Studying the Possibility of Indirect Metabolite Microorganisms’
Classification Using Electronic Tongue and Multivariate Data

Analysis

By:

Basima Ali Abu Rumaila

Supervisor:

Dr. Nawaf Abu-Khalaf

This Thesis was Submitted in Partial Fulfillment of the Requirements

for the Master’s Degree of Science in:

Agricultural Biotechnology

Deanship of Graduate Studies

Palestine Technical University-Kadoorie

January, 2019




e o cilles ciladia YA (e ABSA Lad) clilSl il il Cisiel) i)

Ll Jalgad) aaaiall Julallly (e A8 Gladl)) gslasS una Aauyy

cals of Calg giSall

o ofmaldl dap o Jsemal) cllliial Y0aind Al 038 Cued

B3l gl gl

Llal) cladyall salec

2019 ) 5




COMMITTEE DECISION

This thesis/dissertation (Studying the Possibility of Indirect
Metabolite Microorganisms’ Classification Using Electronic Tongue
and Multivariate Data Analysis) was successfully defended and

approved on 8/Jan./2019.

Examination committee Signature

- Dr. Nawaf Abu-Khalaf, (Supervisor)

Assoc. Prof. / College of Agricultural Sciences and Technology,

Palestine Technical University-Kadoorie (PTUK).

- Dr. Luay Shahin, (Member)

Assistant Prof. / College of Engineering, Palestine Polytechnic

University (PPU).

- Dr. Yamen Hamdan, (Member)

Assoc. Prof. / College of Agricultural Sciences and Technology,

Palestine Technical University-Kadoorie (PTUK).




e Gond 2 F (5 st - Al Glandd daals (il (Alia )y sal deal e dauly Ul
G agalls die (alaiY) ff clingd) ol Gl sall 5 claSall i gkl /il
Jaalall 8 33800 Cilaglatl)

;e sl

8/Jan./2019 g il

Palestine Technical University-Kadoorie
(PTUK)

Authorization form
I, Basima Ali Ahmad Abu Rumaila, authorize the PTUK to supply
copies of my thesis / dissertation to libraries or establishments or

individuals on request, according to the university of PTUK regulations.

Signature:

Date: 8/Jan./2019




Studying the Possibility of Indirect Metabolite
Microorganisms’ Classification Using Electronic Tongue and

Multivariate Data Analysis

By:
Basima Ali Abu Rumaila
Supervised by:

Dr. Nawaf Abu-Khalaf

(o sialal) Aa 5o e Jgeand) il YieSiul Al )l sda Caedd

Auel 3l Ay gl Aol

This thesis was submitted in partial fulfillment of the requirements
for the master degree in:

Agricultural Biotechnology.

Deanship of Graduate Studies Lilad) bl yall 3alac
Palestine Technical University-Kadoorie s sas - 485l (alails dadls

January/ 2019 2019 /280 o 5is



Studying the Possibility of Indirect Metabolite
Microorganisms’ Classification Using Electronic

Tongue and Multivariate Data Analysis

VI



Dedication
This study is wholeheartedly dedicated to my beloved parents Ali and

Najah Abu Rumaila, who have been my source of inspiration and taught
me the value of hard work, who continually provide their moral, spiritual,

emotional and financial support.

It is as well dedicated to my beloved seven brothers and ten sisters all by

their names and value in my heart, to my beloved finance Khaled manasra
and my best friends who meant and continue to mean so much to me, who
shared words, advice, encouragement and energy to stand all my good and

bad emotions to finish this study.

Lastly, this work is dedicated to everyone who had good influence or gave
me some of their time to teach, motivate and solve a problem during the
work. Also, to every challenge, obstacle and hard work I had to face

through the past two and half years.

VIl



Acknowledgement
First and foremost, | thank Allah for the strength to see this thesis through.

There are number of people whom this thesis might not have been written
without and to whom | am greatly indebted. My parents receive my deepest
gratitude and love for their dedication and the many years of support during

my undergraduate studies that provided the foundation for this work.

| would like to express my gratitude to my advisor, Dr. Nawaf Abu-Khalaf,
for his support, patience and encouragement throughout this study. For the
deft ways in which he challenged me throughout the whole of this work,
knowing when to push and when to let up. His technical and editorial
advice were essential to the completion of this research and have taught me
innumerable lessons and insights on the workings of academic research in

general.

Loving thanks to my dear brothers and sisters, my beloved finance, my best
friends, my learning partners and colleges, who played such important roles
along the journey, as we mutually engaged in making sense of the various

challenges we faced and in providing encouragement to each other at those

times when it seemed impossible to continue.

| also acknowledge Palestine Technical University-Kadoorie for providing

this master program, scholarship and what is needed through this work.

VIl



List of Content

D =To [ Tor= LA o] o [ PRSI VII
ACKNOWIEAGEMENT.......eieieeee e Vil
LiSt Of TabDIES...c..ooeeeee e, Xl
LISt Of FIQUIES ...t X1l
List of Abbreviations or Symbols .........ccccccevviviiiiiicinee XVII
ADSTFACT ..o XIX
1 INtrodUCTiON ......cooviiicee e 1
1.1 General INTFOAUCTION ........couiiuiriirierieee ettt sttt ae s sbe e 1
1.2 AN ettt h bttt et r e bR et ese et e s e b e et e s be e ne s eaes 5
1.3 ODJECHIVES. ..ottt sttt 5
2 LITErature FeVIEW ........cccoiieeeiie et 6
2.1 Microorganism ClasSifiCation..........ccceeieiiiieiiiiee e s 6
211 Fungal molecular identifiCation ............coeveveeieiieinineseseeeee e 6
2.1.2 Bacterial molecular identification ...........ccoocveeeeieiecenieee e 8
2.2 Microbial MEtabOIITES ........ccivirieieieiee e 9
2.2.1 Primary mMetabOolites .......cceeeeiiiiieieceeec e 10
2.2.2 Secondary MetabOlIteS .......cccvvvieieririeere e 10
2.3 EIectroniC tONQUE (ET) ..cciieeeierieeeerieeeeeeesteetesieseete s e eseestseseessesseessessesseessesseensessennees 12
2.3.1 LI/ 120 = RSP 13
2.3.2 Principal component analysis (PCA) ......cocoeieiiececeeeese ettt 15
2.3.3 ET biological scope of applications ..........cccoceeeevieiieieneieecececeee e 18
3 Material and mMethods...........ccoeveiiiiiiic e, 20
3.1 FUNQAl EXPEIIMENL.....ccuiiiiiieeieteeteee ettt s te ettt e s b e b e s teeseenbesteenaesreennas 20
3.1.1 Samples collecting and MaINtENANCE ..........ccveveeeevieiieiece e 20
3.1.2 Fungal molecular phylogeNnEtiC.........ccevuereeiereiieeseceee e 25
3.1.2.1  Fungal DNA ISOIAtION .....eocvieeieieieeee et 25
3.1.2.2 Inter simple sequence repeats (ISSR) sequences amplification, electrophoresis
AN AL ANATYSIS ...evveiveeieieeeeeee ettt re e b reenes 26
3.1.3 ET measurements of fungal metabolites ...........ccovvrieceneiieieeeeeeee 29
3.1.3.1  Fungal broth samples preparation ...........cccceeeeerereeereneesese e 29
3.1.3.2  ET sequence preparation and auto-sampler samples loading..........cc.ccccvuennee. 30



3.1.3.3  ET data library Creation.........cccceveecerereereeeeese e 32

3.1.3.4  ET datd @nalYSIS ...ccvevveveeeieiieiirieeiesiestestetee ettt 32

3.2 Bacterial EXPErimeNt.....cc.cieecieiieeccece ettt s enes 33
3.2.1 Samples collecting and MAINtENANCE ..........cceeviveevieirieiereceee e 33
3.2.2 Bacterial molecular phylogenetiC...........ooevuevieieirinininerereeeeee e 37
3.2.2.1  Bacterial DNA iSOIatioN .......ceeviiiieieeeeeeseeee e 37
3.2.2.2  Sequences amplification, electrophoresis and data analysis ...........c..c.cceeenee. 38

3.2.3 ET measurements of bacterial metabolites..........cccocvverenineneneneeccecseeen 42
3.2.3.1 Bacterial broth samples preparation..........c.ccceeeeveeeeveneeceneseece e 42
3.2.3.2  ET SEQUENCE PreParatioN ........ccceceeverrerrerterieeeieieeieeresressesseseesseseeseeseesesseseesnenes 43
3.2.3.3  ET data library Creation...........coceeeeererienieieieieesesesteseseeeeeeeeeee e 44
3.2.3.4  ET data@nalySiS ....ccouieieieeiiieiieiecieee ettt ettt st s 44

4 Results and diSCUSSION .........ccccveiiieiie e 45
4.1  Fungal eXperiment rESUILS .......cc.oiiiriririresteete ettt 45
4.1.1 Fungal DNA data analysis ........cceeieeeiieiiieieie et se et sreesnens 45
4.1.2 Fungal ET data analySiS ......cecveeeiiieieieiiieeecie sttt ste et ere et sre e sreennens 55

4.2 Bacterial eXperiment reSUIS........cceieecieiieeeeceeere e 78
421 Bacterial DNA data analySiS ........cccoceverirenienieieieinerese e 78
422 Bacterial ET data analySiS.........cceciriverireneneieieenesese s 88

SO0 4 (o] 11157 o] o PSSP 109
Abstract in Arabic (uedall).......cociiiii 111
RETEIENCES. ... i 113
APPENAIX Ao 128
APPENIX B ..o 134



List of Tables

Table 1. List of fungal (pure isolates) different labeling for molecular and ET

Lo L= ] 11T ] TSRS 22
Table 2. List of bacterial (pure isolates) different labeling for molecular and ET
EXPEIIMENTS. ..ttt b bbbttt 34
Table 3. PCR used primers’ codes, combinations and their annealing tempereature for
16S ribosomal RNA sequence amplification. ............cccocvevviieiiieie e 41
Table 4. ISSR bands’ profile scores for 808 primer of 22 different fungal genotypes.
Where, 1= present band and 0= absent band.............cccccovriiiniinienienisienn, 48

Table 5. Base sequence of the six used ISSR primers which produced polymorphic
finger-printing in 22 different fungal genotypes, number of total alleles,
number of amplified monomorphic and polymorphic bands as well as the

percentage of polymOrphiSM. ..o 48
Table 6. Similarity matrix, based on Dice coefficient distance, for group 1 fungal

isolates (F1-F11) based on ISSR marker variation. .............cccoevevviivernsnnnnnnn 51
Table 7. Similarity matrix, based on Dice coefficient distance, for group 2 fungal

isolates (F12-F22) based on ISSR marker variation. ...........c.ccccoecevvvereinennnnn 51

Table 8. Similarity test table for group 1 of fungal samples (F1-F11), presenting
Euclidian distance, P-value and pattern discrimination index between fungal
SAMPIES. . 72

Table 9. Similarity test table for group 2 of fungal samples (F12-F22), presenting
Euclidian distance, P-value and pattern discrimination index between fungal
T 1011 0] L1 OSSPSR 74

Table 10. The 16S rRNA bands’ profiles scores of 22 different bacterial genotypes
using 16S rRNA3 coded primer for each marker. Where, 1= present band and
0= @DSENE DANG. ..o e 80

Table 11. Base sequence of the 16S rRNA3 coded primer which produced polymorphic
finger-printing in 22 different bacterial genotypes, number of total alleles,
number of amplified monomorphic, polymorphic bands as well as the
percentage of POlYMOIPRISM. .....c.oiiiiiii e, 81

Table 12. Similarity matrix, based on Dice coefficient distance, for group 1 bacterial
isolates (B1-B11) based on 16S rRNA3 marker variation..............cccccceveneen 83

Table 13. Similarity matrix, based on Dice coefficient distance, for group 2 bacterial
isolates (B12-B22) based on 16S rRNA3 marker variation. .............c.cc.coe.e... 83

Table 14. Similarity test table for group 1 of bacterial samples (B1-B11), presenting
Euclidian distance, P-value and pattern discrimination index between fungal
SAMPIES. ..ttt 102

Table 15. Similarity test table for group 1 of bacterial samples (B12-B22), presenting
Euclidian distance, P-value and pattern discrimination index between fungal
SAMPIES. .ot 104

Xl




List of Figures

Figure 1. Primary and secondary metabolites production rate during different growth
phases (i.e. lag, log and stationary phases). (Goodwin, H., 2018).................. 10

Figure 2. A typical Astree Il electronic tongue package. A: auto-sampler, B: array of
liquid sensors, C: electronic unit and D: advances chemometric software
(Alpha Soft ver. 14) (Alpha MOS, 2009)........cccciieriririieiesie e 12

Figure 3. Schematic diagram of a potentiometric type electronic tongue, showing seven
ISFET sensors immersed in complex liquid sample, the potential difference
signals are sent to a signal processor system to be analyzed using pattern
recognition algorithms (Kovacs, Szollosi, & Fekete, 2009). ..........ccccevvennenee. 14

Figure 4. Representative chart of PCA unsupervised linear technique for qualitative data
analysis. Showing how it reduces multidimensional primary variables from a
dataset (original data space) to new independent lower dimensional
approximation variables (component space, also called scores plot) called
principal components (PCs) (Scholz, 2006)...........ccceverenineneniniiieeeee, 17

Figure 5. Some photos of different spoiled vegetables, fruits, cheese, and bread samples.
The rusted spoiled area was spread on prepared PDA and NA media for
obtaining different fungal and bacterial cultures.............cccocevvvieriiiieniennnnn, 21

Figure 6. Some photos of different contaminated samples at KARC’s laboratories. The
different contaminated cultures were isolated on prepared PDA and NA
media for purification and obtaining different fungal and bacterial samples. 21

Figure 7. Group 1of purified different fungal isolates (F1-F11), which are cultured on

prepared PDA media with 1abeling. ..., 23
Figure 8. Group 2 of purified different fungal isolates (F12-F22), which are cultured on
prepared PDA media with [abeling. .........cccocooveiiiiii e 24

Figure 9. Auto-sampler samples’ distripution, the first round for ET mesurmet, consists
of 11 different PDB fillterated extarct of fungal growth (in positions 3, 4, 6, 7,
8, 10, 11, 12, 14, 15 and 16) and a control PDB sample (in position 2),
seperated by four D.W. samples (in position 1, 5, 9 and 13) for sensor

cleaning processes after each MeasurmMent. ..........cccocvevevierieeresieseeresee e, 31
Figure 10. Group 1 of purified bacterial isolates (B1-B11), which are cultured on

prepared NA media with [abeling. ... 35
Figure 11. Group 2 of purified bacterial isolates (B12-B22), which are cultured on

prepared NA media with 1abeling. ..., 36

Figure 12. Gel electrophoresis documented photos of total DNA isolated from fungal
samples using CTAB method for genomic isolation. A: represents group 1
fungal samples from F1-F11 as lanes from 1-11. B: repents group 2 fungal
samples from F12-F22 as lanes from 12-22. M= 100 bp ladder as a molecular
size marker. —ve= represents a negative control sample. ............ccccoovvevennnnnn 46

Figure 13. Gel electrophoresis documented photos for the ISSR fingerprinting
amplification in 22 different fungal isolates using six different UBCISSR
primers. A: primer 808, B: primer 807, C: primer 816, D: primer 840, E:
primer 885 and F: primer 890. M= 100 bp ladder as a molecular size marker.
—Vve= represents negative control sample. ..........ccccooeiiiiiiiiiic 49

Xl




Figure 14. UPGMA tree demonstrating the genetic diversity among group 1 different
fungal genotypes (F1-F11) based on ISSR markers and constructed using the
SYNGENE SOTIWAE. ...t 53

Figure 15. UPGMA tree illustrating the genetic diversity among group 2 different
fungal genotypes (F12-F22) based on ISSR markers and constructed using the
SYNGENE SOTIWANE. . .ecveiiieiecie s 54

Figure 16. Aatree Il ET’s sensors array discrimination power for group 1 fungal samples
(F1-F11). A: shows the discrimination power for each sensor of PDB
inoculated with fungi at the day of inoculation. B: shows the discrimination
power for each sensor of PDB inoculated with fungi after 120 h of growth
(0 F2 1) TR PRSI 55

Figure 17. Astree II ET’s sensors array discrimination power for group 2 fungal samples
(F12-F22). A: shows the discrimination power for each sensor of PDB
inoculated with fungi at the day of inoculation. B: shows the discrimination
power for each sensor of PDB inoculated with fungi after 120 h of growth
(AY 5). e e ens 56

Figure 18. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) on
the day of inoculation (D0), showing no discrimination with an index value of
-1820 between samples. PC1 and PC2 explain about 100% of the total
V2L =L o] o PP SRPRRRRN 61

Figure 19. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) after
24 h of inoculation (D1), showing changed discrimination index value to -55
between samples. PC1 and PC2 explain 100% of the total variation. ........... 62

Figure 20. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) after
48 h of inoculation (D2), showing a high discrimination index value of 91
between samples, that starts to be clearly separated. PC1 and PC2 explain
100% of the total Variation. ............cccuvieeiiiene e, 63

Figure 21. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) after
72 h of inoculation (D3), showing a high discrimination index value of 98
between samples. PC1 and PC2 explain 100% of the total variation. ........... 64

Figure 22. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) after
96 h of inoculation (D4), showing a high discrimination index value of 95
between samples. PC1 and PC2 explain about 100% of the total variation... 65

Figure 23. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) after
120 h of inoculation (D5), showing a high discrimination index value of 98
between groups. PC1 and PC2 explain 100% of the total variation. ............. 66

Figure 24. PCA scores plot for gathered data according to tested day for group 1 of
fungal samples (F1-F11). Showing each tested day grouping and day’s
overlapping after 96 h of fungal inoculation. PC1 and PC2 explain about
100% of the total Variation. .........cccoceiiriiiieseee s 68

Figure 25. PCA scores plot for gathered data according to tested day for group 2 of
fungal samples (F12-F22). Showing each tested day grouping and day’s
overlapping after 48 h of fungal inoculation. PC1 and PC2 explain almost
100% the total Variation. ...........ccooeiiiieriieie s 69

X1




Figure 26. PCA scores plot showing clustering rhythm of group 1 fungal samples (F1-
F11) according to UPGMA dendogram (Figure 14). It has a very close
ClUSEErING SIMIIAITLY. ..o 76

Figure 27. PCA scores plot showing clustering rhythm of group 2 fungal samples (F12-
F22) according to UPGMA dendogram (Figure 15). It has a very close
ClUSEEriNG SIMIIAIILY. ...cvveiicic e 77

Figure 28. Gel electrophoresis documented photo of total DNA isolated from 22
different bacterial isolates using TRI reagent method for genomic isolation.
Lanes from 1-22 represents bacterial isolates from 1-22. M= 1 Kbp ladder as
a molecular SIZE MArKEr.........ccoveiiieiiee e 78

Figure 29. Gel electrophoresis documented photos for 16S rRNA amplification in 22
different bacterial isolates using four different 16S rRNA universal primers’
combinations. A: primers 341F and 805R, B: primers 27F and 1492R, C:
primers 341F and 1492R and D: primers 27F and 805R. M= 100 bp ladder as
a molecular size marker. —ve= represents negative control sample. .............. 79

Figure 30. UPGMA tree illustrating the genetic diversity among group 1 bacterial
genotypes (B1-B11) based on 16S rRNA3 markers and constructed using the
SYNGENE SOTIWANE. ....evveiieiieiiie et nne e 86

Figure 31. UPGMA tree illustrating the genetic diversity among group 2 bacterial
genotypes (B12-B22) based on 16S rRNA3 markers and constructed using
the SYNGENE SOFIWAIE.......ccviiiiiieie et 87

Figure 32. Astree 1l ETs sensory array discrimination power for group 1 bacterial
samples (B1-B11). A: shows the discrimination power for each sensor of NB
media inoculated with bacteria at the day of inoculation. B: shows the
discrimination power for each sensor of NB after 96 h of bacterial growth. . 88

Figure 33. Astree Il ETs sensory array discrimination power for group 2 bacterial
samples (B12-B22). A: shows the discrimination power for each sensor of
NB media inoculated with bacteria at the day of inoculation. B: shows the
discrimination power for each sensor of NB after 96 h of bacterial growth. . 89

Figure 34. PCA scores plot of group 1 bacterial samples (B1- B11 with BO as control)
on the day of inoculation (D0), showing no discrimination with an index
value of -456 between samples. PC1 and PC2 explain 100% of the total
V2= L - L To] PP SRPSRRRN 93

Figure 35. PCA scores plot of group 1 bacterial samples (B1- B11 with BO as control)
after 24 h of inoculation (D1), showing change on the discrimination index
value to -19 between samples. PC1 and PC2explain 100% of the total
VAMATION. L.ttt bbb n s 94

Figure 36. PCA scores plot of group 1 bacterial samples (B1- B11 with BO as control)
after 48 h of inoculation (D2), showing another slightly change on the
discrimination index value to -7 between samples. PC1 and PC2 explain
almost 100% of the total variation. ...........cccccevviieiieieiiese e 95

Figure 37. PCA scores plot of group 1 bacterial samples (B1- B11 with BO as control)
after 72 h of inoculation (D3), showing change in the discrimination index
value to -0.5 between samples. PC1 and PC2 about 100% of the total
(V22 LT LA T TSRS RTRURTRRTRS 96

XV




Figure 38. PCA scores plot of group 1 bacterial samples (B1- B11 with BO as control)
after 96 h of inoculation (D4), showing high change on the discrimination
index value to reach 95 between samples. PC1 and PC2 100% of the total
V22 LT LA T o TSSOSO 97

Figure 39. PCA scores plot for gathered data according to tested day for group 1 of
bacterial samples (B1-B11). Showing each tested day grouping and data
decline after 96 h of bacterial inoculation that shows a high discrimination
index value of 71. PC1 and PC2 explain about 100% of the total variation.. 99

Figure 40. PCA scores plot for gathered data according to tested day for group 2 of
bacterial samples (B12-B22). Showing each tested day grouping and data
decline after 96 h of bacterial inoculation that shows a high discrimination
index value of 66. PC1 and PC2 explain about 100% of the total variation.100

Figure 41. PCA scores plot showing clustering rhythm of group 1 bacterial samples
(B1-B11) according to UPGMA dendogram (Figure 30). It has a very close
CluStering SIMIAIILY. .......cocviiiiiece e 107

Figure 42. PCA scores plot showing clustering rhythm of group 2 bacterial samples
(B12-B22) according to UPGMA dendogram (Figure 31). It has a very close
ClUSEEriNg SIMIIAITLY. ..o 108

Figure 43. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control) on
the day of inoculation (DQ), showing no discrimination with an index value of
-1519 between groups. PC1 and PC2 almost 100% of the total variation. .. 128

Figure 44. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control)
after 24 h of fungal inoculation (D1), showing changed discrimination index
value to -28 between groups. PC1 and PC2 explain 100% of the total
VANTATION. 1.ttt bbbt 129

Figure 45. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control)
after 48 h of fungal inoculation (D2), showing changed discrimination index
value to -13 between groups. PC1 and PC2 explain 100% of the total
V22V T LA T o SRS 130

Figure 46. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control)
after 72 h of fungal inoculation (D3), showing high discrimination index
value of 98 between groups. PC1 and PC2 explain 100% of the total
V22 LT L [0 o PP PR RS 131

Figure 47. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control)
after 96 h of fungal inoculation (D4), showing high discrimination index
value of 94 between groups. PC1 and PC2 explain about 100% of the total
V22 LT LA T o SRS 132

Figure 48. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control)
after 120 h. of fungal inoculation (D5), showing high discrimination index
value of 96 between groups. PC1 and PC2 explain 100% of the total
V2=V T LA T o SRS SS 133

Figure 49. PCA scores of group 2 bacterial samples (B12- B22 with BO as control) on
the day of inoculation (D0), showing no discrimination with an index value of
-291 between groups. PC1 and PC2 explain 100% of the total variation. ... 134

XV




Figure 50. PCA scores plot of group 2 bacterial samples (B12- B22 with B0 as control)
after 24 h of inoculation (D1), showing fast and high discrimination index
value change to 95 between groups. PC1 and PC2 explain 100% of the total
V22 VAT LA T o TSRS 135

Figure 51. PCA scores plot of group 2 bacterial samples (B12- B22 with BO as control)
after 48 h of inoculation (D2), showing constant and high discrimination
index value of 95 between groups. PC1 and PC2 explain 100% of the total
VANTATION. 1.ttt bbbt 136

Figure 52. PCA scores plot of group 2 bacterial samples (B12- B22 with B0 as control)
after 72 h of inoculation (D3), showing constant high discrimination index
value of 95 between groups. PC1 and PC2 explain almost 100% of the total
V22 LT LA T o TSRS 137

Figure 53. PCA scores plot of group 2 bacterial samples (B12- B22 with B0 as control)
after 96 h of inoculation (D4), showing fast and high discrimination index
value of 95 between groups. PC1 and PC2 explain 100% of the total
VANTATION. 1.ttt bbbt 138

XVI




List of Abbreviations or Symbols

The
abbreviation

Abbreviation description

C Celsius

pg/mL Microgram per milliliter

pL Microliter

Ag/AgCI Silver-silver chloride reference electrode

ANN Artificial neural network

bp Base pairs

ca. Circa

Cat# Catalog number

CE-MS" Capillary electrophoresis coupled with multistage accurate mass
spectrometry

ChemFETs Chemical sensitive field effect transistor

cm Centimetre

CTAB Cetyltrimethyl ammonium bromide

D.W. Distilled water

DAMD Directed amplification of minisatellite-region DNA

DFA Discrimination function analysis

Di Discrimination index

DNA Deoxyribonucleic acid

DNase Deoxyribonuclease

dNTPs Deoxyribonucleotide triphosphates

EDTA Ethylenediaminetetraacetic acid

ET Electronic tongue

FCM Fuzzyc means

g Gram

GC-MS" Gas chromatography coupled with multistage accurate mass spectrometry

h Hour/ hours

HCA Hierarchical cluster analysis

ISFET lon-sensitive field-effect transistor

ISSR Inter simple sequence repeats

ISSR-PCR Inter-simple sequence repeats related polymerase chain reaction

KARC Kadoorie Agricultural Research Center

kbp Kilo-base pair

KCI Potassium chloride

L liter

lag phase Lagging phase

LC-MS" Liquid chromatography coupled with multistage accurate mass
spectrometry

LDA Linear discriminate analysis

log phase Logarithmic phase

XVII




LVQ

Learning vector quantization

M Molar

MqgCl, Magnesium chloride

min Minute/ minutes

mL Millitre

mm Millimetre

mM Millimolar

MVDA Multivariate data analysis

NA Nutrient agar

NaCl Sodium chloride

NaOAc Sodium acetate

NB Nutrient broth

NH;OAc Ammonium acetate

NMR Nuclear magnetic resonance spectroscopy
PCA Principle component analysis

PCR Polymerase chain reaction

PCs Principal components

PDA Potato dextrose agar

PDB Potato dextrose broth

PLS Partial least square

PNN Probabilistic neural net-work

psi Pounds per square inch absolute

RNA Ribonucleic acid

RNase Ribonuclease

rpm Round per minute

rRNA Ribosomal RNA

RTU Ready to use

SDS Sodium dodecyl sulfate

SIMCA Soft independent model class analogy
SPAR Single primer amplification reaction

TBE Tris borate EDTA

TE Tris EDTA

TRI reagent TRIzol reagent

Tris Tris(hydroxymethyl)aminomethane
Tris-HCI Tris- hydrochloric acid

UBC-ISSR University of British Columbia- inter simple sequence repeats primer
unit/pL Unit per microliter

UPGMA Unweighted pair groups method using average
uv Ultra violet

Ver Version

Xg Relative centrifugal force (RCF) or G-Force

XVIII




Studying the Possibility of Indirect Metabolite
Microorganisms’ Classification Using Electronic Tongue and
Multivariate Data Analysis

Researched by: Basima Abu Rumaila
Supervised by: Dr. Nawaf Abu-Khalaf

Abstract
Chemical sensor systems become increasingly popular and promising

analytical tools for various liquid analyses. One of these systems is the
electronic tongue (ET), which is based on a multi-sensor array set with high
cross-sensitivity and low selectivity characteristics. This research is a trial
to investigate the possibility of using a potentiometric ET as a fast and
alternative assessment tool for (complex and native state) bimolecular
microorganism’s (bacterial and fungal species) foot-printing in a liquid

media.

The study was carried out by collecting 44 different fungal and bacterial
isolates. These microorganisms were cultivated on suitable liquid media,
where the filtrated media were then analyzed using Astree Il Alpha MOS
ET during their growth cycle. After that, the collected data were analyzed
using multivariate data analysis MVDA methods (basically using principal
component analysis PCA) for microbial clustering according to their

similarities and/ or differences among each other and to follow their growth
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rate. In the meantime, the clustering patterns of these microorganisms were

validated using molecular phylogenetic tree.

The results of this study were promising, since ET’s used sensors array
showed high discrimination power between samples ranged from 0.927 to 1
for fungi and from 0.960 to 0.999 for bacteria at the end of testing period.
In which, a PCA scores plot with 98 and 96 discrimination index (Di) for
fungi and 95 Di for bacterial clustering patterns were indicated. Moreover,
the similarity test revealed a high similarity of 27.18% Di among F5 and F6
fungal isolates in group 1, 70.52% Di among F14 and F21 in group 2
fungal isolates, 3.18% Di among B3 and B11 in group 1 bacterial isolates

and 12.91% Di among B13 and B22 in group 2 bacterial isolates.

Also, the PCA clustering patterns were very similar to the validated
molecular phylogenetic tree showing the relationship between isolates.
Furthermore, ET could follow microbial growth and overlapping (stop of

chemical change) in the liquid media.
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1 Introduction

1.1  General introduction
Microscopic organisms have thoroughly been focused for their interactions

and influence on the surrounding environments, where plenty of studies are
still being established to illustrate their functions and varieties (Borkowski
et al., 2018; Deveau et al., 2018; Schwab, Terra, & Baldani, 2018; Zhang,
Hu, Ren, & Zhang, 2018). In order to diagnose microorganisms (i.e.
bacteria and fungi) both genetic interaction among these microorganisms
and their interactions with the surrounding atmospheres are taken into
account. Although, molecular identification using genetic data bases (i.e.
DNA, RNA and protein sequences) and their different related techniques
(i.e. polymerase chain reaction (PCR) dependent or non-PCR dependent
techniques) are essential, these techniques need pre-sequence knowledge,
sample preparation, different molecular instruments and numerous
hazardous chemicals during the process (Gan et al., 2013; Rai, Phulwaria,
& Shekhawat, 2013; Somervuo, Koskela, Pennanen, Nilsson, &
Ovaskainen, 2016; Thangavelu, Kumar, Devi, & Mustaffa, 2012; Zhu, Qu,
& Zhu, 1993). Moreover, for industrial bio-production of amino acids,
antibiotics, enzymes, vitamins, bulk chemicals, bio-pharmaceuticals and
projects that need characterizing complex distributed metabolic
interactions, molecular techniques are costly and time consuming (Cai et

al., 2018; Mashego et al., 2007; Mosier et al., 2013; Purves et al., 2016).



According to Roessner & Bowne (2009) metabolomics science is
considered as the fourth level of molecular illustration (i.e. Genomic,
Transcriptomics and Proteomics studies). This science refers to the
comprehensive (qualitative and quantitative) information extraction and
data interpretation of the complete range of the exometabolome and
endometabolome presented from growing cells (under defined time and
conditions) using sophisticated analytical technologies, with applied
statistics and multi-variant methods (Boughton et al., 2011; Cai et al.,
2018; Kenny et al., 2005; Paczia et al., 2012).

Numerous analysis terminologies have been improved to differentiate
metabolites qualitative analysis into both metabolite foot-printing and
finger-printing that deals with extracellular and intercellular metabolite
analyses, respectively. However, target analysis is referred to quantitative
analysis of predefined metabolites. This approach thus complements
genomics, transcriptomics, proteomics and also fluxomics data that
facilitate metabolic-engineering systems. Also, it has the possibility to
provide closer insights into the function and ecology of microbial
communities (Brown et al., 2005; Jadhav et al., 2015; Kell et al., 2005;
Roessner & Bowne, 2009). Furthermore, since metabolites production
(during different growth phases) is considered as species-specific, it can be
used as genetic markers to differentiate between different micro-species

and even different strains (Beck, Knoop, Axmann, & Steuer, 2012; Jensen,



Williams, Oh, Zeigler, & Fenical, 2007; Jensen, 2016; Koo et al., 2014;
Purves et al., 2016). Yet, these complex mixtures of metabolites remain
largely ambiguous, due to the difficulty of searching for each component
individually.

Routine metabolites detection and quantification techniques are mainly
enzyme based techniques and/or using modern high-tech hyphenated
analytical protocols, mostly chromatographic techniques coupled to mass
spectrometry (i.e. liquid chromatography coupled with multistage accurate
mass spectrometry (LC-MS"), gas chromatography—mass spectrometry
(GC-MS"), capillary electrophoresis—mass spectrometry (CE-MS")), and
nuclear magnetic resonance spectroscopy (NMR). In which, these
techniques need pre-rapid sample collection, instant quenching of microbial
metabolic activity and extraction of relevant metabolites to be measured
(Beck et al., 2012; Bertrand et al., 2014; Fauvelle, Mazzella, Morin, Delest,
& Budzinski, 2015; Gros, Rodriguez-Mozaz, & Barcel0, 2012; Liu, Pan,
Li, Cai, & Miao, 2014; Paczia et al., 2012).

Chemical sensor systems become increasingly popular analytical tools for
liquid analysis (Momeni & Sedaghati, 2018; Pavase et al., 2018; Terbouche
et al., 2018). One of these systems is the electronic tongue (ET) (and also
called taste sensor) that seems to be a promising tool for analysis of various
complex liquids. It is based on a multi-sensor array system with high cross-

sensitivity and low selectivity characteristics. During the process signals



obtained are processed with multivariate data analysis (MVDA) techniques,
such as principle component analysis (PCA), partial least square (PLS),
discrimination function analysis (DFA) and soft independent model class
analogy (SIMCA), which revealed qualitative and/ or quantitative
information on the analyzed samples (Abu-Khalaf & lversen, 2007a; Feng
et al., 2016; Kirsanov, Korepanov, Dorovenko, Legin, & Legin, 2016).
The system was successfully applied for analysis of various foods, drinks
and pharmaceuticals applications, environmental researches , fermentable
microbial uses and microorganisms’ studies (Abu-Khalaf & Iversen,
2007b; Abu-Khalaf, Khayat, & French, 2015; Ceto, Voelcker, & Prieto-
Simon, 2016; Kutyla-Olesiuk, Wawrzyniak, Ciosek, & Wréblewski, 2014;
Lorenz, Reo, Hendl, Worthington, & Petrossian, 2009; Soderstrom, oren,
inquist, & Krantz-Rulcker, 2003).

Although, the direct ways for microorganisms’ classification can’t be
neglected, using ET as a new technique for metabolomics qualitative
analysis will offer many advantages, as it is label-free, easy to handle,
relatively low cost technique compared with other sophisticated and multi-
instrumental techniques, deals with a whole mixture in fast way and need
little sample preparation or testing it in their native state (Kumar et al.,
2016; Soderstrom et al., 2003; Wesoly & Ciosek, 2018; Zabadaj,

Szuplewska, Kalinowska, Chudy, & Ciosek-Skibinska, 2018). To our best



knowledge this is the first study for metabolite analysis using ET in

Palestine.

1.2 Aim
The aim of this research is to investigate the possibility of using

potentiometric chemical sensor based system (i.e. ET) to help as an
alternative fast tool for (complex and native state) microorganisms’
(bacterial and fungal species) bimolecular foot-printing relying on their

secreted metabolite in a liquid media.

1.3 Objectives
The objectives of this study are:

1- To use ET for metabolites qualitative (foot-printing) analysis in a
complex liquid media,

2- To have insights on liquid media chemical changes due to microbial
primary metabolite production through growth phases, and

3- To observe species specification through secondary metabolite

production and differentiation during stationary phase.



2 Literature review

2.1 Microorganism classification

The microbe’s category includes a massive range of microscopic organisms
that are often illustrated as unicellular organisms, including bacteria, fungi,
viruses, algae, archaea and protozoa. In last decades, these microorganisms
have thoroughly been studied for their interaction within their niches and
with surrounding environments (i.e. plants, animals and humans). The
studies where carried out in order to fulfill their functions, life cycles,
mutations, survival patterns, influence, bio-products and their varieties
(Andreevskaya et al., 2018; Bahram, VVanderpool, Pent, Hiltunen, &
Ryberg, 2018; Gonzalez—Mula et al., 2018; Rangel, Finlay, Hallsworth,

Dadachova, & Gadd, 2018; Strullu-Derrien, 2018; Wang et al., 2018).

2.1.1 Fungal molecular identification
There are many molecular methods for identifying the genetic diversity of

microorganisms using genetic data bases. Some of these bases for fungi,
plant and animal molecular classification are DNA segments called inter-
simple sequence repeats (ISSR) (Abadio et al., 2012). In which, these
targeted bases are 100-3000 base pairs (bp) nucleotides located dissimilarly
between identical, adjacent and oppositely oriented microsatellite regions
(Al-Turki & Basahi, 2015; Lagkouvardos et al., 2016; Soliman, Zaghloul,
& Heikal, 2014).

The technique of inter-simple sequence repeats related polymerase chain



reaction (ISSR-PCR) is a simple and quick method called single primer
amplification reaction (SPAR) where the amplification is occurred directly
(also called directed amplification of minisatellite-region DNA (DAMD)).
This technique depends on using about 16-25 bp in length single primer
that is either unanchored primer (designed through the core motif
microsatellite) in di-, tri-, tetra-nucleotide repeats only, or anchored primer
with 1- 4 selective nucleotides at 3’ or 5 end (Albayrak, Yoruk, Gazdagli,
& Sharifnabi, 2016; Rai et al., 2013; Salahlou, Safaie, & Shams-Bakhsh,
2016; Thangavelu et al., 2012).

Those designed micro-primers is considered as multi-locus markers that
can create, after being separated and scored by gel electrophoresis, from 10
to 60 highly polymorphic fragment profile according to the presence or
absence of a particular sized fragments. The advantages of ISSR analysis
applications are reported in many studies and it includes: the stability of the
designed primers, the consideration that it is fast and single PCR protocol
and it is useful for studying genetic identity, genetic diversity, phylogeny,
parentage, gene tagging, strain identification, genome mapping and
studying evolutionary taxonomy (Nirmaladevi et al., 2016; Rampersad,
2013; Shao, Xu, & Chen, 2011; Sornakili, Rathinam, Thiruvengadum, &
Kuppusamy, 2017).

However, ISSR can have reproducibility problems as other genetic markers

such as random amplification of polymorphic DNA (RAPD). Moreover,



ISSR fragments may have some misleading results of similar sized non-
homologous bands (Abadio et al., 2012; Aiyaz et al., 2016; Sudmoon,

Chaveerach, & Tanee, 2016; Thangavelu et al., 2012).

2.1.2 Bacterial molecular identification
Over the past years, a number of molecular markers for phylogenetic

classification have been evaluated. Currently, one of the most used
techniques for prokaryotic molecular identification is the amplification of
specific housekeeping marker region of the 16S ribosomal RNA (rRNA)
genes (Takahashi, Tomita, Nishioka, Hisada, & Nishijima, 2014; Thijs et
al., 2017; Vetrovsky & Baldrian, 2013).

The 16S rRNA gene, is approximately 1500 bp gene coding for a catalytic
RNA that is part of the 30S ribosomal subunit and it is presented in all
prokaryotic cells and includes differently rated highly conserved and
variable sequence regions. Generally, the conserved region is used for
universal specification, while sequencing of PCR amplicons of the genetic
differences in the variable regions allows the assignment of close
relationships at the species and even at genus level between different races
of microorganisms (Lagkouvardos et al., 2016; Nguyen, Warnow, Pop, &
White, 2016; Yang, Wang, & Qian, 2016; Yarza et al., 2014).

Universal designed PCR primers targeting the conserved regions of 16S
make it possible to amplify the gene in a wide range. This technique

considered as constantly valid, relatively fast, cost-efficient and used for



multiple applications (i.e. microbial identification, phylogeny, diversity
analysis, determination of new species and metagenomics). Moreover, the
availability of huge full length 16S data bases sequences for a large number
of strains, make it easy to compare an unknown strain with pre-identified
sequences (D'Amore et al., 2016; Fadrosh et al., 2014; Meola et al., 2018;
Tremblay et al., 2015).

However, universal PCR primers selection is critical point in 16S rRNA
gene amplification. In which, incorrect specification conclusions can be
created due to inappropriate primers selection; related to the fact that the
current designed universal 16S rRNA gene primers are based on the
conserved sequences of previously identified microbes that sometimes
cannot detect some mismatched species (Giusti et al., 2017; Hahn,

Jezberovd, Koll, Saueressig-Beck, & Schmidt, 2016; Mori et al., 2013).

2.2 Microbial metabolites
In recent years, microbial metabolites (i.e. the intermediates and products

of metabolism) have received much attention due to their critical rules to
global processes. Metabolites are typically characterized as small
molecules with various functions, which are categorized into both primary
and secondary metabolites (Mashego et al., 2007; Robertson, Robertson, &

Bahnemann, 2012; Ross, Morgan, & Hill, 2002).



2.2.1 Primary metabolites
Primary metabolites (i.e. the central metabolite) are formed during all

growth phases (Figure 1) as a result for energy metabolism and are deemed
essential for proper growth, development and reproduction of the organism
and it is a key component in maintaining normal physiological processes
(Brockman & Prather, 2015; Piotrowska-Niczyporuk, Bajguz, Talarek,

Bralska, & Zambrzycka, 2015; Ziemert et al., 2012).
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Figure 1. Primary and secondary metabolites production rate during different growth
phases (i.e. lag, log and stationary phases). (Goodwin, H., 2018).

2.2.2 Secondary metabolites
Meanwhile, secondary metabolites are organic compounds produced

through the modification of primary metabolite synthesis. They are
typically formed during the end or near the stationary phase of growth

(Figure 1) (Demain & Fang, 2000; Macheleidt et al., 2016).
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Many of the known secondary metabolites have a role in:

Defense, such as antibiotics,

Competition against other bacteria, fungi, amoebae, plants, insects
and large animals,

Transpiration,

Symbiosis, as an agent between microbes and plants, nematodes,
insects and higher animals,

Mating, as sexual hormones,

Differentiation, as effectors,

Stimulating spore formation, when favorable conditions for growth
are existed, and

Inhibiting growth until less competitive environments are present

(Beccari, Senatore, Tini, Sulyok, & Covarelli, 2018; Bertrand et al., 2014;

Deveau et al., 2016; Ziemert et al., 2012).

Studies have been carried out in order to categorize the importance of

secondary metabolite for different microorganisms, to illustrate their role in

protecting and adjusting these microbes with the surrounding environment

and to characterize the specificity of different antibiotics with certain

microorganisms (Blin et al., 2013; Deveau et al., 2016; Gan et al., 2013;

Mosier et al., 2013; Parastar, Jalali-Heravi, Sereshti, & Mani-

Varnosfaderani, 2012; Ziemert et al., 2012). Moreover, secondary

metabolites production has been recognized to be strain specific, where the
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structural diversity of these metabolite coupled with gene probing and
phylogenetic analyses are considered as a lateral gene transfer evolution
(Jensen et al., 2007; Marliere, 2016; Wink, 2003).

However, due to the limited knowledge of microbial metabolites, the
difficulty of identifying metabolites from complex samples and the
inability to link metabolites directly to community members; have been
proven to be major limitations in developing advance systems interactions

(Demain & Fang, 2000; Gika, Wilson, & Theodoridis, 2014).

2.3 Electronic tongue (ET)
ET is a simple liquid analytical instrument consists of four parts (Figure 2):

A: an auto-sampler for repeatable sensor measurement, B: a chemical
multi-sensor system, C: signal acquisition system and D: a multivariate

(chemometric) software and the instrument control on a PC.

Figure 2. A typical Astree Il electronic tongue package. A: auto-sampler, B: array of
liquid sensors, C: electronic unit and D: advances chemometric software (Alpha Soft
ver. 14) (Alpha MOS, 2009).
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The principal of this sensing technology depends on transforming
information of chemical composition (i.e. taste substances) using chemical
multi-sensor system having partial specificity into electrical signals that is
coupled then with chemometric analysis methods. In which, the whole
system is capable of recognizing quantitative and qualitative composition
of liquids and provides an objective low selective and high cross sensitive
evaluation of tasted nonspecific complex solutions (Jiang, Zhang,

Bhandari, & Adhikari, 2018; Power & Morrin, 2013).

2.3.1 Types of ET
According to the different sensor array working principals, ETs are divided

into three common types: potentiometric, volumetric and taste sensor (i.e.
lipid/ polymer membrane) (Faura, Gonzalez-Calabuig, & Valle, 2016;

Tahri et al., 2018).

In this study, an Astree Il potentiometric ET is used. The system consists of
seven modified chemical sensitive field effect transistor solid
electrochemical sensors (ChemFETS). In which, these sensors patently have
been developed by Alpha MOS company (Alpha MQOS, 2009). The type of
Astree’s sensors is ion-sensitive field-effect transistor (ISFET), which
categorized in two essential parts, one of them is a seven sensing
transducers with a chemically coated sensitive layer and the other is

Ag/AgCI reference electrode (i.e. silver-silver chloride reference electrode),
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where the system measurement consists of the potentiometric difference

between each individual sensor compared with the reference one.

The potentiometric measurement of ISFET sensor changes by the trapping
of ions or molecules on its chemically sensitive layer that generates a
change in the membrane potential. Where, this change leads to a final
variation of potential between source and drain region of the field effect

transistor of the sensor, which consider as an electronic signal (Figure 3).
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Figure 3. Schematic diagram of a potentiometric type electronic tongue, showing seven
ISFET sensors immersed in complex liquid sample, the potential difference signals are
sent to a signal processor system to be analyzed using pattern recognition algorithms
(Kovécs, Széllosi, & Fekete, 2009).

Moreover, the specificity of this organic coating has been developed to

ensure good reproducibility and to govern sensitivity and selectivity of each
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individual sensor, according the chemical composition and the dissolved
compounds in liquid media (Kutyla-Olesiuk et al., 2014; Voitechovic,
Korepanov, Kirsanov, & Legin, 2018). An ET equipped with
potentiometric sensors is considered as one of the devices having ease of
construction and miniaturization properties and has the privilege of rapid,
reproducible, sensitive and selective response. Also, it can be used for
toxicological analysis for its clean, simple and nondestructive methods of
measurements and it has the possibility of obtaining sensors selective to
various species. However, the main disadvantage of this type of ETs is
temperature dependence and the adsorption of solution component can
easily affect the nature of charge transfer (Veloso, Sousa, Estevinho, Dias,

& Peres, 2018; Woertz, Tissen, Kleinebudde, & Breitkreutz, 2011).

2.3.2 Principal component analysis (PCA)
The MVDA software is used to transfer information acquired by sensors to

a distinguishable patterns of interest that can be analyzed and make
reasonable decisions about categories of the pattern (Jiang et al., 2018;
Voitechovic et al., 2018). For specification, the electro chemical responses
are used to form databases that are subjected to unsupervised and/ or
supervised MVDA methods. Some of these methods include principal
component analysis (PCA), linear discriminate analysis (LDA), partial least
squares (PLS), hierarchical cluster analysis (HCA), support vector machine

(SVM) and artificial neural network (ANN). Moreover, different
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recognition methods have different applicable approaches. In which, the
PCA, PLS, LDA and HCA are bases for linear approaches, but the ANN
and SVM are regarded as non-linear methods. However, the unsupervised
methods (also known as exploratory data analysis method) do not need any
prior knowledge about the class structure of the data, but instead it produce

grouping (Ceto et al., 2016; Pavase et al., 2018; Tahri et al., 2018).

The PCA is one of the most widely used unsupervised linear techniques
and it is often the first step in data analysis to verify patterns in measured
data for qualitative purposes. It is used for converting and reducing
multidimensional primary variables from a dataset to new independent
lower dimensional approximation variables called principal components
(PCs). The projections of the points from the original data space on PCs are
called scores plot. Hence, PCA simplify the interpretation of the data by the
PCs (PC1, PC2, ... PCn) and preserve most of the variance in the data. It
successively provides a set of orthogonal axes indicating the direction of
the largest variance in the data. In which, The first principal component
(PC1) accounts for the maximum of the total variance, the second (PC2) is
orthogonal to the first and lies in the direction of the largest remaining
variation, and so on, until the total variance is explained by ca. 100%. Each
principal component contains different sources of information allowing
them to be visualized, while maintaining as much information as possible

from the original data (Scholz, 2006; Yaroshenko et al., 2015).
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On other words, the basic idea behind using PCA, as an unsupervised linear
technique, is to have qualitative clustering of samples through the
conversion of data from a high dimensional space to a low dimensional
space and to visualize it graphically as scores plot, which shows the

relation between samples. Objects or samples that are similar tend to cluster
in the score plots, while different objects tend to be separated (Figure 4)

(Esteki et al., 2018; Feng et al., 2016; Yaroshenko et al., 2015).
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Figure 4. Representative chart of PCA unsupervised linear technique for qualitative data
analysis. Showing how it reduces multidimensional primary variables from a dataset
(original data space) to new independent lower dimensional approximation variables

(component space, also called scores plot) called principal components (PCs) (Scholz,
2006).
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2.3.3 ET biological scope of applications
Sensors were successfully used for monitoring and sensing the activity of

microorganisms, in which promising results were obtained (Bougrini et al.,
2016; Brockman & Prather, 2015). Also, ET has number of applications
that showed great solutions to many biotechnology and biomedical
problems. It is useful for a wide variety of industries ranging from
environmental control to blood analysis (Ceto et al., 2016; Esteki et al.,
2018; Jiang et al., 2018). Furthermore, it has been used in many
biotechnology applications; one of these was to discriminate edible fungi
varieties and evaluate their umami intensities (Feng et al., 2016). The
results of this study indicate that ET has a great potential in qualitative and
guantitative analysis of edible fungi. Likewise, it was used to analyze mold
growth in liquid media (Soderstrom et al., 2003), and to recognize six
microbial different fungal species (Soderstrom, Winquist, & Krantz-
Rulcker, 2003). After that, two electronic tongues (potentiometric and
voltammetry) were applied to differentiate between four Aspergillus
species and one Zygosaccharomyces based on different measurement
techniques, where promising results were achieved (Soderstrom,
Rudnitskaya, Legin, & Krantz-Rulcker, 2005). Additionally, it was used for
monitoring citric acid production by Aspergillus niger (Kutyla-Olesiuk et
al., 2014). As well , it was applied for fermentation monitoring, beverage,

pharmaceuticals and taste masking (Ha et al., 2015; Medina-Plaza et al.,
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2015; Peris & Escuder-Gilabert, 2016; Yaroshenko et al., 2015).
Pharmaceutically, it was used for in vivo evaluation of the taste of
commercially available clarithromycin oral pharmaceutical suspensions in
Palestinian market. Plus, it was utilized to evaluate the taste, total phenols
and antioxidant for fresh, roasted, shade dried and boiled leaves of edible
Arum palaestinum bioss (Abu-Khalaf et al., 2018; Qneibi et al., 2018).
Besides that, it was used for quantification of immobilized proteins using
potentiometric multisensory array (Voitechovic et al., 2018) and it was
considered as safe and objective alternative for drugs’ taste assessment in
some pharmaceutical studies (Woertz et al., 2011). Furthermore, in a recent
study ET was used as an accurate, fast and cost-effective analytical
technique for honey adulterations assessment, in addition to the classical
techniques (e.g. physicochemical analysis, microscopy, chromatography,
Immunoassay, DNA metabarcoding and spectroscopy) (Veloso et al.,

2018).

19



3 Material and methods
3.1 Fungal experiment

3.1.1 Samples collecting and maintenance
Fungi samples were collected by spreading small portion of the rusted

spoiled area from decayed fruits and vegetables (Figure 5) and from
contaminated samples at Kadoorie Agricultural Research Center’s (KARC)
laboratories (Figure 6) on prepared potato dextrose agar (PDA) media. The
media was prepared by completely dissolve 39 g of PDA powder in 1 L
distilled water (D.W.) with heating. After that, the suspension was
autoclaved at 1217 for 15 min, followed by 15 psi for 15 min, and then
suspended in 9 cm petri-dishes, where each plate contained approximately
12 mL of the powered media and then it was allowed to solidify.

After samples purification, 22 different pure fungal isolates were obtained
and divided into two groups (Table 1). These cultures were maintained by
dual culturing on PDA media every three weeks, through placing four 8 mm
diameter discs of previously cultured growth oppositely over the media
with incubation at 28C in dark to obtain full growth.

Samples were grouped into two groups: group 1 that labeled as F1, F2, ...

and F11 (Figure 7) and group 2 labeled as F12, F13, ... and F22 (Figure 8).
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Figure 5. Some photos of different spoiled vegetables, fruits, cheese, and bread samples.
The rusted spoiled area was spread on prepared PDA and NA media for obtaining
different fungal and bacterial cultures.

Figure 6. Some photos of different contaminated samples at KARC’s laboratories. The
different contaminated cultures were isolated on prepared PDA and NA media for
purification and obtaining different fungal and bacterial samples.
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For liquid growth, four 8 mm diameter discs of pure cultured fungi samples
were cultivated in potato dextrose broth (PDB) media. The media was
prepared by completely dissolve 24 g of PDB powder in 1 L D.W. with
heating. After that, the suspension was suspended in 250 mL flask where
each flask contained approximately 100 mL of powered media that were
then autoclaved at 121C for 15 min followed by 15 psi for 15 min then

lifted to cool down for the culturing process.

Table 1. List of fungal (pure isolates) different labeling for molecular and ET
experiments.

ET ET ET ET ET ET
Molecular
Group name name name name name name
no. sample
no. name for for for for for for
day 0 day 1 day 2 day 3 day 4 day 5
1 F1 F1D0 F1D1 F1D2 F1D3 F1D4 F1D5
2 F2 F2D0 F2D1 F2D2 F2D3 F2D4 F2D5
3 F3 F3DO0 F3D1 F3D2 F3D3 F3D4 F3D5
4 F4 FADO FAD1 FAD2 FAD3 FAD4 FADS
G 1 5 F5 F5D0 F5D1 F5D2 F5D3 F5D4 F5D5
(Frl‘f‘;‘l’l) 6 F6 F6DO  F6D1  F6D2  F6D3  F6D4  F6D5
7 F7 F7DO0 F7D1 F7D2 F7D3 F7D4 F7D5
8 F8 F8DO0 F8D1 F8D2 F8D3 F8D4 F8D5
9 F9 FODO FoD1 FoD2 FOD3 FoOD4 FOD5
10 F10 F1I0DO F10D1 F10D2  F10D3 F10D4  F10D5
11 F11 F11DO0 F11D1 F11D2 F11D3 F11D4 F11D5
12 F12 F12D0 F12D1 Fl12D2 F12D3 F12D4  F12D5
13 F13 F13DO0 F13D1  F13D2 F13D3 F13D4 F13D5
14 F14 F14D0 F14D1 F14D2  F14D3 F14D4  F14D5
15 F15 F15D0 F15D1 F15D2  F15D3 F15D4  F15D5
Group 2 | 16 F16 F16D0 F16D1  F16D2 F16D3 F16D4 F16D5
(F12- 17 F17 F17D0 F17D1 F17D2  F17D3 F17D4  F17D5
F22) 18 F18 F18D0 F18D1  F18D2 F18D3 F18D4 F18D5
19 F19 F19D0 F19D1 F19D2 F19D3 F19D4 F19D5
20 F20 F20D0 F20D1 F20D2  F20D3 F20D4  F20D5
21 F21 F21D0 F21D1 F21D2 F21D3 F21D4  F21D5
22 F22 F22D0  F22D1 F22D2  F22D3 F22D4  F22D5
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Figure 7. Group lof purified different fungal isolates (F1-F11), which are cultured on prepared PDA media with labeling.
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Figure 8. Group 2 of purified different fungal isolates (F12-F22), which are cultured on prepared PDA media with labeling.
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3.1.2 Fungal molecular phylogenetic

3.1.2.1 Fungal DNA isolation
Fungal genomic material was isolated using the CTAB DNA isolation

method (Zhu et al., 1993) with slightly modifications. The procedure started
by collecting a (ca. 50-100 mg) mycelia of three days freshly grown fungi
on prepared PDB media, which was placed in 1.5 mL microfuge tube
containing sterile sea sand (ca. 100 mg). Then, 500 uL of extraction buffer
(100 mM Tris-HCI, 10 mM EDTA, 2% SDS, 100 pg/mL proteinase K, and

1% B-mercaptoethanol) was added to each tube.

After that, samples were grind into slurry using pellet pestles homogenizer
with sterilized tips (cat # 3110) and incubated at 60C for one hour with dual
shaking every 3-4 min. Afterward, the salt concentration of the homogenate
was adjusted to 1.4 M by adding 200 uL of 5 M NaCl, and then 0.1 of the
resulted volume was added from 10% CTAB solution followed by an

incubation period for 10 min at 65C.

After incubation, one volume of phenol: chloroform: isoamyl alcohol
(25:24:1) was added to each tube that were gently emulsified by inversion,
and incubated at 0C for 30 min to be spun after that at 12000 rpm, 4C for 10
min. At that point, the top phase was transferred to new 1.5 mL microfuge

tube and half the transferred volume was added with 5 M NH,OAc and
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mixed gently. Tubes then were incubated at (fC for 60 min and spun at 4C,
12000 rpm for 15 min. The supernatant was transferred to new 1.5 mL
eppindorf tube, followed by the addition of RNase solution to have a final
concentration of 0.02 pg/mL and 0.55 of the resulted volume with cold

isopropanol that was then mixed gently.

The mixture was spun at 1000 rpm for 5 min with discarding the supernatant
without disrupting the collected pellet. Later on, pellets were suspended in
200 pL TE buffer (10 mM Tris base at pH.8 and 1 mM EDTA) and 20 pL of
3 M NaOAc at pH 7. Then for pellet washing, 2.5 of the resulted volume
was added with cold 75% ethanol that was gently mixed and span at 10000
rpm for 5 min (this step was repeated twice). At the end, pellets were
resuspended in 50 pL TE buffer after being completely dry from ethanol

residues and stored at -200C for further uses.

3.1.2.2 Inter simple sequence repeats (ISSR) sequences
amplification, electrophoresis and data analysis

- ISSR sequences amplification reaction mixture

A total of six University of British Columbia- inter simple sequence repeats
primer (UBC-ISSR) primers were used for PCR amplification of DNA

templates. The ISSR sequences were amplified according to Abadio et al.

26



(2012) with modifications. Where, primers were dissolved in sterilized

distilled and DNase free water at concentration of 100 puM.

The amplification reaction was performed in a volume of 20 pL using Red
tag DNA polymerase ready mix (Lot # SLBF8650V), that contained 2 pL of
10X red tag PCR reaction buffer (100 mM Tris-HCI pH 8.3, 500 mM KCl,
11 mM MgCl; and 0.1% gelatin), 0.25 pL of 10 mM dNTPs (200 pL of each
dNTPs), 0.2 pL of 100 uM primer, 0.36 pL of 50 mM MgCl,, 15.19 pL of
free DNase water, 1 pL of red tag DNA polymerase (1 unit/pL) and 1 pL of
(30-50 ng) DNA template.

- PCR amplification program

The amplification program was performed using Verti™ 96 well thermal
cycler (Cat. #: 4375786) (Applied Biosystems company, California, USA),
that was programed to perform an initial denaturation cycle of 94T for 5
min, and 35 cycles of 94T for 1 min, 1 min at the primer annealing
temperature, which varied according to the used primer (Table 5 (in result
section)), and at 72C for 2 min, followed by a final extension cycle of 72C

for 7 min.

To ensure reproducibility of the amplified DNA fragments, all PCRs were
performed in duplication for each isolate and reactions without DNA were

performed for DNA contamination determination.
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- Gel electrophoresis

ISSR products were separated by electrophoresis according to their
molecular weight using 2% agarose gel. That was prepared by weighting 9 ¢
of agarose powder that was completely dissolved in 450 mL of 1X TBE
electrophoresis buffer (0.089 M Tris base, 0.089 M Boric acid and 0.002 M
EDTA) by thermal heating using microwave, then the mixture was cool to
60TC. After that, 8 uL of 1000X Gel Red DNA stain (Cat. # 41003) was
added with stirring. The suspension was then powered and allowed to
solidify in (20 x 20) tray with 46 wells comp. After submerging the gel in
1X TBE buffer and loading 5 pL of PCR products, the device was run for

three hours at 80 volt.

DNA fragments were visualized using 10000X Gel Red DNA stain and UV-
illuminator and documented using SynGene gene tool system (Synoptics
Ltd., Cambridge C, UK) for image acquisition and documentation. Also, for
estimating the size of the amplified DNA fragments, a 100 bp DNA RTU
ladder (Cat. # DM001-R500) was used as a molecular size marker.

- Data analysis

To ensure the reproducibility and reliability of the ISSR markers, PCR
reactions were repeated twice for each primer. Only reproducible band were

considered for analysis.
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For data analysis, each DNA fragments with a different electrophoretic
mobility were used to assign loci for each primer. Bands were scored as
diallelic for each assigned locus (1= band present and 0= band absent)

(scoring table can be seen in results and discussion section, Table 4).

A dendogram was constructed through using unweighted pair groups’
method average (UPGMA) cluster analysis based on a Dice coefficient,
using gel SynGene Ver. 4.3.5 (Synoptics Ltd., Cambridge C, UK) analysis
software. The similarity matrix was calculated among the exanimated
samples accessions based on Dice genetic distance. In this study, Dice
coefficient was used because it is the suitable measure for haploids with co-

dominant markers.

3.1.3 ET measurements of fungal metabolites
A liquid taste analyzer Astree Il ET (Alpha MOS company, Toulouse,

France), composed of a sensor array of seven sensors (CA, JB, HA, ZZ, BB,
JE and GA) with an Ag/AgCl reference electrode, was used to follow up
metabolite consumption and production during growth of microorganisms in

PDB from day zero until the fifth day of inoculation.

3.1.3.1 Fungal broth samples preparation
Two rounds of fungal samples were measured using ET. In each round, 11

fungi with a PDB sample (control) were tested in triplicate. In which, fungal
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samples were grown in PDB media that was prepared by completely
dissolving 24 g of PDB powder in 1 L D.W. with heating, the mixture was
then suspended in 250 mL Erlenmeyer flasks each flask contained 100 mL
of broth media (72 flask were prepared for each round), the suspended flasks
were then autoclaved sterilized at 121C for 15 min followed by 15 psi for 15

min.

Then four discs (8 mm diameter) of each cultured fungi (Table 1) from PDA
media were inoculated in each flask with proper labeling and incubated at
28C in dark with shaking. For each tested fungi, six flasks were prepared for
every tested day (0, 1, 2, 3, 4 and 5 days) including a control PDB media

sample for the comparison.

3.1.3.2 ET sequence preparation and auto-sampler samples
loading

A binomial way of labeling was used to create a sequence for ET method,
where samples names’ have two parts, one for the number of fungi and the
other for the tested day (e.g. FODO, FODI, ..., F11D5) (Table 1) this
sequence was created for each day of measurements. For the first ET
measurement round, only 11 fungi (group 1) with FO as a control sample
were measured daily after 0, 24, 48, 72, 96 and 120 h of inoculation (i.e. 0-5

days).
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Each fungal growth was filtered from mycelia using white cheese cloth to
obtain approximately 80 mL of each broth that was placed on the ET’s 16-
position auto-sampler (with an automatic stirrer) and broth samples were
separated by four water samples for cleaning ET sensors after each test

(Figure 9).

Figure 9. Auto-sampler samples’ distripution, the first round for ET mesurmet, consists
of 11 different PDB fillterated extarct of fungal growth (in positions 3, 4, 6, 7, 8, 10, 11,
12, 14, 15 and 16) and a control PDB sample (in position 2), seperated by four D.W.
samples (in position 1, 5, 9 and 13) for sensor cleaning processes after each measurment.

For the second round, fungal samples were labeled as F12, F13, ..., F21 and
F22, with FO as a control sample. In which those samples were also

measured daily after 0, 24, 48, 72, 96 and 120 h of inoculation following the
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same previously mentioned process for sequence labeling (such as FODO,

FOD1, ..., F22D5) (Table 1).

This second round of measurements was done in order to be sure of the
created measurement, to observe the change in the collected data according
to the change of tested samples and to have a broad spectrum of different
fungi.

3.1.3.3  ET data library creation

After each measurement the obtained data from each sensor were collected
in a folder categorized by fungal sequence and the date of measurement for
each round after creating a library of the experiment (as stated in Alpha

MOS ASTREE manual, 2009).

3.1.3.4 ET data analysis
The collected data from analyzed sensors were analyzed using Alpha Soft

Ver. 12.4 (Alpha MOS, Toulouse, France) multivariate data analysis
(MVDA) software package, such as PCA scores plot that was used for
automatically collecting and storing the sensors’ outputs and studying the

relationship among samples.

32



3.2 Bacterial experiment

3.2.1 Samples collecting and maintenance
Bacterial samples were collected by screening small portion of the spoiled

area on fruits and vegetables (Figure 5), and contaminated samples in
Kadoorie Agricultural Research Center’s (KARC) laboratories (Figure 6) on
prepared nutrient agar (NA) media. The media was prepared by completely
dissolve 23 g of NA powder in 1 L D.W. with heating. After that, the
suspension was autoclaved at 1217T for 15 min followed by 15 psi for 15 min
that was set aside to cool down and suspended in 9 cm petri-dishes where
each plate contained approximately 12 mL of powered media and allowed to

solidify.

After purification, 22 different pure bacterial cultures were obtained with
proper labeling that was divided into two groups according to the auto-

sampler capacity (Table 2).

These cultures were maintained with dual culturing on NA media every two
weeks by spreading small bacterial inoculum of previously cultured growth

over a new NA media and incubated at 28C in dark for full growth.

Group 1 labeled as B1, B2, ... and B11 (Figure 10) and group 2 labeled as

B12, B13, ... and B22 (Figure 11).
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For liquid growth, small inoculum of pure cultured bacteria was grown in
nutrient broth (NB) media. The media was prepared by completely
dissolving 13 g of NB powder in 1 L D.W. with heating, the mixture was
then suspended in 250 mL flask where each flask contained approximately
100 mL of the powered media, then the suspension was autoclaved at 121C
for 15 min followed by 15 psi for 15 min and allowed to cool down for the

culturing process.

Table 2. List of bacterial (pure isolates) different labeling for molecular and ET
experiments.

Group Molecular ETname ETname ETname ET name ET name ET name
no. no. sample for for for for for for

name Day 0 Day 1 Day 2 Day 3 Day 4 Day 5

1 Bl B1DO B1D1 B1D2 B1D3 B1D4 B1D5

2 B2 B2D0 B2D1 B2D2 B2D3 B2D4 B2D5

3 B3 B3DO0 B3D1 B3D2 B3D3 B3D4 B3D5

4 B4 B4DO0 B4D1 B4D2 B4D3 B4D4 B4D5

5 B5 B5D0 B5D1 B5D2 B5D3 B5D4 B5D5

(érlcf‘é'ill 6 B6 B6DO B6D1 B6D2 B6D3 B6D4 B6D5
7 B7 B7D0 B7D1 B7D2 B7D3 B7D4 B7D5

8 B8 B8DO B8D1 B8D2 B8D3 B8D4 B8D5

9 B9 B9DO B9D1 B9D2 B9D3 B9D4 B9D5

10 B10 B10DO B10D1 B10D2 B10D3 B10D4 B10D5

11 B11 B11DO0O B11D1 B11D2 B11D3 B11D4 B11D5

12 B12 B12D0 B12D1 B12D2 B12D3 B12D4 B12D5

13 B13 B13DO0 B13D1 B13D2 B13D3 B13D4 B13D5

14 B14 B14D0 B14D1 B14D2 B14D3 B14D4 B14D5

15 B15 B15D0 B15D1 B15D2 B15D3 B15D4 B15D5

16 B16 B16DO0 B16D1 B16D2 B16D3 B16D4 B16D5

S{g}’é’é 17 B17 BI7DO  B17D1  B17D2  B17D3 B17D4  B17D5
18 B18 B18DO0 B18D1 B18D2 B18D3 B18D4 B18D5

19 B19 B19D0 B19D1 B19D2 B19D3 B19D4 B19D5

20 B20 B20D0 B20D1 B20D2 B20D3 B20D4 B20D5

21 B21 B21D0 B21D1 B21D2 B21D3 B21D4 B21D5

22 B22 B22D0 B22D1 B22D2 B22D3 B22D4 B22D5
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Figure 10. Group 1 of purified bacterial isolates (B1-B11), which are cultured on prepared NA media with labeling.
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Figure 11. Group 2 of purified bacterial isolates (B12-B22), which are cultured on prepared NA media with labeling.
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3.2.2 Bacterial molecular phylogenetic

3.2.2.1 Bacterial DNA isolation
Bacterial DNA isolation procedure was done according to TRIzol reagent

manual (TRI reagent) (Cat. # T942). In which, a small freshly grown
bacterial portion (grown in NA media) was dissolved in 1 mL of TRI reagent
contained in 1.5 mL microfuge tubes through variously shacking using
vortex. Samples were allowed to stand for 5 min at room temperature, 200
uL of absolute cold chloroform was added per mL of TRI reagent, that tubes
were then shacked vigorously for 15 sec and left to stand for 15 min at room

temperature.

The resulted mixture was centrifuged afterwards at 12000 xg (11573 rpm)
for 10 min at 4T that gave three phases:

- Colorless upper phase (RNA),

- Inter phase (DNA), and

- Red organic phase (protein lower phase).

After that, the aqueous overlying phase was removed and discarded, and 300
pL of cold 100% ethanol was added per mL of TRI reagent. Tubes then
were mixed by inversion, let to stand for 3 min at room temperature and
centrifuged at 2000 xg (4730 rpm) for 5 min at 4C. Then, the supernatant

was removed and saved for protein isolation (if it is needed).
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DNA pellets were washed twice using 1 mL of cold 0.1 M Trisodium cetrate
in 10% ethanol solution per mL of TRI reagent. After that, samples were
allowed to stand with occasionally mixing for at least 30 min. Followed by,
centrifugation at 2000 xg (4730 rpm) for 5 min at 4C, pellets were then
resuspended with cold 75% ethanol by adding 1.5 mL and allowed to stand
for 20 min at room temperature before being centrifuged at 2000 xg (4730
rpm) for 5 min at 4C with discarding the resulted supernatant. At the end,
pellets were dried for 10 min under vacuum, dissolved in 50 uL of TE buffer

and stored at -20C for further uses.

3.2.2.2 Sequences amplification, electrophoresis and data
analysis
- 16S rRNA sequences amplification reaction

A total of four universal bacterial 16S primers were used for PCR
amplification of DNA templates. Where, primers were dissolved in sterilized

distilled and DNase free water at concentration of 100 puM.

Amplification mixture was done using thermo-scientific 2X ready mix PCR
master mix with 1.5 mm MgCl, (Cat. # AB-0575/DC/LD/A). In which, a 25
HL PCR reaction mixture containing 12.5 pL of 2X ready mix PCR master

mix (0.625 U thermo prime taqg DNA polymerase, 75 mM Tris-HCI, 20 mM

(NH,),SO0,, 1.5 mM MgCl, 0.2 mM of each dNTPs), 0.125 pL of 100 uM
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forward primer, 0.125 pL of 100 uM reverse primer, 0.5 pL of 50 mM
MgCl,, 10.75 L of free DNase water and 1 L of DNA template.

-The PCR amplification program

The amplification program was performed using Verti™ 96 well thermal
cycler (Cat. # 4375786) (Applied Biosystems company, California, USA),
programed to perform an initial denaturation cycle at 94C for 3 min, then a
35 cycles of 94C for 45 sec, the annealing temperature for different primer
combination (Table 3) for 50 sec, and 72C for 1 min, and then an extension

cycle of 72C for 7 min.

To ensure reproducibility of the DNA amplified fragments, all PCRs were
duplicated for each isolate, and a tube sample without DNA was performed
to determine if the DNA was contaminated (as negative control).

- Gel electrophoresis

The 16S rRNA products were separated by electrophoresis according to their
molecular weight on 2% agarose gel. The gel was prepared by weighting 9 ¢
of agarose powder that was completely dissolved in 450 mL of 1X TBE
buffer using microwave, then the mixture was cooled to 60C. After that, 8
pL of 1000X Gel Red DNA stain (Cat. # 41003) was added with stirring.

The suspension was then powered and allowed to solidify in (20 x 20) tray
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with 46 wells comp. After submerging the gel in 1X TBE buffer and loading

5 uL of PCR products, the device was run for three hours at 80 volt.

DNA fragments were visualized by 10000X Gel Red DNA stain and UV-
illuminator and documented by using SynGene gene tool system (Synoptics
Ltd., Cambridge C, UK) for image acquisition and documentation. And to
estimate the size of the amplified DNA fragments, a 100 bp DNA RTU
ladder (Cat. # DM001-R500) was used as a molecular size marker.

- Data analysis

To ensure the reproducibility and reliability of the 16S rRNA coded primers,
PCR reactions were repeated twice for each primer. Only reproducible bands
were considered for analysis. For data analysis, each DNA fragments with a
different electrophoretic mobility were used to assign loci for each primer.
Bands were diallelicly scored for each assigned locus as (1= band present
and 0= band absent) (scoring table can be seen in results and discussion

section Table 10).

A dendogram was constructed by UPGMA cluster analysis based on a Dice
coefficient, using gel SynGene Ver. 4.3.5. analysis software (Synoptics Ltd.,
Cambridge C, UK). The similarity matrix was calculated among the

exanimated samples accessions based on Dice genetic distance.
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Table 3. PCR used primers’ codes, combinations and their annealing tempereature for 16S ribosomal RNA sequence amplification.

Prime

Forward

F primer sequence

Reverse

R primer sequence

Annealing
(F) (R) o
code primer 5°-3’ primer 5.3’ temperature ("C)
16S
Bakt 341F CCTACGGGNGGCAGCAGCAG Bakt 805R GACTACNVGGGTATCTAATCC 53
RNA1
16S
27F AGATTTGATCTGGCTCAG 1492R TACGGTTACCTTGTTACGACTT 51
RNA2
16S
Bakt 341F CCTACGGGNGGCAGCAGCAG 1492R TACGGTTACCTTGTTACGACTT 55
RNA3
16S
27F AGATTTGATCTGGCTCAG Bakt 805R GACTACNVGGGTATCTAATCC 52
RNA3

N=A,T,GandC.V=A, Cand G.
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3.2.3 ET measurements of bacterial metabolites
A liquid taste analyzer Astree Il ET (Alpha MOS company, Toulouse,

France), composed of a sensor array of seven sensors (CA, JB, HA, ZZ, BB,
JE and GA) with an Ag/AgCl reference electrode, was used to follow up
metabolite consumption and production during growth of microorganisms in

PDB from day zero until the fourth day of inoculation.

3.2.3.1 Bacterial broth samples preparation
Two rounds of bacterial samples were measured using ET. In each round, 11

bacteria with a NB sample (control) were tested in triplicate. The media was
prepared by completely dissolving 13 g of the powder in 1 L D.W. with
heating, the mixture was then suspended in 250 mL erlenmeyer flasks. Each
flask contained 100 mL of broth media (60 flasks were prepared for each
round), the suspended flasks were then autoclave sterilized at 1217T for 15
min followed by 15 psi for 15 min. After that, small inoculum (around
125x10™**) of each cultured bacteria were inoculated in each flask with
proper labeling, which was incubated at 28C with shaking in dark condition.
For each tested bacteria, five flasks were prepared for every tested day (0, 1,
2, 3 and 4 days) including a control NB media sample for the comparing

ISsues.
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3.2.3.2 ET sequence preparation
To create a sequence a binomial way of labeling was used, where samples

names’ has two parts. One for the number of bacteria and the other for the
testing day (i.e. BODO, BOD1, ..., B11D4) (Table 2) this sequence was
created for each day of measurements.

For the first ET measurement round only group 1 of bacteria with BO as a
control sample were tested. In which, those samples were measured daily

after 0, 24, 48, 72 and 96 h of inoculation.

Each bacterial growth was filtered using white cheese cloth to obtain
approximately 80 mL of each broth to be placed on ET’s 16-position auto-
sampler, with an automatic stirrer, after creating the sequence. Samples were

separated by four water samples for cleaning ET sensors after each test.

For the second round, bacterial samples of group 2 with BO as a control
sample were tested. In which, those samples were also measured daily after
0, 24, 48, 72 and 96 h of inoculation following the same previously

mentioned process with proper labeling.

This second round of measurements was done to be sure of the created
system of measurement, to observe the change in the collected data
according to the change of tested samples and to have a broad spectrum of

different bacteria.
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3.2.3.3 ET data library creation
After each measurement the resulted data from each sensor were collected in

a folder categorized by bacterial sequence and the date of measurement for

each round after creating a library of the experiment as mentioned earlier.

3.2.3.4 ET data analysis
The collected data from analyzed sensors were analyzed using Alpha Soft

Ver. 14 (Alpha MOS, Toulouse, France) multivariate data analysis (MVDA)
software package, as PCA scores plot was used for scoring the collected and

stored sensors’ outputs and studying the relationship among samples.

44



4 Results and discussion
4.1 Fungal experiment results

4.1.1 Fungal DNA data analysis
The total DNA extraction of 22 different fungi using CTAB isolation

method is shown in Figure 12 that was grouped into two groups according to
the final comparison with ET measured capacity of the auto-sampler. The
total six used ISSR primers resulted in polymorphic ISSR profiles, primers
include poly (GA) unanchored dinucleotide as ISSR 807, 3° anchored
primers as ISSR 808, 816 and 840 and 5’ anchored primers as ISSR 885 and

890 (Table 5).

The number of bands produced by the used primers ranged between 9 for
primer 890 (HVH(GA),) and 12 for the primer 840 ((GA)sYT). The total
number of alleles produced by all primers is 62 including 54 polymorphic
markers with only 8 monomorphic markers (Table 5). A 100%
polymorphism was scored for ISSR 808 ((GA)sT) and 807 ((GA)s).
Meanwhile, the lowest polymorphism of 66.7% was scored for primer 840
((GA)gYT). The other three primers produced polymorphism ranging
between 80% for primer 885 (BHB(GA),) and 90% for primer 816

((CA)gT). The total percentage of polymorphic markers for all primers in the
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examined 22 genotypes is 87.6%; this indicated high level of genetic

variation among the examined fungal genotypes.

1500
1000
500
300
100

Figure 12. Gel electrophoresis documented photos of total DNA isolated from fungal
samples using CTAB method for genomic isolation. A: represents group 1 fungal
samples from F1-F11 as lanes from 1-11. B: repents group 2 fungal samples from F12-
F22 as lanes from 12-22. M= 100 bp ladder as a molecular size marker. —ve= represents a
negative control sample.

The number of alleles varied per primer between 9 for primer 890 and 12 for

primer 840 with a mean of 10.3. Photographs illustrating the ISSR finger-
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printing of selected six primers for the 22 fungal genotypes are shown in
Figure 13 A-F. Where the largest produced fragment was approximately 1.5
Kbp and the smallest recognized produced fragment was approximately 0.2

Kbp (Table 5).
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Table 4. ISSR bands’ profile scores for 808 primer of 22 different fungal genotypes. Where, 1= present band and 0= absent band.

. Sample No.

Primer808(OP) T 1573 T4 (56718910 1112 | 13| 14 |15 [ 16 [ 17 | 18 | 19 | 20 | 21 | 22
1400 1lolol1]1]1]o]ol1] o0 1 ]o0 o 110 o] o 1]1]1]1
1200 ololol1l1l1]1]ol2lo1]olol1]lo o ool 1111
1000 olololololololololololololol1lolololo]o]ol]o
900 1lo[1]o]o]olo]l1]o] 1] o0 1]o0o]olo o o]0 o o0 o0]o0
700 ololol1l1lolololololololol1lololololo]lo]ol]o
600 olololololololololo ool 1]lololololololo]ol]o
500 11l1]olololz a2l 111 lolol 111 lol1lololo0
400 1lo[1]o]o]olo]olo] o0 o0 0|1 o0 o0 1 o0 10 0] 0]o0
300 ololololololol1lol 1 o1 ]olololololololo]ol]o
200 ololol1l1l1l1lolol oo lolol 1ol 1111 1]1]o0

Totalbands |41 3 44313133 333|243 32214332

Table 5. Base sequence of the six used ISSR primers which produced polymorphic finger-printing in 22 different fungal genotypes,
number of total alleles, number of amplified monomorphic and polymorphic bands as well as the percentage of polymorphism.

. > 3 Annealing Size range | Total No. of No. of . No. of . .
Primer code Sequence (5-3) temperature (C) (bp) alleles monomorphic | polymorphic | %Polymorphism
bands bands
UBCISSR 808 (AG)sT 50 200-1400 10 0 10 100
UBCISSR 807 (AG)s 50 250-1100 11 0 11 100
UBCISSR 816 (CA)sT 50 200-1400 10 1 9 90
UBCISSR 840 (GA)YT 51 200-1500 12 4 8 66.7
UBCISSR 885 BHB(GA), 52 200-1500 10 2 8 80
UBCISSR 890 HVH(GA), 52 200-1000 9 1 8 88.9
Total 62 8 54 525.6
Average 10.3 1.3 9 87.6

Y=Cand T.B=C,Gand T.H=A,CandT.V=A, CandG.
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Figure 13. Gel electrophoresis documented photos for the ISSR fingerprinting amplification in 22 different fungal isolates using six
different UBCISSR primers. A: primer 808, B: primer 807, C: primer 816, D: primer 840, E: primer 885 and F: primer 890. M= 100
bp ladder as a molecular size marker. —ve= represents negative control sample.
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The pair-wise genetic similarity estimates, for one of the 100%
polymorphism primers (i.e. primer 808), based on Dice similarity
coefficient, for group 1 of fungal isolates (F1-F11) that used in this study are
given in Table 6. The similarity coefficient ranged from 0.018 to 0.992. In
which, the highest similarity (i.e. 0.992) was observed between fungal
genotypes numbered 8 and 10. The second highest similarity (i.e. 0.989) was
between genotypes numbered 5 and 6 and the third highest similarity value
(i.e. 0.986) was the same between genotypes numbered 1 and 5, the two
genotypes numbered 1 and 6 and genotypes 9 and 11. Meanwhile, the
genetic similarity values ranged from 0.018 to 0.937 among other isolates in

group 1 (Table 6).

For group 2 of fungal isolates (F12-F22), the similarity coefficient ranged
from 0.001 to 0.991. Where, the highest value of similarity (i.e. 0.991) was
recorded between genotypes numbered 12 and 18, followed by (i.e. 0.965)
between isolate numbered 12 and 13. Also, the third highest value (i.e.

0.947) was between 12 and 18 samples (Table 7).

In the meantime, the genetic similarity values ranged from 0.001 to 0.913
amongst other isolates in group 2 (Table 7).
The genetic tree was demonstrated using cluster analysis by the UPGMA

method through the SynGene software.
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Table 6. Similarity matrix, based on Dice coefficient distance, for group 1 fungal isolates (F1-F11) based on ISSR marker variation.

1 2 3 4 5 6 7 8 9 10 11 M
1.000
0.000  1.000

0.000 0.932  1.000

0.088 0.521 0.272  1.000

0.986 0.000 0.000 0.084 1.000

0.986 0.000 0.000 0.018 0.989 1.000

0.708 0393 0299 0380 0.674 0.673 1.000

0.031 085 0.776 0.802 0000 0.000 0.443 1.000

0.637 0545 0499 0472 0611 0.608 0959 0.598 1.000

0.020 0866 0.799 0.769 0.000 0.000 0.445 0.992 0597 1.000

0571 0571 0527 0498 0551 0545 0937 0623 0986 0.622  1.000

0.000 0179 0291 0.055 0.000 0.000 0.000 0.041 0.000 0.048 0.000 1.000

e
SEBovwo~NooprwONE

Table 7. Similarity matrix, based on Dice coefficient distance, for group 2 fungal isolates (F12-F22) based on ISSR marker variation.

12 13 14 15 16 17 18 19 20 21 22 M
12 1.000

13 0.965  1.000

14 0913 0.887  1.000

15 0.001 0.064 0.092 1.000

16 0.891 0876 0.855 0.000 1.000

17 0.039 0.040 0341 0500 0.000 1.000

18 0991 0947 0827 0076 0730 0.067  1.000

19 0.697 0704 0882 0351 0645 0589 0.726  1.000

20 0.005 0.134 0278 0.044 0365 0.043 0.000 0.110 1.000

21 0845 0823 0801 0.021 0.786 0230 0.773 0.610 0.269 1.000

22 0.007 0.088 0169 0161 0236 0.077 0.014 0.045 0863 0307 1.000

M 0.102 0.188 0537 0153 0621 0485 0110 0526 0473 0.611 0.603 1.000
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The UPGMA genetic tree for group 1 fungal samples (F1-F11) showed two
main subgroups: A and B with a distance of 20 according to distance scale
(Figure 14). In subgroup A, the isolate numbered 4 was clearly different
from clusters I and Il in a distance of 59. Cluster | composed of two isolates
numbered 8 and 10 with a Dice close similarity value of 0.992 and distance
of 99.2. Cluster Il also consists of two isolates numbered 2 and 3 with a
0.932 value of similarity. In subgroup B, two clusters are observed, cluster
I11 composed of three isolates numbered 1, 5 and 6 with a range of 0.989 to
0.986 coefficient value in the similarity matrix. Cluster IV contains also
three fungal isolates numbered 7, 9 and 11 having a Dice similarity value

range of 0.986 to 0.959 (Table 6).

In group 2 fungal samples (F12-F22), the tree revealed two main subgroups
C and D with a distance of 12 according to distance scale (Figure 15). Group
C consists of three clusters, where cluster | composed of five fungal isolates,
numbered 12, 13, 16, 18 and 21 including the highest Dice coefficient value
of 0.991 and ranged to 0.773 among other isolates in the cluster. Genotypes
numbered 14 and 19 are included in cluster Il with a similarity value of
0.882. Also, 0.863 value was between genotypes numbered 20 and 22
included in cluster I1l. Meanwhile, group D contain only two fungal isolates

(numbered 15 and 17) with a distance of 50.
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Figure 14. UPGMA tree demonstrating the genetic diversity among group 1 different fungal genotypes (F1-F11) based on ISSR
markers and constructed using the SynGene software.
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Figure 15. UPGMA tree illustrating the genetic diversity among group 2 different fungal genotypes (F12-F22) based on ISSR markers

and constructed using the SynGene software.
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4.1.2 Fungal ET data analysis
Evaluation of tasted metabolites by ET revealed a significant discrimination,

not only on grouping levels for each day, but also between each sample in
the same tested period. ET used sensors array (i.e. CA, JB, HA, ZZ, BB, JE
and GA) showed different discrimination power during the tested period,
this power value indicates the ability of each sensor to discriminate each
sample from others. In group 1 fungal samples (F1-F11) the discrimination

powers for the sensors array are shown in Figure 16.

Index |Sensors Discrimination power
4 Ca 0.304
A 7 JB 0.120
6 HA 0.110
1 2 0.104
3 BB 0.096
2 JE 0.092
5 GA 0.028
Index |Sensors Discrimination power
12 0.999
B 5 GA 0.984
2 JE 0.947
3 BB 0.927
6 HA 0.833
7 JB 0.254
4 Ca 0.260

Figure 16. Aatree II ET’s sensors array discrimination power for group 1 fungal samples
(F1-F11). A: shows the discrimination power for each sensor of PDB inoculated with
fungi at the day of inoculation. B: shows the discrimination power for each sensor of
PDB inoculated with fungi after 120 h of growth (day 5).

The discrimination power for each sensor according to tested PDB media at

the inoculation day (Figure 16-A) ranged from 0.028 for GA sensor to 0.304
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for CA in the same test, which considered as low discrimination power.
Also, it shows how the discrimination power changed after 120 h of
inoculation (Day 5) (Figure 16-B), that represent a very close discrimination
range of 0.927 to 0.999 for four sensors (i.e. ZZ, GA, JE and BB) that are
considered the highest discriminative sensors, followed by HA sensor with
0.833 recorded discriminative power and leaving JB and CA sensors with
the lowest discrimination power for group 1 samples at the end of the fifth

day.

For group 2 fungal samples (F12-F22), the discrimination power for the

same sensors array are shown in Figure 17.

Index  |Sensors Discnmination power
2 JE 0.097
1 22 0.088
A 3 BB 0.083
o G& 0,080
4 Ca 0.043
7 JB 0.030
Irndex | Sensors Dizcrimination power
1 22 e eeemee 222000t 244 8808888558888 SRS 1,000
B 5 GA 0.998
2|JE 0.397
B HA R Ky
3 BB 0.393
7 JB 0.382
4 CA 0.323

Figure 17. Astree I ET’s sensors array discrimination power for group 2 fungal samples
(F12-F22). A: shows the discrimination power for each sensor of PDB inoculated with
fungi at the day of inoculation. B: shows the discrimination power for each sensor of
PDB inoculated with fungi after 120 h of growth (day 5).
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This figure shows different discrimination patterns at the same testing
periods (day O to day 5 of inoculation) according to the changed of tested
fungal samples. The discrimination power was lower than group 1 (F1-F11)
for all sensors’ reading in group 2 fungal isolates (F12-F22), the
discrimination power ranged below (i.e. 0.1) in the day of inoculation
(Figure 17-A). On the other hand, in the fifth day of inoculation (Figure 17-
B) sensors readings shows the highest discriminative power value (i.e. 1) for
sensor ZZ, followed by five sensors with a discrimination power ranged
from 0.982 to 0.998, leaving CA with the lowest discrimination power (i.e.

0.323).

Moreover, PCA is used to analyze the data by searching for axes along
which the samples are scattered, it is the first analysis performed. Where the
discrimination effectiveness is assessed based upon the discrimination index,

the dispersion and grouping of samples on the PCA scores plot.

The discrimination index (Di) gives the discrimination quality through an
indication of the surface (non-Euclidean) between fungal samples (i.e. each
sample is considered by the grouping of the three measurements of each

fungus).
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The Di value between samples is calculated according to the following
equations 1 and 2. When samples are distinct, the Di is calculated according
to equation 1, while when clusters overlap, the Di is calculated according to

equation 2 (Alpha MQS, 2009).

_ X group surface
Di = 100 x 1—[ ] ......... (D)
Total surface
Di = —(2 Intersection Surface/Total surface) x 100 ... ... ... (2)

The discrimination is confirmed if each fungal three reading are grouped
together to form one sample or cluster, and if there is no intersection
between various fungal clusters. In which, the Di indicate how distanced
each fungal cluster from the other. However, when there is a large variability
within a cluster, the cluster will be spread and it will decrease the Di value.
So, even if the discrimination is improved, the Di value will be still low

(Alpha MOS, 2009).

Moreover, the Di value can be positive or negative, where the positive value
indicates that there is no intersection between fungal samples, the tested
samples are different from each other and these samples have the greatest
distance between each other. While, the negative value indicates the

intersection and overlapping between fungal samples or clusters, the tested
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clusters are similar to each other and these clusters have the smallest
distance between each other. Furthermore, the maximum positive Di value is
100 revealing that fungal clusters are completely distant from each other.
But, there is no minimum value for the negative Di indication (Alpha MOS,

2009).

In this study, the evaluation of the Di revealed a significant difference
between the centers of gravity and dispersion of each cluster. Where, this
index changed in each tested day following the change in PDB media
according to fungal consumption of the media for their growth or the release
of secondary metabolites for their survival. In which, a linear unsupervised
pattern of recognition technique (i.e. PCA) was used to help showing the
change in the Di from the day of inoculation to the fifth day of fungal
growth. This PCA had the ability to present groups’ clusters following each
day, where two principal components (PC1 and PC2) were able to show
approximately 100% of the data variation (the sum of both PCs) of the

generated data as shown in Figure 18 to Figure 23.

Furthermore, during the day of inoculation (DO) all samples grouped
together with a Di of -1820 (Figure 18). Then fungal clusters stared to
separate with slightly Di change to -55 after 24 h of inoculation (D1) (Figure

19). After the second day of inoculation until the fifth day, the Di value
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continue rising up ranging from 91 to 95 as shown in Figures 20, 21, 22 and

23 indicating a well separated and clustered fungal groups.

For group 2 of fungal samples (F12 to F22), the PCA and the change in the

Di value of each measured day are shown in appendix (A) Figures 43- 48.

Where, the first Di value at the day of inoculation was -1519 revealing that
all samples have the same properties (Figure 43). Fungal samples started to
be separated and discriminated but with negative Di value, that continued
after 24 h and 48 h of fungal growth as -28 and -13, respectively (Figure 44
and Figure 45). Then, after 72 h of growth each sample has different
properties that was indicated by the positive Di value that continued until the

120 h of growth (i.e. 96) (Figure 48).
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Figure 18. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) on the day of inoculation (D0), showing no

Discrimination index = -1820
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discrimination with an index value of -1820 between samples. PC1 and PC2 explain about 100% of the total variation.
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Discrimination index = -39
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Figure 19. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) after 24 h of inoculation (D1), showing changed
discrimination index value to -55 between samples. PC1 and PC2 explain 100% of the total variation.
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Discrimination index = 91
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Figure 20. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) after 48 h of inoculation (D2), showing a high
discrimination index value of 91 between samples, that starts to be clearly separated. PC1 and PC2 explain 100% of the total variation.
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Figure 21. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) after 72 h of inoculation (D3), showing a high
discrimination index value of 98 between samples. PC1 and PC2 explain 100% of the total variation.
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Figure 22. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) after 96 h of inoculation (D4), showing a high

discrimination index value of 95 between samples. PC1 and PC2 explain about 100% of the total variation.
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Figure 23. PCA scores plot of group 1 fungal samples (F1- F11 with FO as control) after 120 h of inoculation (D5), showing a high
discrimination index value of 98 between groups. PC1 and PC2 explain 100% of the total variation.
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ET not only discriminates and cluster data or samples in the same measured
day, it exceeds that to discriminate between samples in different individual
day. PCA scores plot can follow the grouping between different tested days,
in order to identify were they overlapped (i.e. stop changing). So far in
group 1 fungal samples (F1-F11), day’s discrimination started to overlap
after 96 h of inoculation (D4 and D5) (Figure 24), which means that groups

clustering stabilized and can be used for further analysis and evaluations.

In group 2 fungal samples (F12-F22), days’ overlapping started after 48 h
inoculation period and continued till the 120 h of inoculation (D2- D5)
(Figure 25). This indicates that the differences between fungal samples in

group two are clear.

According to previous analysis, PDB media with fungal cultures having at
least 96 h of growth rate can be suitable candidate for group clustering
directly without being tested each day. In this study, D5 collected data for
both fungal groups 1 and 2 were used to build a table with the similarity
distance test (i.e. Euclidian test) between the centroids of the defined clusters
and generate the corresponding clustering (Figure 23 and Figure 48). The
group distance is a practical means of evaluating the similarity or difference

between two groups (Alpha MOS, 2009).
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Figure 24. PCA scores plot for gathered data according to tested day for group 1 of fungal samples (F1-F11). Showing each tested day
grouping and day’s overlapping after 96 h of fungal inoculation. PC1 and PC2 explain about 100% of the total variation.
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Figure 25. PCA scores plot for gathered data according to tested day for group 2 of fungal samples (F12-F22). Showing each tested

day grouping and day’s overlapping after 48 h of fungal inoculation. PC1 and PC2 explain almost 100% the total variation.
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Table 8 shows the results of similarity distance test for groupl of fungal
samples (F1-F11) to evaluate the difference and the similarity among
different samples. The test describes three parameters: group Euclidian
distance, probability value (P-value) and pattern discrimination index (%). In
which, the Euclidian distance between two clusters is a convenient way to
assess the similarity between them. Where, the greater the Euclidian distance
amongst the center of gravity of each cluster, the better the differences
between groups are. But, this value does not take into account groups’
dispersion. Where, this dispersion happens due to inappropriate selection of
sensors, poor reproducibility, sensor failure to discriminate the samples and
the presence of too wide sample to sample variability. As a result, if two
groups are widely dispersed and have a relatively large distance among their
center of gravity, they don’t consider significantly different. Moreover, the
P-value is a good means for evaluating the discrimination of the compared
clusters. Wherein, the smallest the P-value is (near to 0), the higher the
probability that groups are discriminated. This P-value calculation is based
on multivariate analysis of variance algorithm techniqgue (MANOVA), this
technique is used for assessing group differences across multiple non-metric
dependent variables simultaneously.

In a conclusion, as pattern index finger-prints indicator takes into account
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the difference between the centers of gravity and also the dispersion of each
cluster. It is wise to look first at the index of discrimination, then the
distance and P value. Where, P value can be only considered as an alarm
value which helps to determine whether the reproducibility and/or
discrimination between groups are correct or not. It may also demonstrate if

the sensors selection were good enough (Alpha MQOS, 2009).

In general, in this study the following similarity distance test table shows the
pattern discrimination index (%) (two by two). In which, each sample (as a
product sample) was compared to another one (as a reference sample). This
pattern discrimination index ranged for group 1 of fungal samples (F1-F11)
on day 5, from 27.18% between FO5 and F06 to 99.64% between F10 and
F11, revealing the highest and lowest similar fungal samples, respectively
(Table 8). Where, the P-value generally decreased as the discrimination
value increased except in few samples due to previously mentioned reasons.
Also, the distance between two groups increased as the discrimination
between them increased, except in few samples and that is according to
sample dispersion that was mentioned before. The first four fungal
combinations of FO5-F06, FO09-F11, FO3-F04 and FO1-FO5 were the closest
to each other with a low discrimination index ranging between 27.18% to

61.79%, then samples started to be well discriminated (Table 8).
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Table 8. Similarity test table for group 1 of fungal samples (F1-F11), presenting
Euclidian distance, P-value and pattern discrimination index between fungal samples.

Product Reference Distances P Value | Pattern discrimination index (%6)

names samples

FO5D5 FO6D5 0.16 9.82 27.18
FO9D5 F11D5 0.12 13.65 42.45
FO3D5 F04D5 0.16 6.26 50.87
FO1D5 FO5D5 0.34 5.14 61.79
FO1D5 F02D5 0.40 2.82 69.90
FO7D5 FO9D5 0.29 3.67 73.72
FO1D5 FO6D5 0.50 1.97 74.08
F02D5 FO4D5 0.36 9.47 78.11
FO7D5 F11D5 0.34 4.24 78.45
FO1D5 FO3D5 0.52 11.14 82.40
FO8D5 F10D5 0.71 2.38 82.72
F02D5 FO3D5 0.44 1.45 83.97
FO1D5 FO4D5 0.57 5.63 84.92
FO02D5 FO5D5 0.74 191 91.52
FO02D5 FO6D5 0.90 0.53 92.37
FO3D5 FO6D5 0.85 0.36 92.83
FO3D5 FO5D5 0.74 243 93.13
FO1D5 F11D5 0.95 4.88 94.12
F04D5 FO6D5 0.96 1.50 94.44
F04D5 FO5D5 0.83 2.09 94.71
F02D5 FO7D5 0.90 2.94 94.79
FO6D5 FO9D5 1.04 1.47 95.44
FO6D5 F11D5 1.13 1.59 95.96
FO6D5 FO7D5 1.23 0.53 96.00
FO5D5 FO7D5 1.10 1.90 96.22
FO5D5 F11D5 1.03 3.65 96.55
FO3D5 FO9D5 131 3.49 98.71
FO6D5 FO8D5 2.74 4.74 98.81
FO3D5 F11D5 1.43 3.49 98.84
FO1D5 FO8D5 2.96 3.39 98.94
FO5D5 FO8D5 2.83 3.27 99.07
FO6D5 F10D5 3.27 2.68 99.07
FO3D5 FO8D5 2.67 2.33 99.15
FO1D5 F10D5 3.55 211 99.18
F04D5 FO8D5 2.80 1.98 99.24
FO5D5 F10D5 3.37 1.63 99.26
FO3D5 F10D5 331 1.37 99.35
F02D5 F10D5 3.73 1.54 99.41
FO7D5 FO8D5 3.88 1.49 99.54
FO7D5 F10D5 4.45 161 99.60
FO9D5 F10D5 4.30 1.77 99.64
F10D5 F11D5 4.39 1.89 99.64
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Table 9 lists similarity distance test ordered values for compared group 2
fungal samples (F12-F22) on the fifth day. In which, the pattern
discrimination index (%) among samples in this group was relatively larger
than it was among samples in group 1. Where, the lowest value started with
70.52% between F14 and F21, and the highest value ended with 99.99%
between F13 and F15, revealing the dissimilarity between fungal isolates in

this group.

The pattern discrimination index was less than 90% only between F14 and
F16 related to F21. Although, the distance between samples having 99%
discrimination index and more was less in range (i.e. 0.61-3.95) compared to
group 1 distance (i.e. 2.83-4.39) (Table 8), the discrimination pattern was
larger and ranged from 99% among F13 and F18 to 99.99% among F13 and
F15. This phenomenon is due to the large variety of fungal genotypes in this
group that in contrast revealed low dispersion and high Di power of sensors
array. The P-value generally decreased as the discrimination value increased

except in few samples (Table 9) due to previously mentioned reasons.
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Table 9. Similarity test table for group 2 of fungal samples (F12-F22), presenting
Euclidian distance, P-value and pattern discrimination index between fungal samples.

Pnr;)rcgllégt Reference samples | Distances P Value | Pattern discrimination index (%)
F14D5 F21D5 0.26 20.52 70.52
F16D5 F21D5 0.37 18.21 79.82
F12D5 F18D5 0.20 9.54 90.80
F12D5 F16D5 0.43 15.16 93.90
F12D5 F21D5 0.68 3.53 94.80
F18D5 F21D5 0.73 7.35 95.13
F20D5 F21D5 0.89 5.15 95.56
F14D5 F20D5 0.63 4.65 96.21
F14D5 F16D5 0.61 4.16 96.30
F13D5 F16D5 0.73 531 97.86
F14D5 F19D5 0.45 4.99 97.95
F16D5 F20D5 1.21 8.06 98.45
F12D5 F13D5 0.41 2.78 98.58
F13D5 F18D5 0.61 7.25 99.00
F14D5 F18D5 0.98 4.55 99.36
F18D5 F20D5 1.60 2.56 99.42
F21D5 F22D5 2.27 3.98 99.45
F12D5 F20D5 1.57 0.78 99.45
F12D5 F14D5 0.94 2.13 99.46
F13D5 F20D5 1.64 2.16 99.51
F17D5 F21D5 2.32 0.62 99.53
F16D5 F17D5 2.07 1.97 99.73
F15D5 F21D5 3.30 0.73 99.77
F17D5 F20D5 2.64 0.25 99.81
F15D5 F20D5 3.10 0.57 99.86
F12D5 F19D5 1.28 2.38 99.87
F15D5 F16D5 3.22 1.37 99.88
F13D5 F19D5 1.46 1.64 99.91
F14D5 F17D5 2.40 0.53 99.93
F15D5 F17D5 1.80 1.81 99.94
F14D5 F15D5 3.23 0.61 99.96
F12D5 F17D5 2.28 0.45 99.96
F17D5 F22D5 4.25 1.36 99.97
F15D5 F19D5 2.84 0.68 99.97
F13D5 F17D5 2.68 0.56 99.97
F17D5 F19D5 221 0.55 99.97
F15D5 F18D5 3.42 1.59 99.97
F15D5 F22D5 5.53 1.24 99.98
F12D5 F15D5 3.58 0.75 99.98
F13D5 F15D5 3.95 0.58 99.99
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The following PCA scores plots Figure 26 and Figure 27 of the fifth day’s
data for both fungal groups group 1 and group 2 show the relative clustering
of fungal samples as it genetically revealed previously by the UPGMA tree
in Figure 14 and Figure 15, respectively. In which, the grouping and
clustering of PCA and the genetic tree have almost the same pattern rhythm

for different fungal isolates.

In group 1 fungal samples (F1-F11) (Figure 26), it has both subgroups A and
B as the UPGMA tree clustering in Figure 14. Where subgroup A with its
two clusters I and 11, having fungal samples F8 and F10 in cluster | and F2,
F3 and F4 included in cluster Il. And subgroup B with F6, F5 and F1

included in cluster 111, and cluster 1V consists of F7, F9 and F11.

Meanwhile, group 2 fungal samples (F12-F22) (Figure 27) has group C and
D as the UPGMA tree clustering in Figure 15. Where, group D has only F15
and F17 included in cluster 1V which are distinct to each other and from
other fungal samples. However, group C has the majority of fungal samples
categorized in clusters I, Il and I11. In which, the largest and closest fungal
samples in this group are gathered in cluster | (i.e. F12, F13, F16, F18 and
F21), followed by cluster 11 having the second closest fungal isolates (i.e.

F14 and F19), leaving cluster 111 with relatively close F20 and F22.
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Figure 26. PCA scores plot showing clustering rhythm of group 1 fungal samples (F1-F11) according to UPGMA dendogram (Figure
14). It has a very close clustering similarity.
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Figure 27. PCA scores plot showing clustering rhythm of group 2 fungal samples (F12-F22) according to UPGMA dendogram (Figure
15). It has a very close clustering similarity.
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4.2 Bacterial experiment results

4.2.1 Bacterial DNA data analysis
Total DNA extraction of 22 different bacteria using TRI reagent method are

shown in Figure 28, which was grouped into two groups according to ET’s

auto-sampler’s capacity (Table 2).
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Figure 28. Gel electrophoresis documented photo of total DNA isolated from 22 different
bacterial isolates using TRI reagent method for genomic isolation. Lanes from 1-22
represents bacterial isolates from 1-22. M= 1 Kbp ladder as a molecular size marker.

The four used combinations of universal 16S rRNA coded bacterial primers

(Table 3) showed well identifiable bands in Figure 29 A-D.
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Figure 29. Gel electrophoresis documented photos for 16S rRNA amplification in 22 different bacterial isolates using four different 16S
rRNA universal primers’ combinations. A: primers 341F and 805R, B: primers 27F and 1492R, C: primers 341F and 1492R and D: primers
27F and 805R. M= 100 bp ladder as a molecular size marker. —ve= represents negative control sample.
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Table 10. The 16S rRNA bands’ profiles scores of 22 different bacterial genotypes using 16S rRNA3 coded primer for each marker. Where,
1= present band and 0= absent band.

Primer Sample No.

16S rRNA3 (bp) 1 2 3 4 1516|7819 10 11 12 13 14 15 16 17 18 19 20 21 22
1010 0 1 1 0j1(0|0|0]1 0 1 0 0 1 0 0 1 0 1 1 1 1
950 0 0 1 1100110 1 1 1 0 0 1 1 0 0 0 0 1 0
900 0 1 0 oj1(0(1|1]0 0 0 1 0 0 0 0 1 0 0 0 0 0
780 1 0 0 ojo0f1(0|0]O 1 1 1 0 0 1 1 0 0 1 0 1 1
710 0 0 0 110|J0]0]|O0]|O 0 0 1 0 0 0 0 1 1 0 0 0 0
650 0 1 1 0j]0|0|0|0]1 0 1 0 0 0 1 1 0 0 0 0 0 0
550 0 0 0 0j1(0|0|0]O 0 1 0 1 0 0 0 0 1 1 1 0 0
510 0 0 0 o(ojojo|ojo 0 0 0 0 0 0 0 0 1 0 0 1 0
430 0 0 1 ojo0(0|0|0]O 0 1 0 1 1 0 0 0 0 0 0 0 0
400 0 0 0 1)11|1|0]0]1 1 0 0 1 0 0 0 0 0 0 0 0 0
350 0 0 0 o|jofojo|jo0j|oO 0 0 0 0 0 0 0 0 0 0 1 1 0
300 0 0 0 ojo0(0|0|0]O 0 0 1 0 1 0 0 1 0 1 0 1 0
250 0 0 0 111|011 ]0]1 0 0 0 0 0 1 1 0 0 0 0 0 0
150 1 0 0 ojof1j0/|07]O 0 1 1 0 0 1 1 0 0 1 0 0 1
100 0 0 1 1)11|0|1]0]0 0 0 0 0 0 0 0 0 1 0 0 1 0

Total
2 3 5 516 |3|4|2]4 3 7 6 3 3 5 5 4 4 5 3 7 3

bands
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The primer coded 16S rRNA3 (with forward 341F and reversed 1492R
primers combination) in Figure 29 C resulted in polymorphic profiles that

were used for UPGMA data analysis.

The numbers of scored bands produced by this primer were 15, including 11
polymorphic markers and only 4 monomorphic markers, scoring a
percentage of 73.33% polymorphism, which indicated a high level of genetic

variation among the examined bacterial genotypes (Table 11).

The photo illustrating bands fingerprinting of the selected 16S rRNA3
primers for the 22 bacterial genotypes is shown in Figure 29 (C). Where the
largest produced fragment was approximately 200 bp and the smallest

recognized produced fragment was approximately 1.10 Kbp (Table 11).

Table 11. Base sequence of the 16S rRNA3 coded primer which produced polymorphic
finger-printing in 22 different bacterial genotypes, number of total alleles, number of
amplified monomorphic, polymorphic bands as well as the percentage of polymorphism.

: Annealing Size Total No. of No. of
Primer No. of . . %
temperature range 0.0 { Monomorphic | Polymorphic .
code Polymorphism
© (bp) alleles bands bands
16S
50 200-1010 | 15 4 11 73.33
RNA3
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The pair-wise genetic similarity estimates, for 16S rRNA3 profiles based on
Dice similarity coefficient for group 1 of bacterial isolates (B1-B11), are
given in Table 12. The similarity coefficient ranged from 0.032 to 0.999.
The highest similarity range of 0.999-0.995 was observed between bacterial
genotypes numbered 3, 4, 5, 6 and 7. The second highest similarity (i.e.
0.990) was between genotypes numbered 9 and 10. While third highest value
(i.e. 0.987) was between the two genotypes numbered 2 and 10 and the

lowest one (i.e. 0.032) was between isolates 1 and 9 (Table 10).

For group 2 of bacterial isolates (B12-B22) (Table 13), the similarity
coefficient ranged from 0 to 1. Where the highest value of similarity (i.e. 1)
was recorded between genotypes numbered 13 and 22, followed by a range
of 0.999- 0.995 between isolate numbered 13, 15, 16, 17, 19, 21 and 22. The
third highest value of 0.988 was between 15 and 17 numbered samples. The
other genetic similarity values ranged from 0 to 0.913 among other isolates

in this group.
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Table 12. Similarity matrix, based on Dice coefficient distance, for group 1 bacterial isolates (B1-B11) based on 16S rRNA3 marker

variation
1 2 3 4 5 6 7 8 9 10 11 M
1 1.000
2 0.058 1.000
3 0.444 0.547 1.000
4 0.233 0.893 0.996 1.000
5 0.195 0.957 0.996 0.999 1.000
6 0.421 0.573 0.998 0.998 0.999 1.000
7 0.214 0.936 0.995 0.998 0.997 0.997 1.000
8 0.056 0.351 0.092 0.204 0.251 0.098 0.197 1.000
9 0.032 0.980 0.474 0.783 0.897 0.491 0.841 0.541 1.000
10 0.143 0.987 0.872 0.993 0.891 0.908 0.993 0.232 0.990 1.000
11 0.208 0.948 0.983 0.980 0.981 0.982 0.985 0.154 0.868 0.978 1.000
M 0.113 0.461 0.478 0.482 0.479 0.479 0.481 0.008 0.400 0.486 0.472 1.000

Table 13. Similarity matrix, based on Dice coefficient distance, for group 2 bacterial isolates (B12-B22) based on 16S rRNA3 marker

variation.
12 13 14 15 16 17 18 19 20 21 22 M
12 1.000
13 0.000 1.000
14 0.000 0.909 1.000
15 0.000 0.998 0.986 1.000
16 0.058 0.999 0.985 0.999 1.000
17 0.000 0.996 0.889 0.988 0.999 1.000
18 0.000 0.968 0.946 0.970 0.971 0.972 1.000
19 0.000 0.998 0.959 0.999 0.999 0.998 0.969 1.000
20 0.048 0.483 0.314 0.382 0.586 0.725 0.603 0.635 1.000
21 0.000 0.995 0.843 0.954 0.996 0.995 0.963 0.996 0.803 1.000
22 0.000 1.000 0.869 0.974 0.999 0.997 0.968 0.998 0.776 0.998 1.000
M 0.000 0.137 0.328 0.465 0.047 0.118 0.000 0.383 0.086 0.087 0.632 1.000
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The cluster analysis using UPGMA method, for group 1 bacterial isolates
(B1-B11) (Figure 30) showed two main subgroups A and B with a distance
of 19.5 according to distance scale, which indicates the dissimilarity

between the two groups.

In subgroup A, the isolate numbered 8 (included in cluster Il1) was clearly
different from cluster I and Il in a distance of 22. Meanwhile, cluster | and Il
are closer to each other in a branch distance of 84. Cluster | composed of six
isolates, where five of them (samples numbered 3, 4, 5, 6 and 7) with the
closest Dice similarity value around 0.999 and distance of 99. In which, the
six sample numbered 11 was similar to the above five grouped samples in a
distance of 98. In cluster Il there are three isolates (numbered 2, 9 and 10)
with a 0.999 coefficient value of similarity between 9 and 10 ranged to 0.98
with the branched numbered 2 (Table 12). Group B composed of only one
leaf presenting isolate numbered 1 that was different from all other tested

isolates (Figure 30).

In group 2 bacterial isolates (B12-B22), the UPGMA genetic tree also
revealed two main subgroups C and D (Figure 31). The subgroup D consists
of only one leaf sample (numbered B12) with a similarity coefficient range
of 0.048-0.058 (Table 13) that indicates the heterogeneity between this

sample and all other isolates.
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Subgroup C has the majority of bacterial isolates that were clustered into
two branched clusters | and Il in a distance of approximately 58 according to
the distance scale. Where, cluster |1 composed of only one leaf of genotype
numbered B20. On the other hand, cluster | composed of all 9 other bacterial
genotypes that were tested in this subgroup. This cluster is divided to four
enter groups labeled a, b, ¢ and d (Figure 31). In which, group a contained
four isolates with the highest similarity distance of 100 between samples
B13 and B22 and a distance of 99 between the other two samples in this
group (samples numbered 17 and 21). Group b branched from group a at a
distance of 98 and it is composed of three bacterial isolates (numbered 15,
16 and 19) with the same high Dice coefficient value of 0.999 (Table 13).
Genotype coded B18, that is included in group c, is at a similarity distance
of 97 with the other groups (a and b). While, genotype numbered B14
among cluster I, and grouped as d, is far from all other groups at a distance
branch of approximately 94 according to similarity distance scale (Figure

31).
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Figure 30. UPGMA tree illustrating the genetic diversity among group 1 bacterial genotypes (B1-B11) based on 16S rRNA3 markers
and constructed using the SYNGENE software.
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Figure 31. UPGMA tree illustrating the genetic diversity among group 2 bacterial genotypes (B12-B22) based on 16S rRNA3 markers
and constructed using the SYNGENE software.
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4.2.2 Bacterial ET data analysis

Evaluation of bacterial metabolites by ET revealed a significant
discrimination on both grouping levels for each day and between each

sample in the same tested period.

The discrimination powers for each sensor for group 1 bacterial samples

(B1-B11) are shown in Figure 32.

Index |Sensors Discrimination power

7 JB 0.534
EF]
3 BB 0.096

5 GA 0.091

1 ZZ2 0.076

2 JE 0.043

6 HA 0.032

Index |Sensors Discrimination power
122 0,985

B 5 GA 0.960
2 JE 0.733

7 JB 0.573

4 CA 0.239

B HA 0.052

Figure 32. Astree Il ETs sensory array discrimination power for group 1 bacterial
samples (B1-B11). A: shows the discrimination power for each sensor of NB media
inoculated with bacteria at the day of inoculation. B: shows the discrimination power for
each sensor of NB after 96 h of bacterial growth.

In which, the discrimination power for this group according to tasted NB

media at the inoculation day (Figure 32- A) ranged from 0.032 for HA
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sensor to 0.584 for JB in the same test day, which considered as a low
power. Also, it shows how the discrimination power changed after 96 h of
inoculation (Day 4) (Figure 32- B), that represent a very close discrimination
range of 0.985 to 0.960 for two sensors (ZZ and GA) that are considered the
highest discriminative sensors, followed by BB sensor with 0.894 recorded
power and leaving HA with the lowest power of 0.052 for at the end of the

fourth day (Figure 32).

In the meantime, the discrimination powers for each sensor for group 1

bacterial samples (B12-B22) are shown in Figure 33.

Index |Sensors Discrimination power :
4 CA 0.151
A 3 BB 0137
hﬂ—lﬂ
1 22 0.096
2 JE 0.079
7 JB 0.069
B HA D044
Index |Sensors Discrimination power '
1 ZZ 0.999
B 3 BB 0.988
5 GA 0.869
4 CA 0.683
7 JB 0.676
2 JE 0.501
6 HA 0.103

Figure 33. Astree Il ETs sensory array discrimination power for group 2 bacterial
samples (B12-B22). A: shows the discrimination power for each sensor of NB media
inoculated with bacteria at the day of inoculation. B: shows the discrimination power for
each sensor of NB after 96 h of bacterial growth.
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Where, the discrimination power ranged from 0.044 for HA to 0.151 for in
the day of inoculation (Figure 33- A). The discrimination power values
changed after 96 h of inoculation (Figure 33- B) sensors readings ranged
from 0.999 for ZZ sensor to 0.96 for BB sensors to be recorded with the
highest power, followed by GA with 0.869 value and the lowest
discriminative sensor was HA with 0.103 power value at the end of 96 h of

inoculation.

Moreover, the evaluation of the discrimination index (Di) revealed a
significant difference between the centers of gravity and dispersion of each
subgroup. Where, this index changed each tested day following the change
in NB media according to bacterial consumption of the media for their
growth or the release of secondary metabolites for their survival. In which,
PCA was used to show the change in the discrimination index from the day
of inoculation to the fourth day of bacterial growth. This PCA had the ability
to present groups’ clusters following each day, where two principal
components (PC1 and PC2) were able to show approximately 100% of the
data variation (the sum of both PCs) of the generated data as shown in

Figure 34 to Figure 38.

Furthermore, during the day of inoculation (DO0) all samples grouped

together with a Di of -456 (Figure 34). Then bacterial groups stared to
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separate with slightly Di change to -19 after 24 h of inoculation (D1) (Figure
35). Also, the Di slightly changed during passed 48 and 72 h with a value of
-7 and -0.5, respectively. This might be due to low bacterial growth rate of
this group isolates. In which, the Di value changed to have a high
discriminative power after 96 h of bacterial growth to have a positive value

of 95 (Figure 38).

For group 2 of bacterial samples (B12- B22), the PCA and the change in the
Di value of each measured day are shown in appendix (B) Figures 49- 53. In
which, in this group of bacterial isolates Di value was only negative with a
value of -291in the day of inoculation (DO) (Figure 49) indicating the
closeness of these samples to each other and to the control NB sample.
Where, after 24 h of bacterial growth the Di value between different
bacterial isolates changed into high positive value of 95 (Figure 50) that
remain constant after 48, 72 and 96 h of bacterial growth as shown in

Figures 51, 52 and 53, respectively.

Moreover, it can be observed how the two bacterial groups have different Di
value patterns according to the types of bacterial genotypes in each group
and their relation to each other. As group 1 bacterial samples have slightly
changed over tested periods, group 2 bacterial samples showed high Di

change after only 24 h of inoculation (i.e. 95) (Figure 50) that remain
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constant till the fourth day of growth (Figure 53). Where, This indicates the

discriminative variety of bacterial isolates in this group.
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Discrimination index = 436

PC2 - 19.582%

PC1 -80.418%

QP x4d0c +4rHa

BOODO
BO1DO
BO2D0O
BO3IDO
BO4D0
BOSDO
BOEDO
BOTDO
BOEDO
BO2D0O
B10DO
B11D0

Figure 34. PCA scores plot of group 1 bacterial samples (B1- B11 with B0 as control) on the day of inoculation (D0), showing no

discrimination with an index value of -456 between samples. PC1 and PC2 explain 100% of the total variation.
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Discrimination index = -19

%]

BOODA
BO10CA1
Bo201
BO301
BO4D1
BOSO1
BocoA
BO7OA
BO2DOA1
BOSDOA
B100CA1
B1101

PCZ - 40.417%
O x40c+:9p e

080 0ED1

D1

PC1-55583%

Figure 35. PCA scores plot of group 1 bacterial samples (B1- B11 with BO as control) after 24 h of inoculation (D1), showing change
on the discrimination index value to -19 between samples. PC1 and PC2explain 100% of the total variation.
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Figure 36. PCA scores plot of group 1 bacterial samples (B1- B11 with BO as control) after 48 h of inoculation (D2), showing another
slightly change on the discrimination index value to -7 between samples. PC1 and PC2 explain almost 100% of the total variation.
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Discnimination index =-0.5

ra

BOOD3
BO1D3
BO2D3
BO2D2
BO4D3
BOSD3
BOGD2
BO7D2
BOED2
BOSD3
B10D2
B11D32

PC2 - 38.96%
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Figure 37. PCA scores plot of group 1 bacterial samples (B1- B11 with BO as control) after 72 h of inoculation (D3), showing change
in the discrimination index value to -0.5 between samples. PC1 and PC2 about 100% of the total variation.
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Figure 38. PCA scores plot of group 1 bacterial samples (B1- B11 with BO as control) after 96 h of inoculation (D4), showing high

change on the discrimination index value to reach 95 between samples. PC1 and PC2 100% of the total variation.
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For the change in the discrimination value according to tested days
individually, a PCA scores plot was created to follow the grouping between

different tested days in order to identify were they overlapped.

So far, for group 1 bacterial samples (B1-B11) the Di value according to
each tested day was 71 (Figure 39) and for groups 2 bacterial samples (B12-
B22) the Di value was 66 (Figure 40), indicating the high discrimination of
data variety according to each tested day, also indicating how ET can track
the change of each day’s properties and that there wasn’t overlapping

through the tested discriminative days for both bacterial group 1 and 2.

According to previous analysis, NB media with bacterial cultures having at
least 48 h of growth rate can be suitable candidate for group clustering

directly without being tested each day.
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Figure 39. PCA scores plot for gathered data according to tested day for group 1 of bacterial samples (B1-B11). Showing each tested
day grouping and data decline after 96 h of bacterial inoculation that shows a high discrimination index value of 71. PC1 and PC2

explain about 100% of the total variation.
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Figure 40. PCA scores plot for gathered data according to tested day for group 2 of bacterial samples (B12-B22). Showing each tested
day grouping and data decline after 96 h of bacterial inoculation that shows a high discrimination index value of 66. PC1 and PC2

explain about 100% of the total variation.
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In this study, day 4 (D4) collected data for both bacterial groups 1 and 2
were used to build similarity distance test table between the centroids of the
defined grouped samples (two by two) and generate the corresponding

clustering.

Table 14 shows the results of similarity distance test among different group
1 bacterial samples (B1-B11). In general, in this study the pattern
discrimination index (%) of each sample to the other ranged, for group 1 of
bacterial samples, from 3.18% between B03 and B11 to 95.68% between
BO1 and BO02 revealing the highest and lowest similar bacterial samples,
respectively (Table 14). Where, the P-value generally decreased as the
discrimination value increased except in few samples due to previously
mentioned reasons (Alpha MOS, 2009). Also, the Euclidian distance
between two samples increased as the discrimination between them
increased, except in few samples and that is according to sample dispersion

that was mentioned before.

The first six bacterial combinations of B03-B11, B05-B06, B03-B07 and
B04-B5 have below 10% pattern discrimination index value. Whereas, B0O3
and BO1 bacterial samples corresponded to B08 and B02 combinations have
the highest discrimination values of 95% and 94.4% according to other

bacterial combinations that ranged from 10.58% to 93.05% (Table 14).
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Table 14. Similarity test table for group 1 of bacterial samples (B1-B11), presenting
Euclidian distance, P-value and pattern discrimination index between fungal samples.

Pattern discrimination

Product names Reference samples Distances P Value .
index (%)
B03D4 B11D4 0.16 40.63 3.18
B05D4 B06D4 0.12 29.97 3.24
B03D4 B07D4 0.14 11.86 3.63
B04D4 B05D4 0.12 33.49 3.88
B07D4 B11D4 0.30 9.24 8.45
B04D4 B06D4 0.20 10.78 8.59
B09D4 B10D4 0.25 11.64 10.58
B04D4 B07D4 0.26 4.55 11.98
B05D4 B07D4 0.29 7.85 14.08
B05D4 B11D4 0.46 17.52 20.4
B06D4 B07D4 0.41 5.49 23.36
B04D4 B11D4 0.50 25.07 23.75
B03D4 B0O5D4 0.38 34.17 26.63
B06D4 B11D4 0.57 6.78 27.13
B03D4 B04D4 0.38 5.28 27.95
B03D4 B06D4 0.49 3.68 36.58
B05D4 B09D4 1.62 4.99 84.65
B07D4 B09D4 1.89 5.66 85.61
B06D4 B10D4 1.75 2.63 86.03
B04D4 B09D4 171 3.43 86.30
B01D4 B11D4 2.38 153 87.4
B02D4 B06D4 1.58 3.05 87.93
B05D4 B10D4 1.85 2.54 88.07
B07D4 B10D4 2.12 3.07 88.37
B08D4 B11D4 2.45 4.69 88.57
B02D4 B07D4 1.88 5.61 89.03
B01D4 B06D4 1.84 0.46 89.06
B04D4 B10D4 1.95 1.79 89.32
B02D4 B05D4 1.65 3.15 89.86
B01D4 B09D4 2.06 1.13 90.17
B0O0OD4 B01D4 1.78 0.83 90.43
B01D4 B04D4 1.88 0.84 90.44
B06D4 B08D4 1.90 5.14 90.58
B01D4 B05D4 1.93 0.40 90.63
B03D4 B10D4 2.14 3.03 90.89
B02D4 B04D4 1.77 3.84 91.32
B07D4 B08D4 2.31 4.82 91.80
B01D4 B10D4 2.27 0.88 91.90
B02D4 B03D4 1.87 3.81 91.98
B05D4 B08D4 2.02 4.86 92.22
B02D4 B08D4 1.80 2.63 92.56
B04D4 B08D4 2.05 5.55 92.61
B01D4 B03D4 2.26 0.44 93.05
B03D4 B08D4 2.40 3.89 94.40
B01D4 B02D4 2.57 0.68 95.68
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Table 15 lists similarity distance test ordered values for compared group 2
bacterial samples (B12-B22) on the fourth day. In which, the pattern
discrimination index among samples in this group was relatively larger than
it was among samples in group 1 bacterial samples. Where, the lowest value
started with 12.91% between B13 and B22, and the highest to 99.8%

between B14 and B22.

The pattern discrimination index was less than 50% only between two
bacterial combinations of B13, B17 and B22 revealing the similarity

between these samples (Table 15).

Although, the distance between samples having 99% discrimination index
and more, it was less in distance range (0.84-3.8). The discrimination pattern
was larger and ranged from 99.02% among B19 and B21 to 99.8% among
B14 and B20. This phenomenon is due to the large variety of bacterial
genotypes in this group that revealed a low dispersion and the high Di power
of sensors array. The P-value generally decreased as the discrimination value
increased except in few samples due to previously mentioned reasons that

were mentioned before (Table 15.)
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Table 15. Similarity test table for group 1 of bacterial samples (B12-B22), presenting
Euclidian distance, P-value and pattern discrimination index between fungal samples.

Pattern discrimination

Product names Reference samples Distances P Value .
index (%0)
B13D4 B22D4 0.08 67.44 12.91
B13D4 B17D4 0.20 35.41 45.29
B17D4 B22D4 0.23 12.71 69.19
B13D4 B15D4 0.39 1477 78.78
B18D4 B21D4 0.42 13.55 81.66
B15D4 B17D4 0.35 6.00 82.69
B15D4 B22D4 0.34 7.91 86.06
B17D4 B21D4 0.43 12.2 87.23
B13D4 B21D4 0.56 6.93 87.92
B13D4 B16D4 0.57 4.46 90.07
B12D4 B20D4 1.08 5.38 90.72
B16D4 B19D4 0.36 3.34 91.00
B15D4 B16D4 0.39 4.22 91.11
B13D4 B18D4 0.96 9.87 93.89
B17D4 B18D4 0.85 6.50 94.29
B12D4 B18D4 152 3.66 94.59
B16D4 B22D4 0.49 3.10 94.79
B21D4 B22D4 0.63 3.19 95.03
B13D4 B19D4 0.89 6.54 95.20
B16D4 B17D4 0.65 3.87 95.57
B14D4 B19D4 0.50 5.42 95.98
B15D4 B21D4 0.75 1.71 96.20
B18D4 B22D4 1.03 1.93 96.61
B15D4 B19D4 0.75 1.07 96.80
B12D4 B21D4 1.93 2.29 97.02
B15D4 B18D4 117 6.39 97.23
B19D4 B22D4 0.81 4.07 97.46
B12D4 B17D4 2.34 3.17 97.89
B13D4 B20D4 1.65 3.22 98.29
B12D4 B15D4 2.68 3.58 98.44
B16D4 B21D4 1.08 2.62 98.62
B12D4 B16D4 2.98 2.84 98.8
B18D4 B19D4 1.84 2.66 98.92
B12D4 B19D4 3.29 1.30 98.98
B19D4 B21D4 0.84 1.35 99.02
B14D4 B16D4 142 1.50 99.04
B14D4 B15D4 1.21 1.48 99.14
B20D4 B22D4 1.72 1.96 99.16
B15D4 B20D4 181 0.85 99.20
B12D4 B14D4 3.01 0.10 99.28
B14D4 B22D4 1.31 0.59 99.36
B16D4 B20D4 2.17 0.83 99.56
B19D4 B20D4 2.52 0.06 99.61
B14D4 B21D4 1.92 0.64 99.62
B14D4 B20D4 3.80 0.59 99.80
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The following PCA scores plot (Figure 41and Figure 42) of the fourth day’s
data for both bacterial groups (group 1 and group 2) shows the relative
clustering of bacterial groups as it genetically revealed previously by the

UPGMA tree (Figure 30 and Figure 31).

In which, the grouping and clustering of PCA and genetic tree have almost
the same pattern for different bacterial isolates. In group 1 bacterial samples
(B1-B11) (Figure 41), has both subgroup A and B. Where, subgroup B
includes only BO1 that is discriminated among all other bacterial samples.
Meanwhile, subgroup A have all other bacterial samples contained in three
clusters I, Il and I11. Cluster Il consists on BO8 bacterial isolate, cluster 11
composed of three bacteria B02, B09 and B10 with close distance, leaving
cluster Il with the majority of bacterial samples B03, B04, B05,B06, BO7

and B11.

Meanwhile, group 2 bacterial samples (B12-B22) (Figure 42) have subgroup
C and D, subgroup D has only B12 that is distinct from other bacterial
samples. However, subgroup C has the majority of bacterial samples
categorized in clusters | and 1. Where, cluster 11 has only B20 sample,
leaving cluster I with all nine bacterial samples grouped in a, b, cand d. In
which, group ¢ having B18 and group d having B14 are distinct on the sides

of cluster I center. In that center, laying group a including B13, B22, B17
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and B21 having the highest similarity leaving group b with B15, B16 and
B19 with the second highest similarity among bacterial genotypes (Figure

42).

These results indicate the compatibility of both ET and molecular methods

in clustering of different microorganism tested samples.
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Figure 41. PCA scores plot showing clustering rhythm of group 1 bacterial samples (B1-B11) according to UPGMA dendogram

(Figure 30). It has a very close clustering similarity.
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5 Conclusion
Electronic tongue can be considered as a promising analytical method for

monitoring microbial growth and follow their metabolites production during
their growth. This research and results can be used for the next establishing
step in distinguishing different fungal and bacterial genotypes. Also, in a
long run will open a wide range for using sensors for monitoring microbial

activities for fermentable, industrial and categorizing applications.

Moreover, the results confirmed the possibility of using an Astree Il ET, a
conventional potentiometric applicable technique, as an alternative fast
assessment tool to distinguish complex and native state microorganism’s
bimolecular foot-printing in a liquid media, relying on chemical changes due
to microbial primary metabolite production through growth phases and

secondary metabolite assembly and differentiation during stationary phase.

Additionally, this highlights the beneficial use of Et as an alternative and in
vitro assessment tool to other sophisticated techniques. Also, the fact that
combining ET with other detecting technologies can be used for more
accurate monitoring and optimizing schemes due to its high sensitivity, low

detecting limit of microbial metabolites sensory and safety index.
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As recommendations for future researches, further studies must carried out
in order to monitor sensors’ temperature dependence and charge transfer
affect by the adsorption of solution component. Also, to create large and
specified foot-printing databases for microbial tasted metabolites’ complexes

in a liquid media for fast and easy microbial detecting and classification.
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Appendix A

Discrimination index = -1519
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Figure 43. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control) on the day of inoculation (D0), showing no
discrimination with an index value of -1519 between groups. PC1 and PC2 almost 100% of the total variation.
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Discnmination index = -28

PC2-22515%
]

-z -1 0 1 -
PC1-77.485%

Erdx+c0dx-00

FooDA1
F1z2D1
F13D1
F14D1
FisD1
F16D1
F17D01
FigD1
F19D1
FzoDbA1
F21D1
F22D1

Figure 44. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control) after 24 h of fungal inoculation (D1), showing

changed discrimination index value to -28 between groups. PC1 and PC2 explain 100% of the total variation.
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Figure 45. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control) after 48 h of fungal inoculation (D2), showing
changed discrimination index value to -13 between groups. PC1 and PC2 explain 100% of the total variation.
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Figure 46. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control) after 72 h of fungal inoculation (D3), showing
high discrimination index value of 98 between groups. PC1 and PC2 explain 100% of the total variation.
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Figure 47. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control) after 96 h of fungal inoculation (D4), showing

high discrimination index value of 94 between groups. PC1 and PC2 explain about 100% of the total variation.
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Figure 48. PCA scores plot of group 2 fungal samples (F12- F22 with FO as control) after 120 h. of fungal inoculation (D5), showing

high discrimination index value of 96 between groups. PC1 and PC2 explain 100% of the total variation.
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Appendix B

Dizcrimination index = -291
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Figure 49. PCA scores of group 2 bacterial samples (B12- B22 with B0 as control) on the day of inoculation (D0), showing no
discrimination with an index value of -291 between groups. PC1 and PC2 explain 100% of the total variation.
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Figure 50. PCA scores plot of group 2 bacterial samples (B12- B22 with BO as control) after 24 h of inoculation (D1), showing fast
and high discrimination index value change to 95 between groups. PC1 and PC2 explain 100% of the total variation.
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Figure 51. PCA scores plot of group 2 bacterial samples (B12- B22 with BO as control) after 48 h of inoculation (D2), showing
constant and high discrimination index value of 95 between groups. PC1 and PC2 explain 100% of the total variation.
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Figure 52. PCA scores plot of group 2 bacterial samples (B12- B22 with BO as control) after 72 h of inoculation (D3), showing
constant high discrimination index value of 95 between groups. PC1 and PC2 explain almost 100% of the total variation.
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Figure 53. PCA scores plot of group 2 bacterial samples (B12- B22 with BO as control) after 96 h of inoculation (D4), showing fast
and high discrimination index value of 95 between groups. PC1 and PC2 explain 100% of the total variation.
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The End



