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Abstract: Quality of agricultural products is a very important issue for consumers as well as for farmers in 
relation to price, health and flavour. One of the factors that determine the quality is the absence of pathogens 
that can cause diseases for products and also for consumers. An advanced method to sense pathogens and 
their antagonists is the use of Visible/Near Infrared (VIS/NIR) spectroscopy. In this paper, the VIS/NIR spec-
troscopy, with the help of two techniques of multivariate data analysis (MVDA); namely principal component 
analysis (PCA) and support vector machine (SVM)-classification; showed very reliable results for sensing two 
artificially inoculated fungi (Fusarium oxysporum f. sp. Lycopersici and Rhizoctonia solani), and two antago-
nistic bacteria (Bacillus atrophaeus and Pseudomonas aeruginosa). The two fungi cause loss of quality and 
quantity for tomatoes. The results showed that the lowest classification rates using VIS/NIR spectroscopy for 
pathogens, antagonistic and their combinations were 90%, 85% and 74%, respectively. These results open a 
wide range for using VIS/NIR spectroscopy sensor technology for agricultural commodities quality at quality 
control checkpoints. 
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Introduction 
 
Tomato (Lycopersicon esculentum Mill.) is consid-
ered one of the most popular vegetables worldwide. 
It is ranked eighth worldwide according to the pro-
duction value. The top five countries producing to-
matoes are China, India, United States of America, 
Turkey and Egypt (FAO, 2014). Moreover, it plays 
an important health role, due to its contribution in 
prevention of heart and cancer disease (Temple, 
2000; Hamid et al., 2010). 
In Palestine, tomato is considered as the most im-
portant and popular vegetable crop, and it is a part 
of many traditional meals and folkloric medicine 
(Sawalha, 2014). It is mostly grown in green houses 
(Angioni et al., 2012). Its production reached more 
than 205 thousands metric tons, with more than 75 
million dollars value in 2012 (FAO, 2014). 

Quality of agricultural products which is defined as 
the “degree to which a set of inherent characteristics 
fulfills requirements of the customer”, plays an es-
sential factor for consumers and farmers in price, 
health and flavour issues. One of the important 
factors that determine the quality of tomato is 
pathogens absence, and it is important to detect 
whether the crop has some of these pathogens, that 
can affect their quality and shelf life in pre- and 
post-harvest stages. Detection of pathogens can be 
done in many destructive ways, such as plating 
method. One of the trends and new methods is to 
detect quality using non-destructive methods, such 
as Visible/Near infrared red (VIS/NIR) spectroscopy, 
which is an optical sensor (Nicolai et al., 2014). 
VIS/NIR spectroscopy method has been used for 
quality evaluation of agricultural products. It is 
based on overtone and combination bands of spe-
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cific functional groups, e.g. C-H, N-H, and O-H 
bands, which are the primary structural components 
of organic molecules. This opens the possibility of 
using spectra signatures to determine complex at-
tributes of foods. The VIS/NIR method has many 
advantages, i.e. simplicity, rapidity, requires minimal 
sample processing prior to analysis, ease or total 
absence of sample preparation, can be easily au-
tomated, and ability to obtain the information about 
different product properties in a single measurement 
(Abu-Khalaf and Bennedsen, 2002a; Abu-Khalaf 
and Bennedsen, 2002b; Abu-Khalaf and 
Bennedsen, 2004; Xie and Ying, 2009; Guidetti et 
al., 2010; Giovenzana, 2013; Sanchez, 2013; 
Chaparro and Pena-Rodriguez, 2014; Opara and 
Pathare, 2014; Sanchez et al., 2014; Nicolai et al., 
2014). Moreover, it is stated that optical methods; 
like VIS/NIR; offer advantages of high reproducibility 
and good long-term stability (Winquist et al., 2006). 
For detecting pathogen, many authors reviewed the 
methods for plant diseases detection, and VIS/NIR 
spectroscopy was one of the indirect remote sens-
ing methods (Sankaran et al., 2010; Nezhad, 2014; 
Martinelli et al., 2014). Spectroscopy method has 
been used for detecting pathogens in different 
crops, e.g. olives (Abu-Khalaf and Salman, 2014; 
Moscetti et al., 2015), wheat (Li et al., 2014; Yuan et 
al., 2014), cereals (Levasseur-Garcia, 2012) and 
herbaceous flowering plant (Nilsson et al., 1994). 
VIS/NIR spectroscopy was used for detecting some 
of tomato quality parameters, e.g. soluble sugar 
content (SSC), firmness and titratable acidity (He et 
al., 2005; Saad et al., 2014). Also, it was used to 
detect stress in tomatoes induced by late blight 
disease in California, USA (Zhang et al., 2003) and 
also to detect Rhizopus stolonifer, that causes sig-
nificant postharvest losses (Hahn et al., 2004). 
Tomato is affected by many pathogens that affect 
quality and quantity of the crop. Fusarium 
oxysporum f. sp. Lycopersici which causes fusarium 
wilt (Shanmugam et al., 2011), and Rhizoctonia 
solani causing root and crown rot disease on tomato 
(Thomashow and Bakker, 2015). 
The bacteria on the other hand are acting as control 
agents against the fungi and supposed not to cause 
any symptoms on the fruits. The antagonistic Bacil-
lus spp. inhibits the activity of some fungus in to-
matoes. Bacillus atropheus was used to control gray 
mold disease caused by Botrytis cinerea on tomato 
(Abu-Khalaf and Salman, 2012). It was also found 
that it inhibits the activity of Fusarium oxysporum 
f.sp. lycopersici and Alternaria solani infecting to-
mato (Shanmugam et al., 2011). 
Pseudomonas aeruginosa also has been used as a 
biological control, it has e.g. alone or with mineral 

fertilizers showed a significant ability to inhibit root 
diseases in tomato (Parveen et al., 2008). 
The aim of this study is to investigate the feasibility 
of using VIS/NIR spectroscopy and multivariate data 
analysis (MVDA) (i.e. chemometrics) for detecting 
two pathogenic fungi and two antagonistic bacteria 
that were artificially inoculated into tomato. Both 
fungi cause rots and molds on tomato fruits in the 

green houses and causing severe market losses. 
 

Material and methods  

 

Tomato fruits 

A 45 red, homogenous in shape and colour and 
pathogen free tomato fruits were chosen from a 
batch purchased from a local market. The fruits 
were kept at room temperature. The fruits were in-
oculated with 9 different treatments, including con-
trol samples. Each treatment had 5 tomato fruits. 
Each fruit (except the control samples) was inocu-
lated with microorganisms, either a fungus and/or 
bacterium. 
The treatments (Table1) were: control (C), F. ox-
ysporum f. sp. lycopersici (F1), R. solani (F2), B. 
atrophaeus (B1), P. aeruginosa (B2), F. oxysporum 
+ B. atrophaeus (F1B1), F. oxysporum + P. aerugi-
nosa (F1B2), R. solani + B. atrophaeus (F2B1), and 
R. solani + B. atrophaeus (F2B2). 
Experiment was carried in two trials, and the data of 
first trial is shown in this paper. However, both trials 
gave the same results. 
 

Fungal strains growth conditions 

F. oxysporum f. sp. Lycopersici and R. solani were 
grown and maintained on potato dextrose agar 
(PDA). For inoculum preparation, 5 mm diameter of 
PDA disks grown with 3 days old fungi were inocu-
lated in 250 ml Erlenmeyer flasks containing 50 ml 
potato dextrose broth (PDB). The flasks were incu-
bated at 25°C on a rotary shaker at 150 rpm for 
three days. Spores were then harvested after filtra-
tion using cheese clothes. Spore suspension was 
adjusted to 2x10

6
 sporangiospores/ml using auto-

claved water. A 80 µl of spores suspension were 
inoculated into tomato fruits (in which 8 pores were 
done and in each pore 10 µl of the suspension were 
added), in total 80 µl of spore suspension were in-
jected (inoculated) into tomato fruits. 

 

Bacterial growth conditions 

B. atrophaeus and P. aeruginosa were grown in 
Nutrient agar media, stored at 4°C and subcultured 
routinely every two weeks. For inoculum, the bacte-
ria were grown in nutrient broth (NB) media for 
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overnight on a rotary shaker at 150 rpm at 28°C. 
(the bacteria were centrifuged and pellets were 
re-suspended in100 ml of autoclaved water then 10 
µl (~ 10

9
 cfu/ml) of bacterial suspension were added 

to each pore in tomato fruit). 

 

Spectroscopy 

A VIS/NIR spectroscopy, a USB2000+ miniature 
fiber optic spectrometer (OceanOptics, USA) with a 
50 µm fiber optics probe and Vivo light source, was 
used for reflectance spectra acquisition. The spec-
troscopy has a 550-1100 nm wave length and a 
resolution of 0.35 nm full width at half maximum 
(FWHM). It has 2-MHz analog-to-digital (A/D) con-
verter, a 2048-element CCD-array detector, and a 
high-speed USB 2.0 port. The USB2000+ can be 
controlled by SpectraSuite software. Vivo system 
contains 4 tungsten halogen bulbs that can be 
turned on or off individually. The risk of overheating 
the sample is mitigated through active fan cooling. 
This protects the sample and ensures accuracy 
every time. The 4 halogen tungsten light sources 
make the Vivo a high-powered VIS/NIR source, 
which allows a shorter integration time than con-
ventional methods (OceanOptics, USA). The inte-
gration time used in this investigation was 1.37 ms. 
Tomato was placed on the top of Vivo light source, 
and three reflection spectra (550-1100 nm) were 
taken at three equidistant positions around the 
equator (approximately 120º) of each tomato. 
A diffuse reflectance standard WS-1 (OceanOptics, 
USA) was used as the optical reference standard for 
the system every 10 minutes during the experiment. 
The goal of using was to ensure the stability of the 
measurements. 
The dark reference was done once in the beginning 
of each experiment, through closing the entrance of 
incoming light from probe to the USB2000+ minia-
ture fiber optic spectrometer by a plastic cap. 
After completing all spectral measurements, the 
acquired data were properly stored for later use. 

 

Multivariate Data Analysis (MVDA) 

Two MVDA techniques; namely principal compo-
nent analysis (PCA) and support vector machine 
(SVM)-classification; were used to analyse, unravel 
and interpret the optical properties of VIS/NIR sig-
natures and allow classification of samples. Before 
analysing normalized and centred spectra signa-
tures with PCA and SVM-classification, the spectra 
were gone through a first order Savitzky-Golay de-
rivative, employing a one-point smoothing window of 
a second order polynomial. The goal was to remove 
the baseline offset (Lomborg et al., 2009), and it 

was found that this pre-processing technique gave a 
good classification models. 
Unscrambler software (version 10.3, CAMO 
Software AS, Oslo, Norway) was used for MVDA. 
PCA is a non-supervised linear multivariate tech-
nique that uses a mathematical procedure to trans-
form a set of correlated response variables into 
principal components (PCs), generating a new set of 
non-correlated variables. PCs represent in pattern of 
observations in plots. The score plot explains the 
relation between samples, and the loading plot ex-
plains the relation between variables. PCA plots 
provide information about structure of data. In PCA, 
VIS/NIR spectra represented matrix (Abu-Khalaf 
and Bennedsen, 2004). The goal from carrying PCA 
was to show the linear relationship between differ-
ent samples and variables, and the possibility of 
classifying different treatments during the experi-
ments, through investigating scores plot of different 
treatments during experiment period (i.e. five days). 
Random cross validation with 10 segments was 
used. 
SVM is a powerful multivariate methodology for 
supervised non-linear classification and regression 
problems. It was developed by Vapnik’s group in 
1995 (Vapnik, 2000). There are many advantages of 
SVMs, i.e. don’t need a large number of samples to 
be trained, not affected by the presence of outliers, 
and there are very few parameters to tune or select a 
priori when compared with other methods. 
Moreover, the main advantages of SVMs are mainly 
refer to their generalization ability, which is achieved 
by using the maximum margin hyperplane for 
separation and the application of non-linear 
discriminant functions. SVMs can handel convexit 
discrimination problems. SVM classification used 
cross validation method (Acevedo et al., 2007; Xie 
and Ying, 2009; Rumpf et al., 2010; 
Suphamitmongkol et al., 2013). SVMs were used in 
several agricultrual and biological applications 
(Abu-Khalaf and Salman, 2013; DomInguez et al., 
2014; Gromski et al., 2014; Mokhtar et al., 2015). 
In SVM-classification, VIS/NIR spectra represented 
X-data matrix, and treatments names as categories 
were used as the response factor (Y-data matrix, 
label classes). Unscrambler uses one column for a 
classifier factor. For SVM-classification, nu-SVC, 
with radial basis function (RBF) as the kernel type 
was used. The different parameters were: gamma 
6*10

-4
, nu value: 0.5 and weights: all 1. The cross 

validation with 10 segments was used. 
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Table1: Different nine treatments of tomato fruits with fungus and bacteria that were used in the experiment. 

Treatments Name 
Abbreviation 

(category 
name) 

Nr. of in-
oculation 

days 

Number of 
samples/day 

Number of 
spectra/day 

(spectra were 
taken in tripli-

cates) 

Number of 
spectra during experi-
ment (samples X spec-
tra/day X days of ex-

periment) 

1 Control C - 5 5 (15) 60 

2 F. oxysporum f. sp. lycopersici F1 4 5 5 (15) 60 

3 R. solani F2 2* 5 5 (15) 30 

4 B. atrophaeus B1 4 5 5 (15) 60 

5 P. aeruginosa B2 4 5 5 (15) 60 

6 F. oxysporum + B. atrophaeus F1B1 4 5 5 (15) 60 

7 F. oxysporum + P. aeruginosa F1B2 4 5 5 (15) 60 

8 R. solani + B. atrophaeus F2B1 2* 5 5 (15) 30 

9 R. solani + B. atrophaeus F2B2 2* 5 5 (15) 30 

 
*At the end of second day after inoculation, samples with R. solani (F2) and its combinations, i.e. R. solani + B. atrophaeus (F2B1) and R. solani + B. atrophaeus 
(F2B2) were decayed, and spectra for them were not taken in the next days. 
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Results and discussion 
 
In this study, ranges of Visible/Short-Wave 
Near-Infrared (VIS-SWNIR) was used, i.e. 550-1100 
nm. The SW-NIR region, 700-1100 nm, is more 
suitable for non-destructive or non-invasive analysis 
for intact foods and biological materials, compared 
with long-wave NIR region (1100-2526 nm). 
SW-NIR has several advantages. It can penetrate 
more deeply into a sample with less heating effect 
and the interference arising from the intense water 
bands can be diminished. There are strong evi-
dences, that the range from 700-900 nm constitutes 
a “diagnostic window” in which chemical composi-
tions of samples can be investigated. Moreover, the 
low cost of SW-NIR spectroscopy is a big advantage 
(Osborne et al., 1993; Archibald et al., 1999; 
Abu-Khalaf et al., 2004; Fu et al., 2012; 
Melendez-Pastor et al., 2013; Lapchareonsuk and 
Sirisomboon, 2014). 
PCA and SVM-classification were used for spectra 
data analysis. It was clear that there was 
non-linearity in the PCA models, and that’s was one 
of the reasons to use SVM to carry out the classifi-
cation. The results for each day of experiments after 
inoculation are explained below. 
 

In the first day of inoculation 

The PCA is shown in Figure 1. The first and second 
PCs explained 54% and 11% of the variation, re-
spectively. Six PCs were the optimum number of 
PCs for the model, and they explained 76.8% of the 
variation. 
The loading plot is shown in Figure 2. The most 
important wavelengths ranges in the range of 
550-1100 nm that contribute to the model; i.e. have 
the highest loading that is greater than |0.02| in the 
loading plot; are around 580-670, 675-690, 700-950, 
and 1000-1050 nm. Table 2 shows the 
SVM-classification rates for the first day after in-
oculation. It shows good classification rates for all 
treatments. The classification rates were 100% for 
all treatments, except for R. solani + B. atrophaeus 
(F2B2) treatment, which was 93%. However, the 
later classification rate is still high. The accuracies 
were 99.3% and 80.7% for training and validation 
sets, respectively. 
 
 
 
 
 
 
 
 

 

Figure 1. Scores plot for first and second principal 
components (PC1 and PC2) for samples in the first 
day after inoculation. 
 
 

 
Figure 2. Loading plot for the first principal compo-
nent (PC) for the first day after inoculation. 

 
 

In the second day of inoculation 

The PCA is shown in Figure 3. The first and second 
PCs explained 41% and 21% of the variation, re-
spectively. Six PCs were the optimum number of 
PCs for the model, and they explained 81.8% of the 
variation. The loading plot is shown in Figure 4. The 
most important wavelengths ranges that contribute 
to the model are 550-570, 590-650, and 700-1100 
nm. Table 2 shows that the classification rates were 
100% for all treatments, except for R. solani + B. 
atrophaeus (F2B2) treatment, it was 93%. However, 
93% classification rate is also still high rate. The 
accuracies were 99.3% and 81.3% for training and 
validation sets, respectively. Moreover, Figure 3 
shows a very clear linear classification between. 
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Figure 3. Scores plot for first and second principal 
components (PC1 and PC2) for samples in the second 
day after inoculation. 
 
 

 

Figure 4. Loading plot for the first principal 
component (PC) for the second day after inoculation. 

 
 
control, F. oxysporum f. sp. (F1) and R. solani (F2) 
samples At the end of second day after inoculation, 
samples with R. solani (F2) and its combinations, 
i.e. R. solani + B. atrophaeus (F2B1) and R. solani + 
B. atrophaeus (F2B2) were decayed, and their 
spectra for them were not taken in the next days. 
The total number of tomato samples in the third and 
fourth day after inoculation were 30 samples (i.e. 
spectra were: 6 treatments including control X 5 
tomatoes X spectra for each tomato in triplicate = 90 
with triplications). 
 

In the third day of inoculation 

The PCA is shown in Figure 5. The first and second 
PCs explained 46% and 20% of the variation, re-
spectively. Five PCs were the optimum number of 
PCs for the model, and they explained 77.6% of the 

variation. The loading plot is shown in Figure 6. The 
most important wavelengths ranges that contribute 
to the model are 550-560, 580-660 and 700-1100 
nm. 
Table 2 shows that the classification rates were 
100% for all treatments. The accuracies were 100% 
and 86.7% for training and validation sets, respec-
tively. It should be noticed that scores plot in Figure 
5 shows a very clear linear classification between 
control and F. oxysporum f. sp. (F1) samples. 
 

 
Figure 5. Scores plot for first and second principal 
components (PC1 and PC2) for samples in the third 
day after inoculation. 
 
 
 

 

Figure 6. Loading plot for the first principal 
component (PC) for the third day after inoculation. 

 
 

In the fourth day of inoculation 

The PCA is shown in Figure 7. The first and second 

PCs explained 45% and 23% of the variation, re-

spectively. Six PCs were the optimum number of 

PCs for the model, and they explained 80.1% of the 

variation. 

The loading plot is shown in Figure 8. The most 
important wavelengths ranges that contribute to the 
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model are 550-660, 670-680, 690-960 and 
1000-1100 nm. Table 2 shows that the classification 
rates were 100% for all treatments except for P. 
aeruginosa (B2) and F. oxysporum + B. atrophaeus 
(F1B1), which were 93% for both of them. The ac-
curacies were 97.8% and 90% for training and 
validation sets, respectively. 
Figure 7 shows a very clear linear classification 
between control and F. oxysporum f. sp. (F1) sam-
ples.  
 
 

 

Figure 7. Scores plot for first and second principal 
components (PC1 and PC2) for samples in the fourth 
day after inoculation. 
 
 
 

 
Figure 8. Loading plot for the first principal compo-
nent (PC) for the fourth day after inoculation. 
 
 
It can be seen from the above results that PCA and 
SMV-classification are able to reveal the spectra 
signatures and carry out classification of the two 
fungi and/or two antagonists in different treatments 
during 4 days of inoculation. The SVM-classification 
were powered enough to detect the treatment 
categories, despite the non-linearity of the models. 
Moreover, high classification rates were obtained. 
In the results above, SVM-classification models for 
each day of inoculation were shown. Taking into 

consideration all samples during the four days of 
inoculation, and making one SVM-classification 
model, the result is shown in Table 3. It can be seen 
that the classification rates for all treatments were 
higher than 73%. The classification rates of control, 
F. oxysporum f. sp. lycopersici (F1), R. solani (F2), 
B. atrophaeus (B1) and P. aeruginosa (B2) were 
97%, 92%, 90% and 85%, respectively. The accu-
racies were 88% and 67.5% for training and valida-
tion sets, respectively. 
The classification rates of the two fungi and two 
antagonistic bacteria were higher when carrying out 
SVM-classification model for each day of inocula-
tions (i.e. reached 100% in most cases), rather than 
making one SVM-classification for all samples in all 
days of experiment. This can be explained by that 
when considering one model for all samples in all 
days, then the SVM-classification are influenced by 
higher variation of all samples, than samples going 
through classification in each day of inoculations. 
It can be concluded from the results above, that 
both VIS and NIR wavelengths had influence in the 
PCA loading plots, and not just VIS neither NIR 
ranges alone. 
VIS/NIR showed a high potential for classification 
samples according to two fungi and two antagonistic 
inoculations, and this gives a potential for using 
VIS/NIR spectroscopy as a tool for detecting path-
ogens in tomatoes. This opens a wide range of 
possibility of using VIS/NIR spectroscopy in moni-
toring quality of agricultural and food products. Also 
possible using of portable spectroscopies, and this 
agrees with other researchers’ viewpoint, who sup-
ported the use of portable spectroscopies for agri-
cultural and food applications (dos Santos et al., 
2013). 
It is important to underline that SVM-classification is 
a supervised classification method, and this made it 
easier to classify the spectra according to the 
treatments that they had. However, it is not easy to 
classify when we made a non-supervised classifica-
tion (Casale and Simonetti, 2014), and that was 
clear when carrying PCA models. However, the 
PCS scores plot showed to some extend the dis-
tinguished treatments. However, non-linearity was 
clear. 
It is envisaged that this research is a step in a long 
research aiming to use spectroscopy signatures to 
detect the pathogens on fruits and vegetables, to 
save time, monitor the quality and prevent any harm 
for consumers. 
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Table 2. Support vector machine (SVM)-classification rate (%) and accuracy (%) for training and validation sets of control and different tomato fruit 
samples that were treated by fungi and /or bacteria using visible/near infrared (VIS/NIR) spectroscopy. 

   Classification rate (%) 

      Treatments    

Days after inoculation  Accuracy (%) C F1 F2 B1 B2 F1B1 F1B2 F2B1 F2B2 

1 Training 99.3 100 100 100 100 100 100 100 100 93 

 Validation 80.7          

2 Training 99.3 100 100 100 100 100 100 100 100 93 

 Validation 81.5          

3 Training 100 100 100 - 100 100 100 100 - - 

 Validation 86.7          

4 Training 97.8 100 100 - 100 93 93 100 - - 

 Validation 90          

 

 

Table 3. SVM-classification rate (%) for different samples during four days of 
inoculation. 

   Classification rate (%)   

   Treatments   

C F1 F2 B1 B2 F1B1 F1B2 F2B1 F2B2 

97 92 90 90 85 95 93 74 77 
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Conclusion 
 
It can be concluded that: 

- VIS/NIR was able to classify (distinguish) toma-

toes samples that were artificially infected by two 

fungi (F. oxysporum f. sp. Lycopersici and R. 

solani), and two antagonistic bacteria (B. acillus 

atrophaeus and P. aeruginosa). 

- The lowest classification rate for the two fungi 

was 90%. 

- The lowest classification rate for the two antag-

onistic was 85%. 

- The lowest classification rate for fungi and an-

tagonistic combinations was 74%. 

- PCA and SVM-classification showed powerful 

ability to reveal the VIS/NIR spectra signatures. 

- Both VIS and NIR wavelengths played a rule in 

the success of pathogens classification. 
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