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Abstract  Accurate short-term traffic flow prediction is necessary for the implementation of Dynamic Route Guidance as 
motorists need to know traffic conditions ahead. The accuracy of short-term traffic flow prediction depends on how 
prediction models handle traffic flow characteristics such as temporal correlation, overdispersion, and seasonal patterns. 
Several data mining methods have been proposed to model and forecast traffic flow for the support of congestion control 
strategies. However, these methods focus on some of the characteristics and ignore others. Some methods address the 
autocorrelation and ignore the overdispersion and vice versa. In this research, we propose a data mining method that can 
consider all characteristics by capturing the flow autocorrelation, trend, and seasonality and by handling the overdispersion. 
The proposed method adopts the Holt-Winters-Taylor (HWT) count data method. Data from Taipei city are used to evaluate 
the proposed method which outperforms other methods by achieving a lower root mean square error. Then the proposed 
method is used in a dynamic route guidance systems to enhance the efficiency of guidance.  
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1. Introduction 
Dynamic Route Guidance (DRG) as a part of Advance 

Traveller Information Systems (ATIS) aims to provide 
travelers with real-time information about traffic condition 
on routes. Due to the continuous change of traffic conditions 
in urban areas, travellers may select routes that will be 
congested during their trips. This problem can be overcomed 
by predicting traffic flow for a short time ahead to determine 
the status of all roads on routes during trips. Prediction 
makes DRG adaptive to the traffic changes on roads and 
enables travellers to choose the best routes which has the 
shortest travel time. 

Traffic flow is time series data consisting of sequences of 
values that are measured at equal or unequal time intervals. 
It has complex characteristics due to the complexity of 
trans-portation network particularly in urban cities which 
contain many intersections with traffic lights controlling 
traffic flow on upstream and downstream roads. These 
characteristics include autocorrelation as the flow time 
series is correlated with its values in the past and the future 
[1-3]. The flow may also have a trend which describes the 
general direction of the time series [3], [4]. Further,     
the flow has seasonal patterns that are repeated every   
week and every day [5]. Furthermore, the flow exhibits  
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overdispersion which indicates that its variance ex-ceeds its 
mean [5]. Addressing these characteristics increases the 
accuracy of traffic flow modeling. 

Several data mining methods have been proposed to 
model traffic flow. These methods include the exponential 
smoothing methods such as the Holt-Winters (HW) method 
[4], the Autoregressive Integrated Moving Average 
(ARIMA) [2], [4], [6], and the Multivariate Structural Time 
Series (MST) [3]. Although these methods can properly 
model autocorrelated data with trends and the seasonality, 
they are sensitive to the high variation. Therefore, the 
accuracy of these methods may deteriorate when data 
become overdispersed. Furthermore, a space-time Negative 
Binomial regression has been proposed to model 
overdispersed traffic flow [5]. However, this model does 
not account for trends and seasonal patterns. 

The only forecasting method that handles time series 
trend and seasonality characteristics as well as 
overdispersion is the Holt-Winters method for count data 
proposed by Taylor and known as HWT count data method 
[7]. This method combines the double seasonal 
Holt-Winters with the Negative Binomial distribution. The 
double seasonal Holt-Winters method allows for the 
simultaneous capturing of small seasons that exist in large 
seasons such as the daily season within the weekly season. 
The Negative Binomial distribution allows the variance to 
exceed the mean during the modeling process by involving 
an overdispersion coefficient. The HWT count data method 
was shown more accurate than other smoothing methods 
which do not handle overdispersion [7]. 
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In this research, we propose a data mining method for 
modeling and forecasting traffic flow accurately. The 
proposed method utilizes the HWT count data method since 
the data used in this research are traffic flows lected from 
Taipei city and have all of the aforementioned 
characteristics. We model the weekly season as a large 
season and the daily season as a small season. The 
coefficients of overdispersion, trend, and seasonality are 
estimated during the training process using a likelihood 
function derived by Taylor [7]. 

The contribution of this research is firstly we propose a 
predictive DRG system by integrating an existing ATIS 
with prediction. We secondly propose a method that can be 
used to model and forecast the autocorrelated and 
overdispersed traffic flows. We thirdly compare the 
proposed method with the HW and the space-time NB 
regression methods, and we show that the proposed method 
outperforms the other two methods because it has smaller 
root mean square errors. This research also defines the 
temporal characteristics of traffic flow as seasonal patterns 
and categorizes these patterns into a weekly traffic season 
and a daily traffic season. 

2. Related Work 
As shown earlier, prediction is necessary for DRG. This 

sections reviews the most relevant methods that have been 
used for traffic flow forecasting in urban areas. 

The field of data mining consists of variety of methods 
that are used to model or forecast time series [8], [9]. In 
traffic context, the accuracy of data mining methods that are 
used to model and forecast traffic flow time series depends 
on how these methods deal with its various characteristics. 
Here, we give a brief review of these methods in terms of 
which method can properly traffic flow temporal 
autocorrelation, trends, seasonal patterns, and 
overdispersion. 

Several ARIMA based methods were used in the traffic 
context as in [2], [4], [6]. These methods were used to 
model different traffic variables such as speed, flow, or 
travel time. The strength of these methods is their ability to 
model autocorrelated data and capture the trends in the data. 
Also, these methods can be formulated as multivariate 
models to address the traffic conditions in several locations. 
However, the ARIMA based methods are usually sensitive 
to high variations and they become less accurate when data 
is overdispersed [7]. In traffic context, these methods were 
shown less accurate and more complex than the HW 
method [3], [4]. 

The HW method was used to model autocorrelated traffic 
flows measured from a single site since it is a univariate 
method [4]. The HW can capture trends and seasonal 
patterns in a single time series. For more accurate results, 
trends and seasonal patterns from different sites were 
treated with a multivariate structural time series (MST) [3]. 

However, these methods did not address the high variation 
or the overdis-persion of traffic flow. Ignoring the 
overdispersion may cause inaccurate forecast results [10]. 

To overcome overdispersion, a negative binomial 
regression that allows the variance to be greater than the 
mean was used to model traffic flows in Taipei city [5]. 
This method is called the space-time multivariate NB 
regression and models traffic flows from a set of correlated 
roads N. The multivariate space-time NB regression model 
can be written compactly as 

, , ,
1 1

ln
N n

d t i j i j
i j

y yα β η
= =

= + +∑∑         (1) 

where ,d ty  is the traffic flow value of the dependent road 

at time t, 1 ≤ d ≤ N, α is the intercept, βi,j is the regression 
coefficient corresponding to road i at time j, n is the size of 
data, and η is the regression error vector where the error is 
independent of all covariates and distributed with mean = 1 
and a variance= 1/ϕ. The results of this method were more 
accurate than the HW method and the MST method. 

The main shortcoming of the space-time multivariate NB 
regression method is its ability to model limited 
autocorrelated data and consequently being incapable of 
addressing trends or seasonal patterns in the data. A better 
option is a method that can capture trends, seasonality, and 
overdispersion. To achieve this, we adopted the HWT count 
data method derived by Taylor [7] by combining the HW 
with the Negative Bino-mial distribution which is popular 
for modeling overdispersed counts. 

3. The Proposed DRG System 
We adopt an existing ATIS from Taipei city and add a 

prediction server so that the ATIS can provide predictive 
DRG services. The Traffic Control Center of Taipei city 
provides ATIS services as well as Intelligent Transportation 
Systems (ITS) services. The current ATIS consists of three 
blocks that are collecting data, processing data into 
information related to ITS and ATIS, and providing 
information to travellers [11]. The Taipei-ATIS relies on 
historical data and real time data of traffic flow and speed, 
which are stored in databases, to provide a web-based route 
planning service and information regarding traffic 
conditions. Traffic conditions of each road are displayed as 
coloured lines on the road network map. 

The availability of future values of traffic flow enables 
the ATIS to provide better route choices and more realistic 
traffic condition. Such future values can be obtained by the 
prediction server which is added to the processing data 
block in the traffic control center servers. The ATIS can 
capture the high variations of traffic and adapt its output to 
the new traffic condition. Fig. 1 shows the overview 
architecture of the proposed ATIS. 
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Figure 1.  The overview architecture of the ATIS that includes the proposed prediction model within the prediction server 

A. ATIS Components 
The main components of the ATIS are: 
• Traffic data collection: The traffic control center in 

Taipei uses different techniques such as microwave 
radar, inductive loops and video camera to collect 
traffic data mainly flow, flow and speed. Traffic flow 
measured on each road segment can be available to 
ATIS servers after a short time. These flows are 
considered as real time data because they describe the 
current traffic condition. The data are stored in a 
database and after sometime these data become 
historical data which can be represented by time series. 
Other information related to incidents can be also fed 
to the ATIS. 

• Traffic data Processing: The historical and real time 
traffic data are processed by the ATIS servers to 
information that is useful to travellers and traffic 
control staff. Information includes traffic conditions on 
roads, travel time of routes, events on roads, traffic 
density, traffic speed and real time video of roads. This 
component also contains the prediction sever. It also 
contains the ITS servers which participate in data 
processing and provide information for congestion 
control, traffic light control and other ITS services. 

• ATIS information delivery: Travellers can obtain traffic 
information such as route plan, travel time, and traffic 
conditions on demand via web. We initially tested the 
web-based ATIS although a large scale ATIS employs 
other means of communication to provide its services. 
The ATIS servers handle the information to web 
servers which is responsible for communicating with 
travellers. Travellers can access the ATIS website by 
desktops or ubiquitously by mobile devices such as 
smart phones and navigational devices. 

B. The prediction method 
The prediction method used in the proposed DRG shown 

in Fig. 1 is derived from the standard Holt-Winters (HW) 
which is also known as the triple exponential smoothing 

method. The HW method is the most commonly employed 
approach for modeling autocorrelated time series and 
seasonal patterns. It was introduced as a forecasting method 
in 1960 [12]. The HW method uses a time series model to 
make predictions assuming that the future will follow the 
same pattern as the past. Its mathematical forms include a 
model for additive seasonal patterns where the size of the 
seasonal variation is not affected by the value of the 
observation, and a model for multiplicative seasonal 
patterns where higher values of observations cause larger 
seasonal variations [13]. We focus on the multiplicative 
HW model only because the data in the research exhibit a 
multiplicative seasonal pattern. 

In the HW method, a series value, Yt, is decomposed into 
three components: the level (Lt), the trend (Tt) which 
de-scribes the long term direction of the series, and the 
seasonality (St) [13]. The multiplicative HW method is 
formulated as follows 

µt = Lt−1Tt−1St−m             (2) 

where µt is the mean value that is used to estimate the series, 
and the transition equations are 

Lt = α(yt / St−m) + (1 − α)(Lt−1 + Tt−1)      (3) 
Tt = β(Lt − Lt−1) + (1 − β)Tt−1 
St = γ(yt / Lt−1) + (1 − γ)St−m 

where t is the time, α, β, γ are the HW smoothing coefficients 
and m is the number of periods in one seasonal cycle which is 
defined as any periodic pattern of fixed length [13]. The 
smoothing model error, ϵt , is assumed to be independent and 
identically distributed following a Gaussian distribution with 
mean = 0 and variance= σ2, i.e., ϵt  ∼ NID (0, σ2) [13]. The 
smoothing coefficients α, β and γ are usually restricted 
between zero and one, and they should be selected carefully 
to minimize residual errors. The equation to forecast future 

values, Y
∧

, is given by 

( ) .t t t m qt q L qT SY
∧

− ++ = +
        

 (4) 
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where q is the forecast horizon [13]. 
Usually data contain more than one cycle, hence Taylor 

developed a double seasonal Holt-Winters method that is 
called the HWT [14]. The developed method (HWT) 
improves the accuracy of the standard HW method [15]. The 
transition equations of the standard HW are modified to 
involve two seasonal indices, Dt and Wt instead of one 
seasonal index, St. The transition equations become 

Lt = α(yt / Dt−m1 Wt−m2 ) + (1 − α)(Lt−1 + Tt−1)  (5) 
Tt = β(Lt − Lt−1) + (1 − β)Tt−1 

Dt = γ(yt / Lt−1Wt−m2 ) + (1 − γ)Dt−m1 
Wt = ω(yt / Lt−1Dt−m1) + (1 − ω)Wt−m2 

where m1 represent the number of periods in the daily season 
Dt and m2 represent the number of periods in the weekly 
season Wt. Future values can be forecasted as follows 

( ) 1 2t t t m q t m qt q L qT D WY
∧

− + − ++ = +      (6) 

where q is the forecast horizon. 
The HW and the HWT methods do not handle 

overdis-persion. An improvement was proposed in [7] by 
combining the HWT with the NB distribution to allow the 
HW to model overdispersed count data. Overdispersed count 
data means that the variance is greater than the mean as    
σ2 = µ + ϕµ2 where µ is the mean, σ2 is the variance, and ϕ  
is the overdispersion parameter [10]. In this case, Taylor 
showed that the smoothing coefficients α, β, γ and ω as well 
as the overdispersion parameters ϕ and ψ can be estimated by 
maximizing a likelihood function given by 
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where n is the size of data and Γ is the gamma function [7]. 
The parameter ψ controls the degree of overdispersion where 

( )1 / 1 iψ µ ϕ= +  such that 0 1ψ< < . 
The resulting method is referred to as HWT count data 

method, and it improves the accuracy of the HW method [7]. 
The HWT count data method also outperforms other 
smoothing methods which do not account for overdispersion 
[7]. 

4. Methodology 
In this section, we show how we apply the HWT count 

data method to the data used in this research. We also present 
and discuss the results of the forecasting. 
A. Data 

1) Data set: The data consists of traffic flows of 13 sig- 
nalized arterial road segments in Taipei city. Fig. 2 shows the 
traffic flow direction and the road segments. Microwave 
Radar Vehicle Detectors were used to record the data for 19 
days from January 21, 2008 at 00:00 to February 8, 2008 at 
11:58 including four weekend days. The collection of dense 
data with short distance between two measuring sites, 200m 
to 400m, and short time interval between two successive 
observations, two minutes, is necessary to capture all flow 
patterns and variations. 

Initially, the data were inspected and invalid records were 
found including missing flow values, negative flow values 
and zero flow values when speed is greater than zero. The 
invalid data resulted from detector malfunction or failure. 
The number of the invalid records of each road is less than 20 
records per day which is not large and does not affect the 
accuracy of the modeling. To replace an invalid data record, 
we used an interpolation function that calculates the average 
of the preceding value and the following value of that record. 

2) data characteristics: The traffic flow of a selected road, 
e.g. R8, is represented by a time series that is plotted in Fig. 3 
for 19 days and in Fig. ?? for a single day. Fig. 3 illustrates 
that the traffic flow has a weekly pattern which shows that 
the flow in workdays is different than the flow in weekends. 
Further, Fig. 3 illustrates that the traffic flow has daily 
seasonal patterns which includes intraday seasonal patterns, 
Fig. 4. The Intraday seasons are categorized into: a 
low-traffic season when the flow is less than the mean and 
often exists in the early morning from 00:00 to 6:00, a 
high-traffic season when the flow is greater than the mean 
and occupies time periods from 7:00 to 9:00 and 17:00 to 
19:00, and an average traffic seas1on when the flow is 
around the mean. The flow in all roads follows the same 
patterns. 

 

Figure 2.  Map of selected roads in Taipei city 
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Figure 3.  The daily patterns of the traffic flow on R8 for 19 days 

 

Figure 4.  The intraday seasonal patterns of the traffic flow on R8 

Additionally, the traffic flow has overdispersion since the 
variance of the flow for each road is greater than the mean as 
shown in Table 1. The flow overdispersion is tested using the 
dispersion value (the Pearson statistic (χ2) divided by the 
degrees of freedom (df)), and data is overdispersed when the 
quotient is greater than one [10]. We find that all flows are 
overdispersed since the quotients for all roads are greater 
than one. The flow overdispersion is related to the flow 
variations within seasonal patterns and to flow fluctuation 
due to traffic lights. The green light phase decreases flow and 
the red light phase increases it, and the fluctuation is 
significant during rush hours, which agrees with the results 
in [16]. The variations may be also caused by other effects 
such as changing weather conditions, road work, and driving 
behavior. 

Table 1. The mean, variance, overdispersion values of flows on selected 
roads 

Roads R1 R4 R5 R8 R9 R12 R13 

Mean 45.4 39.3 54.9 51.2 48.7 60.9 62.9 

Variance 865 830 853 1001 608 989 1270 

(χ2)/df 1.8 2.4 2.1 1.6 2.9 3.1 1.7 

B. Modelling Process 
The traffic flow contains weekly and daily seasons. Since 

the adopted method can model two seasons, we let Dt index 
represent the weekly season and Wt index represent the daily 
season. The data were recorded every two minutes, so the 
number of daily periods, m1, is 720, and the number of 
weekly periods, m2, is 5040. 

The application of the adopted method includes training 
the models to estimate all required coefficients and then 
using the trained models for forecasting. We used 15-day 
data to train the models and four-day data to evaluate the 
forecast. The training process involves initializing the level 
and the trend indices as in [13], where the initial value of 
level L0, which the overall mean, is given by 

L0 = (y1 + ... + ym)/m2,           (8) 

and the initial value of trend, T0, is given by 

( ) ( ) 2
0 2 1 2 2 1 2 2  ...  ...  / .m m m mT y y y y m+ +  = + + − + + (9) 

The index of the large season (weekly season) is 
initialized by the ration of the observed data to the mean as 

Wi = yi /L0 for i = 1 to m2              (10) 
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and the index of the small season (daily season) is initialized 
as 

Di = yi /A0 for i = 1 to m1             (11) 
where A0 is the daily mean of y [7]. 

The training process also involves estimating the 
smoothing and the overdispersion coefficients which can be 
estimated using the likelihood function, equation 7. The 
lower and upper boundaries of all coefficients were set to 
zero and one, respectively. A total of 10800 data records, 
lower and upper boundaries and initial values were used in a 
quasi- Newton algorithm to optimize the coefficients. The 
estimated coefficients are presented in Table 2. After the 
model was trained, we used it to forecast future values as in 
equation 6.  

Table 2.  The smoothing coefficients estimated by the standard HW and 
the HWT-count data methods 

  Roads 

Method coef R4 R5 R8 R9 R12 

HW 
α 0.541 0.466 0.591 0.487 0.596 

γ 0.811 0.827 0.831 0.844 0.796 

HWT 

α 0.657 0.553 0.657 0.566 0.745 

γ 1 1 1 1 1 

ω 0.898 0.918 0.892 0.917 0.874 

ϕ 0.291 0.381 0.367 0.381 0.299 

We compared the HWT count data method with the HW 
method since it also accounts for temporal autocorrelation 
and seasonal patterns and with the space-time Negative 
Binomial regression since it accounts for the overdispersion. 
The daily season only was used in the HW, and initial values 
were set as in the HWT but without using the Wt index, The 
HW smoothing coefficients were estimated by minimizing 
the mean square error, as in [13], instead of maximizing a 
likelihood function. The space-time NB regression 
coefficients were estimated by maximizing a log-likelihood 
function, derived in [10], using flows from correlated roads, 
as in [5]. The Root Mean Square Error (RMSE) was used to 
evaluate the forecast accuracy and compare the three 
methods. The RMSE is usually used to evaluate the forecast 
accuracy because it gives an idea about the forecast error. 
The RMSE is given by 

2-( )observed predicted
RMSE

n
=

∑        (12) 

C. Results 

In this subsection, we firstly show the results of estimation 
of the HW, the HWT count data, and the space-time 
Negative Binomial regression methods. The values of the 

smoothing coefficients of the HW and the HWT count data 
methods for some selected roads are presented in Table 2, 
and the NB regression coefficients for R8 as a dependent 
road are presented in Table 3. 

We do not include β in Table 2 because it is zero that 
means the overall trend is zero. The values of ϕ in Table 2 
can verify that the variance is greater than the mean      
(σ2 = µ + ϕµ2), and these values are different from the 
overdispersion values in Table 1 as they are used to model 
the data while the values in Table 1 are used to test the 
existence of the overdispersion. The high values of γ and ω 
show that the variation is dominated by the seasonality while 
the overall trend is zero. The coefficients in the table are used 
to forecast future values for one cycle ahead which is one 
day. 

The space-time Negative Binomial regression method 
assists in identifying the significant variables that affect the 
forecast results. In traffic context, several upstream and 
downstream roads exist, and it is important to identify which 
road is significant. A variable is considered significant if its 
P-value is smaller than the significance level and the 
significance increases when the P-value decreases. The 
spatial and temporal variables with significant coefficients 
are presented in Table 3, and the insignificant coefficients 
are represented by (-). It is shown that for a dependent road, 
R8, the significant spatially correlated variables (predictors) 
are R4, R5, R6, and R7. Also, the significant temporally 
correlated variables are t − 1, t − 2, and t − 3 only which 
indicates that the NB regression can capture limited temporal 
autocorrelation. The significant variables are the only ones 
used as predictors in a multistep forecast as in equation 1. 

Secondly, we discuss the forecast results of each method. 
The forecast results show that the three methods can forecast 
for different horizons: one day for the HWT method and the 
HW method and 20 minutes for the space-time NB 
regression. As we are interested in short-term prediction only, 
which is less than 20 minutes ahead, because of the 
continuous changes in traffic, we compare the models for 20 
minutes horizons. So, our goal is identifying which 
forecasting method is more accurate for 20 minutes ahead. 
We include comparison results during different traffic 
conditions: low, average and high traffics. The RMSE values 
resulting from the tests are averaged and presented in   
Table 4. 

The HWT count data method reduces the residual error 
significantly during all traffic seasons and consequently it 
has the lowest RMSE values for 20-minute forecasts. The 
HWT count data method handles the overdispersion and can 
capture different seasonal patterns, so it outperforms the 
space- time NB regression because the latter does not 
account for autocorrelations and seasonal patterns. It is also 
better than the HW because the HW does not account for the 
overdispersion.  
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Table 3.  The space-time NB regression coefficients when R8 is the dependent road 

Variables 

Coefficients β 

low season average season high season 

estimate P-value estimate P-value estimate P-value 

Intercept α 2.13 2×10−16 2.33 3.5×10−16 2.75 5.1×10−16 

autocorrelation R8, t − 1 0.0830 0.62×10−16 0.0852 1.4×10−16 0.0892 4.1×10−16 

autocorrelation R8, t − 2 0.0680 3.3×10−10 0.00753 4.7×10−11 0.0795 3.4×10−12 

autocorrelation R8, t − 3 0.0461 1.2×10−5 0.0512 3.8×10−6 0.0563 9.1×10−7 

autocorrelation R8, t − 4 - 0.063 - 0.059 - 0.068 

direct upstream R5, t − 1 0.0161 6.1×10−9 0.0177 2.3×10−9 0.0262 1.8×10−10 

direct upstream R5, t − 2 0.0061 2.0×10−9 0.0082 5.4×10−9 0.0158 1.3×10−9 

direct upstream R5, t − 3 0.0012 7.5×10−6 0.0025 1.7×10−6 0.0047 2.9×10−7 

direct upstream R6, t − 1 0.0123 1.1×10−9 0.0145 2.4×10−9 0.0280 1.6×10−10 

direct upstream R6, t − 2 0.0042 2.4×10−7 0.0071 4.2×10−9 0.0104 2.6×10−9 

direct upstream R6, t − 3 0.0017 4.1×10−6 0.0037 9.2×10−6 0.0055 3.5×10−7 

direct upstream R7, t − 1 0.0091 2.7×10−9 0.0127 2.4×10−9 0.0151 1.7×10−9 

direct upstream R7, t − 2 0.0024 1.4×10−8 0.0035 4.5×10−8 0.0064 2.4×10−9 

direct upstream R7, t − 3 0.0009 4.1×10−4 0.0015 3.1×10−5 0.0033 5.3×10−6 

indirect upstream R4, t − 1 0.0037 2.6×10−3 0.0045 5.1×10−4 0.0062 4.8×10−4 

indirect upstream R4, t − 2 0.0008 0.006 0.0014 0.003 0.0042 0.001 

indirect upstream R4, t − 3 - 0.61 - 0.3 - 0.21 

direct downstream R9, t − 1 - 0.49 0.0001 0.044 0.0013 0.008 

direct downstream R9, t − 2 - 0.33 - 0.72 0.0011 0.023 

indirect downstream R12, t − 1 - 0.12 - 0.24 0.0017 0.02 

distant R1, t − 1 - 0.23 - 0.24 - 0.37 

distant R1, t − 2 - 0.15 - 0.58 - 0.52 

distant R1, t − 3 - 0.45 - 0.71 - 0.82 

# of observations 1800 600 600 

 

Table 4.  Comparison between the forecast methods for different roads in 
different traffic seasons 

Traffic Method RMSE of 20 minutes forecast 

seasons  R4 R5 R8 R9 

Low 

HWT 2.24 2.21 1.4 2.65 

HW 3.35 2.72 2.16 3.42 

NB 3.13 2.26 1.79 2.45 

Average 

HWT 4.02 3.23 2.85 4.12 

HW 5.86 6.62 5.95 7.61 

NB 3.53 4.54 4.59 4.18 

High 

HWT 4.37 4.67 3.62 4.06 

HW 10.9 11.2 9.42 9.62 

NB 6.5 5.73 5.47 4.97 

 

To illustrate how the methods behave in different forecast 
horizons, we plot the RMSE values of the methods against 
different prediction horizons during the low, average and 
high traffic seasons for R8, Fig. 5. We notice that the 
accuracy of all methods decreases when the horizon 
increases. The HWT count data method has the lowest 
RMSE during all traffic seasons and for all time horizons. 
The slope of the HWT count data method curve is also the 
lowest which means that the RMSE increase little over time. 
We decided a RMSE value of four as a threshold value where 
smaller RMSE values can be acceptable. The accuracy of the 
HWT count data method starts to deteriorate (RMSE > 4) 
after a 36-minute horizon during the low and average traffic 
seasons and after 24-minute horizon during the high traffic 
season. Meanwhile, the other methods behave similarly but 
they have larger RMSE values and start to deteriorate earlier 
than the HWT count data method. Clearly, the HWT count 
data method is the most accurate one. 
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Figure 5.  RMSE against different forecast horizons during the three traffic seasons 

5. Conclusions 
The success of DRG requires accurate short-term 

prediction with low computational demand [17]. Accurate 
short-term prediction models enables DRG to provide 
adaptive services in real-time. Travellers will be able to 
select the best route pre-trip or on-trip based on current and 
future traffic conditions. Therefore, this paper has proposed a 
method for short-term traffic flow prediction in urban areas 
where flows are autocorrelated and overdispersed. The 
method addresses the most important characteristics of 
traffic flow including autocorrelation, trend, seasonality and 
overdispersion by adopting the HWT count data method. 
The proposed method can capture the weekly season and the 
daily season simultaneously. The comparison between the 
proposed method with the HW and the space-time NB 
regression methods states that the proposed method 
outperforms the others. This paper also has presented an 
ATIS that incorporates the proposed prediction model into 
its architecture. 

The limitation of the proposed method is that it only 
models the weekly season and the daily season. Future work 
will investigate the possibility of using multiple seasonal 
methods to model all of the intraday seasons simultaneously. 
Further, the proposed method needs to account for not only 
one road segments, but also other correlated segments. This 
can be achieved by deriving a multivariate HW method that 
can handle overdispersion and capture trends and seasonal 
patterns of multiple flows on different correlated roads. 
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