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The finite deformation response of a compressible internally balanced elastic material is studied for
deformations that involve progressive shearing. The internally balanced material theory requires that an
equation of internal balance is satisfied at each material point. This arises from the constitutive theory
which makes use of a multiplicative decomposition of the deformation gradient. Satisfaction of the
internal balance requirement then yields the most energetically favorable decomposition. Here we
consider a particular compressible internally balanced material model that is motivated by a Blatz-Ko
type energy from the conventional hyperelastic theory. The conventional hyperelastic theory occurs as a
special limiting case of the internally balanced constitutive theory. More generally, the internally
balanced material exhibits softer mechanical behavior. This gives rise to a stress-plateau in the simple
shearing response whereas such plateaus do not occur in the corresponding hyperelastic treatment. The
boundary value problem for azimuthal shearing with a possible radial stretching is then studied. The
internally balanced material response is again found to be softer than that of the hyperelastic limiting
case. This is manifest in terms of an upper bound to the applied twisting moment for the existence of
solutions to the boundary value problem. In contrast, the hyperelastic limiting case has solutions for all
values of applied moment.
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1. Introduction

More general treatments of solid material behavior, specifically
those that seek to describe how a combination of elastic and

In finite deformation solid mechanics the deformation gradient
F=0x/0X is central to the kinematic description. Here x = y(X) is
the mapping from the reference location X to the current location
Xx. The theory of hyperelasticity makes use of F to develop its
constitutive theory in terms of the elastic stored energy density
W =W(C) where C=F'F. In the absence of internal material
constraints, the Cauchy stress T is then given by

2 oW

T="F__F
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with J = det F. The stress equations of equilibrium in the absence
of body forces take the well known form
divT=0 )

where div is the divergence operator with respect to current
configuration x.
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inelastic effects govern large deformation, often make use of a
multiplicative decomposition of F, say

F=FF*. 3

This includes the Kréner-Lee multiplicative decomposition for the
treatment of finite deformation plasticity [1,2], as well as
descriptions of growth and remodeling in biological tissue (e.g.,
[3,4]). The standard modeling scenario when invoking (3) involves
F* describing the inelastic part of the process after which F pro-
vides some elastic accommodation. The scientific literature in this
area is now vast, and new types of physical phenomena are reg-
ularly being described using such a decomposition [5-7]. Because
elastic and inelastic effects may permeate all aspects of a complex
physical process, decomposition sequences in which elastic and
inelastic factors alternate with each other can also logically be
considered (e.g., [8]). This motivates the consideration of (3) in a
context where both F and F* are each associated with a separate
purely elastic type of effect. A theory of internally balanced elastic
materials emerges under such considerations. Because the con-
ventional theory of hyperelasticity (meaning the theory which
does not invoke (3)) provides useful simplifications under the



