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The multiplicative decomposition of the deformation gradient F= F̂ F* is widely used in the mechanical 
description of large deformation material behavior of solids. Then, typically, only the F̂  portion of the 
decomposition is regarded as hyperelastic. Recent theoretical studies have explored the implications of 
material modeling if both F̂  and F* are regarded as hyperelastic. The resulting theory holds promise for 
describing a variety of effects because of an internal balance principle that emerges naturally from the 
overall variational treatment. However in order for such models to enjoy practical usage, it is necessary to 
provide a finite element framework. The present work is a first step in that direction. We present the weak 
form for compressible materials in a Total Lagrange framework. The FE formulation is implemented via 
in–house code and demonstrated in the context of uniaxial loading of one tetrahedral element. The 
achieved stress by the FE formulation is in a good agreement with the analytically calculated stress.  
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1  Introduction  

Nonlinear continuum mechanics is commonly used 
to study the response of highly deformable materials. 
Nowadays, the proposed material models often include 
internal material variables in order to capture realistic 
engineering behavior. The theoretical background is 
mature and its implementation in the frame of finite 
element method is well established. Typically, these 
material constitutive models are expressed in terms of 
the deformation gradient F, its derived quantities, and 
various multiplicative decompositions, e.g.,  

.ˆ *FFF                                 (1) 

The multiplicative decomposition Eq. (1) typically 
serves to assign particular portions of F to specific parts 
of the material response. The usual scheme is that F̂  
models elastic response and it is associated to the rules 
of variational calculus. The F* portion then models 
inelastic response, often by means of a time dependent 
evolution law. All of the tensors F, F̂ and F* are 
invertible and taken to be functions of location X in the 
reference configuration. Although F is the gradient of 
the deformation map from reference locations X to 
deformed locations x, the tensors F̂  and F* in Eq. (1) 
need not themselves be gradients of mappings. In other 

words, when using Eq. (1) it is not at all necessary for 
there to be a specific local intermediate configuration 
such that F* associates with a mapping to such an 
intermediate configuration and F̂  associates with a 
mapping from such an intermediate configuration. 

Recent theoretical studies have explored the 
consequences of material modeling if both F̂  and F* are 
regarded as hyperelastic [1]. The implications, 
demonstrated in the context of an incompressible type 
theory, show among other things the possibility of 
modeling slip zones and other phenomena that typically 
require ad hoc assumptions in more standard treatments.  
Such ad hoc assumptions are not necessary in [1] 
because of an internal balance principle that emerges 
naturally from the resulting variational treatment.  This 
in turn has motivated the theoretical consideration of 
compressible versions of such a framework [2]. 
However in order for such models to enjoy practical 
usage, it is necessary to provide a finite element 
framework. In this work we demonstrate how the FE 
formulation of this internal balance multiplicative 
decomposition is naturally achieved by linearizing the 
weak form that is obtained by the variation with respect 
to both portions of the multiplicative decomposition. 
The derivation is expressed initially in the frame of 
Total Lagrange Formulation. Then, uniaxial loading of 
one tetrahedral element is presented.  


