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Load-balancing algorithms play a key role in improving the performance of distributed-computing-systems
that consist of heterogeneous nodes with different capacities. The performance of load-balancing algorithms
and its convergence-rate deteriorate as the number-of-nodes in the system, the network-diameter, and the
communication-overhead increase. Moreover, the load-balancing technical-factors significantly affect the
performance of rebalancing the load among nodes. Therefore, we propose an approach that improves the
performance of load-balancing algorithms by considering the load-balancing technical-factors and the struc-
ture of the network that executes the algorithm. We present the design of an overlay network, namely, func-
tional small world (FSW) that facilitates efficient load-balancing in heterogeneous systems. The FSW achieves
the efficiency by reducing the number-of-nodes that exchange their information, decreasing the network di-
ameter, minimizing the communication-overhead, and decreasing the time-delay results from the tasks re-
migration process. We propose an improved load-balancing algorithm that will be effectively executed within
the constructed FSW, where nodes consider the capacity and calculate the average effective-load. We com-
pared our approach with two significant diffusion methods presented in the literature. The simulation results
indicate that our approach considerably outperformed the original neighborhood approach and the nearest
neighbor approach in terms of response time, throughput, communication overhead, and movements cost.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction system and workloads information, whereas dynamic load balanc-
ing requires light assumption about the system or the workloads. As
in practical applications (i.e. real world networks) the workloads are
generally not completely known, and each node has different capacity
and runs at different speed, it is more efficient to employ the dynamic
load balancing algorithms for practical applications. The diffusion ap-
proach (Hu and Blake, 1999; Luque et al., 1995) is one of the dynamic
load balancing techniques that have received much attention by re-
searchers in the past decades to solve the load-balancing problem.
In standard diffusion approach, a system which has different nodes
exchanges workloads via the communication links between these
nodes. The workloads are distributed among the nodes, and the load
balancing process works in sequential rounds. In every round, each
node is allowed to balance its load with all its neighbors by exchang-

Load-balancing algorithms have become increasingly popular
and powerful techniques in modern distributed computing systems
in recent years (Chang et al., 2014). They provide opportunities for
increasing the performance of large-scale computing systems and
applications since they are designed to redistribute the workloads
over the components of the distributed system in a way that ensures
expanding resource utilization, maximizing throughput, minimizing
response time, and avoiding the overload situation (Abdelmaboud
et al., 2014). To achieve the goal of maximum performance, it is pre-
requisite to smoothly spread the load among the nodes to avoid, if
possible, the situation where one node is heavily loaded with excess
of workloads while another node is lightly loaded or idle (Chwa et al.,

2015; Luo et al., 2014).

Load-balancing algorithms can be categorized into either static
or dynamic (Cybenko, 1989; Fang and Wang, 2009). Static load-
balancing necessitates complete information of the entire distributed
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ing the workloads to balance the total system load globally, meaning
to minimize the load difference between the nodes with minimum
and maximum load. The nearest-neighbor approach (Tada, 2011) is
another dynamic technique that allows the nodes to communicate
and migrate the excess workloads with their immediate neighbors
only. Each node balances the workload among its neighbors in the
hope that after a number of iterations the entire system will approach
the balanced state.
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Since load-balancing algorithms play an important role of im-
proving the performance of practical distributed computing systems,
researchers have been motivated to propose several dynamic algo-
rithms for balancing the workloads among nodes. However, dynamic
load-balancing algorithms still present fundamental challenges
when being executed at large-scale heterogeneous distributed
systems. Previous research (Hui and Chanson, 1999, 1996, 1997)
concluded that three structural factors, which refer to the structure
of the network that executes the load-balancing algorithm, decrease
the performance of any load-balancing algorithm as well as affect
the algorithm convergence rate. The factors are: (1) increasing the
number of nodes in the system (i.e. the number of the nodes that
exchange their workload information); (2) increasing the network
diameter which is defined as the longest shortest path between any
two nodes of the network; (3) increasing the communication over-
heads or the communication delays among the nodes. These factors,
from one hand, make it not feasible for a node to collect the load-
information of all other nodes in the system. Moreover, even if a node
collects the load-information of all other nodes in the system, this in-
formation will be not up to date when it is used (i.e. old information
may not reflect the current load of a node) as more communication
delays make this information old and thus the task of balancing the
load is significantly damaged. From the other hand, it is intuitive that
a network with longer diameter will take longer time to converge
as the number of iterations to propagate the workloads to all nodes
is proportional to the network diameter. Therefore, the first objective
of this research aims at improving the performance of load-balancing
algorithms by considering the structural factors of the network that
executes the algorithm.

In addition, previous studies concluded that (Zomaya et al., 2001)
technical load-balancing factors, which refer to the algorithm poli-
cies that should be considered when designing a load-balancing al-
gorithm, such as the load migration rule, affect the performance of
load-balancing algorithm. Therefore, these studies propose improved
algorithms that consider these factors to enhance the performance of
load-balancing (i.e. improvements include: the derivation of a faster
algorithm that transfers less workloads to achieve a balanced state
than other algorithms, or a mechanism for selecting and transferring
the workloads to other nodes). However, when applying a dynamic
load-balancing to practical distributed system, the functionality of
the node and the migrated task must be checked to ensure that the
node can process that received task. Thus, if the nodes distributed
randomly, some situations that affect the performance of the load-
balancing algorithm negatively may occur. For instance, n; is a node
in a practical distributed system. Since n; is overloaded, it migrates a
task to another lightly loaded node n;. When n; receives the migrated
task, the load-balancing algorithm runs at n; checks the scope of ser-
vices of node n; to ensure that the task can be processed by n;. Thus,
if the migrated task is out of n; services scope, then the task will be
migrated again to another node. Moreover, the task may be retuned
again to n;. Practically, re-migrating the task to another node de-
creases the performance of load-balancing algorithms because of the
task re-migration time delay. Increasing the number of re-migrating
task increases the time delay and thus decreases the performance of
load-balancing. Therefore, the second objective of this research aims at
improving the performance of load-balancing algorithms by decreasing
the time delay results from re-migrating tasks (i.e. re-migrating tasks
results from the node out of services scope). To achieve our goal, we con-
struct the FSW to allow nodes migrate tasks to other nodes that have
similar services scope.

In this research, we aim at improving the performance of load bal-
ancing algorithm by considering both the structural and the technical
load-balancing factors. We also consider the node services scope to
decrease the negative effect of tasks re-migration process. To achieve
our goal, we propose a two-stage approach that, first, designs an over-

lay network which employs both the concept of small world network
and the node services scope, and then, proposes an improving load-
balancing to be applied within the overlay network.

First, practically, the nodes of practical distributed systems exe-
cute various computational-functions (each node has services scope).
These computational-functions can be easily derived from the role of
a node within the system and identified by k-element set (i.e. the
role of the node within the system refers to the node services scope),
namely the functional set (FS). Each element in the set represents a
particular function that can be executed within the system. The FS of
a node can be mapped to a point in a cluster and thus can be seen as
a point in that cluster. In real-world distributed systems, each node
plays a key role within the system. For instance, the m-cafeteria rec-
ommendation system is a practical distributed system that consists
of several cafeteria nodes. Each cafeteria serves a menu, set of meal
(i.e. the menu is considered as the FS of a cafeteria node, FS = {serving
orange juice, serving butter waffle, etc.}). A user can via his/her mo-
bile phone request a meal from a cafeteria node, if a cafeteria node
is overloaded, then the request will be migrated to another node that
has similar functionality. Similar functionality is defined as the dif-
ference between the amount of functions in-common among nodes
and the amount of functions unique to nodes. It is clear that functions
in common increase similarity, whereas functions that are unique to
one node decrease similarity.

In fact, a small world (SW) network has a small average path
length and large cluster coefficient properties. Thus, constructing an
overlay network that satisfies the small world network properties and
considers functional similarity minimizes the negative effects of the
structural and technical factors (i.e. 1. decrease the number of nodes
that exchange the workloads information, 2. minimize the network
diameter, 3. deteriorate the communication overhead, and 4. de-
crease the impact of out of services scope and thus decrease the time
delay results from re-migrating tasks). In this research, we construct
an overlay network based on the small world principle, namely, the
functional small world (FSW) that supports efficient load-balancing
and thus increasing the performance of distributed computing
systems.

Second, this research also presents an efficient load-balancing
algorithm that considers the capacity of each node and the load-
balancing technical factors, such as the initialization rule, the
information exchange rule, the load-measurement rule and the
load-migration rule.

Precisely, the advantages of creating the FSW instead of randomly
distribute the nodes into clusters are: (1) simulating real world het-
erogeneous distributing systems which facilitate applying the load-
balancing algorithm to real world distributed system; (2) decreasing
the effect of time delay results from task re-migration that occurs
because of the node out of services scope.

In summary, this paper presents the design of the FSW overlay
network to support efficient dynamic load-balancing in heteroge-
neous systems. The primary contribution of this work is fourfold:

1. We adopt an effective clustering strategy that places nodes in
clusters based on the nodes functional similarity and satisfies the
properties of the small world principle.

2. We show a way of building a functional small world (FSW) overlay
network that supports dynamic load-balancing, which is scalable
to large network sizes yet adapts to dynamic membership and
content changes. For simplicity, we refer to the functional small
world overlay network as FSW in the rest of this paper.

3. We propose an efficient and improved dynamic diffusion load-
balancing algorithm to be executed in the constructed FSW.

4. We conduct extensive experiments to evaluate the performance
of proposed solution on various aspects, including throughput, re-
sponse time, communication overhead and movements cost.
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2. Literature review
2.1. Background on small world networks

A small-world network is a type of mathematical graph in which
most of the nodes are not neighbors of one another, but these nodes
can be reached from every other by a small number of hops or steps
(Daraghmi and Yuan, 2014). Many empirical graphs are well-modeled
by small-world networks. A certain category of small-world networks
were identified as a class of random graphs by Watts and Strogatz
in 1998 (Watts and Strogatz, 1998). They noted that graphs could be
classified according to two independent structural features, namely
the clustering coefficient, which is defined as the probability that two
neighbors of a node are neighbors themselves and average node-to-
node distance (also known as average shortest path length). Watts
and Strogatz measured that in fact many real-world networks have
a small average shortest path length, but also a clustering coefficient
significantly higher than expected by random chance. A network is
said to be small world if it has a small average path length and large
cluster coefficient.

2.2. Related works

Previous studies have proposed numerous load-balancing
algorithms targeting at static, small-scale, homogeneous and/or het-
erogeneous environments (Aakanksha and Bedi, 2007; Hu and Blake,
1999; Karger and Ruhl, 2004; Meyerhenke, 2009; Neelakantan, 2012;
Yagoubi and Meddeber, 2010). The diffusion approach (Hu and Blake,
1999; Neelakantan, 2012) is a dynamic load-balancing technique
where each node simultaneously sends the excessive workloads
to its under loaded neighbors and receives workloads from its
neighbors with higher workload (Boillat, 1990; Cybenko, 1989). In
1990, Boillat et al. (Boillat, 1990) presented a new approach to solve
the load balancing problem for parallel programs. In 1989, Cybenko
(Cybenko, 1989) studied the diffusion schemes for dynamic load
balancing on a message passing multiprocessor networks. Elsasser et
al. (Elsdsser et al., 2002) generalized the standard diffusion schemes
for homogenous networks to deal with the heterogeneous network.
In Bahi et al. (2007), the first order diffusion load balancing, relaxed
diffusion (RFOS) and generalized adaptive exchange (GAE) algorithms
for totally dynamic networks were investigated. In Aakanksha and
Bedi (2007), the authors proposed a modified version of diffusion
algorithm for load balancing on dynamic networks. The authors in
Adolphs et al. (2012) considered a neighborhood load balancing algo-
rithm in the context of selfish clients. They assumed that a network
of n processors is given, with m tasks assigned to the processors. The
processors may have different speeds and the tasks may have differ-
ent weights. Every task is controlled by a selfish user. The objective
of the user is to allocate his/her task to a processor with minimum
load, where the load of a processor is defined as the weight of its
tasks divided by its speed. Neighborhood load balancing algorithms
(Akbari et al., 2012) are diffusion algorithm that have the advantage
that they are very simple and that the vertices do not need any global
information to base their balancing decisions on.

3. Functional small world (FSW) network

In this section, we present an overview of the functional small
world (FSW) design and provide the technical details of construct-
ing the FSW overlay network. The notations used in this paper are
summarized in Table 1.

3.1. Overview

FSW plays two important roles: 1) an overlay network that pro-
vides connectivity among nodes, and 2) a distributed solution that
supports efficient dynamic load-balancing. In FSW, the nodes are or-
ganized in accordance with the functionality set (FS) defined by each

Table 1
The symbols used in the paper.
Symbol  Description
FSW Functional small world
FS The functionality set
G The system that executes the load-balancing algorithm
N The nodes in the system
E The connection-links among nodes
AF All functions set
WL(n;) The set of assigned workloads for node n;
G The capacity of node n;
Id; The load of node n;
Adj(n;) The set of neighbor nodes for node n;
Info The set stored the information of neighbor nodes for node n;
mig The array that store the amount of migrated workloads
I; The effective-load of node n;
lavg The average effective-load
Niower The set of assistant neighbors
LD The load difference
§i The excess workloads that node n; must migrate
o The amount of workloads that node n; can accept

node in the system. Nodes with similar functionality sets form one
cluster.

We based on the concept proposed by Tversky (Tversky, 1977) to
define the relation of similar functionality employed in our research.

Definition 1 (Similar functionality). Generally, similar functional-
ity is defined as the difference between the amount of functions in-
common among nodes and the amount of functions unique to nodes.

Formally, given any nodes n;, n; € N with a functionality set of each
node FS;, FS;, the relation of similar functionality is defined by:

s(nj, nj) = |FSp, mFSnjl — (|FSp, —FSnj|) — (|FSnj — FSy,|). There-
fore, nodes with s(n;, n;) < 0 are not similar, while nodes with s(n;,
n;) > 0 are similar.

For example, if A is a node, with FS = {1, 2, 3} and B is a node
with FS = {2, 4, 1, 2, 3}, then according to our definition s(n;, n;) =
3 -0 -2 =1, Thus, A and B have similar functionality. It is clear that
functions in common increase similarity, whereas functions that are
unique to one node decrease similarity.

In practice, the practical distributed system is modeled as an undi-
rected graph G = (N, E), where N represents the set of heterogeneous
nodes in the system, and E describes the connection-links among
them. Each node i € N has its role within the system and executes
several functions, such as printing, computing, etc.; thus, each node
based on its role within the system defines a set, namely, the func-
tionality set (FS). Since a small world network has two properties: (1)
low average hop count between any two random chosen nodes, and
(2) high clustering coefficient, our approach, in order to construct the
FSW, categorizes the nodes in the system into two types: 1) an in-
domain node, and 2) a master node. The in-domain node represents
a node in which located in one cluster and only has connections via
short-links with all in-domain nodes placed in the same cluster and the
master node of that cluster. The master node represents a node located
in one cluster and has a connection via short-links with all in-domain
nodes placed in the same cluster and at the same time has connection
via long-links with some master nodes located in other clusters. Fig.
1 shows an illustration example of FSW, where nodes nq, n4 and ng
are in-domain nodes, while nodes n,, n3 and ns are master nodes. The
long-links (i.e. blue lines in Fig. 1) creates connections among master
nodes and is responsible for achieving the high clustering coefficient
in the network (property 2 in small world networks). Short-links (i.e.
black lines) create connection among in-domain nodes, and among
master nodes and in-domain nodes. Short-links and the long-links aim
at achieving the properties (1) and (2).

In our design, we also define the cluster-size M to be the max-
imum number of nodes that are allowed to form one cluster. Pre-
defining the cluster size is important to keep small number of nodes
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O Master node
O In-domain node

Fig. 1. An example of FSW overlay network, where an in-domain node connects with
all in-domain nodes located in the same cluster, and the master node of that cluster,
while a master node connects with in-domain nodes located in the same cluster and
the other master nodes distributed among clusters. (For interpretation of the refer-
ences to color in the text, the reader is referred to the web version of this article.)

long link

:l cluster

short link

in one cluster and to maintain good clustering effect. In this research,
we adopt the guidelines proposed by Hui et al. (Hui et al., 2006) to
define the cluster size M. The authors suggested that the cluster size
ranges from 1 to 64 maintains good clustering effect. Practically, de-
signing a FSW overlay network plays an important role in decreasing
the number of nodes that will exchange the workloads information,
minimizing the network diameter, deteriorating the communication
overhead, and decreasing the time delay results from the task re-
migration process; therefore, this approach is efficient to be applied
not only for the entire system but also clustering inside the cluster to
increase the performance of the load-balancing algorithms.

In summary, a FSW overlay network can be formed as follows:
Each node maintains long-links to ensure the connectivity among
the master nodes (i.e. the connectivity among the clusters to provide
shortcuts to allow a node reach other nodes that execute similar func-
tionality and located in other clusters quickly) and/or short-links to
ensure the connectivity among the in-domain nodes and the connec-
tivity among the in-domain nodes and the master nodes so that a bal-
ancing message issued from any node can reach any other node in the
network. Via short-links and long-links, navigation and broadcasting
in the network can be performed efficiently. In the following sections,
we introduce our approach in details of designing and constructing a
FSW.

3.2. Constructing functional small world (FSW) overlay network

Constructing a FSW overlay network depicted above involves
three major tasks: 1) functional-clustering, 2) cluster-formation, and
3) overlay network construction.

3.2.1. Functional-clustering (FC)

In general, the functional-clustering (FC) task aims at 1) defining
the clusters (i.e. the number and the name of clusters) that should be
created within the overlay network based on the functional executed
within the system, and 2) adding the nodes initially to the cluster(s)
based on the in-common functions between the node and the clus-
ter. In other words, if there is at least one function in-common be-
tween the node and the cluster, then the node will be added initially
to that cluster. Note that: initially, in this step a node can be added to
more than one cluster, but finally in the next tasks a node will only
be added to one cluster.

This task is executed before or when a node joins the network.
Each node n; in the system defines its functionality set (FS), which
indicates the functions that a node can perform and execute within
the system, such as FS; = {fi, f>, ..., fi}, where FS; is the function-
ality set of node n;, f; is a function that can be executed by node

Table 2
The nodes and their
functionality sets.

Node FS

1 {xX,c}
2 X}

3 {A, C}
4 {X, A}
5 {C}

6 (A}

7 ]

8 {C}

9 {xX,C}
10 {A, C}
11 {X, A}

12 (A C X}

Step 1: Define the set AF to be the set of all functions executed within the system. Af= {A,C X}

Step 2: Based on the AF created in Step 1, create three clusters.

Clustera Clusterc Clusterx

Step3: Place each node in the suitable cluster in accordance with the FS of each node.

Clusterc Clusterx

O & [OO®| |© _®
“oo| 5 (%56

Fig. 2. The three steps of performing the functional-clustering task.

Clustera

n;, and k is the number of functions that node n; can execute. In
FScuuster; = {i.j.....k}. Likewise, Clusters has FS = {A}.

Following are the steps performed by the functional-clustering
task:

1 Let AF (all functions) be the set of all functions executed in the
system AF = FS; U....UFSy = {f1. f2..... fs}, where s is the total
number of functions executed within the system, and FS; is the
functionality set of node n;. In other words, AF is the union of all
FSs defined in the system.

2 For each function f € AF, create a cluster, namely, clustery.

3 Since each node n; has its functionality set FS; ={fi,..., fi},
in this step initially node n; will be simultaneously added to
clustery, , clustery,, ..., clustery, . In other nodes, if a node n; exe-
cutes a function f,, then there is an in-common function between
anode n; and cluster,. Thus, the node n; will be added to cluster,.

Note that, the number of clusters that a node can be added to de-
pends on the number of functions that a node executes within the
system; a node that executes more than one function will be added
initially to more than one cluster at the end of this task.

An example is shown below to illustrate in details the functional-
clustering (FC) task. Given a system G that includes 12 nodes. Table 2
shows the nodes and the FS of each node. The steps executed by the
functional-clustering task are shown in Fig. 2.

As shown in Fig. 2, in this example, after performing the
functional-clustering task, nodes will be added initially to the created
clusters (e.g. node 12 will be added initially to clustera, clusterc and
clustery since there is in-common functions between the node n;,
and the clusters clustery, clusterc, clustery).

3.2.2. Cluster-formation

As shown in the functional-clustering (FC) task, a node ini-
tially can be added to more than one cluster. Therefore, the
cluster-formation (CF) task is a key task to ensure that a node will
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be added to only one cluster regarding the functional similarity. Ac-
cording to Definition 1, nodes are considered as similar nodes if
the amount of in-common functions among nodes is more than the
amount of functions unique to nodes.

This task aims at: 1) deciding the nodes that must finally be added
to the cluster, and 2) checking the cluster size; thus, if the cluster
size exceeds M, which is a preset defined maximum cluster size, the
cluster will be split into two clusters in order to maintain good clus-
tering effect. To determine the cluster size, we adopt the guidelines
proposed by Hui et al. (Hui et al., 2006). The authors suggested that

the maximum cluster size is 64 in order to maintain good cluster-
ing effect. If the cluster size exceeds M, the steps of the functional-
clustering task, and the cluster-formation task will be applied to split
that cluster (i.e. Note, new clusters with new names, such as clustera;
instead if cluster,, will be created upon re-performing the tasks to
split cluster(s)).

Following pseudo code shows the steps performed by the cluster-
formation task. Note, |FS| is the number of elements in the functional
set. The steps executed by the cluster-formation (CF) task are shown
in Fig. 3.

Pseudo code of the cluster formation task

Cluster- Formation task

Initialization

Let A[]= {< clustery,| clustery I>,< cluster | cluster |,...,< clusterf,l clusterf I}

where Iclustery || clustery |,...,] clusterfl is the size of clustery, Clusterz,...,clusterf

begin
Lint m[]= A.minArray();

2.For each cluster "cluster," in A[]

3.1. if IFSi [=1, then add n; to clustera.

3.2.if IFS; I>1, then

add n; to cluster,

add a "wait " tag of n;

3.2.3. elseif cluster, ¢ m[] then

4.For each node n; tagged as wait

4.3.add n; to clusterFS1 UFS, U...UFS,

End

[ | Finding the clusters that have the least cluster size
3. For each node n; added initially to cluster, {

// this means the functional similrity between a node

// and the cluster is > 0 since a node can execute one function and added to one cluster

// the node is initially added to more than one cluster

//thus, these steps ensure positive similarity between a node and a cluster
3.2.1.if cluster, € m[] and Im[]==1 then add n; to cluster,.

[/ Im[]==1 means the number of clusters that has the smallest cluster size is 1
3.2.2. elseif cluster, € m[] and Im[]l# 1 then

// here more than one cluster has the smallest cluster size

3.2.2.1.if n; added to (one cluster cluster, € m[] and the other clusters not in m([] )then

// this step ensures similarity and add node to cluster with smallest size
3.2.2.2.if n; added to (more than one cluster, € m[]) then

// this mean a node has in-common functions with two clusters in the same size, since
// each cluster has different functionality, the similarity between a node and the cluster

//may be negative; thus, additional steps must be done to ensure positive similarity

3.2.3. chech the FS z{fl""fid} of n; if the is a cluster € m has the name Clusterfid

then n; leave cluster, otherwise add a tag "wait" ton; }

4.1. find TFS=FS; U FS, U...U FS,, where z is the nodes z has a tag "wait"
4.2. create new cluster,namely, clustergg 1 UFS, U...UFS,
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< ClusterC ,8> < ClusterX,6>

Initialization

@@

1.A[] = {<ClusterA 6> < ClusterC ,8> < ClusterX,6>}
2 Clustera usterc @ Clusterx @
3.
v | ‘0 @ |@W
3322-1 Clustera usterc @ Clusterx @
322.
3221 . @@
3222 @ @
3.23. Clustera Clusterc Clusterx

®
@@
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®
@
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4. Clustera

@@

Clusterc

o ©

Clusterax

@ @
(D

Clusterx

@
@

Qw Ow

nodes initially added to
cluster

@

Fig. 3. The steps performed by the cluster formation task, where the numbers in the left side indicate the step defined in the pesudo code.

Clustera Cluster ¢
10 5
Cluster x = Cluster ax
O Master node long link [ cluster
O In-domain node
short link

Fig. 4. The results of performing the overlay network constructing task.

3.2.3. Overlay network construction

Fig. 4 shows the results of the overlay network-construction task.
This task constructs the FSW overlay network across the created clus-
ters (i.e. after performing the previous two tasks) to form a functional
small world network by:

(1) Defining the in-domain nodes and the master nodes.

The size of the FS of each node located in one cluster will be
checked (i.e. the number of functions that a node can execute); there-
fore, a node that has the largest FS size in cluster; will be defined as
a master node for cluster;, and the other nodes located in cluster; will
be defined as the in-domain nodes for that cluster. Note, when two or
more nodes have the largest FS size, then only one node from these
nodes will be selected randomly as a master node for a cluster since
that each cluster has only one master node.

(2) Adding long-links and short-links among the nodes.

Long-links connect a master node located in one cluster with other
master nodes located in other clusters based on the functional similar-
ity between theses master nodes (i.e. see Definition 1). For example,
nyp is the master node of cluster, and has a FS = {A, C} and ny; is the
master node of cluster,y and has a FS = {A, C, X}; thus, the functional
similarity = (2)-(0)-(1) = 1 which means a long-link will be added
between them. In contrast, nyq is the master node of cluster, and has
a FS = {A, C} and ng is the master node of clustery and has a FS = {C,
X}; thus, the functional similarity = (2)-(1)-(1) = —1 which means no
long-link will be added between them.

Short-links connect the in-domain nodes located in one cluster
with the other in-domain nodes located in the same cluster, and
it also connects the in-domain nodes located in a cluster with the
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Table 3

The connection-links before and after constructing FSW overlay network.
n; FS Connection-links before constructing the FSW overlay network B? After constructing FSW AP
1 X, C {(1,2),(1,4),(1,9), (1, 11),(1, 12),(1,3),(1,5),(1,7),(1, 8), (1, 10)} 10 {(1,2),(1,9)} 2
2 X {(2,1),(2,4),(2,9),(2,11),(2,12)} 5 {(2,1),(2,9)} 2
3 AC {(3,4),(3,5),(3,9),(3,11),(3,12),(3,1),(3,7), (3, 8), (3, 10), (3, 6)} 10 {(3,6),(3,10)} 2
4 X, A {(4,2),(4,1),(4,9),(4,11),(4,12),(4,3),(4,5), (4, 7), (4, 8), (4, 10)} 10 {(4,11),(4,12)} 2
5 C {(5,1),(5,3),(5,7),(5,8),(5,9),(5,10), (5, 12)} 7 {(5,7),(5,8),(5,10),(5,9)} 4
6 A {(6,4), (6, 10), (6, 11), (6, 12), (6, 3)} 6 {(6,3), (6, 10)} 2
7 C {(7,1),(7,3),(7,5),(7,8),(7,9),(7,10), (7, 12)} 7 {(7,5),(7,8)} 2
8 C {(8,1),(8,3),(8,7),(8,5),(8,9),(8,10), (8, 12)} 7 {(8,7),(8,5)} 2
9 X, C {(9,2),(9,4),(9,1),(9,11),(9, 12), (9, 3),(9,5), (9, 7), (9, 8), (9, 10)} 10 {(9,1),(9,2),(9,5),(9,12)} 4
10 AC {(10,4), (10, 5),(10,9), (10, 11), (10, 12), (10, 1), (10, 7), (10, 8), (10 3),(10, 6)} 10 {(10, 3), (10, 6), (10, 5), (10, 12)} 4
1 XA {(11,2),(11,4), (11,9), (11, 1), (11, 12), (11, 3), (11, 5), (11, 7), (11, 8), (11, 10)} 14 {(11,12), (11, 4)} 2
12 ACX  {(12,1),(12,2),(12,3),(12,4),(12,5),(12,6), (12,7),(12,8),(12,9), (12, 10), (12, 11)} 11 {(12,4),(12,11),(12,9),(12,10)} 4

2 Bis the number of connection links before constructing FSW.
b Ais the number of connection links after constructing FSW.

master node of the same cluster. In-domain nodes, master nodes, long-
links and short-links play a key role in reducing the effect of the struc-
tural factors and transforming the network into a small world.

In order to show how our proposed design reduces the com-
munication overhead, we summarize the connection-links among
nodes before and after constructing the FSW overlay network.
Table 3 summarizes the nodes and their connection-links before and
after constructing the FSW overlay network, where column 4 shows
the number of connection-links before constructing FSW and column
6 shows the number of connection-links after constructing FSW. Our
approach reduces the number of connection-links by creating short-
cuts via using the idea of master nodes and long-links.

4. Dynamic load-balancing

In this section, we present an overview of pitfalls in designing dy-
namic diffusion load-balancing algorithm and propose an improved
diffusion load-balancing algorithm to be executed within the con-
structed FSW.

4.1. Pitfalls in designing load-balancing algorithm

4.1.1. The initialization rule

This rule aims at defining the set of nodes that should be consid-
ered as the neighbor-nodes of node n; that currently runs the load-
balancing algorithm. Constructing the FSW overlay network plays a
key role in limiting the set of neighbor-nodes for node n; to those
nodes that execute similar functionality and have connection-links,
either long-links or short-links, with node n;. Therefore, each node
sends/receives the workload information to/from only the neighbor-
nodes set which in turn results in reducing the number of nodes that
exchange the workloads information and reducing the communica-
tion overhead.

4.1.2. Information exchange rule

This rule specifies how to collect the required information for
making the load-balancing decisions. Our proposed algorithm uses
the on-state information exchange (Neelakantan, 2012), a node
broadcasts its information to only the set of neighbor-nodes when-
ever its status changes. In fact, the on-state information exchange
strategy has the advantages of making more accurate decisions, how-
ever, the large overhead in communication makes it impractical for
large systems (i.e. many previous algorithms loses the advantage of
this strategy because of the bad effect of large communication over-
head). Since our approach reduces the communication overhead by
constructing the FSW overlay network, it becomes practical to take
the advantages of the on-state information exchange strategy with-
out increasing the communication overhead.

4.1.3. Load measurement rule

The load measurement rule aims at deciding whether a node is
overloaded or not. Each node in the system has its processing capacity
that will be used with the weight of the assigned workloads to calcu-
late the effective-load and thus calculating the average effective-load
among the set of neighbor-nodes. The average effective-load will be
used to decide if the node is overloaded or not. When the effective-
load of a node is higher than the average effective-load, then the node
is considered as an overloaded node; otherwise, it is considered as
under loaded node. The decision that a node is overloaded or not in
turn decides when to begin the balancing operations to migrate the
excess workloads to under the other loaded node.

4.1.4. Transfer strategy rule

This rule aims at defining the set of assistant-neighbors, the nodes
among the set of neighbor-nodes that are currently under loaded, and
finding the amount of the excess workload to be sent in the case of
overloaded. Since the goal of load-balancing algorithms is redistribut-
ing the loads among nodes, obviously heavier nodes should send the
excessive workloads to the lighter nodes. Therefore, node n; selects its
assistant-neighbors that are currently under loaded to migrate its ex-
cess workloads. The amount of workloads to be migrated among the
set of assistant neighbor-nodes would have direct impact on the per-
formance and the convergence rate of the algorithm. In general, the
amount of the workloads to be moved from the overloaded node to
the assistant neighbor-nodes would be the difference of load between
the overloaded node n; and the average effective-load. To achieve the
fairness state the amount of load to be sent should depend on how
much the current node is overloaded with respect to its neighbor-
nodes. Therefore, our algorithm considers the average effective-load
which has an advantage of being fair and simple as all nodes receives
the same load and no node is privileged. As a result, using the infor-
mation received only from the neighbor-nodes plays a key role in: 1)
giving us more accurate estimation of the average effective-load, and
2) restricting the communication between the neighbor-nodes only
which resulted in communication delay is suppresses.

4.2. Diffusion load-balancing

In this section, we explain the proposed load-balancing algo-
rithm that will be executed in the constructed FSW overlay network.
We first formulate the problem in Section 4.2.1, then we present
our proposed algorithm in Section 4.2.2, and finally, we show how
our proposed algorithm guarantees converges to fairness state in
Section 4.2.3.

4.2.1. Problem formulation
Generally, the entire distributed system is modeled as an undi-
rected graph G = (N, E), where N represents the set of heterogeneous
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nodes, and E describes the connections among them. Each node in the
system (i.e. whether an in-domain node or a master node) will be as-
signed some workloads wl during the execution of the system, where
each workload assigned to a node consumes effort and time; thus,
each workload has different weight w. The weight of the total work-
loads assigned to a node is referred to as the load of a node Id; > 0.
Each assigned workload also is associated with a function that can
process the assigned workload. Each node also has a capacity ¢; > 0
which specifies its processing capacities (i.e. the largest amount of
workload that can be assigned to a node n;), where c;, Id; € Z. Since
the capacity of each node in heterogeneous systems is not equal, our
proposed algorithm considers the processing capacity of each node
when deciding whether a node is overloaded or not.

Definition 2 (The effective-load). Given a node n; € N that has a ca-
pacity and assigned some workloads, the effective-load I; of node n;
is defined as the total weight of the workloads assigned to node n; di-
vided by the capacity of node n;. Formally, the effective-load of node
n; is the load of n; divided by the capacity of n;.

ld; 2wl ewi(m) WWL})
G Gi

where WL(n;) = {< wly, wy, ctrig, Eg >, ..., < wl, wy, ctry,
the set of workloads assigned to node n;.

Ed >} is

4.2.2. Our proposed algorithm

Our proposed algorithm is shown in Algorithm 1, Neighbor-
hoodLB. Each node n; in the system G executes the same algorithm
in parallel. As mentioned before, based on the role of each node n;
within the system, n; defines its functionality set (FS). Thus, the struc-
ture of the system is simplified by constructing the FSW to decrease
the graph diameter, the number of nodes that exchange the load in-
formation and communication overhead. The steps of constructing
FSW overlay network are illustrated in Section 3. The nodes will be
spread into clusters, and each node will have in addition to the node
id n;q, a cluster id ctr;y to show the cluster in which a node is located
and FS;; to check if the received task can be processed by a node n;y.
Following paragraphs demonstrate with an illustration example the
proposed load-balancing algorithm that will be executed within the
constructed overlay network in details. Our proposed load-balancing
algorithm involves six major stages: 1) the initialization stage, 2) the
information broadcasting stage, 3) computing the average effective-
load stage, 4) finding the set of assistant-neighbors stage, 5) the work-
loads transfer stage, and 6) the load-balancing mechanism stage.

o The Initialization Stage

Let WL(n;) be the set of workloads assigned to node n; during
the execution of the computing distributed system, where WL(n;) =
{<wl,wy, ctrig, F; >, <wl;, w, ctrig, E; >}. Each assigned workload
wl consumes time and efforts until being completed; thus, each as-
signed workload has weight w. Each workload wl assigned initially
to ctriy and associated with a function F (i.e. F is the function that
can process the workload). Each node n; also has, after constructing
FSW, a pre-defined set of neighbor-nodes Adj(n;) to store the nodes
that have connection-links either long-links or short-links with node
n;. Each node n; initializes its state (initialization stage) in steps 1
through step 3.

1. Step 1 (Line 1 in NeighborhoodLB Algorithm): Each node n; de-
fines a set Info = {< ctriy, nig, Idig, Ciq, FS;q >} to store the infor-
mation of the nodes in the neighbor-nodes set, where ctri;: is the
id of the cluster in which a node the has n;4 is located, n;y4: the id
of a node, Id;; = ZW,J_EWL(”M) w(wl;) the load of node ny4 (i.e. the
total weight of all workloads assigned to the node n;y), cj4: is the
processing capacity of n;4, and FS; is the functional set of n;y.

ALGORITHM 1, NEIGHBORHOODLB

Algorithm 1, NeighborhoodLLB
n;; : The node where the algorithm is executed.
ctr; : The id of a cluster in which n; is located
c; : The processmg capacity of node 7;
Adj(n;)={<ctry,
WL(n;)={ <wlz-d,w, C“’idfFid >} : The set of assigned workloads for 1,
FS”i : the functionality set of n;

>}The set of neighbor-nodes

Begin
1.Let Info; = <ctrd, zd'ldzd' zd'FS >}
2.Let mig(n]- )=0 for all nje Adj(n;)
S wl)

1d. wljeWL(ni)
3.Compute the effective-load: [; =—t =

€i €i
4.For each node "€ Adj(n;) do

a.if n; is master node then send message

¢
<ctty,n;,ld;, ——1——,
llong_links|+1
4.1,1d;,¢;, FS;,"B",[0,""]>
5.Read messages from the messages queue
a. if T="B" then Info= InfoU{< ctrd,nf,ldf Cf FSf >}
b.if T="G" then
Dinfo= InfoUl<ctrg,n;,1d; +g,¢;,FS; > <ctrg,nz,ld g —g,c¢,FS; >}

FS;,"B",[0,"">

b.else send message<ctr;;

G

3)For each node n;je Adj(n;) do

2)l; =

1

a.ifn i is master node then send message

C.
<ctt;g,n;,1d; + 1 FS."B"[0,"
i & llong_links [+1" i {0."1>

b.else send message<ctr;;,n;,1d; +g,c;, FS;,"B",[0,"">

ld;+ % Id;
jelnfo

G+ X ¢
jelnfo

6.Compute the average effective-load 1 avg =

7. For each node n ;€ Adj(n;) do //Define the Assistant Neighbors

ld]- Id;
a. if - < lm,g and C—] <1I; then Ny o = Niproer Ut
] ]
8.Let load-difference LD; =(I; -1 m,g)
9.If LD <0 then exit; else LBOWL(1;),Nyper LD;)

EndBegin

j

2. Step 2 (Line 2 in NeighborhoodLB Algorithm): Each node n; also
defines an array mig(n;) to store the amount of the migrated work-
load that node n; will transfer to the under loaded nodes of the set
neighbor-nodes. Initially, the workloads that will be transferred to
other nodes is 0 for all nodes in the set of neighbor-nodes.

3. Step 3 (Line 3 in NeighborhoodLB Algorithm): Each node n;
computes its initial effective-load I; via the equation defined in
Definition 2 (i.e. the total weight of the workloads assigned to node
n; divided by the capacity of node n;).

To illustrate our proposed algorithm, we will use the example
shown in Section 3. Fig. 4 shows the constructed FSW overlay net-
work via the steps illustrated in Section 3. Table 4 shows the ini-
tial status of the nodes before and after executing the initialization
stage. The node information before start executing the load-balancing



{<C, 7,40, 60>, <C, 8,10, 50>, <X, 9, 15, 10>, <A, 10, 25, 15>}

{<AX, 11, 20, 55>, <AX, 12, 25, 20>}
{<A, 3,40, 70>, <A, 10,25, 15>}

After the broadcasting stage
{<X,2,50,50>, <X, 9, 15, 10>}
{<X, 1,30, 60>, <X, 9,15, 10>}
{<A, 6,20, 45>, <A, 10, 25, 15>}
{<C,5,70,20>, <C, 8,10,50>}

Info©

0.444
0.677
0.2

0.571
1167
0.5

0.5

mig

(0,0)
(0,0)
(0,0,0,0)
(0,0)
(0,0)

Info®

After the initialization

30
50
40
10
70
20
40

1d;

{<C, 7>, <C, 8>, <X, 9>, <A, 10>}

{<A, 3>, <A, 10>}

{<AX, 11>, <AX, 12>}
{<C, 5>, <(C, 8>}

{<X, 2>, <X, 9>}
{<X, 1>, <X, 9>}
{<A, 6>, <A, 10>}

Adj(n;)

60
70
30
60
45
60

Before starting the algorithm

M?

Ctrig

Nig

The status of the nodes.

Table 4
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algorithm (i.e. before executing the initialization stage), the node id,
the cluster id, whether a node is a master node or not, the node ca-
pacity, the neighbor-nodes set, and the load of a node, are given in
columns 1, 2, 3, 4, 5, and 6 respectively. Each node in the system ex-
ecutes the same proposed algorithm in parallel. In the initialization
stage, each node: (1) defines Info set to store the information about
its neighbor-nodes, (2) defines mig array to store the amount of ex-
cess workload to be transferred, and (3) computes its effective-load.
Columns 7, 8, and 9 in Table 3 show the status of the nodes after ex-
ecuting the initialization stage. Because of size constrains, we did not
add the FS of each node in the table (i.e. the FS of each node is given
previously in Table 2).

o The information Broadcasting Stage

1. Step 4 (Line 4 in NeighborhoodLB Algorithm): Each node n;
broadcasts its initial state (i.e. initial information after execut-
ing the initialization stage) to only its neighbor-nodes (the nodes
stored in the set adj). Since a master node has connections with
some master nodes located in other clusters that have similar
functionality via long-links, and it has also connections with the
in-domain nodes located in the same cluster via short-links (see
Fig. 4, node 10 is a master node that has short-links with nodes 3
and 6, and at the same time has long-links with nodes 5 and 12),
the capacity of a master node that will be sent to other nodes is di-
vided among the clusters c;/|long — links| + 1 in the broadcasting
stage.

In fact, each node maintains a FIFO message queue which
holds the incoming messages. Each message has the format (ctry,
ng, ldg, ¢, FSy, “T", [g, “F']), where ctriq is the cluster id where
the node that sends the message is located in, ny is the id
of the sender node, Id; the loads of the sender node, ¢ is the
capacity of the sender node, FSy is the functionality set of the
sender node, T is the type of the message, g is the migration in-

e=jenjenfenjanfes formation (i.e. information about the migrated task and the func-

tion F that can process the migrated task). There are two types of
messages:

Workload migration message (“G”): n; sends a “G”-message
to n; to tell it that n; wants to migrate g units of workload
to nj.

Broadcast message (“B”): broadcast the status (i.e. cluster id,

{<X, 1,30, 60>, <X, 2, 50, 50>, <C, 5, 70, 20>, <AX, 12, 25, 20>}
{<A, 3,40, 70>, <A, 6, 20, 45>, <C, 5, 70, 20>, <AX, 12, 25, 20>}

{<AX, 4,10, 30>, <AX, 12, 25, 20>}
{<AX, 4,10, 30>, <AX, 11, 20, 55>, <A, 10, 25, 15>, <X, 9, 15, 10>}

(<G, 5,70, 20>, <C, 7, 40, 60>}

0.556
0.364

0.417

(0,0,0,0)
(0,0
(0,0,0,0)

(0,0)
(0,0,0,0)

10
15

5
20
25

— cﬁ node id, load, capacity, and FS to all neighbor-nodes).
a= ol 2. Step 5 (Line 5 in NeighborhoodLB Algorithm): The main part
X% Iy of the algorithm starts when a node takes the first message from
X— X = the queue and processes the message according to its type. If the
S 8 - X message type is “B”, then the node only updates its information
LV Va = stored in the Info set. If the message type is “G”, then it updates the
K r\A: é %% information stored in the Info set, computes its effective load, and
935S X X ) broadcasts its new status to its neighbor-nodes. Initially, the first
SAss %" message received by each node is “B” type messages. Table 4 holds
D] 13 % 3 the state of the system after broadcasting (step 4 and step 5). The
ataainafnate ?g set Info stores the information about the node and its neighbor-
S nodes.
=
ggung g o Computing the average effective-load
é 1. Step 6 (Line 6 in NeighborhoodLB Algorithm): After updating
- the information stored in the Info set (i.e. after the broadcasting
LS ? gf’gﬁ stage), each node computes the average effective-load lqg of a
é é é" node and its neighbor-nodes to facilitate 1) making a decision (i.e.
g g E whether a node overloaded or not) later by a node, and 2) defin-
}1_,: - ing the set of assistant neighbors in the next stage. The average
Ux<2Z|E o £ effective-load is computed by the following equation:
° % £ Id; + 3 jcingo d;
ST o avg = . ~— .
w2 X ;:_:E ::': ) Ci+2}'€infocj

Note that, in the above formula the capacity of all nodes is
considered since in heterogeneous systems the capacity is varied
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Table 5

The system status.
nig i lavg Niower LD;
1 0.500  30+50+15/(60 +50 + 10) = 0.792 {3 -0.292
2 1.000  30+50+15/(60 + 50 + 10) = 0.792 {1} +0.208
9 0.500 15+ 30+ 50+ 70 +25/(30 + 60 + 50 + 20 + 20) = 1.056 {1} —-0.556
3 0.571 40 +20 +25/(70 + 45 + 15) = 0.654 {6} —0.083
6 0.444  40+20+25/(70 +45 +15) = 0.654 { -0.210
10  0.566  25+40+20+70+25/(45 +70 +45 + 20 +20) = 0.900 {6} -0.334
5 1167 70 +40+ 10 + 15 + 25/(60 + 60 + 50 + 10 + 15) = 0.821 {8} —-0.346
7 0.677 40+ 70+10/(60 + 20 + 50) = 0.923 {8} —0.246
8 0.200 10+ 70 +40/(50 + 20 + 60) = 0.923 {3 -0.723
4 0332 10+20+25/(30 +55 +20) = 0.524 {} —-0.191
1 0364  20+10+25/(55+30+20)=0.524 {4} —-0.160
12 0417  25+10 +20 + 25 + 15/(60 + 30 + 55 + 15 + 10) = 0.558 {411} -0142

Bold text refers to master nodes, while non bold text refers to in-domain nodes.

from one node to another. Column 3 in Table 5 shows the average
effective-load computed by each node.

» Finding the set of assistant-neighbors stage

1. Step 7 (Line 7 in NeighborhoodLB Algorithm): According to the
average effective-load computed in step 6 by each node, each
node defines in this stage its assistant-neighbors Nj,;. The set of
assistant-neighbors Ny, of node n; are the set of nodes that have
effective-load lower than the average effective-load computed by
node n;.

Column 4 in Table 5 shows the assistant neighbors Ny, of
each node.

o Workload transfer strategy

1. Step 8 (Line 8 in NeighborhoodLB Algorithm): The decision of
calling a procedure LB to migrate the excess workloads or not de-
pends on the load difference between the current effective-load
of node n; and the average effective-load computed by n;. There-
fore, the excess workload will be migrated if the load difference is
positive. As seen in column 5, Table 5, n, and ns are over-loaded
nodes.

¢ Load-balancing mechanism (Procedure LB)

The pseudo-code of the procedure LB is given in Procedure 1.
In the procedure LB, the load difference LD;, the set of assistant-
neighbors Njer» and the set of the assigned workloads WL(n;) are
formed the procedure input parameters. The procedure will be called
if the LD; is positive, and it works until the load difference of the heav-
ily loaded caller node n; becomes less than zero LD; = I; — lgyg < 0. In
other words, the procedure works until the heavily loaded node be-
comes under-loaded, which means the effective-load of a node is less
than the average effective-load computed by a node. The procedure
first computes the excess workload §; of the heavily-loaded node n;
that needs to be transferred.

Then, it sorts: 1) the set of assistant-neighbors Nj,,,.; in descend-
ing order based on their effective-loads, and 2) the set of submitted
workloads WL(n;) in ascending order in accordance with the weight
of each submitted workload. The procedure also checks each node
in the set Ny, and computes how much a node can receive « (i.e.
the workload that a node can receive is equal to the difference be-
tween the effective-load of a node and the average effective-load). The
procedure migrates only the workload that has weight less than or
equal to «. This step plays a key role in redistributing the excess
workloads to the assistant-neighbors in a way that ensures that the
node who receives the workload maintains the under-loaded status.
The LB procedure is terminated when the load difference of the caller
heavily-loaded node becomes negative. In other words, the procedure
is terminated when the node becomes under-loaded. In the given
example, node ns is an overloaded node located inclusterc. Node ns

PROCEDURE LB

Procedure LB(WL(n;),LD;, Nigwer)

Begin

While(LD; >0)

1.Compute the excess workload of n; : 6; = LD; x¢;

2. sort the submitted workloads in ascending order
3. sort the assistant neighbours in descending order
4. Letj=0

5.Foranoden; in Ny, o,

]

a. compute the excess workload n jean receive a=(1

b. If w(wlg) <@ and Fis in FSn], then

m]g-lj)xc]-

1) k= k+1
2) send message to node nj< n;,li,c;, FS;,"G" [a, F]>
else
1) go to step 5
End For
End While

End Begin

Procedure 1.

calculates its excess workloads, sorts the set of assistant-neighbors
in descending order, and sorts the assigned workloads in ascending
order to migrate the excess workloads to the lightly-loaded nodes
stored in the assistant-neighbor set. It checks the amount of workloads
that each node can accept and checks if the function that can process
the task is in the FS of the node in the set of assistant-neighbors. This
step is important to ensure that the node that will receive the mi-
grated workloads 1) will maintain the under loaded status, and 2)
will not re-migrate tasks (see Fig. 5).

4.2.3. The convergence

Our proposed solution (i.e. constructing FSW and the proposed
algorithm) guarantees converges to the fairness state given sufficient
time.

Definition 3 (Fairness state). For all n; € N, when the effective-load J;
of all n; are equal Iy = = I;; = gy, it is said that the system G achieved
fairness status.

Lemma 1. Given L = (I{, 5, 1%) is the array of effective-loads for the
nodes in the system at time t sorted in ascending order, where lg is
effective-load of node 1 at time t. In time t, if there is at least one over-
loaded node n; (i.e. LD; > 0) then Lt+1 is lexicographically greater than L.
In other words, the lightly-loaded nodes at time t will receive the excess
workload at time t + 1.
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workloads

w1 | w2 | w3 w4
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average effective-load
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Fig. 5. Workloads migration example. Workloads will be migrated to nodes whose
effective-load is less than the average effective-load.
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Fig. 6. An illustration example supports Theorem 1, where ¢t — 1 shows the state of

nodes in time ¢ — 1, t shows the migration in time t, and t + 1 shows the migration in
time t+ 1.

Proof. Let X # ¢ be the set of overloaded nodes in the system (i.e.
nodes with LD > 0) who needs to migrate some workloads to other
nodes at time t. In reality, a node i € X will also assign additional
workloads in time t. Thus, the nodes that migrate workloads in time
t will reduce their effective-load at time t + 1. Let y be the node
that has lowest effective-load at time t + 1. Assume that y occu-
pies the kth position of the array L', where L1 similarly is the
effective-load array of nodes at time t + 1 sorting in ascending order.
LetQ = (I{.L..... IL_,) be the array of the effective-loads in first
k — 1 positions of L. In order to prove this lemma we have to consider
two cases: 1) A set Q;,1 contains a node i that received workloads in
time t (node 3 in Fig. 6). Thus, node i belongs to both Q; and Q;,1,
and its effective-load value is increased in time t + 1 since it will re-
ceive some migrated workload. Therefore, there will be at least one
workload value in set Q;, strictly greater than one value in Q;. Ac-
cordingly, L'+ is lexicographically greater than Lf. 2) There are nodes
in which located in Q;,; and did not migrate or receive workloads at
time t (node 2 in Fig. 6). In this case, the effective-load value at kth
position at time t + 1 is strictly greater than the effective-load value
in the same position at time t which has received workload from X!
and therefore, L+1 is lexicographically greater than Lf. OJ

Table 6

Parameters used in the simulations.
Description Values
The assigned workloads 1000-10,000
The number of nodes in the system 100-1000

The cluster size 1-64
The number of functions in the FS per node ~ 1-20

NSRS

Theorem 1 (Convergence). In heterogeneous system, if nodes in the
system execute the NeighborhoodLB algorithm, then the system con-
verges to a balanced state.

Proof. Given a heterogeneous unbalanced system. Each node in
the system separately executes the proposed algorithm in order to
achieve the convergence state. Let n; be the most heavily loaded node,
i.e. [ — layg > 0, and all other nodes j € N who have l] <l;and lj < lavg
form the set of assistant neighbors Nj,,,., of node n;. When [; > lqyg (i.€.
l; — layg > 0). Thus, the result of Lemma 1 shall be used, which guar-
antees that the array of effective-loads sorted in ascending order, in
the next time moment, is lexicographically greater than the array of
the current step.

Given that the NeighborhoodLB algorithm is executed in a given
time t. Let SCN be the nodes executed the algorithm in time t. Let
L! be the array of effective-loads sorted in ascending order in time t.
It has been proven in Lemma 1 that L'+ is lexicographically greater
than Lt

Let Spin be the lightly loaded nodes in time t. There exists at least
one node v € Sy, which is assistant neighbor to node k, such that I >
I£. Now by using the proposed algorithm, node k migrates a portion of
its excess workload to node v, but v does not migrate any workloads
in time t because v is under loaded. In time t + 1 the effective-load
of node k decreases; however, its effective-load value never becomes
less than the effective-load value of node v which is given by l,‘(“ >
lavg > 15 . Thus, L*+1 is lexicographically greater than L' meaning that
the sorted array of effective-load values of nodes in time t + 1 are
lexicographically greater than the sorted array of the effective-load
values of nodes at time t. [

5. Simulations
5.1. Experimental setting

We have implemented a discrete-event simulator using the Sim-
Java (Howell and Mcnab, 1998) to compare the performance of our
proposed approach with two of the most popular dynamic diffusion
approaches, the nearest neighbor algorithm (Tada, 2011) and the orig-
inal neighborhood algorithm (Neelakantan, 2012).

As the usefulness of any load-balancing algorithm is directly de-
pendent on the quality of its load measurement and the efficiency
of being applied to solve practical problems, each approach (our ap-
proach, the nearest neighbor algorithm, and the original neighbor-
hood algorithm) was separately applied to a personalized m-cafeteria
system (Daraghmi and Yuan, 2013), and the run-time behavior of
each algorithm was investigated. The three approaches were run on
a set of default values: number of assigned workloads, number of
nodes, maximum cluster size, and the average number of the func-
tions executed per node. The simulation parameters, and their values
are given in Table 6.

For fairness of comparison, we have tested the three approaches
on random graphs (random scenario) generated via random genera-
tor (Peixoto, 2014). In the random scenario, the generator will ran-
domly distribute nodes with a functional set associated with each
node in the graph. As shown in Table 6, maximum number of func-
tions that each node can execute is 20. Since, in this research, we
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Fig. 7. The response time of original neighborhood approch, nearest neighbor approach, and our approach for various assigned workloads.

propose a two-stage approach (creating a functional small world
overall network and then run the NeighborhoodLB on the created
FSW) to improve the performance of load-balance algorithm, the ran-
dom graph, generated previously, will be converted to FSW before ex-
ecuting our proposed NeighborhoodLB algorithm. On the other hand,
the other two algorithms, the nearest neighbor algorithm and the
original neighborhood algorithm were executed directly on the gen-
erated random graph since they do not employ the first stage of cre-
ating FSW.

The comparison tests were based on two parameters: the
assigned-workloads and the number of nodes, and the measurement
of the performance of the algorithm was based on four metrics: the
throughput, the response time or the completion time, the commu-
nication overhead, and the movement cost. The response time mea-
sures the total time that the system takes to serve a submitted re-
quest (task). In this experiment, to simulate real world distributes
systems, we randomly submitted tasks to nodes. Initially, the request
state will be “submitted to node” and will be changed to “complete”
upon serving that request. To measure the response time, we count
the time needs to change the node response time from “submitted
to node” to “complete”. The throughput is the rate at which a node
in the system sends or receives data (i.e. throughput = 1/response
time). In other words, the throughput is defined as the number of
nodes that change its status to “complete” in a time unit. As we can
see from the proposed algorithm, the load balancing algorithm needs
to migrate request from one node to another one in order to achieve
a balanced state. We use a simple linear cost model (Ganeasan et al.,
2004), where moving one request from any node to any other node
costs one unit. Such a model reasonably captures both the network
communication cost of transferring data, as well as the cost of modi-
fying local data structure at the node.

Only one parameter was changed each time so that any changes
in the performance would be based solely on this parameter. In fact,
results achieved from these tests were used to study: (1) the behavior
of the different load-balancing algorithms under the same condition;
(2) the behavior of the algorithms for random systems with differ-
ent number of nodes; (3) the behavior of the algorithms for different
workloads distribution.

To study the effects of changing the assigned workloads on the
average response time, the throughput, the communication over-
head, and the movements cost, the assigned workloads were varied
from 1000 to 10,000 workloads unit, and the workloads distribution
among the nodes were carried in the following manner.

o The initial workload distributions varying 25% from the average
effective-load to represent a situation where all nodes have sim-
ilar workloads at the beginning and those workloads are close to
the average effective-load; in other words, the initial situation is
quite balanced.

The initial workload distributions varying 50% from the average
effective-load to constitute the intermediate situations.

The initial workload distributions varying 75% from the average
effective-load to constitute the advanced intermediate situations.
The initial workload distributions varying 100% from the average
effective-load to form the situation where the difference of work-
loads between nodes at the beginning is considerable.

To study the effects of changing the number of nodes on the av-
erage response time, the throughput, the communication overhead,
and the movements cost, the number of nodes were varied from 100
to 1000 nodes and the distribution of the overloaded nodes were car-
ried in the following manner.

e 25% of nodes are idle, 75% of nodes are overloaded.
e 50% of nodes are idle, 50% of nodes are overloaded.
o 75% of nodes are idle, 25% of nodes are overloaded.

5.2. Comparative study

5.2.1. Average response time

The total time taken for the three algorithms, our proposed algo-
rithm, the original neighborhood algorithm, and the nearest neigh-
bor algorithm, to complete the assigned workloads increased as the
assigned workloads was increased as shown in Fig. 7. This situation is
expected as the more workloads to be assigned, the longer it takes
to complete all the assigned workloads. However, it was observed
that our proposed method (i.e. the green line) performed better than



E.Y. Daraghmi, S.-M. Yuan / The Journal of Systems and Software 107 (2015) 187-203 199

Number of Nodes vs. Response Time

800

700

600

Response Time
S w
o o
S =}

w
o
o

i i i I
0 100 200 300 400

i i i I I
500 600 700 800 900 1000

Number of Nodes

—>— Original Neighborhood Approch25%
—© — Nearest Neighbor Approch25%
=% - OUR Approach25%

—&— QOriginal Neighborhood Approch50%

—3 — Nearest Neighbor Approch50%

=G - OUR Approach50%
—&— Original Neighborhood Approch75%
—% — Nearest Neighbor Approch75%

= £ - OUR Approach75%

Fig. 8. The response time of original neighborhood approch, nearest neighbor approach, and our approach for various number of nodes. (For interpretation of the references to

color in the text, the reader is referred to the web version of this article.)

both the nearest neighbor scheme and the original neighborhood al-
gorithm in all cases. We can see that when comparing the results of
our proposed method and the original neighborhood algorithm (i.e.
the red line) and the nearest neighbor algorithm (i.e. the blue line), it
is observed that the gap between these three curves was widening as
the assigned workloads was increased. This shows that the method
actually reduced the response time or the total completion time by
a considerable amount (greater speedup) in comparison to the orig-
inal neighborhood algorithm and the nearest neighbor algorithm as
amount of workloads increased.

Fig. 8 shows that the response time of the proposed method
(i.e. green line) slightly increased when the number of nodes was
increased. In contrast, the response time of the original neigh-
borhood method (i.e. red line) and the nearest neighbor method
(i.e. blue line) sharply increased when the number of nodes was
increased.

The reasons behind achieving better results (i.e. achieving better
response time when increasing the assigned workloads or when in-
creasing the number of nodes): 1) our proposed approach constructs
a FSW overlay network and then executes the proposed neighbor-
hood load-balancing within the constructed network. Specifically,
constructing the overlay network reduces the number of nodes that
exchange the workload information, decreases the network diam-
eter, and the communication overhead. As a result, all the stages
of the proposed algorithm, such as updating the information of
the neighbor nodes, calculating the average effective-load, choosing
the assistant neighbors, and migrating tasks to the assistant neigh-
bor that can process the task, will be performed in less time. Our
approach also plays a significant role in reducing the time delay
results from the task re-migration process as nodes with similar
functionality can communicate with each other. As illustrated before,
re-migrating tasks occur because of out of the node service scope sit-
uation; 2) our proposed approach utilizes the on-state information
exchange strategy to broadcast its information to only its neighbor-
nodes, which has the advantages of achieving more accurate calcu-
lation to the effective-load and the average effective-load without
increasing the communication overhead (i.e. each node collects the

information from less nodes, only neighbor nodes, as compared with
the original neighborhood approach and the nearest neighbor ap-
proach); 3) our approach utilizes the concepts of assistant-neighbors
and thus heavily loaded nodes will send only (i.e. without accept-
ing any workloads from other nodes since the node is currently
overloaded) the excess workloads to the lightly loaded nodes
“assistant-neighbors”, whereas the lightly loaded nodes will only re-
ceive the migrated workloads without sending any workloads. In con-
trast, in the original neighborhood approach and the nearest neigh-
bor approach, all nodes will send and receive workloads at the same
time which in turn increase the communication overhead and thus
increasing the response time; 4) it is intuitive that a system with
longer diameter will take longer time to converge as the number of it-
erations to propagate the workloads to lightly loaded nodes is propor-
tional to the network diameter; thus, reducing the network diameter
via constructing FSW plays a key role in reducing the response time
of our proposed approach. In contrast, in the original neighborhood
approach and the nearest neighbor approach, each node has to col-
lect the workloads information from larger number of nodes which
in turn leads to increase response time.

5.2.2. Throughput

As shown in Fig. 9, our method outperformed the original neigh-
borhood algorithm and the nearest neighbor method in terms of the
system throughput in all assigned workloads distribution cases. We
can notice that the throughput of the system that executes our pro-
posed approach steadily increased even the assigned workloads in-
creased, whereas the throughput of the system that execute the orig-
inal neighborhood approach or the nearest neighbor approach drops
quickly when the assigned workloads increased.

Fig. 10 shows that the throughput achieved by the original neigh-
borhood algorithm as well as the nearest neighbor approach de-
creased sharply as the number of nodes in the system increased,
while the throughput achieved by our proposed method remains sta-
ble even when increasing the number of nodes.

This is because our proposed approach reduces the task comple-
tion time which in turn increases the number of tasks completed in
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a time unit. The reasons behind this are: 1) constructing the FSW
that allows nodes with similar functionality to communicate with
each other, reduces the possibility of re-migrating tasks (re-migrating
tasks consumes time); 2) checking the function that can process the
task with the FS before migrating the task, eliminate the possibil-
ity of re-migrating tasks. Note that, the first point reduces the time
of performing the second point; thus, better results are achieved;
3) reducing the number of nodes that exchange the workload infor-
mation, decreasing the network diameter, and decreasing the com-
munication overhead reduces the time of performing the proposed
algorithm, such as updating the information of the neighbor nodes,
calculating the average effective-load, choosing the assistant neigh-
bors, and migrating tasks to the assistant neighbor. As a results, the
number of tasks completed in a time unit will be increased; 3) utiliz-
ing the concepts of assistant-neighbors allowing only heavily loaded
nodes to send only (i.e. without accepting any workloads from other
nodes since the node is currently overloaded) the excess workloads to
the lightly loaded nodes “assistant-neighbors”. Also, the lightly loaded
nodes will only receive the migrated workloads without sending any
workloads. In contrast, in the original neighborhood approach and
the nearest neighbor approach, all nodes will send and receive work-
loads at the same time which in turn increase the communication
overhead and thus decreasing the task completion time. Moreover,
the importance of the average effective-load also appears when decid-
ing the amount of workloads to be migrated; if the migrated work-
loads to one node is too small, then the workload distribution will
take longer (i.e. which in turn decreasing the system throughput). In

contrast, if the migrated workloads to one node are too large, then the
overloaded node may transfer too much workloads to its neighbor-
nodes and thus this overloaded node will not have sufficient workload
to transfer to the remaining lightly loaded nodes. Therefore, by using
the average effective-load, each node obtains an amount of workload
proportional to its capacity and thus no node is privileged which re-
sults in increasing the system throughput (i.e. the number of work-
loads completed in unit time).

5.2.3. Communication overhead

Fig. 11 shows that the average number of messages sent per node
increased when the assigned workloads increased. This is because
when the assigned workloads increased, the number of messages
sent per a node to broadcast its new status increased. We can see that
our proposed approach produces less communication overhead than
both the original neighborhood approach and the nearest neighbor
approach even when increasing the assigned workloads.

Fig. 12 shows that the average number of messages sent per node
increased when the number of nodes increased. This is because when
the number of nodes increased, each node will send more messages
to broadcast its information to the other nodes. We can see that our
proposed approach produces less communication overhead than the
both the original neighborhood approach and the nearest neighbor
approach because: 1) constructing a FSW decreases the number of
nodes that exchange the workloads information which in turn de-
creases the communication overhead; 2) constructing a FSW also
decreases the network diameter which directly has the impact of
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decreasing the communication overhead; 3) each node that exe-
cutes the proposed NeighborhoodLB algorithm sends/receives mes-
sages to/from only its neighbor nodes which plays a key role in re-
ducing the communication overhead; 4) our approach utilizes the
on-state information exchange strategy which reduces the com-
munication overhead; 5) our approach (constructing the FSW, and
the proposed load-balancing algorithm) eliminates the possibility
of re-migrating tasks which in turn decreases the communication
overhead.

5.2.4. Movement cost

Fig. 13 shows the movement cost of original neighborhood ap-
proach, the nearest neighbor approach, and our proposed approach
vs. the assigned workloads, where the movements cost is defined as
the total migrated workloads divided by the total assigned workloads
in the system. Clearly, the movements cost of our proposed approach
is only 0.32 times the cost of the original neighborhood approach,
while the movements cost of our proposed approach is only 0.34
times the cost of the nearest neighbor approach.
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Fig. 14 shows the movement cost of original neighborhood ap-
proach, the nearest neighbor approach, and our proposed approach.
We can see that the movements cost of our proposed approach is only
0.33 times the cost of the original neighborhood approach, while the
movements cost of our proposed approach is only 0.30 times the cost
of the nearest neighbor approach.

This is because each node in our proposed algorithm calculates the
average effective-load to decide whether a node itself is overloaded
or not. Specifically, the importance of the average effective-load ap-
pears when deciding the amount of workloads to be migrated; if
the migrated workloads to one node is too small, then the number
of workloads that will be migrated will be high (i.e. which in turn
increasing the movement costs). In contrast, if the migrated work-
loads to one node is too large, then the overloaded node may trans-
fer too much workloads to one neighbor node and thus increasing
the movements cost. Therefore, by using the average effective-load,
each node obtains an amount of workload proportional to its capac-
ity and no node is privileged which leads in decreasing the move-
ments cost. Moreover, our approach utilizes the concepts of assistant-
neighbors and thus heavily loaded nodes will send only (i.e. without
accepting any workloads from other nodes since the node is currently
overloaded) the excess workloads to the lightly loaded nodes
“assistant-neighbors”, whereas the lightly loaded nodes will only re-
ceive the migrated workloads without sending any workloads. In con-
trast, in the original neighborhood approach and the nearest neighbor
approach, all nodes will send and receive workloads at the same time
which in turn increase the number of workloads that will be migrated
and thus increasing the movements cost. Finally, our approach (con-
structing the FSW, and the proposed load-balancing algorithm) elim-
inates the possibility of re-migrating tasks which in turn decreases
the movements cost.

6. Conclusion

A novel load-balancing approach to deal with load rebalancing
problem in large scale, dynamic and heterogeneous systems has been
presented in this paper. Previous research concluded that the techni-
cal, and the structural load-balancing factors: (1) increasing the num-
ber of nodes in the system (i.e. the number of the nodes exchange the
workload information); (2) increasing the network diameter which is
defined as the longest shortest path between any two nodes of the
network; (3) increasing the communication overheads or the com-
munication delays among the nodes decrease the performance of any
load-balancing algorithm as well as affect the algorithm convergence
rate. Moreover, additional delay may occur because of the task re-
migration process. Therefore, we propose a two-stage approach that
first constructs the FSW based on the properties of the small world
network and the functionality of each node. Constructing the FSW

reduces the number of nodes that exchange the workloads informa-
tion in the system, decreases the diameter of the network and re-
duces the communication overhead, and decreases the delay resulted
from re-migrating tasks. We also propose a load-balancing algorithm
that considers the capacity of each node in order to execute the al-
gorithm within the constructed FSW overlay network. Our proposed
approach strives to balance the loads of nodes, increase the system
throughput, decrease the response time, reduce the communication
overhead, deteriorate the demanded movements cost as much as pos-
sible, while taking the advantages of the nodes functionality and the
nodes heterogeneity. In the absence of representative real workloads,
we have investigated the performance of our proposed approach and
compared it against competing algorithms, i.e. the original neighbor-
hood approach, and the nearest neighbor approach. The simulation
results are encouraging, indicating that our proposed algorithm per-
forms very well. Our proposed approach dramatically outperforms
the original neighborhood approach, and the nearest neighbor ap-
proach in terms of response time, throughput, communication over-
head, and movements cost. Finally, we have proved that the proposed
approach converges to the state of fairness where the effective-load
in all nodes is the same since each node receives an amount of work-
load proportional to its processing capacity. Therefore, we conclude
that this approach has the advantage of being fair, simple and no node
is privileged.
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