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Supervised by: Dr. Nawaf Abu-Khalaf  

 

                                         Abstract 

Chemical sensor systems become increasingly popular and promising 

analytical tools for various liquid analyses. One of these systems is the 

electronic tongue (ET), which is based on a multi-sensor array set with high 

cross-sensitivity and low selectivity characteristics. This research is a trial 

to investigate the possibility of using a potentiometric ET as a fast and 

alternative assessment tool for (complex and native state) bimolecular 

microorganism’s (bacterial and fungal species) foot-printing in a liquid 

media. 

The study was carried out by collecting 44 different fungal and bacterial 

isolates. These microorganisms were cultivated on suitable liquid media, 

where the filtrated media were then analyzed using Astree II Alpha MOS 

ET during their growth cycle. After that, the collected data were analyzed 

using multivariate data analysis MVDA methods (basically using principal 

component analysis PCA) for microbial clustering according to their 

similarities and/ or differences among each other and to follow their growth 



XX 

rate. In the meantime, the clustering patterns of these microorganisms were 

validated using molecular phylogenetic tree. 

The results of this study were promising, since ET’s used sensors array 

showed high discrimination power between samples ranged from 0.927 to 1 

for fungi and from 0.960 to 0.999 for bacteria at the end of testing period. 

In which, a PCA scores plot with 98 and 96 discrimination index (Di) for 

fungi and 95 Di for bacterial clustering patterns were indicated. Moreover, 

the similarity test revealed a high similarity of 27.18% Di among F5 and F6 

fungal isolates in group 1, 70.52% Di among F14 and F21 in group 2 

fungal isolates, 3.18% Di among B3 and B11 in group 1 bacterial isolates 

and 12.91% Di among B13 and B22 in group 2 bacterial isolates. 

Also, the PCA clustering patterns were very similar to the validated 

molecular phylogenetic tree showing the relationship between isolates. 

Furthermore, ET could follow microbial growth and overlapping (stop of 

chemical change) in the liquid media.
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1 Introduction 

1.1 General introduction 

Microscopic organisms have thoroughly been focused for their interactions 

and influence on the surrounding environments, where plenty of studies are 

still being established to illustrate their functions and varieties (Borkowski 

et al., 2018; Deveau et al., 2018; Schwab, Terra, & Baldani, 2018; Zhang, 

Hu, Ren, & Zhang, 2018). In order to diagnose microorganisms (i.e. 

bacteria and fungi) both genetic interaction among these microorganisms 

and their interactions with the surrounding atmospheres are taken into 

account. Although, molecular identification using genetic data bases (i.e. 

DNA, RNA and protein sequences) and their different related techniques 

(i.e. polymerase chain reaction (PCR) dependent or non-PCR dependent 

techniques) are essential, these techniques need pre-sequence knowledge, 

sample preparation, different molecular instruments and numerous 

hazardous chemicals during the process (Gan et al., 2013; Rai, Phulwaria, 

& Shekhawat, 2013; Somervuo, Koskela, Pennanen, Nilsson, & 

Ovaskainen, 2016; Thangavelu, Kumar, Devi, & Mustaffa, 2012; Zhu, Qu, 

& Zhu, 1993). Moreover, for industrial bio-production of amino acids, 

antibiotics, enzymes, vitamins, bulk chemicals, bio-pharmaceuticals and 

projects that need characterizing complex distributed metabolic 

interactions, molecular techniques are costly and time consuming (Cai et 

al., 2018; Mashego et al., 2007; Mosier et al., 2013; Purves et al., 2016). 



2 

According to Roessner & Bowne (2009) metabolomics science is 

considered as the fourth level of molecular illustration (i.e. Genomic, 

Transcriptomics and Proteomics studies). This science refers to the 

comprehensive (qualitative and quantitative) information extraction and 

data interpretation of the complete range of the exometabolome and 

endometabolome presented from growing cells (under defined time and 

conditions) using sophisticated analytical technologies, with applied 

statistics and multi-variant methods (Boughton et al., 2011; Cai et al., 

2018; Kenny et al., 2005; Paczia et al., 2012).  

Numerous analysis terminologies have been improved to differentiate 

metabolites qualitative analysis into both metabolite foot-printing and 

finger-printing that deals with extracellular and intercellular metabolite 

analyses, respectively. However, target analysis is referred to quantitative 

analysis of predefined metabolites. This approach thus complements 

genomics, transcriptomics, proteomics and also fluxomics data that 

facilitate metabolic-engineering systems. Also, it has the possibility to 

provide closer insights into the function and ecology of microbial 

communities (Brown et al., 2005; Jadhav et al., 2015; Kell et al., 2005; 

Roessner & Bowne, 2009). Furthermore, since metabolites production 

(during different growth phases) is considered as species-specific, it can be 

used as genetic markers to differentiate between different micro-species 

and even different strains (Beck, Knoop, Axmann, & Steuer, 2012; Jensen, 
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Williams, Oh, Zeigler, & Fenical, 2007; Jensen, 2016; Koo et al., 2014; 

Purves et al., 2016). Yet, these complex mixtures of metabolites remain 

largely ambiguous, due to the difficulty of searching for each component 

individually. 

Routine metabolites detection and quantification techniques are mainly 

enzyme based techniques and/or using modern high-tech hyphenated 

analytical protocols, mostly chromatographic techniques coupled to mass 

spectrometry (i.e. liquid chromatography coupled with multistage accurate 

mass spectrometry (LC-MS
n
), gas chromatography–mass spectrometry 

(GC-MS
n
), capillary electrophoresis–mass spectrometry (CE-MS

n
)), and 

nuclear magnetic resonance spectroscopy (NMR). In which, these 

techniques need pre-rapid sample collection, instant quenching of microbial 

metabolic activity and extraction of relevant metabolites to be measured 

(Beck et al., 2012; Bertrand et al., 2014; Fauvelle, Mazzella, Morin, Delest, 

& Budzinski, 2015; Gros, Rodríguez-Mozaz, & Barceló, 2012; Liu, Pan, 

Li, Cai, & Miao, 2014; Paczia et al., 2012).  

Chemical sensor systems become increasingly popular analytical tools for 

liquid analysis (Momeni & Sedaghati, 2018; Pavase et al., 2018; Terbouche 

et al., 2018). One of these systems is the electronic tongue (ET) (and also 

called taste sensor) that seems to be a promising tool for analysis of various 

complex liquids. It is based on a multi-sensor array system with high cross-

sensitivity and low selectivity characteristics. During the process signals 



4 

obtained are processed with multivariate data analysis (MVDA) techniques, 

such as principle component analysis (PCA), partial least square (PLS), 

discrimination function analysis (DFA) and soft independent model class 

analogy (SIMCA), which revealed qualitative and/ or quantitative 

information on the analyzed samples (Abu-Khalaf & Iversen, 2007a; Feng 

et al., 2016; Kirsanov, Korepanov, Dorovenko, Legin, & Legin, 2016).  

The system was successfully applied for analysis of various foods, drinks 

and pharmaceuticals applications, environmental researches , fermentable 

microbial uses and microorganisms’ studies (Abu-Khalaf & Iversen, 

2007b; Abu-Khalaf, Khayat, & French, 2015; Ceto, Voelcker, & Prieto-

Simon, 2016; Kutyla-Olesiuk, Wawrzyniak, Ciosek, & Wróblewski, 2014; 

Lorenz, Reo, Hendl, Worthington, & Petrossian, 2009; Soderstrom, oren, 

inquist, & Krantz-Rulcker, 2003). 

Although, the direct ways for microorganisms’ classification can’t be 

neglected, using ET as a new technique for metabolomics qualitative 

analysis will offer many advantages, as it is label-free, easy to handle, 

relatively low cost technique compared with other sophisticated and multi-

instrumental techniques, deals with a whole mixture in fast way and need 

little sample preparation or testing it in their native state (Kumar et al., 

2016; Soderstrom et al., 2003; Wesoly & Ciosek, 2018; Zabadaj, 

Szuplewska, Kalinowska, Chudy, & Ciosek-Skibinska, 2018). To our best 
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knowledge this is the first study for metabolite analysis using ET in 

Palestine. 

1.2 Aim  

The aim of this research is to investigate the possibility of using 

potentiometric chemical sensor based system (i.e. ET) to help as an 

alternative fast tool for (complex and native state) microorganisms’ 

(bacterial and fungal species) bimolecular foot-printing relying on their 

secreted metabolite in a liquid media.  

1.3 Objectives 

The objectives of this study are: 

1- To use ET for metabolites qualitative (foot-printing) analysis in a 

complex liquid media, 

2- To have insights on liquid media chemical changes due to microbial 

primary metabolite production through growth phases, and 

3- To observe species specification through secondary metabolite 

production and differentiation during stationary phase.  
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2 Literature review 

2.1 Microorganism classification 

The microbe’s category includes a massive range of microscopic organisms 

that are often illustrated as unicellular organisms, including bacteria, fungi, 

viruses, algae, archaea and protozoa. In last decades, these microorganisms 

have thoroughly been studied for their interaction within their niches and 

with surrounding environments (i.e. plants, animals and humans). The 

studies where carried out in order to fulfill their functions, life cycles, 

mutations, survival patterns, influence, bio-products and their varieties 

(Andreevskaya et al., 2018; Bahram, Vanderpool, Pent, Hiltunen, & 

Ryberg, 2018; GonzalezMula et al., 2018; Rangel, Finlay, Hallsworth, 

Dadachova, & Gadd, 2018; Strullu-Derrien, 2018; Wang et al., 2018). 

2.1.1 Fungal molecular identification 

There are many molecular methods for identifying the genetic diversity of 

microorganisms using genetic data bases. Some of these bases for fungi, 

plant and animal molecular classification are DNA segments called inter-

simple sequence repeats (ISSR) (Abadio et al., 2012). In which, these 

targeted bases are 100-3000 base pairs (bp) nucleotides located dissimilarly 

between identical, adjacent and oppositely oriented microsatellite regions 

(Al-Turki & Basahi, 2015; Lagkouvardos et al., 2016; Soliman, Zaghloul, 

& Heikal, 2014). 

The technique of inter-simple sequence repeats related polymerase chain 



7 

reaction (ISSR-PCR) is a simple and quick method called single primer 

amplification reaction (SPAR) where the amplification is occurred directly 

(also called directed amplification of minisatellite-region DNA (DAMD)). 

This technique depends on using about 16-25 bp in length single primer 

that is either unanchored primer (designed through the core motif 

microsatellite) in di-, tri-, tetra-nucleotide repeats only, or anchored primer 

with 1- 4 selective nucleotides at 3’ or 5’ end (Albayrak, Yörük, Gazdagli, 

& Sharifnabi, 2016; Rai et al., 2013; Salahlou, Safaie, & Shams-Bakhsh, 

2016; Thangavelu et al., 2012).  

Those designed micro-primers is considered as multi-locus markers that 

can create, after being separated and scored by gel electrophoresis, from 10 

to 60 highly polymorphic fragment profile according to the presence or 

absence of a particular sized fragments. The advantages of ISSR analysis 

applications are reported in many studies and it includes: the stability of the 

designed primers, the consideration that it is fast and single PCR protocol 

and it is useful for studying genetic identity, genetic diversity, phylogeny, 

parentage, gene tagging, strain identification, genome mapping and 

studying evolutionary taxonomy (Nirmaladevi et al., 2016; Rampersad, 

2013; Shao, Xu, & Chen, 2011; Sornakili, Rathinam, Thiruvengadum, & 

Kuppusamy, 2017).  

However, ISSR can have reproducibility problems as other genetic markers 

such as random amplification of polymorphic DNA (RAPD). Moreover, 
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ISSR fragments may have some misleading results of similar sized non-

homologous bands (Abadio et al., 2012; Aiyaz et al., 2016; Sudmoon, 

Chaveerach, & Tanee, 2016; Thangavelu et al., 2012). 

2.1.2 Bacterial molecular identification 

Over the past years, a number of molecular markers for phylogenetic 

classification have been evaluated. Currently, one of the most used 

techniques for prokaryotic molecular identification is the amplification of 

specific housekeeping marker region of the 16S ribosomal RNA (rRNA) 

genes (Takahashi, Tomita, Nishioka, Hisada, & Nishijima, 2014; Thijs et 

al., 2017; Vetrovský & Baldrian, 2013). 

The 16S rRNA gene, is approximately 1500 bp gene coding for a catalytic 

RNA that is part of the 30S ribosomal subunit and it is presented in all 

prokaryotic cells and includes differently rated highly conserved and 

variable sequence regions. Generally, the conserved region is used for 

universal specification, while sequencing of PCR amplicons of the genetic 

differences in the variable regions allows the assignment of close 

relationships at the species and even at genus level between different races 

of microorganisms (Lagkouvardos et al., 2016; Nguyen, Warnow, Pop, & 

White, 2016; Yang, Wang, & Qian, 2016; Yarza et al., 2014). 

Universal designed PCR primers targeting the conserved regions of 16S 

make it possible to amplify the gene in a wide range. This technique 

considered as constantly valid, relatively fast, cost-efficient and used for 
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multiple applications (i.e. microbial identification, phylogeny, diversity 

analysis, determination of new species and metagenomics). Moreover, the 

availability of huge full length 16S data bases sequences for a large number 

of strains, make it easy to compare an unknown strain with pre-identified 

sequences (D'Amore et al., 2016; Fadrosh et al., 2014; Meola et al., 2018; 

Tremblay et al., 2015). 

However, universal PCR primers selection is critical point in 16S rRNA 

gene amplification. In which, incorrect specification conclusions can be 

created due to inappropriate primers selection; related to the fact that the 

current designed universal 16S rRNA gene primers are based on the 

conserved sequences of previously identified microbes that sometimes 

cannot detect some mismatched species (Giusti et al., 2017; Hahn, 

Jezberová, Koll, Saueressig-Beck, & Schmidt, 2016; Mori et al., 2013). 

2.2 Microbial metabolites 

In recent years, microbial metabolites (i.e. the intermediates and products 

of metabolism) have received much attention due to their critical rules to 

global processes. Metabolites are typically characterized as small 

molecules with various functions, which are categorized into both primary 

and secondary metabolites (Mashego et al., 2007; Robertson, Robertson, & 

Bahnemann, 2012; Ross, Morgan, & Hill, 2002).  
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2.2.1  Primary metabolites  

Primary metabolites (i.e. the central metabolite) are formed during all 

growth phases (Figure 1) as a result for energy metabolism and are deemed 

essential for proper growth, development and reproduction of the organism 

and it is a key component in maintaining normal physiological processes 

(Brockman & Prather, 2015; Piotrowska-Niczyporuk, Bajguz, Talarek, 

Bralska, & Zambrzycka, 2015; Ziemert et al., 2012). 

 

Figure 1. Primary and secondary metabolites production rate during different growth 

phases (i.e. lag, log and stationary phases). (Goodwin, H., 2018). 

 

2.2.2 Secondary metabolites 

Meanwhile, secondary metabolites are organic compounds produced 

through the modification of primary metabolite synthesis. They are 

typically formed during the end or near the stationary phase of growth 

(Figure 1) (Demain & Fang, 2000; Macheleidt et al., 2016).  
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Many of the known secondary metabolites have a role in: 

 Defense, such as antibiotics, 

 Competition against other bacteria, fungi, amoebae, plants, insects 

and large animals, 

 Transpiration, 

 Symbiosis, as an agent between microbes and plants, nematodes, 

insects and higher animals, 

 Mating, as sexual hormones,  

 Differentiation, as effectors,  

 Stimulating spore formation, when favorable conditions for growth 

are existed, and 

 Inhibiting growth until less competitive environments are present 

(Beccari, Senatore, Tini, Sulyok, & Covarelli, 2018; Bertrand et al., 2014; 

Deveau et al., 2016; Ziemert et al., 2012). 

Studies have been carried out in order to categorize the importance of 

secondary metabolite for different microorganisms, to illustrate their role in 

protecting and adjusting these microbes with the surrounding environment 

and to characterize the specificity of different antibiotics with certain 

microorganisms (Blin et al., 2013; Deveau et al., 2016; Gan et al., 2013; 

Mosier et al., 2013; Parastar, Jalali-Heravi, Sereshti, & Mani-

Varnosfaderani, 2012; Ziemert et al., 2012). Moreover, secondary 

metabolites production has been recognized to be strain specific, where the 
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structural diversity of these metabolite coupled with gene probing and 

phylogenetic analyses are considered as a lateral gene transfer evolution 

(Jensen et al., 2007; Marliere, 2016; Wink, 2003).  

However, due to the limited knowledge of microbial metabolites, the 

difficulty of identifying metabolites from complex samples and the 

inability to link metabolites directly to community members; have been 

proven to be major limitations in developing advance systems interactions 

(Demain & Fang, 2000; Gika, Wilson, & Theodoridis, 2014). 

2.3 Electronic tongue (ET) 

ET is a simple liquid analytical instrument consists of four parts (Figure 2): 

A: an auto-sampler for repeatable sensor measurement, B: a chemical 

multi-sensor system, C: signal acquisition system and D: a multivariate 

(chemometric) software and the instrument control on a PC. 

 

Figure 2. A typical Astree II electronic tongue package. A: auto-sampler, B: array of 

liquid sensors, C: electronic unit and D: advances chemometric software (Alpha Soft 

ver. 14) (Alpha MOS, 2009).   
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The principal of this sensing technology depends on transforming 

information of chemical composition (i.e. taste substances) using chemical 

multi-sensor system having partial specificity into electrical signals that is 

coupled then with chemometric analysis methods. In which, the whole 

system is capable of recognizing quantitative and qualitative composition 

of liquids and provides an objective low selective and high cross sensitive 

evaluation of tasted nonspecific complex solutions (Jiang, Zhang, 

Bhandari, & Adhikari, 2018; Power & Morrin, 2013). 

2.3.1 Types of ET 

According to the different sensor array working principals, ETs are divided 

into three common types: potentiometric, volumetric and taste sensor (i.e. 

lipid/ polymer membrane) (Faura, Gonzalez-Calabuig, & Valle, 2016; 

Tahri et al., 2018). 

In this study, an Astree II potentiometric ET is used. The system consists of 

seven modified chemical sensitive field effect transistor solid 

electrochemical sensors (ChemFETs). In which, these sensors patently have 

been developed by Alpha MOS company (Alpha MOS, 2009). The type of 

Astree’s sensors is ion-sensitive field-effect transistor (ISFET), which 

categorized in two essential parts, one of them is a seven sensing 

transducers with a chemically coated sensitive layer and the other is 

Ag/AgCl reference electrode (i.e. silver-silver chloride reference electrode), 
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where the system measurement consists of the potentiometric difference 

between each individual sensor compared with the reference one. 

The potentiometric measurement of ISFET sensor changes by the trapping 

of ions or molecules on its chemically sensitive layer that generates a 

change in the membrane potential. Where, this change leads to a final 

variation of potential between source and drain region of the field effect 

transistor of the sensor, which consider as an electronic signal (Figure 3).  

 

 

Figure 3. Schematic diagram of a potentiometric type electronic tongue, showing seven 

ISFET sensors immersed in complex liquid sample, the potential difference signals are 

sent to a signal processor system to be analyzed using pattern recognition algorithms 

(Kovács, Szöllosi, & Fekete, 2009). 

 

Moreover, the specificity of this organic coating has been developed to 

ensure good reproducibility and to govern sensitivity and selectivity of each 
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individual sensor, according the chemical composition and the dissolved 

compounds in liquid media (Kutyla-Olesiuk et al., 2014; Voitechovic, 

Korepanov, Kirsanov, & Legin, 2018). An ET equipped with 

potentiometric sensors is considered as one of the devices having ease of 

construction and miniaturization properties and has the privilege of rapid, 

reproducible, sensitive and selective response. Also, it can be used for 

toxicological analysis for its clean, simple and nondestructive methods of 

measurements and it has the possibility of obtaining sensors selective to 

various species. However, the main disadvantage of this type of ETs is 

temperature dependence and the adsorption of solution component can 

easily affect the nature of charge transfer (Veloso, Sousa, Estevinho, Dias, 

& Peres, 2018; Woertz, Tissen, Kleinebudde, & Breitkreutz, 2011). 

2.3.2 Principal component analysis (PCA) 

The MVDA software is used to transfer information acquired by sensors to 

a distinguishable patterns of interest that can be analyzed and make 

reasonable decisions about categories of the pattern (Jiang et al., 2018; 

Voitechovic et al., 2018). For specification, the electro chemical responses 

are used to form databases that are subjected to unsupervised and/ or 

supervised MVDA methods. Some of these methods include principal 

component analysis (PCA), linear discriminate analysis (LDA), partial least 

squares (PLS), hierarchical cluster analysis (HCA), support vector machine 

(SVM) and artificial neural network (ANN). Moreover, different 
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recognition methods have different applicable approaches. In which, the 

PCA, PLS, LDA and HCA are bases for linear approaches, but the ANN 

and SVM are regarded as non-linear methods. However, the unsupervised 

methods (also known as exploratory data analysis method) do not need any 

prior knowledge about the class structure of the data, but instead it produce 

grouping (Ceto et al., 2016; Pavase et al., 2018; Tahri et al., 2018). 

The PCA is one of the most widely used unsupervised linear techniques 

and it is often the first step in data analysis to verify patterns in measured 

data for qualitative purposes. It is used for converting and reducing 

multidimensional primary variables from a dataset to new independent 

lower dimensional approximation variables called principal components 

(PCs). The projections of the points from the original data space on PCs are 

called scores plot. Hence, PCA simplify the interpretation of the data by the 

PCs (PC1, PC2, … PCn) and preserve most of the variance in the data. It 

successively provides a set of orthogonal axes indicating the direction of 

the largest variance in the data. In which, The first principal component 

(PC1) accounts for the maximum of the total variance, the second (PC2) is 

orthogonal to the first and lies in the direction of the largest remaining 

variation, and so on, until the total variance is explained by ca. 100%. Each 

principal component contains different sources of information allowing 

them to be visualized, while maintaining as much information as possible 

from the original data (Scholz, 2006; Yaroshenko et al., 2015). 
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On other words, the basic idea behind using PCA, as an unsupervised linear 

technique, is to have qualitative clustering of samples through the 

conversion of data from a high dimensional space to a low dimensional 

space and to visualize it graphically as scores plot, which shows the 

relation between samples. Objects or samples that are similar tend to cluster 

in the score plots, while different objects tend to be separated (Figure 4) 

(Esteki et al., 2018; Feng et al., 2016; Yaroshenko et al., 2015). 

 

 

Figure 4. Representative chart of PCA unsupervised linear technique for qualitative data 

analysis. Showing how it reduces multidimensional primary variables from a dataset 

(original data space) to new independent lower dimensional approximation variables 

(component space, also called scores plot) called principal components (PCs) (Scholz, 

2006).  



18 

2.3.3 ET biological scope of applications 

Sensors were successfully used for monitoring and sensing the activity of 

microorganisms, in which promising results were obtained (Bougrini et al., 

2016; Brockman & Prather, 2015). Also, ET has number of applications 

that showed great solutions to many biotechnology and biomedical 

problems. It is useful for a wide variety of industries ranging from 

environmental control to blood analysis (Ceto et al., 2016; Esteki et al., 

2018; Jiang et al., 2018). Furthermore, it has been used in many 

biotechnology applications; one of these was to discriminate edible fungi 

varieties and evaluate their umami intensities (Feng et al., 2016). The 

results of this study indicate that ET has a great potential in qualitative and 

quantitative analysis of edible fungi. Likewise, it was used to analyze mold 

growth in liquid media (Soderstrom et al., 2003), and to recognize six 

microbial different fungal species (Soderstrom, Winquist, & Krantz-

Rulcker, 2003). After that, two electronic tongues (potentiometric and 

voltammetry) were applied to differentiate between four Aspergillus 

species and one Zygosaccharomyces based on different measurement 

techniques, where promising results were achieved (Soderstrom, 

Rudnitskaya, Legin, & Krantz-Rulcker, 2005). Additionally, it was used for 

monitoring citric acid production by Aspergillus niger (Kutyla-Olesiuk et 

al., 2014). As well , it was applied for fermentation monitoring, beverage, 

pharmaceuticals and taste masking (Ha et al., 2015; Medina-Plaza et al., 
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2015; Peris & Escuder-Gilabert, 2016; Yaroshenko et al., 2015). 

Pharmaceutically, it was used for in vivo evaluation of the taste of 

commercially available clarithromycin oral pharmaceutical suspensions in 

Palestinian market. Plus, it was utilized to evaluate the taste, total phenols 

and antioxidant for fresh, roasted, shade dried and boiled leaves of edible 

Arum palaestinum bioss (Abu-Khalaf et al., 2018; Qneibi et al., 2018). 

Besides that, it was used for quantification of immobilized proteins using 

potentiometric multisensory array (Voitechovic et al., 2018) and it was 

considered as safe and objective alternative for drugs’ taste assessment in 

some pharmaceutical studies (Woertz et al., 2011). Furthermore, in a recent 

study ET was used as an accurate, fast and cost-effective analytical 

technique for honey adulterations assessment, in addition to the classical 

techniques (e.g. physicochemical analysis, microscopy, chromatography, 

immunoassay, DNA metabarcoding and spectroscopy) (Veloso et al., 

2018).  
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3 Material and methods 

3.1 Fungal experiment 

3.1.1 Samples collecting and maintenance 

Fungi samples were collected by spreading small portion of the rusted 

spoiled area from decayed fruits and vegetables (Figure 5) and from 

contaminated samples at Kadoorie Agricultural Research Center’s (KARC) 

laboratories (Figure 6) on prepared potato dextrose agar (PDA) media. The 

media was prepared by completely dissolve 39 g of PDA powder in 1 L 

distilled water (D.W.) with heating. After that, the suspension was 

autoclaved at 121 C for 15 min, followed by 15 psi for 15 min, and then 

suspended in 9 cm petri-dishes, where each plate contained approximately 

12 mL of the powered media and then it was allowed to solidify.  

After samples purification, 22 different pure fungal isolates were obtained 

and divided into two groups (Table 1). These cultures were maintained by 

dual culturing on PDA media every three weeks, through placing four 8 mm 

diameter discs of previously cultured growth oppositely over the media 

with incubation at 28 C in dark to obtain full growth.  

Samples were grouped into two groups: group 1 that labeled as F1, F2, … 

and F11 (Figure 7) and group 2 labeled as F12, F13, … and F22 (Figure 8).  
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Figure 5. Some photos of different spoiled vegetables, fruits, cheese, and bread samples. 

The rusted spoiled area was spread on prepared PDA and NA media for obtaining 

different fungal and bacterial cultures. 

 

 

Figure 6. Some photos of different contaminated samples at KARC’s laboratories. The 

different contaminated cultures were isolated on prepared PDA and NA media for 

purification and obtaining different fungal and bacterial samples.  
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For liquid growth, four 8 mm diameter discs of pure cultured fungi samples 

were cultivated in potato dextrose broth (PDB) media. The media was 

prepared by completely dissolve 24 g of PDB powder in 1 L D.W. with 

heating. After that, the suspension was suspended in 250 mL flask where 

each flask contained approximately 100 mL of powered media that were 

then autoclaved at 121 C for 15 min followed by 15 psi for 15 min then 

lifted to cool down for the culturing process. 

Table 1. List of fungal (pure isolates) different labeling for molecular and ET 

experiments. 

Group 

no. 
no. 

Molecular 

sample 

name 

ET 

name 

for  

day 0 

ET 

name 

for  

day 1 

ET 

name 

for 

 day 2 

ET 

name 

for 

 day 3 

ET 

name  

for  

day 4 

ET 

name 

for  

day 5 

Group 1 

(F1-F11) 

1 F1 F1D0 F1D1 F1D2 F1D3 F1D4 F1D5 

2 F2 F2D0 F2D1 F2D2 F2D3 F2D4 F2D5 

3 F3 F3D0 F3D1 F3D2 F3D3 F3D4 F3D5 

4 F4 F4D0 F4D1 F4D2 F4D3 F4D4 F4D5 

5 F5 F5D0 F5D1 F5D2 F5D3 F5D4 F5D5 

6 F6 F6D0 F6D1 F6D2 F6D3 F6D4 F6D5 

7 F7 F7D0 F7D1 F7D2 F7D3 F7D4 F7D5 

8 F8 F8D0 F8D1 F8D2 F8D3 F8D4 F8D5 

9 F9 F9D0 F9D1 F9D2 F9D3 F9D4 F9D5 

10 F10 F10D0 F10D1 F10D2 F10D3 F10D4 F10D5 

11 F11 F11D0 F11D1 F11D2 F11D3 F11D4 F11D5 

Group 2 

(F12-

F22) 

12 F12 F12D0 F12D1 F12D2 F12D3 F12D4 F12D5 

13 F13 F13D0 F13D1 F13D2 F13D3 F13D4 F13D5 

14 F14 F14D0 F14D1 F14D2 F14D3 F14D4 F14D5 

15 F15 F15D0 F15D1 F15D2 F15D3 F15D4 F15D5 

16 F16 F16D0 F16D1 F16D2 F16D3 F16D4 F16D5 

17 F17 F17D0 F17D1 F17D2 F17D3 F17D4 F17D5 

18 F18 F18D0 F18D1 F18D2 F18D3 F18D4 F18D5 

19 F19 F19D0 F19D1 F19D2 F19D3 F19D4 F19D5 

20 F20 F20D0 F20D1 F20D2 F20D3 F20D4 F20D5 

21 F21 F21D0 F21D1 F21D2 F21D3 F21D4 F21D5 

22 F22 F22D0 F22D1 F22D2 F22D3 F22D4 F22D5 
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Figure 7. Group 1of purified different fungal isolates (F1-F11), which are cultured on prepared PDA media with labeling.  
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Figure 8. Group 2 of purified different fungal isolates (F12-F22), which are cultured on prepared PDA media with labeling. 
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3.1.2 Fungal molecular phylogenetic 

3.1.2.1 Fungal DNA isolation 

Fungal genomic material was isolated using the CTAB DNA isolation 

method (Zhu et al., 1993) with slightly modifications. The procedure started 

by collecting a (ca. 50-100 mg) mycelia of three days freshly grown fungi 

on prepared PDB media, which was placed in 1.5 mL microfuge tube 

containing sterile sea sand (ca. 100 mg). Then, 500 µL of extraction buffer 

(100 mM Tris-HCl, 10 mM EDTA, 2% SDS, 100 µg/mL proteinase K, and 

1% B-mercaptoethanol) was added to each tube.  

After that, samples were grind into slurry using pellet pestles homogenizer 

with sterilized tips (cat # 3110) and incubated at 60 C for one hour with dual 

shaking every 3-4 min. Afterward, the salt concentration of the homogenate 

was adjusted to 1.4 M by adding 200 µL of 5 M NaCl, and then 0.1 of the 

resulted volume was added from 10% CTAB solution followed by an 

incubation period for 10 min at 65 C. 

After incubation, one volume of phenol: chloroform: isoamyl alcohol 

(25:24:1) was added to each tube that were gently emulsified by inversion, 

and incubated at 0 C for 30 min to be spun after that at 12000 rpm, 4 C for 10 

min. At that point, the top phase was transferred to new 1.5 mL microfuge 

tube and half the transferred volume was added with 5 M NH4OAc and 
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mixed gently. Tubes then were incubated at 0 C for 60 min and spun at 4 C, 

12000 rpm for 15 min. The supernatant was transferred to new 1.5 mL 

eppindorf tube, followed by the addition of RNase solution to have a final 

concentration of 0.02 µg/mL and 0.55 of the resulted volume with cold 

isopropanol that was then mixed gently.  

The mixture was spun at 1000 rpm for 5 min with discarding the supernatant 

without disrupting the collected pellet. Later on, pellets were suspended in 

200 µL TE buffer (10 mM Tris base at pH.8 and 1 mM EDTA) and 20 µL of 

3 M NaOAc at pH 7. Then for pellet washing, 2.5 of the resulted volume 

was added with cold 75% ethanol that was gently mixed and span at 10000 

rpm for 5 min (this step was repeated twice). At the end, pellets were 

resuspended in 50 µL TE buffer after being completely dry from ethanol 

residues and stored at -20 C for further uses. 

3.1.2.2 Inter simple sequence repeats (ISSR) sequences 

amplification, electrophoresis and data analysis 

- ISSR sequences amplification reaction mixture 

A total of six University of British Columbia- inter simple sequence repeats 

primer (UBC-ISSR) primers were used for PCR amplification of DNA 

templates. The ISSR sequences were amplified according to Abadio et al. 
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(2012) with modifications. Where, primers were dissolved in sterilized 

distilled and DNase free water at concentration of 100 µM. 

The amplification reaction was performed in a volume of 20 µL using Red 

taq DNA polymerase ready mix (Lot # SLBF8650V), that contained 2 µL of 

10X red taq PCR reaction buffer (100 mM Tris-HCl pH 8.3, 500 mM KCl, 

11 mM MgCl2 and 0.1% gelatin), 0.25 µL of 10 mM dNTPs (200 µL of each 

dNTPs), 0.2 µL of 100 µM primer, 0.36 µL of 50 mM MgCl2, 15.19 µL of 

free DNase water, 1 µL of red taq DNA polymerase (1 unit/µL) and 1 µL of 

(30-50 ng) DNA template. 

- PCR amplification program  

The amplification program was performed using Verti
TM

 96 well thermal 

cycler (Cat. #: 4375786) (Applied Biosystems company, California, USA), 

that was programed to perform an initial denaturation cycle of 94 C for 5 

min, and 35 cycles of 94 C for 1 min, 1 min at the primer annealing 

temperature, which varied according to the used primer (Table 5 (in result 

section)), and at 72 C for 2 min, followed by a final extension cycle of 72 C 

for 7 min. 

To ensure reproducibility of the amplified DNA fragments, all PCRs were 

performed in duplication for each isolate and reactions without DNA were 

performed for DNA contamination determination. 
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- Gel electrophoresis 

ISSR products were separated by electrophoresis according to their 

molecular weight using 2% agarose gel. That was prepared by weighting 9 g 

of agarose powder that was completely dissolved in 450 mL of 1X TBE 

electrophoresis buffer (0.089 M Tris base, 0.089 M Boric acid and 0.002 M 

EDTA) by thermal heating using microwave, then the mixture was cool to 

60 C. After that, 8 µL of 1000X Gel Red DNA stain (Cat. # 41003) was 

added with stirring. The suspension was then powered and allowed to 

solidify in (20 x 20) tray with 46 wells comp. After submerging the gel in 

1X TBE buffer and loading 5 µL of PCR products, the device was run for 

three hours at 80 volt. 

DNA fragments were visualized using 10000X Gel Red DNA stain and UV-

illuminator and documented using SynGene gene tool system (Synoptics 

Ltd., Cambridge C, UK) for image acquisition and documentation. Also, for 

estimating the size of the amplified DNA fragments, a 100 bp DNA RTU 

ladder (Cat. # DM001-R500) was used as a molecular size marker. 

- Data analysis 

To ensure the reproducibility and reliability of the ISSR markers, PCR 

reactions were repeated twice for each primer. Only reproducible band were 

considered for analysis.  
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For data analysis, each DNA fragments with a different electrophoretic 

mobility were used to assign loci for each primer. Bands were scored as 

diallelic for each assigned locus (1= band present and 0= band absent) 

(scoring table can be seen in results and discussion section, Table 4). 

A dendogram was constructed through using unweighted pair groups’ 

method average (UPGMA) cluster analysis based on a Dice coefficient, 

using gel SynGene Ver. 4.3.5 (Synoptics Ltd., Cambridge C, UK) analysis 

software. The similarity matrix was calculated among the exanimated 

samples accessions based on Dice genetic distance. In this study, Dice 

coefficient was used because it is the suitable measure for haploids with co-

dominant markers. 

3.1.3 ET measurements of fungal metabolites 

A liquid taste analyzer Astree II ET (Alpha MOS company, Toulouse, 

France), composed of a sensor array of seven sensors (CA, JB, HA, ZZ, BB, 

JE and GA) with an Ag/AgCl reference electrode, was used to follow up 

metabolite consumption and production during growth of microorganisms in 

PDB from day zero until the fifth day of inoculation. 

3.1.3.1 Fungal broth samples preparation 

Two rounds of fungal samples were measured using ET. In each round, 11 

fungi with a PDB sample (control) were tested in triplicate. In which, fungal 
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samples were grown in PDB media that was prepared by completely 

dissolving 24 g of PDB powder in 1 L D.W. with heating, the mixture was 

then suspended in 250 mL Erlenmeyer flasks each flask contained 100 mL 

of broth media (72 flask were prepared for each round), the suspended flasks 

were then autoclaved sterilized at 121 C for 15 min followed by 15 psi for 15 

min.  

Then four discs (8 mm diameter) of each cultured fungi (Table 1) from PDA 

media were inoculated in each flask with proper labeling and incubated at 

28 C in dark with shaking. For each tested fungi, six flasks were prepared for 

every tested day (0, 1, 2, 3, 4 and 5 days) including a control PDB media 

sample for the comparison. 

3.1.3.2 ET sequence preparation and auto-sampler samples 

loading 

A binomial way of labeling was used to create a sequence for ET method, 

where samples names’ have two parts, one for the number of fungi and the 

other for the tested day (e.g. F0D0, F0D1, …, F11D5) (Table 1) this 

sequence was created for each day of measurements. For the first ET 

measurement round, only 11 fungi (group 1) with F0 as a control sample 

were measured daily after 0, 24, 48, 72, 96 and 120 h of inoculation (i.e. 0-5 

days). 
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Each fungal growth was filtered from mycelia using white cheese cloth to 

obtain approximately 80 mL of each broth that was placed on the ET’s 16-

position auto-sampler (with an automatic stirrer) and broth samples were 

separated by four water samples for cleaning ET sensors after each test 

(Figure 9). 

 

 

Figure 9. Auto-sampler samples’ distripution, the first round for ET mesurmet, consists 

of 11 different PDB fillterated extarct of fungal growth (in positions 3, 4, 6, 7, 8, 10, 11, 

12, 14, 15 and 16) and a control PDB sample (in position 2), seperated by four D.W. 

samples (in position 1, 5, 9 and 13) for sensor cleaning processes after each measurment.  

 

For the second round, fungal samples were labeled as F12, F13, …, F21 and 

F22, with F0 as a control sample. In which those samples were also 

measured daily after 0, 24, 48, 72, 96 and 120 h of inoculation following the 
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same previously mentioned process for sequence labeling (such as F0D0, 

F0D1, …, F22D5) (Table 1).  

This second round of measurements was done in order to be sure of the 

created measurement, to observe the change in the collected data according 

to the change of tested samples and to have a broad spectrum of different 

fungi. 

3.1.3.3 ET data library creation 

After each measurement the obtained data from each sensor were collected 

in a folder categorized by fungal sequence and the date of measurement for 

each round after creating a library of the experiment (as stated in Alpha 

MOS ASTREE manual, 2009). 

3.1.3.4 ET data analysis 

The collected data from analyzed sensors were analyzed using Alpha Soft 

Ver. 12.4 (Alpha MOS, Toulouse, France) multivariate data analysis 

(MVDA) software package, such as PCA scores plot that was used for 

automatically collecting and storing the sensors’ outputs and studying the 

relationship among samples.  
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3.2 Bacterial experiment 

3.2.1 Samples collecting and maintenance 

Bacterial samples were collected by screening small portion of the spoiled 

area on fruits and vegetables (Figure 5), and contaminated samples in 

Kadoorie Agricultural Research Center’s (KARC) laboratories (Figure 6) on 

prepared nutrient agar (NA) media. The media was prepared by completely 

dissolve 23 g of NA powder in 1 L D.W. with heating. After that, the 

suspension was autoclaved at 121 C for 15 min followed by 15 psi for 15 min 

that was set aside to cool down and suspended in 9 cm petri-dishes where 

each plate contained approximately 12 mL of powered media and allowed to 

solidify. 

After purification, 22 different pure bacterial cultures were obtained with 

proper labeling that was divided into two groups according to the auto-

sampler capacity (Table 2). 

These cultures were maintained with dual culturing on NA media every two 

weeks by spreading small bacterial inoculum of previously cultured growth 

over a new NA media and incubated at 28 C in dark for full growth. 

Group 1 labeled as B1, B2, … and B11 (Figure 10) and group 2 labeled as 

B12, B13, … and B22 (Figure 11).  
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For liquid growth, small inoculum of pure cultured bacteria was grown in 

nutrient broth (NB) media. The media was prepared by completely 

dissolving 13 g of NB powder in 1 L D.W. with heating, the mixture was 

then suspended in 250 mL flask where each flask contained approximately 

100 mL of the powered media, then the suspension was autoclaved at 121 C 

for 15 min followed by 15 psi for 15 min and allowed to cool down for the 

culturing process.  

Table 2. List of bacterial (pure isolates) different labeling for molecular and ET 

experiments. 

Group 

no. 

 

no. 

Molecular 

sample 

name 

ET name 

for  

Day 0 

ET name 

for  

Day 1 

ET name 

for  

Day 2 

ET name 

for  

Day 3 

ET name 

for  

Day 4 

ET name 

for  

Day 5 

Group 1 

B1-B11 

1 B1 B1D0 B1D1 B1D2 B1D3 B1D4 B1D5 

2 B2 B2D0 B2D1 B2D2 B2D3 B2D4 B2D5 

3 B3 B3D0 B3D1 B3D2 B3D3 B3D4 B3D5 

4 B4 B4D0 B4D1 B4D2 B4D3 B4D4 B4D5 

5 B5 B5D0 B5D1 B5D2 B5D3 B5D4 B5D5 

6 B6 B6D0 B6D1 B6D2 B6D3 B6D4 B6D5 

7 B7 B7D0 B7D1 B7D2 B7D3 B7D4 B7D5 

8 B8 B8D0 B8D1 B8D2 B8D3 B8D4 B8D5 

9 B9 B9D0 B9D1 B9D2 B9D3 B9D4 B9D5 

10 B10 B10D0 B10D1 B10D2 B10D3 B10D4 B10D5 

11 B11 B11D0 B11D1 B11D2 B11D3 B11D4 B11D5 

Group 2 

B12-B22 

12 B12 B12D0 B12D1 B12D2 B12D3 B12D4 B12D5 

13 B13 B13D0 B13D1 B13D2 B13D3 B13D4 B13D5 

14 B14 B14D0 B14D1 B14D2 B14D3 B14D4 B14D5 

15 B15 B15D0 B15D1 B15D2 B15D3 B15D4 B15D5 

16 B16 B16D0 B16D1 B16D2 B16D3 B16D4 B16D5 

17 B17 B17D0 B17D1 B17D2 B17D3 B17D4 B17D5 

18 B18 B18D0 B18D1 B18D2 B18D3 B18D4 B18D5 

19 B19 B19D0 B19D1 B19D2 B19D3 B19D4 B19D5 

20 B20 B20D0 B20D1 B20D2 B20D3 B20D4 B20D5 

21 B21 B21D0 B21D1 B21D2 B21D3 B21D4 B21D5 

22 B22 B22D0 B22D1 B22D2 B22D3 B22D4 B22D5 
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Figure 10. Group 1 of purified bacterial isolates (B1-B11), which are cultured on prepared NA media with labeling.
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Figure 11. Group 2 of purified bacterial isolates (B12-B22), which are cultured on prepared NA media with labeling. 
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3.2.2 Bacterial molecular phylogenetic 

3.2.2.1 Bacterial DNA isolation 

Bacterial DNA isolation procedure was done according to TRIzol reagent 

manual (TRI reagent) (Cat. # T942). In which, a small freshly grown 

bacterial portion (grown in NA media) was dissolved in 1 mL of TRI reagent 

contained in 1.5 mL microfuge tubes through variously shacking using 

vortex. Samples were allowed to stand for 5 min at room temperature, 200 

µL of absolute cold chloroform was added per mL of TRI reagent, that tubes 

were then shacked vigorously for 15 sec and left to stand for 15 min at room 

temperature. 

The resulted mixture was centrifuged afterwards at 12000 xg (11573 rpm) 

for 10 min at 4 C that gave three phases: 

- Colorless upper phase (RNA), 

- Inter phase (DNA), and  

- Red organic phase (protein lower phase). 

After that, the aqueous overlying phase was removed and discarded, and 300 

µL of cold 100% ethanol was added per mL of TRI reagent. Tubes then 

were mixed by inversion, let to stand for 3 min at room temperature and 

centrifuged at 2000 xg (4730 rpm) for 5 min at 4 C. Then, the supernatant 

was removed and saved for protein isolation (if it is needed). 
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DNA pellets were washed twice using 1 mL of cold 0.1 M Trisodium cetrate 

in 10% ethanol solution per mL of TRI reagent. After that, samples were 

allowed to stand with occasionally mixing for at least 30 min. Followed by, 

centrifugation at 2000 xg (4730 rpm) for 5 min at 4 C, pellets were then 

resuspended with cold 75% ethanol by adding 1.5 mL and allowed to stand 

for 20 min at room temperature before being centrifuged at 2000 xg (4730 

rpm) for 5 min at 4 C with discarding the resulted supernatant. At the end, 

pellets were dried for 10 min under vacuum, dissolved in 50 µL of TE buffer 

and stored at -20 C for further uses. 

3.2.2.2 Sequences amplification, electrophoresis and data 

analysis 
- 16S rRNA sequences amplification reaction 

A total of four universal bacterial 16S primers were used for PCR 

amplification of DNA templates. Where, primers were dissolved in sterilized 

distilled and DNase free water at concentration of 100 µM. 

Amplification mixture was done using thermo-scientific 2X ready mix PCR 

master mix with 1.5 mm MgCl2 (Cat. # AB-0575/DC/LD/A). In which, a 25 

µL PCR reaction mixture containing 12.5 µL of 2X ready mix PCR master 

mix (0.625 U thermo prime taq DNA polymerase, 75 mM Tris-HCl, 20 mM 

(NH4)2SO4, 1.5 mM MgCl2, 0.2 mM of each dNTPs), 0.125 µL of 100 µM 
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forward primer, 0.125 µL of 100 µM reverse primer, 0.5 µL of 50 mM 

MgCl2, 10.75 µL of free DNase water and 1 µL of DNA template. 

-The PCR amplification program  

The amplification program was performed using Verti
TM

 96 well thermal 

cycler (Cat. # 4375786) (Applied Biosystems company, California, USA), 

programed to perform an initial denaturation cycle at 94 C for 3 min, then a 

35 cycles of 94 C for 45 sec, the annealing temperature for different primer 

combination (Table 3) for 50 sec, and 72 C for 1 min, and then an extension 

cycle of 72 C for 7 min. 

To ensure reproducibility of the DNA amplified fragments, all PCRs were 

duplicated for each isolate, and a tube sample without DNA was performed 

to determine if the DNA was contaminated (as negative control). 

- Gel electrophoresis 

The 16S rRNA products were separated by electrophoresis according to their 

molecular weight on 2% agarose gel. The gel was prepared by weighting 9 g 

of agarose powder that was completely dissolved in 450 mL of 1X TBE 

buffer using microwave, then the mixture was cooled to 60 C. After that, 8 

µL of 1000X Gel Red DNA stain (Cat. # 41003) was added with stirring. 

The suspension was then powered and allowed to solidify in (20 x 20) tray 
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with 46 wells comp. After submerging the gel in 1X TBE buffer and loading 

5 µL of PCR products, the device was run for three hours at 80 volt. 

DNA fragments were visualized by 10000X Gel Red DNA stain and UV-

illuminator and documented by using SynGene gene tool system (Synoptics 

Ltd., Cambridge C, UK) for image acquisition and documentation. And to 

estimate the size of the amplified DNA fragments, a 100 bp DNA RTU 

ladder (Cat. # DM001-R500) was used as a molecular size marker. 

- Data analysis 

To ensure the reproducibility and reliability of the 16S rRNA coded primers, 

PCR reactions were repeated twice for each primer. Only reproducible bands 

were considered for analysis. For data analysis, each DNA fragments with a 

different electrophoretic mobility were used to assign loci for each primer. 

Bands were diallelicly scored for each assigned locus as (1= band present 

and 0= band absent) (scoring table can be seen in results and discussion 

section Table 10).  

A dendogram was constructed by UPGMA cluster analysis based on a Dice 

coefficient, using gel SynGene Ver. 4.3.5. analysis software (Synoptics Ltd., 

Cambridge C, UK). The similarity matrix was calculated among the 

exanimated samples accessions based on Dice genetic distance. 
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Table 3. PCR used primers’ codes, combinations and their annealing tempereature for 16S ribosomal RNA sequence amplification. 

Prime 

code 

Forward 

(F) 

primer 

F primer sequence 

5’-3’ 

Reverse 

(R) 

primer 

R primer sequence 

5’-3’ 

Annealing 

temperature (˚C) 

16S 

RNA1 

Bakt 341F CCTACGGGNGGCAGCAGCAG Bakt 805R GACTACNVGGGTATCTAATCC 53 

16S 

RNA2 

27F AGATTTGATCTGGCTCAG 1492R TACGGTTACCTTGTTACGACTT 51 

16S 

RNA3 

Bakt 341F CCTACGGGNGGCAGCAGCAG 1492R TACGGTTACCTTGTTACGACTT 55 

16S 

RNA3 

27F AGATTTGATCTGGCTCAG Bakt 805R GACTACNVGGGTATCTAATCC 52 

N= A, T, G and C. V = A, C and G.
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3.2.3 ET measurements of bacterial metabolites 

A liquid taste analyzer Astree II ET (Alpha MOS company, Toulouse, 

France), composed of a sensor array of seven sensors (CA, JB, HA, ZZ, BB, 

JE and GA) with an Ag/AgCl reference electrode, was used to follow up 

metabolite consumption and production during growth of microorganisms in 

PDB from day zero until the fourth day of inoculation. 

3.2.3.1 Bacterial broth samples preparation 

Two rounds of bacterial samples were measured using ET. In each round, 11 

bacteria with a NB sample (control) were tested in triplicate. The media was 

prepared by completely dissolving 13 g of the powder in 1 L D.W. with 

heating, the mixture was then suspended in 250 mL erlenmeyer flasks. Each 

flask contained 100 mL of broth media (60 flasks were prepared for each 

round), the suspended flasks were then autoclave sterilized at 121 C for 15 

min followed by 15 psi for 15 min. After that, small inoculum (around 

125x10
-14

) of each cultured bacteria were inoculated in each flask with 

proper labeling, which was incubated at 28 C with shaking in dark condition. 

For each tested bacteria, five flasks were prepared for every tested day (0, 1, 

2, 3 and 4 days) including a control NB media sample for the comparing 

issues. 
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3.2.3.2 ET sequence preparation 

To create a sequence a binomial way of labeling was used, where samples 

names’ has two parts. One for the number of bacteria and the other for the 

testing day (i.e. B0D0, B0D1, …, B11D4) (Table 2) this sequence was 

created for each day of measurements.  

For the first ET measurement round only group 1 of bacteria with B0 as a 

control sample were tested. In which, those samples were measured daily 

after 0, 24, 48, 72 and 96 h of inoculation. 

Each bacterial growth was filtered using white cheese cloth to obtain 

approximately 80 mL of each broth to be placed on ET’s 16-position auto-

sampler, with an automatic stirrer, after creating the sequence. Samples were 

separated by four water samples for cleaning ET sensors after each test.  

For the second round, bacterial samples of group 2 with B0 as a control 

sample were tested. In which, those samples were also measured daily after 

0, 24, 48, 72 and 96 h of inoculation following the same previously 

mentioned process with proper labeling.  

This second round of measurements was done to be sure of the created 

system of measurement, to observe the change in the collected data 

according to the change of tested samples and to have a broad spectrum of 

different bacteria. 
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3.2.3.3 ET data library creation  

After each measurement the resulted data from each sensor were collected in 

a folder categorized by bacterial sequence and the date of measurement for 

each round after creating a library of the experiment as mentioned earlier. 

3.2.3.4 ET data analysis 
The collected data from analyzed sensors were analyzed using Alpha Soft 

Ver. 14 (Alpha MOS, Toulouse, France) multivariate data analysis (MVDA) 

software package, as PCA scores plot was used for scoring the collected and 

stored sensors’ outputs and studying the relationship among samples.  
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4 Results and discussion 

4.1 Fungal experiment results 

4.1.1 Fungal DNA data analysis 

The total DNA extraction of 22 different fungi using CTAB isolation 

method is shown in Figure 12 that was grouped into two groups according to 

the final comparison with ET measured capacity of the auto-sampler. The 

total six used ISSR primers resulted in polymorphic ISSR profiles, primers 

include poly (GA) unanchored dinucleotide as ISSR 807, 3’ anchored 

primers as ISSR 808, 816 and 840 and 5’ anchored primers as ISSR 885 and 

890 (Table 5).  

The number of bands produced by the used primers ranged between 9 for 

primer 890 (HVH(GA)7) and 12 for the primer 840 ((GA)8YT). The total 

number of alleles produced by all primers is 62 including 54 polymorphic 

markers with only 8 monomorphic markers (Table 5). A 100% 

polymorphism was scored for ISSR 808 ((GA)8T) and 807 ((GA)8). 

Meanwhile, the lowest polymorphism of 66.7% was scored for primer 840 

((GA)8YT). The other three primers produced polymorphism ranging 

between 80% for primer 885 (BHB(GA)7) and 90% for primer 816 

((CA)8T). The total percentage of polymorphic markers for all primers in the 
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examined 22 genotypes is 87.6%; this indicated high level of genetic 

variation among the examined fungal genotypes. 

 

 

Figure 12. Gel electrophoresis documented photos of total DNA isolated from fungal 

samples using CTAB method for genomic isolation. A: represents group 1 fungal 

samples from F1-F11 as lanes from 1-11. B: repents group 2 fungal samples from F12-

F22 as lanes from 12-22. M= 100 bp ladder as a molecular size marker. –ve= represents a 

negative control sample. 

 
 

The number of alleles varied per primer between 9 for primer 890 and 12 for 

primer 840 with a mean of 10.3. Photographs illustrating the ISSR finger-
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printing of selected six primers for the 22 fungal genotypes are shown in 

Figure 13 A-F. Where the largest produced fragment was approximately 1.5 

Kbp and the smallest recognized produced fragment was approximately 0.2 

Kbp (Table 5).
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Table 4. ISSR bands’ profile scores for 808 primer of 22 different fungal genotypes. Where, 1= present band and 0= absent band. 

Primer 808 (bp) 
Sample No. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1400 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 

1200 0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 1 1 

1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

900 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

700 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

600 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

500 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 

400 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 

300 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

200 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 

Total bands 4 1 3 4 4 3 3 3 3 3 3 3 2 4 3 3 2 2 4 3 3 2 

 

Table 5. Base sequence of the six used ISSR primers which produced polymorphic finger-printing in 22 different fungal genotypes, 

number of total alleles, number of amplified monomorphic and polymorphic bands as well as the percentage of polymorphism. 

Primer code Sequence (5 -3 ) 
 nnealing 

temperature ( C) 

Size range 

(bp) 

Total No. of 

alleles 

No. of 

monomorphic 

bands 

No. of 

polymorphic 

bands 

%Polymorphism 

UBCISSR 808 (AG)8T 50 200-1400 10 0 10 100 

UBCISSR 807 (AG)8 50 250-1100 11 0 11 100 

UBCISSR 816 (CA)8T 50 200-1400 10 1 9 90 

UBCISSR 840 (GA)8YT 51 200-1500 12 4 8 66.7 

UBCISSR 885 BHB(GA)7 52 200-1500 10 2 8 80 

UBCISSR 890 HVH(GA)7 52 200-1000 9 1 8 88.9 

Total 
   

62 8 54 525.6 

Average 
   

10.3 1.3 9 87.6 

Y = C and T. B = C, G and T. H = A, C and T. V = A, C and G.  
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Figure 13. Gel electrophoresis documented photos for the ISSR fingerprinting amplification in 22 different fungal isolates using six 

different UBCISSR primers. A: primer 808, B: primer 807, C: primer 816, D: primer 840, E: primer 885 and F: primer 890. M= 100 

bp ladder as a molecular size marker. –ve= represents negative control sample.
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The pair-wise genetic similarity estimates, for one of the 100% 

polymorphism primers (i.e. primer 808), based on Dice similarity 

coefficient, for group 1 of fungal isolates (F1-F11) that used in this study are 

given in Table 6. The similarity coefficient ranged from 0.018 to 0.992. In 

which, the highest similarity (i.e. 0.992) was observed between fungal 

genotypes numbered 8 and 10. The second highest similarity (i.e. 0.989) was 

between genotypes numbered 5 and 6 and the third highest similarity value 

(i.e. 0.986) was the same between genotypes numbered 1 and 5, the two 

genotypes numbered 1 and 6 and genotypes 9 and 11. Meanwhile, the 

genetic similarity values ranged from 0.018 to 0.937 among other isolates in 

group 1 (Table 6). 

For group 2 of fungal isolates (F12-F22), the similarity coefficient ranged 

from 0.001 to 0.991. Where, the highest value of similarity (i.e. 0.991) was 

recorded between genotypes numbered 12 and 18, followed by (i.e. 0.965) 

between isolate numbered 12 and 13. Also, the third highest value (i.e. 

0.947) was between 12 and 18 samples (Table 7).  

In the meantime, the genetic similarity values ranged from 0.001 to 0.913 

amongst other isolates in group 2 (Table 7). 

The genetic tree was demonstrated using cluster analysis by the UPGMA 

method through the SynGene software. 
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Table 6. Similarity matrix, based on Dice coefficient distance, for group 1 fungal isolates (F1-F11) based on ISSR marker variation. 

 

1 2 3 4 5 6 7 8 9 10 11 M 

1 1.000 

           2 0.000 1.000 

          3 0.000 0.932 1.000 

         4 0.088 0.521 0.272 1.000 

        5 0.986 0.000 0.000 0.084 1.000 

       6 0.986 0.000 0.000 0.018 0.989 1.000 

      7 0.708 0.393 0.299 0.380 0.674 0.673 1.000 

     8 0.031 0.855 0.776 0.802 0.000 0.000 0.443 1.000 

    9 0.637 0.545 0.499 0.472 0.611 0.608 0.959 0.598 1.000 

   10 0.020 0.866 0.799 0.769 0.000 0.000 0.445 0.992 0.597 1.000 

  11 0.571 0.571 0.527 0.498 0.551 0.545 0.937 0.623 0.986 0.622 1.000 

 M 0.000 0.179 0.291 0.055 0.000 0.000 0.000 0.041 0.000 0.048 0.000 1.000 

 

Table 7. Similarity matrix, based on Dice coefficient distance, for group 2 fungal isolates (F12-F22) based on ISSR marker variation. 

 

12 13 14 15 16 17 18 19 20 21 22 M 

12 1.000 

           13 0.965 1.000 

          14 0.913 0.887 1.000 

         15 0.001 0.064 0.092 1.000 

        16 0.891 0.876 0.855 0.000 1.000 

       17 0.039 0.040 0.341 0.500 0.000 1.000 

      18 0.991 0.947 0.827 0.076 0.730 0.067 1.000 

     19 0.697 0.704 0.882 0.351 0.645 0.589 0.726 1.000 

    20 0.005 0.134 0.278 0.044 0.365 0.043 0.000 0.110 1.000 

   21 0.845 0.823 0.801 0.021 0.786 0.230 0.773 0.610 0.269 1.000 

  22 0.007 0.088 0.169 0.161 0.236 0.077 0.014 0.045 0.863 0.307 1.000 

 M 0.102 0.188 0.537 0.153 0.621 0.485 0.110 0.526 0.473 0.611 0.603 1.000 
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The UPGMA genetic tree for group 1 fungal samples (F1-F11) showed two 

main subgroups: A and B with a distance of 20 according to distance scale 

(Figure 14). In subgroup A, the isolate numbered 4 was clearly different 

from clusters I and II in a distance of 59. Cluster I composed of two isolates 

numbered 8 and 10 with a Dice close similarity value of 0.992 and distance 

of 99.2. Cluster II also consists of two isolates numbered 2 and 3 with a 

0.932 value of similarity. In subgroup B, two clusters are observed, cluster 

III composed of three isolates numbered 1, 5 and 6 with a range of 0.989 to 

0.986 coefficient value in the similarity matrix. Cluster IV contains also 

three fungal isolates numbered 7, 9 and 11 having a Dice similarity value 

range of 0.986 to 0.959 (Table 6). 

In group 2 fungal samples (F12-F22), the tree revealed two main subgroups 

C and D with a distance of 12 according to distance scale (Figure 15). Group 

C consists of three clusters, where cluster I composed of five fungal isolates, 

numbered 12, 13, 16, 18 and 21 including the highest Dice coefficient value 

of 0.991 and ranged to 0.773 among other isolates in the cluster. Genotypes 

numbered 14 and 19 are included in cluster II with a similarity value of 

0.882. Also, 0.863 value was between genotypes numbered 20 and 22 

included in cluster III. Meanwhile, group D contain only two fungal isolates 

(numbered 15 and 17) with a distance of 50.
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Figure 14. UPGMA tree demonstrating the genetic diversity among group 1 different fungal genotypes (F1-F11) based on ISSR 

markers and constructed using the SynGene software.  
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Figure 15. UPGMA tree illustrating the genetic diversity among group 2 different fungal genotypes (F12-F22) based on ISSR markers 

and constructed using the SynGene software.
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4.1.2 Fungal ET data analysis 

Evaluation of tasted metabolites by ET revealed a significant discrimination, 

not only on grouping levels for each day, but also between each sample in 

the same tested period. ET used sensors array (i.e. CA, JB, HA, ZZ, BB, JE 

and GA) showed different discrimination power during the tested period, 

this power value indicates the ability of each sensor to discriminate each 

sample from others. In group 1 fungal samples (F1-F11) the discrimination 

powers for the sensors array are shown in Figure 16. 

 

Figure 16. Aatree II ET’s sensors array discrimination power for group 1 fungal samples 

(F1-F11). A: shows the discrimination power for each sensor of PDB inoculated with 

fungi at the day of inoculation. B: shows the discrimination power for each sensor of 

PDB inoculated with fungi after 120 h of growth (day 5). 

The discrimination power for each sensor according to tested PDB media at 

the inoculation day (Figure 16-A) ranged from 0.028 for GA sensor to 0.304 
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for CA in the same test, which considered as low discrimination power. 

Also, it shows how the discrimination power changed after 120 h of 

inoculation (Day 5) (Figure 16-B), that represent a very close discrimination 

range of 0.927 to 0.999 for four sensors (i.e. ZZ, GA, JE and BB) that are 

considered the highest discriminative sensors, followed by HA sensor with 

0.833 recorded discriminative power and leaving JB and CA sensors with 

the lowest discrimination power for group 1 samples at the end of the fifth 

day. 

For group 2 fungal samples (F12-F22), the discrimination power for the 

same sensors array are shown in Figure 17. 

 

Figure 17. Astree II ET’s sensors array discrimination power for group 2 fungal samples 

(F12-F22). A: shows the discrimination power for each sensor of PDB inoculated with 

fungi at the day of inoculation. B: shows the discrimination power for each sensor of 

PDB inoculated with fungi after 120 h of growth (day 5). 
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This figure shows different discrimination patterns at the same testing 

periods (day 0 to day 5 of inoculation) according to the changed of tested 

fungal samples. The discrimination power was lower than group 1 (F1-F11) 

for all sensors’ reading in group 2 fungal isolates (F12-F22), the 

discrimination power ranged below (i.e. 0.1) in the day of inoculation 

(Figure 17-A). On the other hand, in the fifth day of inoculation (Figure 17-

B) sensors readings shows the highest discriminative power value (i.e. 1) for 

sensor ZZ, followed by five sensors with a discrimination power ranged 

from 0.982 to 0.998, leaving CA with the lowest discrimination power (i.e. 

0.323). 

Moreover, PCA is used to analyze the data by searching for axes along 

which the samples are scattered, it is the first analysis performed. Where the 

discrimination effectiveness is assessed based upon the discrimination index, 

the dispersion and grouping of samples on the PCA scores plot. 

The discrimination index (Di) gives the discrimination quality through an 

indication of the surface (non-Euclidean) between fungal samples (i.e. each 

sample is considered by the grouping of the three measurements of each 

fungus).  
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The Di value between samples is calculated according to the following 

equations 1 and 2. When samples are distinct, the Di is calculated according 

to equation 1, while when clusters overlap, the Di is calculated according to 

equation 2 (Alpha MOS, 2009). 

           [    [
               

             
]]   ( ) 

     (                                    )         ( ) 

The discrimination is confirmed if each fungal three reading are grouped 

together to form one sample or cluster, and if there is no intersection 

between various fungal clusters. In which, the Di indicate how distanced 

each fungal cluster from the other. However, when there is a large variability 

within a cluster, the cluster will be spread and it will decrease the Di value. 

So, even if the discrimination is improved, the Di value will be still low 

(Alpha MOS, 2009). 

Moreover, the Di value can be positive or negative, where the positive value 

indicates that there is no intersection between fungal samples, the tested 

samples are different from each other and these samples have the greatest 

distance between each other. While, the negative value indicates the 

intersection and overlapping between fungal samples or clusters, the tested 
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clusters are similar to each other and these clusters have the smallest 

distance between each other. Furthermore, the maximum positive Di value is 

100 revealing that fungal clusters are completely distant from each other. 

But, there is no minimum value for the negative Di indication (Alpha MOS, 

2009). 

In this study, the evaluation of the Di revealed a significant difference 

between the centers of gravity and dispersion of each cluster. Where, this 

index changed in each tested day following the change in PDB media 

according to fungal consumption of the media for their growth or the release 

of secondary metabolites for their survival. In which, a linear unsupervised 

pattern of recognition technique (i.e. PCA) was used to help showing the 

change in the Di from the day of inoculation to the fifth day of fungal 

growth. This PCA had the ability to present groups’ clusters following each 

day, where two principal components (PC1 and PC2) were able to show 

approximately 100% of the data variation (the sum of both PCs) of the 

generated data as shown in Figure 18 to Figure 23. 

Furthermore, during the day of inoculation (D0) all samples grouped 

together with a Di of -1820 (Figure 18). Then fungal clusters stared to 

separate with slightly Di change to -55 after 24 h of inoculation (D1) (Figure 

19). After the second day of inoculation until the fifth day, the Di value 
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continue rising up ranging from 91 to 95 as shown in Figures 20, 21, 22 and 

23 indicating a well separated and clustered fungal groups. 

For group 2 of fungal samples (F12 to F22), the PCA and the change in the 

Di value of each measured day are shown in appendix (A) Figures 43- 48. 

Where, the first Di value at the day of inoculation was -1519 revealing that 

all samples have the same properties (Figure 43). Fungal samples started to 

be separated and discriminated but with negative Di value, that continued 

after 24 h and 48 h of fungal growth as -28 and -13, respectively (Figure 44 

and Figure 45). Then, after 72 h of growth each sample has different 

properties that was indicated by the positive Di value that continued until the 

120 h of growth (i.e. 96) (Figure 48). 
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Figure 18. PCA scores plot of group 1 fungal samples (F1- F11 with F0 as control) on the day of inoculation (D0), showing no 

discrimination with an index value of -1820 between samples. PC1 and PC2 explain about 100% of the total variation.  
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Figure 19. PCA scores plot of group 1 fungal samples (F1- F11 with F0 as control) after 24 h of inoculation (D1), showing changed 

discrimination index value to -55 between samples. PC1 and PC2 explain 100% of the total variation.  
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Figure 20. PCA scores plot of group 1 fungal samples (F1- F11 with F0 as control) after 48 h of inoculation (D2), showing a high 

discrimination index value of 91 between samples, that starts to be clearly separated. PC1 and PC2 explain 100% of the total variation.  
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Figure 21. PCA scores plot of group 1 fungal samples (F1- F11 with F0 as control) after 72 h of inoculation (D3), showing a high 

discrimination index value of 98 between samples. PC1 and PC2 explain 100% of the total variation.  
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Figure 22. PCA scores plot of group 1 fungal samples (F1- F11 with F0 as control) after 96 h of inoculation (D4), showing a high 

discrimination index value of 95 between samples. PC1 and PC2 explain about 100% of the total variation.  
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Figure 23. PCA scores plot of group 1 fungal samples (F1- F11 with F0 as control) after 120 h of inoculation (D5), showing a high 

discrimination index value of 98 between groups. PC1 and PC2 explain 100% of the total variation.
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ET not only discriminates and cluster data or samples in the same measured 

day, it exceeds that to discriminate between samples in different individual 

day. PCA scores plot can follow the grouping between different tested days, 

in order to identify were they overlapped (i.e. stop changing). So far in 

group 1 fungal samples (F1-F11), day’s discrimination started to overlap 

after 96 h of inoculation (D4 and D5) (Figure 24), which means that groups 

clustering stabilized and can be used for further analysis and evaluations. 

In group 2 fungal samples (F12-F22), days’ overlapping started after 48 h 

inoculation period and continued till the 120 h of inoculation (D2- D5) 

(Figure 25). This indicates that the differences between fungal samples in 

group two are clear. 

According to previous analysis, PDB media with fungal cultures having at 

least 96 h of growth rate can be suitable candidate for group clustering 

directly without being tested each day. In this study, D5 collected data for 

both fungal groups 1 and 2 were used to build a table with the similarity 

distance test (i.e. Euclidian test) between the centroids of the defined clusters 

and generate the corresponding clustering (Figure 23 and Figure 48). The 

group distance is a practical means of evaluating the similarity or difference 

between two groups (Alpha MOS, 2009). 
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Figure 24. PCA scores plot for gathered data according to tested day for group 1 of fungal samples (F1-F11). Showing each tested day 

grouping and day’s overlapping after 96 h of fungal inoculation. PC1 and PC2 explain about 100% of the total variation.  
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Figure 25. PCA scores plot for gathered data according to tested day for group 2 of fungal samples (F12-F22). Showing each tested 

day grouping and day’s overlapping after 48 h of fungal inoculation. PC1 and PC2 explain almost 100% the total variation. 
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Table 8 shows the results of similarity distance test for group1 of fungal 

samples (F1-F11) to evaluate the difference and the similarity among 

different samples. The test describes three parameters: group Euclidian 

distance, probability value (P-value) and pattern discrimination index (%). In 

which, the Euclidian distance between two clusters is a convenient way to 

assess the similarity between them. Where, the greater the Euclidian distance 

amongst the center of gravity of each cluster, the better the differences 

between groups are. But, this value does not take into account groups’ 

dispersion. Where, this dispersion happens due to inappropriate selection of 

sensors, poor reproducibility, sensor failure to discriminate the samples and 

the presence of too wide sample to sample variability. As a result, if two 

groups are widely dispersed and have a relatively large distance among their 

center of gravity, they don’t consider significantly different. Moreover, the 

P-value is a good means for evaluating the discrimination of the compared 

clusters. Wherein, the smallest the P-value is (near to 0), the higher the 

probability that groups are discriminated. This P-value calculation is based 

on multivariate analysis of variance algorithm technique (MANOVA), this 

technique is used for assessing group differences across multiple non-metric 

dependent variables simultaneously. 

In a conclusion, as pattern index finger-prints indicator takes into account 
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the difference between the centers of gravity and also the dispersion of each 

cluster. It is wise to look first at the index of discrimination, then the 

distance and P value. Where, P value can be only considered as an alarm 

value which helps to determine whether the reproducibility and/or 

discrimination between groups are correct or not. It may also demonstrate if 

the sensors selection were good enough (Alpha MOS, 2009). 

In general, in this study the following similarity distance test table shows the 

pattern discrimination index (%) (two by two). In which, each sample (as a 

product sample) was compared to another one (as a reference sample). This 

pattern discrimination index ranged for group 1 of fungal samples (F1-F11) 

on day 5, from 27.18% between F05 and F06 to 99.64% between F10 and 

F11, revealing the highest and lowest similar fungal samples, respectively 

(Table 8). Where, the P-value generally decreased as the discrimination 

value increased except in few samples due to previously mentioned reasons. 

Also, the distance between two groups increased as the discrimination 

between them increased, except in few samples and that is according to 

sample dispersion that was mentioned before. The first four fungal 

combinations of F05-F06, F09-F11, F03-F04 and F01-F05 were the closest 

to each other with a low discrimination index ranging between 27.18% to 

61.79%, then samples started to be well discriminated (Table 8). 
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Table 8. Similarity test table for group 1 of fungal samples (F1-F11), presenting 

Euclidian distance, P-value and pattern discrimination index between fungal samples. 

Product 

names 

Reference 

samples 
Distances P Value Pattern discrimination index (%) 

F05D5 F06D5 0.16 9.82 27.18 

F09D5 F11D5 0.12 13.65 42.45 

F03D5 F04D5 0.16 6.26 50.87 

F01D5 F05D5 0.34 5.14 61.79 

F01D5 F02D5 0.40 2.82 69.90 

F07D5 F09D5 0.29 3.67 73.72 

F01D5 F06D5 0.50 1.97 74.08 

F02D5 F04D5 0.36 9.47 78.11 

F07D5 F11D5 0.34 4.24 78.45 

F01D5 F03D5 0.52 11.14 82.40 

F08D5 F10D5 0.71 2.38 82.72 

F02D5 F03D5 0.44 1.45 83.97 

F01D5 F04D5 0.57 5.63 84.92 

F02D5 F05D5 0.74 1.91 91.52 

F02D5 F06D5 0.90 0.53 92.37 

F03D5 F06D5 0.85 0.36 92.83 

F03D5 F05D5 0.74 2.43 93.13 

F01D5 F11D5 0.95 4.88 94.12 

F04D5 F06D5 0.96 1.50 94.44 

F04D5 F05D5 0.83 2.09 94.71 

F02D5 F07D5 0.90 2.94 94.79 

F06D5 F09D5 1.04 1.47 95.44 

F06D5 F11D5 1.13 1.59 95.96 

F06D5 F07D5 1.23 0.53 96.00 

F05D5 F07D5 1.10 1.90 96.22 

F05D5 F11D5 1.03 3.65 96.55 

F03D5 F09D5 1.31 3.49 98.71 

F06D5 F08D5 2.74 4.74 98.81 

F03D5 F11D5 1.43 3.49 98.84 

F01D5 F08D5 2.96 3.39 98.94 

F05D5 F08D5 2.83 3.27 99.07 

F06D5 F10D5 3.27 2.68 99.07 

F03D5 F08D5 2.67 2.33 99.15 

F01D5 F10D5 3.55 2.11 99.18 

F04D5 F08D5 2.80 1.98 99.24 

F05D5 F10D5 3.37 1.63 99.26 

F03D5 F10D5 3.31 1.37 99.35 

F02D5 F10D5 3.73 1.54 99.41 

F07D5 F08D5 3.88 1.49 99.54 

F07D5 F10D5 4.45 1.61 99.60 

F09D5 F10D5 4.30 1.77 99.64 

F10D5 F11D5 4.39 1.89 99.64 
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Table 9 lists similarity distance test ordered values for compared group 2 

fungal samples (F12-F22) on the fifth day. In which, the pattern 

discrimination index (%) among samples in this group was relatively larger 

than it was among samples in group 1. Where, the lowest value started with 

70.52% between F14 and F21, and the highest value ended with 99.99% 

between F13 and F15, revealing the dissimilarity between fungal isolates in 

this group. 

The pattern discrimination index was less than 90% only between F14 and 

F16 related to F21. Although, the distance between samples having 99% 

discrimination index and more was less in range (i.e. 0.61-3.95) compared to 

group 1 distance (i.e. 2.83-4.39) (Table 8), the discrimination pattern was 

larger and ranged from 99% among F13 and F18 to 99.99% among F13 and 

F15. This phenomenon is due to the large variety of fungal genotypes in this 

group that in contrast revealed low dispersion and high Di power of sensors 

array. The P-value generally decreased as the discrimination value increased 

except in few samples (Table 9) due to previously mentioned reasons.   
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Table 9. Similarity test table for group 2 of fungal samples (F12-F22), presenting 

Euclidian distance, P-value and pattern discrimination index between fungal samples. 

Product 

names 
Reference samples Distances P Value Pattern discrimination index (%) 

F14D5 F21D5 0.26 20.52 70.52 

F16D5 F21D5 0.37 18.21 79.82 

F12D5 F18D5 0.20 9.54 90.80 

F12D5 F16D5 0.43 15.16 93.90 

F12D5 F21D5 0.68 3.53 94.80 

F18D5 F21D5 0.73 7.35 95.13 

F20D5 F21D5 0.89 5.15 95.56 

F14D5 F20D5 0.63 4.65 96.21 

F14D5 F16D5 0.61 4.16 96.30 

F13D5 F16D5 0.73 5.31 97.86 

F14D5 F19D5 0.45 4.99 97.95 

F16D5 F20D5 1.21 8.06 98.45 

F12D5 F13D5 0.41 2.78 98.58 

F13D5 F18D5 0.61 7.25 99.00 

F14D5 F18D5 0.98 4.55 99.36 

F18D5 F20D5 1.60 2.56 99.42 

F21D5 F22D5 2.27 3.98 99.45 

F12D5 F20D5 1.57 0.78 99.45 

F12D5 F14D5 0.94 2.13 99.46 

F13D5 F20D5 1.64 2.16 99.51 

F17D5 F21D5 2.32 0.62 99.53 

F16D5 F17D5 2.07 1.97 99.73 

F15D5 F21D5 3.30 0.73 99.77 

F17D5 F20D5 2.64 0.25 99.81 

F15D5 F20D5 3.10 0.57 99.86 

F12D5 F19D5 1.28 2.38 99.87 

F15D5 F16D5 3.22 1.37 99.88 

F13D5 F19D5 1.46 1.64 99.91 

F14D5 F17D5 2.40 0.53 99.93 

F15D5 F17D5 1.80 1.81 99.94 

F14D5 F15D5 3.23 0.61 99.96 

F12D5 F17D5 2.28 0.45 99.96 

F17D5 F22D5 4.25 1.36 99.97 

F15D5 F19D5 2.84 0.68 99.97 

F13D5 F17D5 2.68 0.56 99.97 

F17D5 F19D5 2.21 0.55 99.97 

F15D5 F18D5 3.42 1.59 99.97 

F15D5 F22D5 5.53 1.24 99.98 

F12D5 F15D5 3.58 0.75 99.98 

F13D5 F15D5 3.95 0.58 99.99 
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The following PCA scores plots Figure 26 and Figure 27 of the fifth day’s 

data for both fungal groups group 1 and group 2 show the relative clustering 

of fungal samples as it genetically revealed previously by the UPGMA tree 

in Figure 14 and Figure 15, respectively. In which, the grouping and 

clustering of PCA and the genetic tree have almost the same pattern rhythm 

for different fungal isolates. 

In group 1 fungal samples (F1-F11) (Figure 26), it has both subgroups A and 

B as the UPGMA tree clustering in Figure 14. Where subgroup A with its 

two clusters I and II, having fungal samples F8 and F10 in cluster I and F2, 

F3 and F4 included in cluster II. And subgroup B with F6, F5 and F1 

included in cluster III, and cluster IV consists of F7, F9 and F11. 

Meanwhile, group 2 fungal samples (F12-F22) (Figure 27) has group C and 

D as the UPGMA tree clustering in Figure 15. Where, group D has only F15 

and F17 included in cluster IV which are distinct to each other and from 

other fungal samples. However, group C has the majority of fungal samples 

categorized in clusters I, II and III. In which, the largest and closest fungal 

samples in this group are gathered in cluster I (i.e. F12, F13, F16, F18 and 

F21), followed by cluster II having the second closest fungal isolates (i.e. 

F14 and F19), leaving cluster III with relatively close F20 and F22. 
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Figure 26. PCA scores plot showing clustering rhythm of group 1 fungal samples (F1-F11) according to UPGMA dendogram (Figure 

14). It has a very close clustering similarity.  
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Figure 27. PCA scores plot showing clustering rhythm of group 2 fungal samples (F12-F22) according to UPGMA dendogram (Figure 

15). It has a very close clustering similarity. 
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4.2 Bacterial experiment results 

4.2.1 Bacterial DNA data analysis 

Total DNA extraction of 22 different bacteria using TRI reagent method are 

shown in Figure 28, which was grouped into two groups according to ET’s 

auto-sampler’s capacity (Table 2). 

 

 

Figure 28. Gel electrophoresis documented photo of total DNA isolated from 22 different 

bacterial isolates using TRI reagent method for genomic isolation. Lanes from 1-22 

represents bacterial isolates from 1-22. M= 1 Kbp ladder as a molecular size marker. 

 

The four used combinations of universal 16S rRNA coded bacterial primers 

(Table 3) showed well identifiable bands in Figure 29 A-D.
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Figure 29. Gel electrophoresis documented photos for 16S rRNA amplification in 22 different bacterial isolates using four different 16S 

rRNA universal primers’ combinations. A: primers 341F and 805R, B: primers 27F and 1492R, C: primers 341F and 1492R and D: primers 

27F and 805R. M= 100 bp ladder as a molecular size marker. –ve= represents negative control sample.  
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Table 10. The 16S rRNA bands’ profiles scores of 22 different bacterial genotypes using 16S rRNA3 coded primer for each marker. Where, 

1= present band and 0= absent band. 

Primer 

16S rRNA3 (bp) 

Sample No. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1010 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 

950 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 

900 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

780 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 

710 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 

650 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 

550 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 

510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 

430 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 

400 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 

350 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 

300 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 

250 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 

150 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 

100 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 

Total 

bands 
2 3 5 5 6 3 4 2 4 3 7 6 3 3 5 5 4 4 5 3 7 3 
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The primer coded 16S rRNA3 (with forward 341F and reversed 1492R 

primers combination) in Figure 29 C resulted in polymorphic profiles that 

were used for UPGMA data analysis.  

The numbers of scored bands produced by this primer were 15, including 11 

polymorphic markers and only 4 monomorphic markers, scoring a 

percentage of 73.33% polymorphism, which indicated a high level of genetic 

variation among the examined bacterial genotypes (Table 11).  

The photo illustrating bands fingerprinting of the selected 16S rRNA3 

primers for the 22 bacterial genotypes is shown in Figure 29 (C). Where the 

largest produced fragment was approximately 200 bp and the smallest 

recognized produced fragment was approximately 1.10 Kbp (Table 11). 

 

Table 11. Base sequence of the 16S rRNA3 coded primer which produced polymorphic 

finger-printing in 22 different bacterial genotypes, number of total alleles, number of 

amplified monomorphic, polymorphic bands as well as the percentage of polymorphism. 

Primer 

code 

Annealing 

temperature 

( C) 

Size 

range 

 (bp) 

Total 

No. of 
No. of 

Monomorphic 

bands 

No. of 

Polymorphic 

bands 

% 

Polymorphism 
alleles 

16S 

RNA3 
50 200-1010 15 4 11 73.33 
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The pair-wise genetic similarity estimates, for 16S rRNA3 profiles based on 

Dice similarity coefficient for group 1 of bacterial isolates (B1-B11), are 

given in Table 12. The similarity coefficient ranged from 0.032 to 0.999. 

The highest similarity range of 0.999-0.995 was observed between bacterial 

genotypes numbered 3, 4, 5, 6 and 7. The second highest similarity (i.e. 

0.990) was between genotypes numbered 9 and 10. While third highest value 

(i.e. 0.987) was between the two genotypes numbered 2 and 10 and the 

lowest one (i.e. 0.032) was between isolates 1 and 9 (Table 10).  

For group 2 of bacterial isolates (B12-B22) (Table 13), the similarity 

coefficient ranged from 0 to 1. Where the highest value of similarity (i.e. 1) 

was recorded between genotypes numbered 13 and 22, followed by a range 

of 0.999- 0.995 between isolate numbered 13, 15, 16, 17, 19, 21 and 22. The 

third highest value of 0.988 was between 15 and 17 numbered samples. The 

other genetic similarity values ranged from 0 to 0.913 among other isolates 

in this group.  
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Table 12. Similarity matrix, based on Dice coefficient distance, for group 1 bacterial isolates (B1-B11) based on 16S rRNA3 marker 

variation  

 

1 2 3 4 5 6 7 8 9 10 11 M 

1 1.000 

           2 0.058 1.000 

          3 0.444 0.547 1.000 

         4 0.233 0.893 0.996 1.000 

        5 0.195 0.957 0.996 0.999 1.000 

       6 0.421 0.573 0.998 0.998 0.999 1.000 

      7 0.214 0.936 0.995 0.998 0.997 0.997 1.000 

     8 0.056 0.351 0.092 0.204 0.251 0.098 0.197 1.000 

    9 0.032 0.980 0.474 0.783 0.897 0.491 0.841 0.541 1.000 

   10 0.143 0.987 0.872 0.993 0.891 0.908 0.993 0.232 0.990 1.000 

  11 0.208 0.948 0.983 0.980 0.981 0.982 0.985 0.154 0.868 0.978 1.000 

 M 0.113 0.461 0.478 0.482 0.479 0.479 0.481 0.008 0.400 0.486 0.472 1.000 

 

Table 13. Similarity matrix, based on Dice coefficient distance, for group 2 bacterial isolates (B12-B22) based on 16S rRNA3 marker 

variation. 

 

12 13 14 15 16 17 18 19 20 21 22 M 

12 1.000 

           13 0.000 1.000 

          14 0.000 0.909 1.000 

         15 0.000 0.998 0.986 1.000 

        16 0.058 0.999 0.985 0.999 1.000 

       17 0.000 0.996 0.889 0.988 0.999 1.000 

      18 0.000 0.968 0.946 0.970 0.971 0.972 1.000 

     19 0.000 0.998 0.959 0.999 0.999 0.998 0.969 1.000 

    20 0.048 0.483 0.314 0.382 0.586 0.725 0.603 0.635 1.000 

   21 0.000 0.995 0.843 0.954 0.996 0.995 0.963 0.996 0.803 1.000 

  22 0.000 1.000 0.869 0.974 0.999 0.997 0.968 0.998 0.776 0.998 1.000 

 M 0.000 0.137 0.328 0.465 0.047 0.118 0.000 0.383 0.086 0.087 0.632 1.000 
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The cluster analysis using UPGMA method, for group 1 bacterial isolates 

(B1-B11) (Figure 30) showed two main subgroups A and B with a distance 

of 19.5 according to distance scale, which indicates the dissimilarity 

between the two groups.  

In subgroup A, the isolate numbered 8 (included in cluster III) was clearly 

different from cluster I and II in a distance of 22. Meanwhile, cluster I and II 

are closer to each other in a branch distance of 84. Cluster I composed of six 

isolates, where five of them (samples numbered 3, 4, 5, 6 and 7) with the 

closest Dice similarity value around 0.999 and distance of 99. In which, the 

six sample numbered 11 was similar to the above five grouped samples in a 

distance of 98. In cluster II there are three isolates (numbered 2, 9 and 10) 

with a 0.999 coefficient value of similarity between 9 and 10 ranged to 0.98 

with the branched numbered 2 (Table 12). Group B composed of only one 

leaf presenting isolate numbered 1 that was different from all other tested 

isolates (Figure 30). 

In group 2 bacterial isolates (B12-B22), the UPGMA genetic tree also 

revealed two main subgroups C and D (Figure 31). The subgroup D consists 

of only one leaf sample (numbered B12) with a similarity coefficient range 

of 0.048-0.058 (Table 13) that indicates the heterogeneity between this 

sample and all other isolates. 
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Subgroup C has the majority of bacterial isolates that were clustered into 

two branched clusters I and II in a distance of approximately 58 according to 

the distance scale. Where, cluster II composed of only one leaf of genotype 

numbered B20. On the other hand, cluster I composed of all 9 other bacterial 

genotypes that were tested in this subgroup. This cluster is divided to four 

enter groups labeled a, b, c and d (Figure 31). In which, group a contained 

four isolates with the highest similarity distance of 100 between samples 

B13 and B22 and a distance of 99 between the other two samples in this 

group (samples numbered 17 and 21). Group b branched from group a at a 

distance of 98 and it is composed of three bacterial isolates (numbered 15, 

16 and 19) with the same high Dice coefficient value of 0.999 (Table 13). 

Genotype coded B18, that is included in group c, is at a similarity distance 

of 97 with the other groups (a and b). While, genotype numbered B14 

among cluster I, and grouped as d, is far from all other groups at a distance 

branch of approximately 94 according to similarity distance scale (Figure 

31). 
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Figure 30. UPGMA tree illustrating the genetic diversity among group 1 bacterial genotypes (B1-B11) based on 16S rRNA3 markers 

and constructed using the SYNGENE software.   
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Figure 31. UPGMA tree illustrating the genetic diversity among group 2 bacterial genotypes (B12-B22) based on 16S rRNA3 markers 

and constructed using the SYNGENE software.
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4.2.2 Bacterial ET data analysis 

Evaluation of bacterial metabolites by ET revealed a significant 

discrimination on both grouping levels for each day and between each 

sample in the same tested period.  

The discrimination powers for each sensor for group 1 bacterial samples 

(B1-B11) are shown in Figure 32. 

 

Figure 32. Astree II ETs sensory array discrimination power for group 1 bacterial 

samples (B1-B11). A: shows the discrimination power for each sensor of NB media 

inoculated with bacteria at the day of inoculation. B: shows the discrimination power for 

each sensor of NB after 96 h of bacterial growth. 

 

In which, the discrimination power for this group according to tasted NB 

media at the inoculation day (Figure 32- A) ranged from 0.032 for HA 
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sensor to 0.584 for JB in the same test day, which considered as a low 

power. Also, it shows how the discrimination power changed after 96 h of 

inoculation (Day 4) (Figure 32- B), that represent a very close discrimination 

range of 0.985 to 0.960 for two sensors (ZZ and GA) that are considered the 

highest discriminative sensors, followed by BB sensor with 0.894 recorded 

power and leaving HA with the lowest power of 0.052 for at the end of the 

fourth day (Figure 32). 

In the meantime, the discrimination powers for each sensor for group 1 

bacterial samples (B12-B22) are shown in Figure 33. 

 

Figure 33. Astree II ETs sensory array discrimination power for group 2 bacterial 

samples (B12-B22). A: shows the discrimination power for each sensor of NB media 

inoculated with bacteria at the day of inoculation. B: shows the discrimination power for 

each sensor of NB after 96 h of bacterial growth. 
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Where, the discrimination power ranged from 0.044 for HA to 0.151 for in 

the day of inoculation (Figure 33- A). The discrimination power values 

changed after 96 h of inoculation (Figure 33- B) sensors readings ranged 

from 0.999 for ZZ sensor to 0.96 for BB sensors to be recorded with the 

highest power, followed by GA with 0.869 value and the lowest 

discriminative sensor was HA with 0.103 power value at the end of 96 h of 

inoculation. 

Moreover, the evaluation of the discrimination index (Di) revealed a 

significant difference between the centers of gravity and dispersion of each 

subgroup. Where, this index changed each tested day following the change 

in NB media according to bacterial consumption of the media for their 

growth or the release of secondary metabolites for their survival. In which, 

PCA was used to show the change in the discrimination index from the day 

of inoculation to the fourth day of bacterial growth. This PCA had the ability 

to present groups’ clusters following each day, where two principal 

components (PC1 and PC2) were able to show approximately 100% of the 

data variation (the sum of both PCs) of the generated data as shown in 

Figure 34 to Figure 38. 

Furthermore, during the day of inoculation (D0) all samples grouped 

together with a Di of -456 (Figure 34). Then bacterial groups stared to 
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separate with slightly Di change to -19 after 24 h of inoculation (D1) (Figure 

35). Also, the Di slightly changed during passed 48 and 72 h with a value of 

-7 and -0.5, respectively. This might be due to low bacterial growth rate of 

this group isolates. In which, the Di value changed to have a high 

discriminative power after 96 h of bacterial growth to have a positive value 

of 95 (Figure 38). 

For group 2 of bacterial samples (B12- B22), the PCA and the change in the 

Di value of each measured day are shown in appendix (B) Figures 49- 53. In 

which, in this group of bacterial isolates Di value was only negative with a 

value of -291in the day of inoculation (D0) (Figure 49) indicating the 

closeness of these samples to each other and to the control NB sample. 

Where, after 24 h of bacterial growth the Di value between different 

bacterial isolates changed into high positive value of 95 (Figure 50) that 

remain constant after 48, 72 and 96 h of bacterial growth as shown in 

Figures 51, 52 and 53, respectively. 

Moreover, it can be observed how the two bacterial groups have different Di 

value patterns according to the types of bacterial genotypes in each group 

and their relation to each other. As group 1 bacterial samples have slightly 

changed over tested periods, group 2 bacterial samples showed high Di 

change after only 24 h of inoculation (i.e. 95) (Figure 50) that remain 
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constant till the fourth day of growth (Figure 53). Where, This indicates the 

discriminative variety of bacterial isolates in this group. 
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Figure 34. PCA scores plot of group 1 bacterial samples (B1- B11 with B0 as control) on the day of inoculation (D0), showing no 

discrimination with an index value of -456 between samples. PC1 and PC2 explain 100% of the total variation.  
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Figure 35. PCA scores plot of group 1 bacterial samples (B1- B11 with B0 as control) after 24 h of inoculation (D1), showing change 

on the discrimination index value to -19 between samples. PC1 and PC2explain 100% of the total variation.  
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Figure 36. PCA scores plot  of group 1 bacterial samples (B1- B11 with B0 as control) after 48 h of inoculation (D2), showing another 

slightly change on the discrimination index value to -7 between samples. PC1 and PC2 explain almost 100% of the total variation.  
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Figure 37. PCA scores plot of group 1 bacterial samples (B1- B11 with B0 as control) after 72 h of inoculation (D3), showing change 

in the discrimination index value to -0.5 between samples. PC1 and PC2 about 100% of the total variation.  
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Figure 38. PCA scores plot of group 1 bacterial samples (B1- B11 with B0 as control) after 96 h of inoculation (D4), showing high 

change on the discrimination index value to reach 95 between samples. PC1 and PC2 100% of the total variation.
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For the change in the discrimination value according to tested days 

individually, a PCA scores plot was created to follow the grouping between 

different tested days in order to identify were they overlapped.  

So far, for group 1 bacterial samples (B1-B11) the Di value according to 

each tested day was 71 (Figure 39) and for groups 2 bacterial samples (B12-

B22) the Di value was 66 (Figure 40), indicating the high discrimination of 

data variety according to each tested day, also indicating how ET can track 

the change of each day’s properties and that there wasn’t overlapping 

through the tested discriminative days for both bacterial group 1 and 2. 

According to previous analysis, NB media with bacterial cultures having at 

least 48 h of growth rate can be suitable candidate for group clustering 

directly without being tested each day.
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Figure 39. PCA scores plot for gathered data according to tested day for group 1 of bacterial samples (B1-B11). Showing each tested 

day grouping and data decline after 96 h of bacterial inoculation that shows a high discrimination index value of 71. PC1 and PC2 

explain about 100% of the total variation.  
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Figure 40. PCA scores plot for gathered data according to tested day for group 2 of bacterial samples (B12-B22). Showing each tested 

day grouping and data decline after 96 h of bacterial inoculation that shows a high discrimination index value of 66. PC1 and PC2 

explain about 100% of the total variation.
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In this study, day 4 (D4) collected data for both bacterial groups 1 and 2 

were used to build similarity distance test table between the centroids of the 

defined grouped samples (two by two) and generate the corresponding 

clustering.  

Table 14 shows the results of similarity distance test among different group 

1 bacterial samples (B1-B11). In general, in this study the pattern 

discrimination index (%) of each sample to the other ranged, for group 1 of 

bacterial samples, from 3.18% between B03 and B11 to 95.68% between 

B01 and B02 revealing the highest and lowest similar bacterial samples, 

respectively (Table 14). Where, the P-value generally decreased as the 

discrimination value increased except in few samples due to previously 

mentioned reasons (Alpha MOS, 2009). Also, the Euclidian distance 

between two samples increased as the discrimination between them 

increased, except in few samples and that is according to sample dispersion 

that was mentioned before.  

The first six bacterial combinations of B03-B11, B05-B06, B03-B07 and 

B04-B5 have below 10% pattern discrimination index value. Whereas, B03 

and B01 bacterial samples corresponded to B08 and B02 combinations have 

the highest discrimination values of 95% and 94.4% according to other 

bacterial combinations that ranged from 10.58% to 93.05% (Table 14).  
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Table 14. Similarity test table for group 1 of bacterial samples (B1-B11), presenting 

Euclidian distance, P-value and pattern discrimination index between fungal samples. 

Product names Reference samples Distances P Value 
Pattern discrimination 

index (%) 

B03D4 B11D4 0.16 40.63 3.18 

B05D4 B06D4 0.12 29.97 3.24 

B03D4 B07D4 0.14 11.86 3.63 

B04D4 B05D4 0.12 33.49 3.88 

B07D4 B11D4 0.30 9.24 8.45 

B04D4 B06D4 0.20 10.78 8.59 

 B09D4 B10D4 0.25 11.64 10.58 

B04D4 B07D4 0.26 4.55 11.98 

B05D4 B07D4 0.29 7.85 14.08 

B05D4 B11D4 0.46 17.52 20.4 

B06D4 B07D4 0.41 5.49 23.36 

B04D4 B11D4 0.50 25.07 23.75 

B03D4 B05D4 0.38 34.17 26.63 

B06D4 B11D4 0.57 6.78 27.13 

B03D4 B04D4 0.38 5.28 27.95 

B03D4 B06D4 0.49 3.68 36.58 

B05D4 B09D4 1.62 4.99 84.65 

B07D4 B09D4 1.89 5.66 85.61 

B06D4 B10D4 1.75 2.63 86.03 

B04D4 B09D4 1.71 3.43 86.30 

B01D4 B11D4 2.38 1.53 87.4 

B02D4 B06D4 1.58 3.05 87.93 

B05D4 B10D4 1.85 2.54 88.07 

B07D4 B10D4 2.12 3.07 88.37 

B08D4 B11D4 2.45 4.69 88.57 

B02D4 B07D4 1.88 5.61 89.03 

B01D4 B06D4 1.84 0.46 89.06 

B04D4 B10D4 1.95 1.79 89.32 

B02D4 B05D4 1.65 3.15 89.86 

B01D4 B09D4 2.06 1.13 90.17 

B00D4 B01D4 1.78 0.83 90.43 

B01D4 B04D4 1.88 0.84 90.44 

B06D4 B08D4 1.90 5.14 90.58 

B01D4 B05D4 1.93 0.40 90.63 

B03D4 B10D4 2.14 3.03 90.89 

B02D4 B04D4 1.77 3.84 91.32 

B07D4 B08D4 2.31 4.82 91.80 

B01D4 B10D4 2.27 0.88 91.90 

B02D4 B03D4 1.87 3.81 91.98 

B05D4 B08D4 2.02 4.86 92.22 

B02D4 B08D4 1.80 2.63 92.56 

B04D4 B08D4 2.05 5.55 92.61 

B01D4 B03D4 2.26 0.44 93.05 

B03D4 B08D4 2.40 3.89 94.40 

B01D4 B02D4 2.57 0.68 95.68 
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Table 15 lists similarity distance test ordered values for compared group 2 

bacterial samples (B12-B22) on the fourth day. In which, the pattern 

discrimination index among samples in this group was relatively larger than 

it was among samples in group 1 bacterial samples. Where, the lowest value 

started with 12.91% between B13 and B22, and the highest to 99.8% 

between B14 and B22. 

The pattern discrimination index was less than 50% only between two 

bacterial combinations of B13, B17 and B22 revealing the similarity 

between these samples (Table 15). 

Although, the distance between samples having 99% discrimination index 

and more, it was less in distance range (0.84-3.8). The discrimination pattern 

was larger and ranged from 99.02% among B19 and B21 to 99.8% among 

B14 and B20. This phenomenon is due to the large variety of bacterial 

genotypes in this group that revealed a low dispersion and the high Di power 

of sensors array. The P-value generally decreased as the discrimination value 

increased except in few samples due to previously mentioned reasons that 

were mentioned before (Table 15.)  
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Table 15. Similarity test table for group 1 of bacterial samples (B12-B22), presenting 

Euclidian distance, P-value and pattern discrimination index between fungal samples. 

Product names Reference samples Distances P Value 
Pattern discrimination 

index (%) 

B13D4 B22D4 0.08 67.44 12.91 

B13D4 B17D4 0.20 35.41 45.29 

B17D4 B22D4 0.23 12.71 69.19 

B13D4 B15D4 0.39 14.77 78.78 

B18D4 B21D4 0.42 13.55 81.66 

B15D4 B17D4 0.35 6.00 82.69 

B15D4 B22D4 0.34 7.91 86.06 

B17D4 B21D4 0.43 12.2 87.23 

B13D4 B21D4 0.56 6.93 87.92 

B13D4 B16D4 0.57 4.46 90.07 

B12D4 B20D4 1.08 5.38 90.72 

B16D4 B19D4 0.36 3.34 91.00 

B15D4 B16D4 0.39 4.22 91.11 

B13D4 B18D4 0.96 9.87 93.89 

B17D4 B18D4 0.85 6.50 94.29 

B12D4 B18D4 1.52 3.66 94.59 

B16D4 B22D4 0.49 3.10 94.79 

B21D4 B22D4 0.63 3.19 95.03 

B13D4 B19D4 0.89 6.54 95.20 

B16D4 B17D4 0.65 3.87 95.57 

B14D4 B19D4 0.50 5.42 95.98 

B15D4 B21D4 0.75 1.71 96.20 

B18D4 B22D4 1.03 1.93 96.61 

B15D4 B19D4 0.75 1.07 96.80 

B12D4 B21D4 1.93 2.29 97.02 

B15D4 B18D4 1.17 6.39 97.23 

B19D4 B22D4 0.81 4.07 97.46 

B12D4 B17D4 2.34 3.17 97.89 

B13D4 B20D4 1.65 3.22 98.29 

B12D4 B15D4 2.68 3.58 98.44 

B16D4 B21D4 1.08 2.62 98.62 

B12D4 B16D4 2.98 2.84 98.8 

B18D4 B19D4 1.84 2.66 98.92 

B12D4 B19D4 3.29 1.30 98.98 

B19D4 B21D4 0.84 1.35 99.02 

B14D4 B16D4 1.42 1.50 99.04 

B14D4 B15D4 1.21 1.48 99.14 

B20D4 B22D4 1.72 1.96 99.16 

B15D4 B20D4 1.81 0.85 99.20 

B12D4 B14D4 3.01 0.10 99.28 

B14D4 B22D4 1.31 0.59 99.36 

B16D4 B20D4 2.17 0.83 99.56 

B19D4 B20D4 2.52 0.06 99.61 

B14D4 B21D4 1.92 0.64 99.62 

B14D4 B20D4 3.80 0.59 99.80 
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The following PCA scores plot (Figure 41and Figure 42) of the fourth day’s 

data for both bacterial groups (group 1 and group 2) shows the relative 

clustering of bacterial groups as it genetically revealed previously by the 

UPGMA tree (Figure 30 and Figure 31). 

In which, the grouping and clustering of PCA and genetic tree have almost 

the same pattern for different bacterial isolates. In group 1 bacterial samples 

(B1-B11) (Figure 41), has both subgroup A and B. Where, subgroup B 

includes only B01 that is discriminated among all other bacterial samples. 

Meanwhile, subgroup A have all other bacterial samples contained in three 

clusters I, II and III. Cluster II consists on B08 bacterial isolate, cluster II 

composed of three bacteria B02, B09 and B10 with close distance, leaving 

cluster II with the majority of bacterial samples B03, B04, B05,B06, B07 

and B11. 

Meanwhile, group 2 bacterial samples (B12-B22) (Figure 42) have subgroup 

C and D, subgroup D has only B12 that is distinct from other bacterial 

samples. However, subgroup C has the majority of bacterial samples 

categorized in clusters I and II. Where, cluster II has only B20 sample, 

leaving cluster I with all nine bacterial samples grouped in a, b, c and d. In 

which, group c having B18 and group d having B14 are distinct on the sides 

of cluster I center. In that center, laying group a including B13, B22, B17 
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and B21 having the highest similarity leaving group b with B15, B16 and 

B19 with the second highest similarity among bacterial genotypes (Figure 

42). 

These results indicate the compatibility of both ET and molecular methods 

in clustering of different microorganism tested samples.
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Figure 41. PCA scores plot showing clustering rhythm of group 1 bacterial samples (B1-B11) according to UPGMA dendogram 

(Figure 30). It has a very close clustering similarity.  
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Figure 42. PCA scores plot showing clustering rhythm of group 2 bacterial samples (B12-B22) according to UPGMA dendogram 

(Figure 31). It has a very close clustering similarity.
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5 Conclusion  

Electronic tongue can be considered as a promising analytical method for 

monitoring microbial growth and follow their metabolites production during 

their growth. This research and results can be used for the next establishing 

step in distinguishing different fungal and bacterial genotypes. Also, in a 

long run will open a wide range for using sensors for monitoring microbial 

activities for fermentable, industrial and categorizing applications. 

Moreover, the results confirmed the possibility of using an Astree II ET, a 

conventional potentiometric applicable technique, as an alternative fast 

assessment tool to distinguish complex and native state microorganism’s 

bimolecular foot-printing in a liquid media, relying on chemical changes due 

to microbial primary metabolite production through growth phases and 

secondary metabolite assembly and differentiation during stationary phase.  

Additionally, this highlights the beneficial use of Et as an alternative and in 

vitro assessment tool to other sophisticated techniques. Also, the fact that 

combining ET with other detecting technologies can be used for more 

accurate monitoring and optimizing schemes due to its high sensitivity, low 

detecting limit of microbial metabolites sensory and safety index. 
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As recommendations for future researches, further studies must carried out 

in order to monitor sensors’ temperature dependence and charge transfer 

affect by the adsorption of solution component. Also, to create large and 

specified foot-printing databases for microbial tasted metabolites’ complexes 

in a liquid media for fast and easy microbial detecting and classification. 
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Abstract in Arabic (الملخص) 

 

جات عممياتِ تلدَّقيقة من خلال مُنة اإمكانيّة التَّصنيف الغير مباشر لمكائنات الحيّ 

العوامل  التَّحميل المتعددو  الأيض لها بواسطة مجس كيماوي )المّسان الإلكتروني(

 لمبيانات

 الطالبة: باسمة عمي أبو رميمة

 المشرف: الدكتور نواف أبو خمف

 الممخص

د من المحاليل معدية كأداة تحميمية لات الكيميائي  ع حاليا استخدام أنظمة المجس  صبح من الشائ  أ

والذي يعتمد مبدأ عممو عمى استخدام ات أحد ىذه المجس  كتروني للاسان االم  حيث يعد  ،المعقدة

ىذا البحث  ة عالية وخصائص انتقائية منخفضة.ذات صفات حسي  ات مجموعة متعددة من المجس  

قياس فرق  مبدأ الذي يعمل عمىسان الالكتروني )جياز الم  ة استخدام عبارة عن تجربة لدراسة امكاني  

بكتيريا والفطريات( في تصنيف الكائنات الحية الدقيقة )مثل ال يةبديمة وسريعة في عممالجيد( كوسيمة 

 .مائييضية في وسط ات عممياتيا الأمفرز استشعار بالاعتماد عمى  ،صمية والمعقدةحالتيا الأ

اكثارىا في وسط مائي مناسب لكل نوع ، حيث تم بكتيريا مختمفةو  فطر 44عزل البحث  ىذا تضمن

 Astree IIسان الالكتروني )من نوعليتم قياسو باستخدام جياز الم  الوسط ىذا ح واستخدام مرش   منيا،

Alpha MOS)  جس اتالمىذه  بواسطة المجمعة البيانات تحميل تم ذلك بعد. ىانمو  ةخلال فتر 

 الأساسي التحميل باستخدام أساسي بشكلو ) تلمبيانا العوامل المتعدد الت حميل طرق باستخدام
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 التشابو لأوجو وفقًا النوعالكائنات من نفس  صنيفلتت حميلات  ىذه ال استخدام، و ((PCA) لممكونات

نتائج  من التحقق الأثناء تم ىذه في .نموىا دورة متابعةأيضاً و  ،البعض بعضيا بين الاختلاف أو

الحمض الن ووي صنيف باستخدام قواعد البيانات الجزيئية )مع الت  سان الالكتروني بمقارنتيا تصنيف الم  

DNA.) 

حيث أن المجس ات المستخدمة اظيرت قدرة تصنيفية عالية تراوحت  ،واعدة راسةالد   ىذه نتائج كانت

بين العزلات البكتيرية في نياية فترة  0.999-0.9.0بين العزلات الفطرية و 2-0.910بين 

بين العزلات الفطرية و  .9و 99كانت  PCAتمثيل ال التصنيف ل مؤشرقيمة  القياس. وكذلك فإن

بين العزلات البكتيرية. إضافة لذلك فإن فحص التشابو بين العزلات كشف عن التشابو الكبير  99

% بين 00.91% في المجموعة لأولى لمفطريات، و بمقدار 10.29بمقدار  F6و  F5بين العزلة 

في  B11و  B3% بين العزلة 8.29لمجموعة الثانية لمفطريات، وبمقدار في ا F21و  F14العزلة 

في المجموعة البكتيرية  B22و  B13% بين العزلة 21.92المجموعة البيكتيرية لأولى، وبمقدار 

 الثانية.

كانت  سان الالكترونيتقنية الم   طريق عن نتجت التي صنيفالت   أنماط أنوكذلك فالنتائج أوضحت  

 موالن   دورةع ب  تت وتمكن الجياز من ،الجزيئية قنيةت  ال طريق عنصنيف التي نتجت نماط الت  مطابقة لأ

 .داخل الوسط المائي( الكيميائي غيرالت   قفتو ) داخلت  بيان فترات الت  و  ليذه الكائنات
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Appendix A 

 

Figure 43. PCA scores plot of group 2 fungal samples (F12- F22 with F0 as control) on the day of inoculation (D0), showing no 

discrimination with an index value of -1519 between groups. PC1 and PC2 almost 100% of the total variation.  
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Figure 44. PCA scores plot of group 2 fungal samples (F12- F22 with F0 as control) after 24 h of fungal inoculation (D1), showing 

changed discrimination index value to -28 between groups. PC1 and PC2 explain 100% of the total variation.  
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Figure 45. PCA scores plot of group 2 fungal samples (F12- F22 with F0 as control) after 48 h of fungal inoculation (D2), showing 

changed discrimination index value to -13 between groups. PC1 and PC2 explain 100% of the total variation.  
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Figure 46. PCA scores plot of group 2 fungal samples (F12- F22 with F0 as control) after 72 h of fungal inoculation (D3), showing 

high discrimination index value of 98 between groups. PC1 and PC2 explain 100% of the total variation.  
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Figure 47. PCA scores plot of group 2 fungal samples (F12- F22 with F0 as control) after 96 h of fungal inoculation (D4), showing 

high discrimination index value of 94 between groups. PC1 and PC2 explain about 100% of the total variation.  
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Figure 48. PCA scores plot of group 2 fungal samples (F12- F22 with F0 as control) after 120 h. of fungal inoculation (D5), showing 

high discrimination index value of 96 between groups. PC1 and PC2 explain 100% of the total variation.  
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Appendix B 

 

Figure 49. PCA scores of group 2 bacterial samples (B12- B22 with B0 as control) on the day of inoculation (D0), showing no 

discrimination with an index value of -291 between groups. PC1 and PC2 explain 100% of the total variation.  
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Figure 50. PCA scores plot of group 2 bacterial samples (B12- B22 with B0 as control) after 24 h of inoculation (D1), showing fast 

and high discrimination index value change to 95 between groups. PC1 and PC2 explain 100% of the total variation.  
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Figure 51. PCA scores plot of group 2 bacterial samples (B12- B22 with B0 as control) after 48 h of inoculation (D2), showing 

constant and high discrimination index value of 95 between groups. PC1 and PC2 explain 100% of the total variation.  
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Figure 52. PCA scores plot of group 2 bacterial samples (B12- B22 with B0 as control) after 72 h of inoculation (D3), showing 

constant high discrimination index value of 95 between groups. PC1 and PC2 explain almost 100% of the total variation.  
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Figure 53. PCA scores plot of group 2 bacterial samples (B12- B22 with B0 as control) after 96 h of inoculation (D4), showing fast 

and high discrimination index value of 95 between groups. PC1 and PC2 explain 100% of the total variation. 
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