-links after constructing FSW. Our

pproach reduces the number of connection-links by creating short-

uts via using the idea of master nodes and long-links.

. Dynamic load-balancing

In this section, we present an overview of pitfalls in designing dy-

amic diffusion load-balancing algorithm and propose an improved

iffusion load-balancing algorithm to be executed within the con-

tructed FSW.

.1. Pitfalls in designing load-balancing algorithm

.1.1. The initialization rule

This rule aims at defining the set of nodes that should be consid-

red as the neighbor-nodes of node ni that currently runs the load-

alancing algorithm. Constructing the FSW overlay network plays a

ey role in limiting the set of neighbor-nodes for node ni to those

odes that execute similar functionality and have connection-links,

ither long-links or short-links, with node ni. Therefore, each node

ends/receives the workload information to/from only the neighbor-

odes set which in turn results in reducing the number of nodes that

xchange the workloads information and reducing the communica-

ion overhead.

.1.2. Information exchange rule

This rule specifies how to collect the required information for

aking the load-balancing decisions. Our proposed algorithm uses

he on-state information exchange (Neelakantan, 2012), a node

roadcasts its information to only the set of neighbor-nodes when-

ver its status changes. In fact, the on-state information exchange

trategy has the advantages of making more accurate decisions, how-

ver, the large overhead in communication makes it impractical for

arge systems (i.e. many previous algorithms loses the advantage of

his strategy because of the bad effect of large communication over-

ead). Since our approach reduces the communication overhead by

onstructing the FSW overlay network, it becomes practical to take

he advantages of the on-state information exchange strategy with-

ut increasing the communication overhead.
.1.3. Load measurement rule

The load measurement rule aims at deciding whether a node is

verloaded or not. Each node in the system has its processing capacity

hat will be used with the weight of the assigned workloads to calcu-

ate the effective-load and thus calculating the average effective-load

mong the set of neighbor-nodes. The average effective-load will be

sed to decide if the node is overloaded or not. When the effective-

oad of a node is higher than the average effective-load, then the node

s considered as an overloaded node; otherwise, it is considered as

nder loaded node. The decision that a node is overloaded or not in

urn decides when to begin the balancing operations to migrate the

xcess workloads to under the other loaded node.

.1.4. Transfer strategy rule

This rule aims at defining the set of assistant-neighbors, the nodes

mong the set of neighbor-nodes that are currently under loaded, and

nding the amount of the excess workload to be sent in the case of

verloaded. Since the goal of load-balancing algorithms is redistribut-

ng the loads among nodes, obviously heavier nodes should send the

xcessive workloads to the lighter nodes. Therefore, node ni selects its

ssistant-neighbors that are currently under loaded to migrate its ex-

ess workloads. The amount of workloads to be migrated among the

et of assistant neighbor-nodes would have direct impact on the per-

ormance and the convergence rate of the algorithm. In general, the

mount of the workloads to be moved from the overloaded node to

he assistant neighbor-nodes would be the difference of load between

he overloaded node ni and the average effective-load. To achieve the

airness state the amount of load to be sent should depend on how

uch the current node is overloaded with respect to its neighbor-

odes. Therefore, our algorithm considers the average effective-load

hich has an advantage of being fair and simple as all nodes receives

he same load and no node is privileged. As a result, using the infor-

ation received only from the neighbor-nodes plays a key role in: 1)

iving us more accurate estimation of the average effective-load, and

) restricting the communication between the neighbor-nodes only

hich resulted in communication delay is suppresses.

.2. Diffusion load-balancing

In this section, we explain the proposed load-balancing algo-

ithm that will be executed in the constructed FSW overlay network.

e first formulate the problem in Section 4.2.1, then we present

ur proposed algorithm in Section 4.2.2, and finally, we show how

ur proposed algorithm guarantees converges to fairness state in

ection 4.2.3.

.2.1. Problem formulation

Generally, the entire distributed system is modeled as an undi-

ected graph G = (N, E), where N represents the set of heterogeneous

194 E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203

.

s

w

t

s

nodes, and E describes the connections among them. Each node in the

system (i.e. whether an in-domain node or a master node) will be as-

signed some workloads wl during the execution of the system, where

each workload assigned to a node consumes effort and time; thus,

each workload has different weight w. The weight of the total work-

loads assigned to a node is referred to as the load of a node ldi > 0.

Each assigned workload also is associated with a function that can

process the assigned workload. Each node also has a capacity ci > 0

which specifies its processing capacities (i.e. the largest amount of

workload that can be assigned to a node ni), where ci, ldi ∈ Z. Since

the capacity of each node in heterogeneous systems is not equal, our

proposed algorithm considers the processing capacity of each node

when deciding whether a node is overloaded or not.

Definition 2 (The effective-load). Given a node ni ∈ N that has a ca-

pacity and assigned some workloads, the effective-load li of node ni

is defined as the total weight of the workloads assigned to node ni di-

vided by the capacity of node ni. Formally, the effective-load of node

ni is the load of ni divided by the capacity of ni.

li = ldi

ci

=
∑

wlj∈WL(ni)
w(wlj)

ci

where WL(ni) = {< wl1, w1, ctrid, Fid >, . . . , < wlz, wz, ctrid, Fid >} is

the set of workloads assigned to node ni.

4.2.2. Our proposed algorithm

Our proposed algorithm is shown in Algorithm 1, Neighbor-

hoodLB. Each node ni in the system G executes the same algorithm

in parallel. As mentioned before, based on the role of each node ni

within the system, ni defines its functionality set (FS). Thus, the struc-

ture of the system is simplified by constructing the FSW to decrease

the graph diameter, the number of nodes that exchange the load in-

formation and communication overhead. The steps of constructing

FSW overlay network are illustrated in Section 3. The nodes will be

spread into clusters, and each node will have in addition to the node

id nid, a cluster id ctrid to show the cluster in which a node is located

and FSid to check if the received task can be processed by a node nid.

Following paragraphs demonstrate with an illustration example the

proposed load-balancing algorithm that will be executed within the

constructed overlay network in details. Our proposed load-balancing

algorithm involves six major stages: 1) the initialization stage, 2) the

information broadcasting stage, 3) computing the average effective-

load stage, 4) finding the set of assistant-neighbors stage, 5) the work-

loads transfer stage, and 6) the load-balancing mechanism stage.

• The Initialization Stage

Let WL(ni) be the set of workloads assigned to node ni during

the execution of the computing distributed system, where WL(ni) =
{< wl1, w1, ctrid, F1 >,< wlz, wz, ctrid, Fz >}. Each assigned workload

wl consumes time and efforts until being completed; thus, each as-

signed workload has weight w. Each workload wl assigned initially

to ctrid and associated with a function F (i.e. F is the function that

can process the workload). Each node ni also has, after constructing

FSW, a pre-defined set of neighbor-nodes Adj(ni) to store the nodes

that have connection-links either long-links or short-links with node

ni. Each node ni initializes its state (initialization stage) in steps 1

through step 3.

1. Step 1 (Line 1 in NeighborhoodLB Algorithm): Each node ni de-

fines a set Info = {< ctrid, nid, ldid, cid, FSid >} to store the infor-

mation of the nodes in the neighbor-nodes set, where ctrid: is the

id of the cluster in which a node the has nid is located, nid: the id

of a node, ldid = ∑
wl j∈WL(nid) w(wl j) the load of node nid (i.e. the

total weight of all workloads assigned to the node nid), cid: is the

processing capacity of n , and FS is the functional set of n .
id id id
2. Step 2 (Line 2 in NeighborhoodLB Algorithm): Each node ni also

defines an array mig(ni) to store the amount of the migrated work-

load that node ni will transfer to the under loaded nodes of the set

neighbor-nodes. Initially, the workloads that will be transferred to

other nodes is 0 for all nodes in the set of neighbor-nodes.

3. Step 3 (Line 3 in NeighborhoodLB Algorithm): Each node ni

computes its initial effective-load li via the equation defined in

Definition 2 (i.e. the total weight of the workloads assigned to node

ni divided by the capacity of node ni).

To illustrate our proposed algorithm, we will use the example

hown in Section 3. Fig. 4 shows the constructed FSW overlay net-

ork via the steps illustrated in Section 3. Table 4 shows the ini-

ial status of the nodes before and after executing the initialization

tage. The node information before start executing the load-balancing

E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203 195

T
a

b
le

4

T
h

e
st

a
tu

s
o

f
th

e
n

o
d

e
s.

B
e

fo
re

st
a

rt
in

g
th

e
a

lg
o

ri
th

m
A

ft
e

r
th

e
in

it
ia

li
za

ti
o

n
A

ft
e

r
th

e
b

ro
a

d
ca

st
in

g
st

a
g

e

n
id

ct
r i

d
M

a
c i

A
d

j(
n

i)
ld

i
In

fo
b

m
ig

l i
In

fo
c

1
X

–
6

0
{<

X
,2

>
,<

X
,9

>
}

3
0

{}
(0

,0
)

0
.5

{<
X

,2
,5

0
,5

0
>

,<
X

,9
,1

5
,1

0
>

}

2
X

–
5

0
{<

X
,1

>
,<

X
,9

>
}

5
0

{}
(0

,0
)

1
{<

X
,1

,3
0

,6
0
>

,<
X

,9
,1

5
,1

0
>

}

3
A

–
7

0
{<

A
,6

>
,<

A
,1

0
>

}
4

0
{}

(0
,0

)
0

.5
7

1
{<

A
,6

,2
0

,4
5
>

,<
A

,1
0

,2
5

,1
5
>

}

4
A

X
–

3
0

{<
A

X
,1

1
>

,<
A

X
,1

2
>

}
1

0
{}

(0
,0

)
0

.3
3

{<
A

X
,1

1,
2

0
,5

5
>

,<
A

X
,1

2
,2

5
,2

0
>

}

5
C

�
6

0
{<

C
,7

>
,<

C
,8

>
,<

X
,9

>
,<

A
,1

0
>

}
7

0
{}

(0
,0

,0
,0

)
1.

1
6

7
{<

C
,7

,4
0

,6
0
>

,<
C

,8
,1

0
,5

0
>

,<
X

,9
,1

5
,1

0
>

,<
A

,1
0

,2
5

,1
5
>

}

6
A

–
4

5
{<

A
,3

>
,<

A
,1

0
>

}
2

0
{}

(0
,0

)
0

.4
4

4
{<

A
,3

,4
0

,7
0
>

,<
A

,1
0

,2
5

,1
5
>

}

7
C

–
6

0
{<

C
,5

>
,<

C
,8

>
}

4
0

{}
(0

,0
)

0
.6

7
7

{<
C

,5
,7

0
,2

0
>

,<
C

,8
,1

0
,5

0
>

}

8
C

–
5

0
{<

C
,5

>
,<

C
,7

>
}

1
0

{}
(0

,0
)

0
.2

{<
C

,5
,7

0
,2

0
>

,<
C

,7
,4

0
,6

0
>

}

9
X

�
3

0
{<

X
,1

>
,<

X
,2

>
,<

C
,5

>
,<

A
X

,1
2
>

}
1

5
{}

(0
,0

,0
,0

)
0

.5
{<

X
,1

,3
0

,6
0
>

,<
X

,2
,5

0
,5

0
>

,<
C

,5
,7

0
,2

0
>

,<
A

X
,1

2
,2

5
,2

0
>

}

1
0

A
�

4
5

{<
A

,3
>

,<
A

,6
>

,<
C

,5
>

,<
A

X
,1

2
>

}
2

5
{}

(0
,0

,0
,0

)
0

.5
5

6
{<

A
,3

,4
0

,7
0
>

,<
A

,6
,2

0
,4

5
>

,<
C

,5
,7

0
,2

0
>

,<
A

X
,1

2
,2

5
,2

0
>

}

11
A

X
–

5
5

{<
A

X
,4

>
,<

A
X

,1
2
>

}
2

0
{}

(0
,0

)
0

.3
6

4
{<

A
X

,4
,1

0
,3

0
>

,<
A

X
,1

2
,2

5
,2

0
>

}

1
2

A
X

�
6

0
{<

A
X

,4
>

,<
A

X
,1

1
>

,<
A

,1
0
>

,<
X

,9
>

}
2

5
{}

(0
,0

,0
,0

)
0

.4
17

{<
A

X
,4

,1
0

,3
0
>

,<
A

X
,1

1,
2

0
,5

5
>

,<
A

,1
0

,2
5

,1
5
>

,<
X

,9
,1

5
,1

0
>

}

a
A

n
o

d
e

is
m

a
st

e
r

n
o

d
e

o
r

n
o

t.
b

A
ft

e
r

th
e

in
it

ia
li

za
ti

o
n

st
a

g
e

a
n

d
b

e
fo

re
th

e
b

ro
a

d
ca

st
in

g
.

c
A

ft
e

r
th

e
b

ro
a

d
ca

st
in

g
st

a
g

e
.

a

t

p

c

e

s

i

c

C

e

a

p

lgorithm (i.e. before executing the initialization stage), the node id,

he cluster id, whether a node is a master node or not, the node ca-

acity, the neighbor-nodes set, and the load of a node, are given in

olumns 1, 2, 3, 4, 5, and 6 respectively. Each node in the system ex-

cutes the same proposed algorithm in parallel. In the initialization

tage, each node: (1) defines Info set to store the information about

ts neighbor-nodes, (2) defines mig array to store the amount of ex-

ess workload to be transferred, and (3) computes its effective-load.

olumns 7, 8, and 9 in Table 3 show the status of the nodes after ex-

cuting the initialization stage. Because of size constrains, we did not

dd the FS of each node in the table (i.e. the FS of each node is given

reviously in Table 2).

• The information Broadcasting Stage

1. Step 4 (Line 4 in NeighborhoodLB Algorithm): Each node ni

broadcasts its initial state (i.e. initial information after execut-

ing the initialization stage) to only its neighbor-nodes (the nodes

stored in the set adj). Since a master node has connections with

some master nodes located in other clusters that have similar

functionality via long-links, and it has also connections with the

in-domain nodes located in the same cluster via short-links (see

Fig. 4, node 10 is a master node that has short-links with nodes 3

and 6, and at the same time has long-links with nodes 5 and 12),

the capacity of a master node that will be sent to other nodes is di-

vided among the clusters ci/|long − links| + 1 in the broadcasting

stage.

In fact, each node maintains a FIFO message queue which

holds the incoming messages. Each message has the format 〈ctrid,

nf, ldf, cf, FSf, “T", [g, “F"]〉, where ctrid is the cluster id where

the node that sends the message is located in, nf is the id

of the sender node, ldf the loads of the sender node, cf is the

capacity of the sender node, FSf is the functionality set of the

sender node, T is the type of the message, g is the migration in-

formation (i.e. information about the migrated task and the func-

tion F that can process the migrated task). There are two types of

messages:

Workload migration message (“G”): ni sends a “G”-message

to nj to tell it that ni wants to migrate g units of workload

to nj.

Broadcast message (“B”): broadcast the status (i.e. cluster id,

node id, load, capacity, and FS to all neighbor-nodes).

2. Step 5 (Line 5 in NeighborhoodLB Algorithm): The main part

of the algorithm starts when a node takes the first message from

the queue and processes the message according to its type. If the

message type is “B”, then the node only updates its information

stored in the Info set. If the message type is “G”, then it updates the

information stored in the Info set, computes its effective load, and

broadcasts its new status to its neighbor-nodes. Initially, the first

message received by each node is “B” type messages. Table 4 holds

the state of the system after broadcasting (step 4 and step 5). The

set Info stores the information about the node and its neighbor-

nodes.

• Computing the average effective-load

1. Step 6 (Line 6 in NeighborhoodLB Algorithm): After updating

the information stored in the Info set (i.e. after the broadcasting

stage), each node computes the average effective-load lavg of a

node and its neighbor-nodes to facilitate 1) making a decision (i.e.

whether a node overloaded or not) later by a node, and 2) defin-

ing the set of assistant neighbors in the next stage. The average

effective-load is computed by the following equation:

lavg = ldi + ∑
j∈inf o ld j

ci + ∑
j∈inf o c j

Note that, in the above formula the capacity of all nodes is

considered since in heterogeneous systems the capacity is varied

196 E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203

Table 5

The system status.

nid li lavg Nlower LDi

1 0.500 30 + 50 + 15/(60 + 50 + 10) = 0.792 {} −0.292

2 1.000 30 + 50 + 15/(60 + 50 + 10) = 0.792 {1} +0.208

9 0.500 15 + 30 + 50 + 70 + 25/(30 + 60 + 50 + 20 + 20) = 1.056 {1} −0.556

3 0.571 40 + 20 + 25/(70 + 45 + 15) = 0.654 {6} −0.083

6 0.444 40 + 20 + 25/(70 + 45 + 15) = 0.654 {} −0.210

10 0.566 25 + 40 + 20 + 70 + 25/(45 + 70 + 45 + 20 + 20) = 0.900 {6} −0.334

5 1.167 70 + 40 + 10 + 15 + 25/(60 + 60 + 50 + 10 + 15) = 0.821 {8} −0.346

7 0.677 40 + 70 + 10/(60 + 20 + 50) = 0.923 {8} −0.246

8 0.200 10 + 70 + 40/(50 + 20 + 60) = 0.923 {} −0.723

4 0.332 10 + 20 + 25/(30 + 55 + 20) = 0.524 {} −0.191

11 0.364 20 + 10 + 25/(55 + 30 + 20) = 0.524 {4} −0.160

12 0.417 25 + 10 + 20 + 25 + 15/(60 + 30 + 55 + 15 + 10) = 0.558 {4, 11} −0.142

Bold text refers to master nodes, while non bold text refers to in-domain nodes.

Procedure 1.

c

i

o

s

t

t

s

g

w

4

a

t

D

o

f

L

n

e

l

I

w

from one node to another. Column 3 in Table 5 shows the average

effective-load computed by each node.

• Finding the set of assistant-neighbors stage

1. Step 7 (Line 7 in NeighborhoodLB Algorithm): According to the

average effective-load computed in step 6 by each node, each

node defines in this stage its assistant-neighbors Nlower. The set of

assistant-neighbors Nlower of node ni are the set of nodes that have

effective-load lower than the average effective-load computed by

node ni.

Column 4 in Table 5 shows the assistant neighbors Nlower of

each node.

• Workload transfer strategy

1. Step 8 (Line 8 in NeighborhoodLB Algorithm): The decision of

calling a procedure LB to migrate the excess workloads or not de-

pends on the load difference between the current effective-load

of node ni and the average effective-load computed by ni. There-

fore, the excess workload will be migrated if the load difference is

positive. As seen in column 5, Table 5, n2 and n5 are over-loaded

nodes.

• Load-balancing mechanism (Procedure LB)

The pseudo-code of the procedure LB is given in Procedure 1.

In the procedure LB, the load difference LDi, the set of assistant-

neighbors Nlower, and the set of the assigned workloads WL(ni) are

formed the procedure input parameters. The procedure will be called

if the LDi is positive, and it works until the load difference of the heav-

ily loaded caller node ni becomes less than zero LDi = li − lavg < 0. In

other words, the procedure works until the heavily loaded node be-

comes under-loaded, which means the effective-load of a node is less

than the average effective-load computed by a node. The procedure

first computes the excess workload δi of the heavily-loaded node ni

that needs to be transferred.

Then, it sorts: 1) the set of assistant-neighbors Nlower in descend-

ing order based on their effective-loads, and 2) the set of submitted

workloads WL(ni) in ascending order in accordance with the weight

of each submitted workload. The procedure also checks each node

in the set Nlower and computes how much a node can receive α (i.e.

the workload that a node can receive is equal to the difference be-

tween the effective-load of a node and the average effective-load). The

procedure migrates only the workload that has weight less than or

equal to α. This step plays a key role in redistributing the excess

workloads to the assistant-neighbors in a way that ensures that the

node who receives the workload maintains the under-loaded status.

The LB procedure is terminated when the load difference of the caller

heavily-loaded node becomes negative. In other words, the procedure

is terminated when the node becomes under-loaded. In the given

example, node n is an overloaded node located incluster . Node n
5 C 5
alculates its excess workloads, sorts the set of assistant-neighbors

n descending order, and sorts the assigned workloads in ascending

rder to migrate the excess workloads to the lightly-loaded nodes

tored in the assistant-neighbor set. It checks the amount of workloads

hat each node can accept and checks if the function that can process

he task is in the FS of the node in the set of assistant-neighbors. This

tep is important to ensure that the node that will receive the mi-

rated workloads 1) will maintain the under loaded status, and 2)

ill not re-migrate tasks (see Fig. 5).

.2.3. The convergence

Our proposed solution (i.e. constructing FSW and the proposed

lgorithm) guarantees converges to the fairness state given sufficient

ime.

efinition 3 (Fairness state). For all ni ∈ N, when the effective-load li
f all ni are equal l1 = = ln = lavg, it is said that the system G achieved

airness status.

emma 1. Given Lt = (lt
1
, lt

2
, lt

n) is the array of effective-loads for the

odes in the system at time t sorted in ascending order, where lt
1

is

ffective-load of node 1 at time t. In time t, if there is at least one over-

oaded node ni (i.e. LDi > 0) then Lt+1 is lexicographically greater than Lt.

n other words, the lightly-loaded nodes at time t will receive the excess

orkload at time t + 1.

E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203 197

Fig. 5. Workloads migration example. Workloads will be migrated to nodes whose

effective-load is less than the average effective-load.

Fig. 6. An illustration example supports Theorem 1, where t − 1 shows the state of

nodes in time t − 1, t shows the migration in time t, and t + 1 shows the migration in

time t + 1.

P

n

n

w

t

t

p

e

L

k

t

t

a

c

w

c

i

t

p

i

a

Table 6

Parameters used in the simulations.

Description Values

1. The assigned workloads 1000–10,000

2. The number of nodes in the system 100–1000

3. The cluster size 1–64

4. The number of functions in the FS per node 1–20

T

s

v

P

t

a

i

f

l

a

t

t

t

L

I

t

o

l

i

i

o

l

l

t

l

v

5

5

J

p

a

i

p

o

p

h

s

e

a

n

t

a

o

t

d

n

t

roof. Let X 	= φ be the set of overloaded nodes in the system (i.e.

odes with LD > 0) who needs to migrate some workloads to other

odes at time t. In reality, a node i ∈ X will also assign additional

orkloads in time t. Thus, the nodes that migrate workloads in time

will reduce their effective-load at time t + 1. Let γ be the node

hat has lowest effective-load at time t + 1. Assume that γ occu-

ies the kth position of the array Lt+1, where Lt+1 similarly is the

ffective-load array of nodes at time t + 1 sorting in ascending order.

et Qt = (lt
1

, lt
2

, . . . , lt
k−1

) be the array of the effective-loads in first

− 1 positions of Lt. In order to prove this lemma we have to consider

wo cases: 1) A set Qt+1 contains a node i that received workloads in

ime t (node 3 in Fig. 6). Thus, node i belongs to both Qt and Qt+1,

nd its effective-load value is increased in time t + 1 since it will re-

eive some migrated workload. Therefore, there will be at least one

orkload value in set Qt+1 strictly greater than one value in Qt. Ac-

ordingly, Lt+1 is lexicographically greater than Lt. 2) There are nodes

n which located in Qt+1 and did not migrate or receive workloads at

ime t (node 2 in Fig. 6). In this case, the effective-load value at kth

osition at time t + 1 is strictly greater than the effective-load value

n the same position at time t which has received workload from Xt

nd therefore, Lt+1 is lexicographically greater than Lt. �
heorem 1 (Convergence). In heterogeneous system, if nodes in the

ystem execute the NeighborhoodLB algorithm, then the system con-

erges to a balanced state.

roof. Given a heterogeneous unbalanced system. Each node in

he system separately executes the proposed algorithm in order to

chieve the convergence state. Let ni be the most heavily loaded node,

.e. li − lavg > 0, and all other nodes j ∈ N who have lj ≤ li and lj < lavg

orm the set of assistant neighbors Nlower of node ni. When li ≥ lavg (i.e.

i − lavg > 0). Thus, the result of Lemma 1 shall be used, which guar-

ntees that the array of effective-loads sorted in ascending order, in

he next time moment, is lexicographically greater than the array of

he current step.

Given that the NeighborhoodLB algorithm is executed in a given

ime t. Let S⊆N be the nodes executed the algorithm in time t. Let
t be the array of effective-loads sorted in ascending order in time t.

t has been proven in Lemma 1 that Lt+1 is lexicographically greater

han Lt.

Let Smin be the lightly loaded nodes in time t. There exists at least

ne node v ∈ Smin which is assistant neighbor to node k, such that lt
k

>
t
v. Now by using the proposed algorithm, node k migrates a portion of

ts excess workload to node v, but v does not migrate any workloads

n time t because v is under loaded. In time t + 1 the effective-load

f node k decreases; however, its effective-load value never becomes

ess than the effective-load value of node v which is given by lt+1
k

≥
avg ≥ lt

v . Thus, Lt+1 is lexicographically greater than Lt meaning that

he sorted array of effective-load values of nodes in time t + 1 are

exicographically greater than the sorted array of the effective-load

alues of nodes at time t. �

. Simulations

.1. Experimental setting

We have implemented a discrete-event simulator using the Sim-

ava (Howell and Mcnab, 1998) to compare the performance of our

roposed approach with two of the most popular dynamic diffusion

pproaches, the nearest neighbor algorithm (Tada, 2011) and the orig-

nal neighborhood algorithm (Neelakantan, 2012).

As the usefulness of any load-balancing algorithm is directly de-

endent on the quality of its load measurement and the efficiency

f being applied to solve practical problems, each approach (our ap-

roach, the nearest neighbor algorithm, and the original neighbor-

ood algorithm) was separately applied to a personalized m-cafeteria

ystem (Daraghmi and Yuan, 2013), and the run-time behavior of

ach algorithm was investigated. The three approaches were run on

set of default values: number of assigned workloads, number of

odes, maximum cluster size, and the average number of the func-

ions executed per node. The simulation parameters, and their values

re given in Table 6.

For fairness of comparison, we have tested the three approaches

n random graphs (random scenario) generated via random genera-

or (Peixoto, 2014). In the random scenario, the generator will ran-

omly distribute nodes with a functional set associated with each

ode in the graph. As shown in Table 6, maximum number of func-

ions that each node can execute is 20. Since, in this research, we

198 E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203

Fig. 7. The response time of original neighborhood approch, nearest neighbor approach, and our approach for various assigned workloads.

a

h

f

a

e

a

t

r

5

5

r

b

a

e

t

propose a two-stage approach (creating a functional small world

overall network and then run the NeighborhoodLB on the created

FSW) to improve the performance of load-balance algorithm, the ran-

dom graph, generated previously, will be converted to FSW before ex-

ecuting our proposed NeighborhoodLB algorithm. On the other hand,

the other two algorithms, the nearest neighbor algorithm and the

original neighborhood algorithm were executed directly on the gen-

erated random graph since they do not employ the first stage of cre-

ating FSW.

The comparison tests were based on two parameters: the

assigned-workloads and the number of nodes, and the measurement

of the performance of the algorithm was based on four metrics: the

throughput, the response time or the completion time, the commu-

nication overhead, and the movement cost. The response time mea-

sures the total time that the system takes to serve a submitted re-

quest (task). In this experiment, to simulate real world distributes

systems, we randomly submitted tasks to nodes. Initially, the request

state will be “submitted to node” and will be changed to “complete”

upon serving that request. To measure the response time, we count

the time needs to change the node response time from “submitted

to node” to “complete”. The throughput is the rate at which a node

in the system sends or receives data (i.e. throughput = 1/response

time). In other words, the throughput is defined as the number of

nodes that change its status to “complete” in a time unit. As we can

see from the proposed algorithm, the load balancing algorithm needs

to migrate request from one node to another one in order to achieve

a balanced state. We use a simple linear cost model (Ganeasan et al.,

2004), where moving one request from any node to any other node

costs one unit. Such a model reasonably captures both the network

communication cost of transferring data, as well as the cost of modi-

fying local data structure at the node.

Only one parameter was changed each time so that any changes

in the performance would be based solely on this parameter. In fact,

results achieved from these tests were used to study: (1) the behavior

of the different load-balancing algorithms under the same condition;

(2) the behavior of the algorithms for random systems with differ-

ent number of nodes; (3) the behavior of the algorithms for different

workloads distribution.
 t
To study the effects of changing the assigned workloads on the

verage response time, the throughput, the communication over-

ead, and the movements cost, the assigned workloads were varied

rom 1000 to 10,000 workloads unit, and the workloads distribution

mong the nodes were carried in the following manner.

• The initial workload distributions varying 25% from the average

effective-load to represent a situation where all nodes have sim-

ilar workloads at the beginning and those workloads are close to

the average effective-load; in other words, the initial situation is

quite balanced.
• The initial workload distributions varying 50% from the average

effective-load to constitute the intermediate situations.
• The initial workload distributions varying 75% from the average

effective-load to constitute the advanced intermediate situations.
• The initial workload distributions varying 100% from the average

effective-load to form the situation where the difference of work-

loads between nodes at the beginning is considerable.

To study the effects of changing the number of nodes on the av-

rage response time, the throughput, the communication overhead,

nd the movements cost, the number of nodes were varied from 100

o 1000 nodes and the distribution of the overloaded nodes were car-

ied in the following manner.

• 25% of nodes are idle, 75% of nodes are overloaded.
• 50% of nodes are idle, 50% of nodes are overloaded.
• 75% of nodes are idle, 25% of nodes are overloaded.

.2. Comparative study

.2.1. Average response time

The total time taken for the three algorithms, our proposed algo-

ithm, the original neighborhood algorithm, and the nearest neigh-

or algorithm, to complete the assigned workloads increased as the

ssigned workloads was increased as shown in Fig. 7. This situation is

xpected as the more workloads to be assigned, the longer it takes

o complete all the assigned workloads. However, it was observed

hat our proposed method (i.e. the green line) performed better than

E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203 199

Fig. 8. The response time of original neighborhood approch, nearest neighbor approach, and our approach for various number of nodes. (For interpretation of the references to

color in the text, the reader is referred to the web version of this article.)

b

g

o

t

i

t

a

a

i

a

(

i

b

(

i

r

c

a

h

c

e

e

o

t

t

b

a

r

f

r

u

e

n

l

i

i

t

p

a

i

o

“

c

t

b

t

i

l

e

t

v

o

a

l

i

5

b

s

c

p

c

i

q

b

c

w

b

t

oth the nearest neighbor scheme and the original neighborhood al-

orithm in all cases. We can see that when comparing the results of

ur proposed method and the original neighborhood algorithm (i.e.

he red line) and the nearest neighbor algorithm (i.e. the blue line), it

s observed that the gap between these three curves was widening as

he assigned workloads was increased. This shows that the method

ctually reduced the response time or the total completion time by

considerable amount (greater speedup) in comparison to the orig-

nal neighborhood algorithm and the nearest neighbor algorithm as

mount of workloads increased.

Fig. 8 shows that the response time of the proposed method

i.e. green line) slightly increased when the number of nodes was

ncreased. In contrast, the response time of the original neigh-

orhood method (i.e. red line) and the nearest neighbor method

i.e. blue line) sharply increased when the number of nodes was

ncreased.

The reasons behind achieving better results (i.e. achieving better

esponse time when increasing the assigned workloads or when in-

reasing the number of nodes): 1) our proposed approach constructs

FSW overlay network and then executes the proposed neighbor-

ood load-balancing within the constructed network. Specifically,

onstructing the overlay network reduces the number of nodes that

xchange the workload information, decreases the network diam-

ter, and the communication overhead. As a result, all the stages

f the proposed algorithm, such as updating the information of

he neighbor nodes, calculating the average effective-load, choosing

he assistant neighbors, and migrating tasks to the assistant neigh-

or that can process the task, will be performed in less time. Our

pproach also plays a significant role in reducing the time delay

esults from the task re-migration process as nodes with similar

unctionality can communicate with each other. As illustrated before,

e-migrating tasks occur because of out of the node service scope sit-

ation; 2) our proposed approach utilizes the on-state information

xchange strategy to broadcast its information to only its neighbor-

odes, which has the advantages of achieving more accurate calcu-

ation to the effective-load and the average effective-load without

ncreasing the communication overhead (i.e. each node collects the
nformation from less nodes, only neighbor nodes, as compared with

he original neighborhood approach and the nearest neighbor ap-

roach); 3) our approach utilizes the concepts of assistant-neighbors

nd thus heavily loaded nodes will send only (i.e. without accept-

ng any workloads from other nodes since the node is currently

verloaded) the excess workloads to the lightly loaded nodes

assistant-neighbors”, whereas the lightly loaded nodes will only re-

eive the migrated workloads without sending any workloads. In con-

rast, in the original neighborhood approach and the nearest neigh-

or approach, all nodes will send and receive workloads at the same

ime which in turn increase the communication overhead and thus

ncreasing the response time; 4) it is intuitive that a system with

onger diameter will take longer time to converge as the number of it-

rations to propagate the workloads to lightly loaded nodes is propor-

ional to the network diameter; thus, reducing the network diameter

ia constructing FSW plays a key role in reducing the response time

f our proposed approach. In contrast, in the original neighborhood

pproach and the nearest neighbor approach, each node has to col-

ect the workloads information from larger number of nodes which

n turn leads to increase response time.

.2.2. Throughput

As shown in Fig. 9, our method outperformed the original neigh-

orhood algorithm and the nearest neighbor method in terms of the

ystem throughput in all assigned workloads distribution cases. We

an notice that the throughput of the system that executes our pro-

osed approach steadily increased even the assigned workloads in-

reased, whereas the throughput of the system that execute the orig-

nal neighborhood approach or the nearest neighbor approach drops

uickly when the assigned workloads increased.

Fig. 10 shows that the throughput achieved by the original neigh-

orhood algorithm as well as the nearest neighbor approach de-

reased sharply as the number of nodes in the system increased,

hile the throughput achieved by our proposed method remains sta-

le even when increasing the number of nodes.

This is because our proposed approach reduces the task comple-

ion time which in turn increases the number of tasks completed in

200 E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203

Fig. 9. The throughput of original neighborhood approch, nearest neighbor approach, and our approach for various assigned workloads.

Fig. 10. The throughput of original neighborhood approch, nearest neighbor approach, and our approach for various number of nodes.

c

o

n

t

t

p

s

l

5

i

w

s

o

b

a

i

t

t

p

b

a

n

c

d

a time unit. The reasons behind this are: 1) constructing the FSW

that allows nodes with similar functionality to communicate with

each other, reduces the possibility of re-migrating tasks (re-migrating

tasks consumes time); 2) checking the function that can process the

task with the FS before migrating the task, eliminate the possibil-

ity of re-migrating tasks. Note that, the first point reduces the time

of performing the second point; thus, better results are achieved;

3) reducing the number of nodes that exchange the workload infor-

mation, decreasing the network diameter, and decreasing the com-

munication overhead reduces the time of performing the proposed

algorithm, such as updating the information of the neighbor nodes,

calculating the average effective-load, choosing the assistant neigh-

bors, and migrating tasks to the assistant neighbor. As a results, the

number of tasks completed in a time unit will be increased; 3) utiliz-

ing the concepts of assistant-neighbors allowing only heavily loaded

nodes to send only (i.e. without accepting any workloads from other

nodes since the node is currently overloaded) the excess workloads to

the lightly loaded nodes “assistant-neighbors”. Also, the lightly loaded

nodes will only receive the migrated workloads without sending any

workloads. In contrast, in the original neighborhood approach and

the nearest neighbor approach, all nodes will send and receive work-

loads at the same time which in turn increase the communication

overhead and thus decreasing the task completion time. Moreover,

the importance of the average effective-load also appears when decid-

ing the amount of workloads to be migrated; if the migrated work-

loads to one node is too small, then the workload distribution will

take longer (i.e. which in turn decreasing the system throughput). In
ontrast, if the migrated workloads to one node are too large, then the

verloaded node may transfer too much workloads to its neighbor-

odes and thus this overloaded node will not have sufficient workload

o transfer to the remaining lightly loaded nodes. Therefore, by using

he average effective-load, each node obtains an amount of workload

roportional to its capacity and thus no node is privileged which re-

ults in increasing the system throughput (i.e. the number of work-

oads completed in unit time).

.2.3. Communication overhead

Fig. 11 shows that the average number of messages sent per node

ncreased when the assigned workloads increased. This is because

hen the assigned workloads increased, the number of messages

ent per a node to broadcast its new status increased. We can see that

ur proposed approach produces less communication overhead than

oth the original neighborhood approach and the nearest neighbor

pproach even when increasing the assigned workloads.

Fig. 12 shows that the average number of messages sent per node

ncreased when the number of nodes increased. This is because when

he number of nodes increased, each node will send more messages

o broadcast its information to the other nodes. We can see that our

roposed approach produces less communication overhead than the

oth the original neighborhood approach and the nearest neighbor

pproach because: 1) constructing a FSW decreases the number of

odes that exchange the workloads information which in turn de-

reases the communication overhead; 2) constructing a FSW also

ecreases the network diameter which directly has the impact of

E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203 201

Fig. 11. The average number of messages sent per node of original neighborhood approach, nearest neighbor approach, and our approach for various assigned workloads.

Fig. 12. The average number of messages sent per node of original neighborhood approach, nearest neighbor approach, and our approach for various number of nodes.

Fig. 13. The movements cost of original neighborhood approach, nearest neighbor approach, and our approach for various assigned workloads.

d

c

s

d

o

m

t

o

o

5

p

v

t

i

i

w

ecreasing the communication overhead; 3) each node that exe-

utes the proposed NeighborhoodLB algorithm sends/receives mes-

ages to/from only its neighbor nodes which plays a key role in re-

ucing the communication overhead; 4) our approach utilizes the

n-state information exchange strategy which reduces the com-

unication overhead; 5) our approach (constructing the FSW, and

he proposed load-balancing algorithm) eliminates the possibility

f re-migrating tasks which in turn decreases the communication
verhead. t
.2.4. Movement cost

Fig. 13 shows the movement cost of original neighborhood ap-

roach, the nearest neighbor approach, and our proposed approach

s. the assigned workloads, where the movements cost is defined as

he total migrated workloads divided by the total assigned workloads

n the system. Clearly, the movements cost of our proposed approach

s only 0.32 times the cost of the original neighborhood approach,

hile the movements cost of our proposed approach is only 0.34

imes the cost of the nearest neighbor approach.

202 E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203

Fig. 14. The movements cost of original neighborhood approach, nearest neighbor approach, and our approach for various number of nodes.

r

t

d

f

t

g

a

t

o

s

n

w

c

h

r

f

t

p

h

a

i

l

t

i

R

A

A

A

A

B

B

C

C

C

D

D

Fig. 14 shows the movement cost of original neighborhood ap-

proach, the nearest neighbor approach, and our proposed approach.

We can see that the movements cost of our proposed approach is only

0.33 times the cost of the original neighborhood approach, while the

movements cost of our proposed approach is only 0.30 times the cost

of the nearest neighbor approach.

This is because each node in our proposed algorithm calculates the

average effective-load to decide whether a node itself is overloaded

or not. Specifically, the importance of the average effective-load ap-

pears when deciding the amount of workloads to be migrated; if

the migrated workloads to one node is too small, then the number

of workloads that will be migrated will be high (i.e. which in turn

increasing the movement costs). In contrast, if the migrated work-

loads to one node is too large, then the overloaded node may trans-

fer too much workloads to one neighbor node and thus increasing

the movements cost. Therefore, by using the average effective-load,

each node obtains an amount of workload proportional to its capac-

ity and no node is privileged which leads in decreasing the move-

ments cost. Moreover, our approach utilizes the concepts of assistant-

neighbors and thus heavily loaded nodes will send only (i.e. without

accepting any workloads from other nodes since the node is currently

overloaded) the excess workloads to the lightly loaded nodes

“assistant-neighbors”, whereas the lightly loaded nodes will only re-

ceive the migrated workloads without sending any workloads. In con-

trast, in the original neighborhood approach and the nearest neighbor

approach, all nodes will send and receive workloads at the same time

which in turn increase the number of workloads that will be migrated

and thus increasing the movements cost. Finally, our approach (con-

structing the FSW, and the proposed load-balancing algorithm) elim-

inates the possibility of re-migrating tasks which in turn decreases

the movements cost.

6. Conclusion

A novel load-balancing approach to deal with load rebalancing

problem in large scale, dynamic and heterogeneous systems has been

presented in this paper. Previous research concluded that the techni-

cal, and the structural load-balancing factors: (1) increasing the num-

ber of nodes in the system (i.e. the number of the nodes exchange the

workload information); (2) increasing the network diameter which is

defined as the longest shortest path between any two nodes of the

network; (3) increasing the communication overheads or the com-

munication delays among the nodes decrease the performance of any

load-balancing algorithm as well as affect the algorithm convergence

rate. Moreover, additional delay may occur because of the task re-

migration process. Therefore, we propose a two-stage approach that

first constructs the FSW based on the properties of the small world

network and the functionality of each node. Constructing the FSW
educes the number of nodes that exchange the workloads informa-

ion in the system, decreases the diameter of the network and re-

uces the communication overhead, and decreases the delay resulted

rom re-migrating tasks. We also propose a load-balancing algorithm

hat considers the capacity of each node in order to execute the al-

orithm within the constructed FSW overlay network. Our proposed

pproach strives to balance the loads of nodes, increase the system

hroughput, decrease the response time, reduce the communication

verhead, deteriorate the demanded movements cost as much as pos-

ible, while taking the advantages of the nodes functionality and the

odes heterogeneity. In the absence of representative real workloads,

e have investigated the performance of our proposed approach and

ompared it against competing algorithms, i.e. the original neighbor-

ood approach, and the nearest neighbor approach. The simulation

esults are encouraging, indicating that our proposed algorithm per-

orms very well. Our proposed approach dramatically outperforms

he original neighborhood approach, and the nearest neighbor ap-

roach in terms of response time, throughput, communication over-

ead, and movements cost. Finally, we have proved that the proposed

pproach converges to the state of fairness where the effective-load

n all nodes is the same since each node receives an amount of work-

oad proportional to its processing capacity. Therefore, we conclude

hat this approach has the advantage of being fair, simple and no node

s privileged.

eferences

akanksha, Bedi, P., 2007. Load balancing on dynamic network using mobile process

groups. In: 15th International Conference on Advanced Computing and Communi-
cations (ADCOM 2007), pp. 553–558.

bdelmaboud, A., Jawawi, D.N.A., Ghani, I., Elsafi, A., Kitchenham, B., 2014. Quality of
service approaches in cloud computing: a systematic mapping study. J. Syst. Softw.

101, 159–179.

dolphs, C.P.J., Berenbrink, P., Canada, V.A., 2012. Distributed selfish load balancing
with weights and speeds categories and subject descriptors. ACM Symposium on

Principles of Distributed Computing. Maderia, Portugal, pp. 135–144.
kbari, H., Berenbrink, P., Sauerwald, T., 2012. In: PODC A simple approach for adapting

continuous load balancing processes to discrete settings, pp. 271–279.
ahi, J.M., Vernier, F., Cedex, B., 2007. Synchronous distributed load balancing on to-

tally dynamic networks. In: IEEE International Parallel and Distributed Processing

Symposium, pp. 1–8.
oillat, J.E., 1990. Load balancing and Poisson equation in a graph. Concurr. Pract. Exp.

2, 289–313.
hang, H.-T., Chang, Y.-M., Hsiao, S.-Y., 2014. Scalable network file systems with load

balancing and fault tolerance for web services. J. Syst. Softw. 93, 102–109.
hwa, H.S., Back, H., Lee, J., Phan, K.-M., Shin, I., 2015. Capturing urgency and par-

allelism using quasi-deadlines for real-time multiprocessor scheduling. J. Syst.
Softw. 101, 15–29.

ybenko, G., 1989. Dynamic load balancing for distributed memory multiprocessors. J.

Parallel Distrib. Comput. 7, 279–301.
araghmi, E.Y., Yuan, S.-M., 2014. We are so close, less than 4 degrees separating you

and me. Comput. Human Behav. 30, 273–285.
araghmi, E.Y., Yuan, S.-M., 2013. PMR: personalized mobile restaurant system. 5th Int.

Conf. Comput. Sci. Inf. Technol. 275–282.

http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0011

E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187–203 203

E

F

G

H

H

H

H

H

H

K

L

L

M

N

P

T

T

W

Y

Z

lsässer, R., Monien, B., Schamberger, S., Rote, G., 2002. Toward optimal diffusion
matrices £. In: International Parallel and Distributed Processing Symposium,

pp. 1530–2075.
ang, Y., Wang, L., 2009. An algorithm of static load balance based on topology for MPLS

traffic engineering. In: International Conference on Information Engineering. IEEE,
Taiyuan, Shanxi, pp. 26–28.

aneasan, P., Bawa, M., Garcia-Molina, H., 2004. Online balancing of range-partitioned
data with applications to peer-to-peer systems. In: 30th Annual International

Conference on Very Large Data Bases. Morgan Kaufmann, Toronto, Canada,

pp. 444–455.
owell, F., Mcnab, R., 1998. SimJava: a discrete event simulation library for Java. In:

International Conference on Web-Based Modeling and Simulation, pp. 51–56.
u, Y.F., Blake, R.J., 1999. An improved diffusion algorithm for dynamic load balancing.

Parallel Comput. 25, 417–444.
ui, C., Chanson, S.T., 1999. Hydrodynamic load balancing. IEEE Trans. Parallel Distrib.

Syst. 10, 1118–1137.

ui, C., Chanson, S.T., 1996. A hydro-dynamic approach to heterogeneous dynamic load
balancing. In: International Conference on Parallel Processing, pp. 140–147.

ui, C.-C., Chanson, S.T., 1997. Theoretical analysis of the heterogeneous dynamic load-
balancing problem using a hydrodynamic approach. J. Parallel Distrib. Comput. 43,

139–146.
ui, K.Y.K., Lui, J.C.S., Yau, D.K.Y., 2006. Small-world overlay P2P networks:

construction, management and handling of dynamic flash crowds. Comput. Netw.

50, 2727–2746.
arger, D.R., Ruhl, M., 2004. Simple efficient load balancing algorithms for peer-to-peer

systems. In: The Sixteenth Annual ACM Symposium on Parallelism in Algorithms
and Architectures, pp. 36–43.

uo, Y., Zhou, S., Guan, J., 2014. LAYER: a cost-efficient mechanism to support multi-
tenant database as a service in cloud. J. Syst. Softw. 101, 86–96.

uque, E., Ripol, A., Cortes, A., Margalef, T., 1995. A distributed diffusion method for

dynamic load balancing on parallel computers. In: The Euromicro Workshop on
Parallel and Distributed Processing, pp. 43–50.

eyerhenke, H., 2009. Dynamic load balancing for parallel numerical simulations
based on repartitioning with disturbed diffusion. In: 15th International Conference

on Parallel and Distributed Systems. IEEE, pp. 150–157.
eelakantan, P., 2012. Decentralized load balancing in heterogeneous systems using

diffusion approach. Int. J. Distrib. Parallel Syst. 3, 229–239.

eixoto, T.P., 2014. The graph-tool python library [WWW Document]. figshare. URL
https://graph-tool.skewed.de/.
ada, H., 2011. Nearest neighbor task allocation for large-scale distributed systems.
In: 10th International Symposium on Autonomous Decentralized Systems. IEEE,

pp. 227–232.
versky, A., 1977. Features of similarity. Psychol. Rev. 84, 327–352.

atts, D.J., Strogatz, S.H., 1998. Collective dynamics of “small-world” networks. Nature
393, 440–442.

agoubi, B., Meddeber, M., 2010. Distributed load balancing model for grid computing.
ARIMA J. 12, 43–60.

omaya, A.Y., Member, S., Teh, Y., 2001. Observations on using genetic algorithms for

dynamic load-balancing. IEEE Trans. Parallel Distrib. Syst. 12, 899–911.

Eman Yasser Daraghmi is currently a PhD candidate in
the Department of Computer Science and Engineering at

National Chiao Tung University, Taiwan. She received her
BS degree in communication and information technology

from Al Quds Open University in 2008, and her MS degree
in Computer Science from National Chiao Tung University,

Taiwan in 2011. Her current research interests include cloud

computing, distributed systems, and algorithms design.

Shyan-Ming Yuan received his BSEE degree from National

Taiwan University in 1981, his MS degree in Computer Sci-
ence from University of Maryland, Baltimore County in

1985, and his PhD degree in Computer Science from the Uni-
versity of Maryland College Park in 1989. Dr. Yuan joined

the Electronics Research and Service Organization, Indus-
trial Technology Research Institute as a Research Member

in October 1989. Since September 1990, he has been an As-
sociate Professor at the Department of Computer and In-

formation Science, National Chiao Tung University, Hsinchu,

Taiwan. He became the Professor in June 1995. His current
research interests include cloud computing, Internet tech-

nologies, and distance learning.

http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0025
https://graph-tool.skewed.de/
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00118-1/sbref0030

	A small world based overlay network for improving dynamic load-balancing
	1 Introduction
	2 Literature review
	2.1 Background on small world networks
	2.2 Related works

	3 Functional small world (FSW) network
	3.1 Overview
	3.2 Constructing functional small world (FSW) overlay network
	3.2.1 Functional-clustering (FC)
	3.2.2 Cluster-formation
	3.2.3 Overlay network construction

	4 Dynamic load-balancing
	4.1 Pitfalls in designing load-balancing algorithm
	4.1.1 The initialization rule
	4.1.2 Information exchange rule
	4.1.3 Load measurement rule
	4.1.4 Transfer strategy rule

	4.2 Diffusion load-balancing
	4.2.1 Problem formulation
	4.2.2 Our proposed algorithm
	4.2.3 The convergence

	5 Simulations
	5.1 Experimental setting
	5.2 Comparative study
	5.2.1 Average response time
	5.2.2 Throughput
	5.2.3 Communication overhead
	5.2.4 Movement cost

	6 Conclusion
	 References

