
1

A Peer Reviewed International Journal of Asian Academic Research Associates

AARJMD

ASIAN ACADEMIC RESEARCH JOURNAL OF MULTIDISCIPLINARY

FEED INTAKE, APPARENT NUTRIENT DIGESTIBILITY AND GROWTH 2 PERFORMANCE OF FINISHING ASSAF LAMBS FED BY- PRODUCTS SILAGE J. ABO OMAR*; M. FATAFTA**; E. BADRAN***; M. OMAR****; F. NIERAT*****; A. HJAZI******; W. QAISI******; R. QAISI*******; J. ABDALLAH*******; M. WELD ALI******* 6 * Faculty of Agriculture, Department of Animal Production, An Najah National University, P? 0. Box 707, Nablus, Palestine ** Palestinian Ministry of Agriculture, Ramalla, Palestine An Najah National University, P.90. Box 707, Nablus, Palestine 10

*** Palestinian Ministry of Agriculture, Ramalla, Palestine An Najah National University, R1
 O. Box 707, Nablus, Palestine
 12
 ****Palestinian Ministry of Agriculture, Ramalla, Palestine An Najah National University, P3

0. Box 707, Nablus, Palestine 14

*****Palestinian Ministry of Agriculture, Ramalla, Palestine An Najah National University P.
 O. Box 707, Nablus, Palestine
 16
 *****Faculty of Agriculture, Department of Animal Production, An Najah National
 17

University, P. O. Box 707, Nablus, Palestine

******Palestinian Ministry of Agriculture, Ramalla, Palestine An Najah National University, P. O. Box 707, Nablus, Palestine
 20
 21

Abstract

Effects of silage (S) made of a mixure of different by-products on growth performance 28nd nutrient digestibility were studied in 24 male Assaf lambs of 35.0 ± 0.110 kg initial b22dy weight. Animals were randomly divided into 4 groups of 6 lambs each. Lambs w25re individually fed a fixed amount of concentrate along with by-products silage as total m26cd ration (TMR). The by-products silage (S) replaced 0, 50, 75 and 100% of wheat straw (*i.e.20*S, 50S, 75S and 100S). Silage was prepared from a mixure of olive cake (OC), tomato wa28es (TW) and poultry litter (PL) at levels of 700, 100 and 200 g/kg DM, respectively. All d26ts were isonitrogenous and isoenergic. A digestion trial was performed during the last week of30he feeding trial. All lambs were slaughtered at the termination of the 70d feeding study. Res3dts showed that lambs fed the 75S and 100S diets had lower (P < 0.05) feed intake and better (f2 < 0.05) feed conversion ratios (FC) compared to lambs fed the 0S and 50S diets. Silage (f2, not compared for the digestibility of dry matter (DM), acid detergent fiber (ADFF), neutral detergent fiber (aNDF) and fat. These results show the positive effects of silage, m36le prepared from local by-products, when used at high levels on most tested parameters. 36

Keywords: Assaf lambs, silage, performance, by-products, digestibility

18

22

Asian Academic Research Journal of Multidisciplinary www.asianacademicresearch.org

38

57

58

59

63

1. Introduction

Feed cost in fattening projects of lambs in Palestine is estimated at 80% of production costs (Abo Omar *et al.*, 2012). The high cost of feeds is one of the major obstacles faciate fattening projects (Abo Omar, et al., 2012; Saghir et al., 2012). In order to reduce feat costs, it is important to find nontraditional feed ingredients. Several studies were conduct#2 to investigate the feasibility of incorporating local by-products in small ruminant ratio4B (Abo Omar et al., 2012). The results of feeding rations with agro-industrial by-products showed the economic feasibility of adoption of this practice (Abo Omar et al., 2012), however, the high moisture content of some of these by-products (*i.e.* OC and TW) causes storage and handling problems (Zaza, 2010). Silage is a simple, cheap, and efficient procedure to preserve the agro-industrial by-products, either alone (Hadjipanayiotou, 1999) Abo Omar et al., 2012) or mixed with poultry manure (Nefzaoui, 1991) or conventional feedstuffs (Hadjipanayiotou, 1999; Zaza, 2010). Large amounts of green house wastes and annually produced in Palestine (i.e. 0.5 million tons of tomato wastes, Palestinian Central Bureau of Statistics, 2010). These wastes include stems, leaves and downgraded fruits? However, there is no information about the use of such by-product silage along with BR and OC in fattening rations. The objectives of this study were to investigate the effects **5**A feeding silage made of OC, PL and TW on the general performance and digestibility 55 Assaf finishing lambs. 56

2. Materials and methods

2.1. Study site

The study was conducted at Al Qaisi farm, Tulkarm city, Palestine (semi-coastal area) af 660 the approval of the Animal Care and Use Committee of the Palestinian Ministry 601 Agriculture.

2.2. Silage preparation

Poultry litter (PL) was collected from a commercial broiler house, bedded with wo64 shavings. The poultry litter was screened using a 20 mm metal screen to remove all foreißin materials. PL was a mixture of bird excreta, wasted feed, bedding and feathers. Toma66 wastes (TW) (*i.e.* stems, leaves, downgraded fruits) were collected from neighbori67 vegetable greenhouses, chopped to about 5 cm pieces and mixed before incorporation infits the silage mixture. Olive cake (OC) is the residue obtained at the mill after extracting the oil by pressing and centrifuging. Silage was composed of 70% fresh OC, 20% screened PD Asian Academic Research Journal of Multidisciplinary

www.asianacademicresearch.org

AARJMD VOLUME 1 ISSUE 19 (MARCH 2014) ISSN : 2319 - 2801

and 10% chopped TW. The silage ingredients were placed in 100-liter plastic barrels **7***i***n** alternate layers, the first and the last layers being crude OC. PL and chopped TW were roughly mixed and placed as a single layer. Water (5 liters/100 kg mixture) was added **7***b* reach a moisture content of about 55%. The silage mixture was pressed using an elect**7***i***4** impactor. The pressed materials (Table 1) were covered with black polyethylene she**2***b*. Preparation of silage was made in one day and the barrels were opened after a fermentati**2***i***6** period of 42 days.

2.3. Silage Sampling

Representative samples were taken for pH measurement. Each sample weighed about 4000 and was randomly selected from different barrels. The sampling was done in the morning at d 1, 4, 7, 14, 28, 35 and 42.

78

79

83

84

89

90

2.4. pH Measurements

 $_{P}$ H measurements were done using an electronic pH meter (Mettler Toledo MP 220 pH meter). A 25g sample was mixed with 50 ml distilled water in an Erlenmeyer flask and the mixture was put on a shaker for 30 minutes. The pH was then measured for each sample by entering the electrode into the filtrate. 88

2.5. Animals, design and dietary treatments

Twenty-four male Assaf lambs (initial body weight (BW) = 35.0 ± 0.110 kg) at 90 d of age were used. Lambs were individually housed in shaded pens (1.5 m × 0.75 m) and were treated with IVOMEC (Merial Limited, Luluth, Ga, USA) and Cogla Vac (Cogla Laboratories, Libourne, France) against internal and external parasites and enterotoxaemed respectively. 95

Lambs were assigned to one of four TMR dietary treatments (Table 2) containing θ silage (0S; n = 6), 50% silage (50S; n = 6), 75% silage (75S; n = 6) and 100% silage (100S; n = 6) for a duration of 70 d. A fixed amount (*i.e.* 90%; concentrate: roughage rafis was 9:1) of concentrate mixtures (Table 2) were fed to lambs to make diets isonitrogeno and iso ME, and to meet all nutrient requirements for finishing lambs (NRC, 1985).. **A**00 termination of the trial, lambs were fed a regular fattening diet for another month in order to be approved for human consumption. Lambs were weighed on weekly basis before the page morning feeding throughout the study. Average daily gain (ADG) was calculated by a single of the page of the page of the page of the study.

Asian Academic Research Journal of Multidisciplinary www.asianacademicresearch.org

AARJMD VOLUME 1 ISSUE 19 (MARCH 2014) ISSN : 2319 - 2801

subtracting initial from final BW and dividing by the duration of study. Diets were fed **10**4 total mixed rations (TMR) once a day at 08:00 h and lambs had free access to clean waters throughout the study.

106

108

2.6. Chemical analysis

Representative samples of the ingredients used in the silage mixure were takeoo prior to ensiling and proximate analyses were made on dried (65°C) ground (1 mm sieveo) samples as outlined by Harris (1970). Silage DM content was determined twice a week by drying to constant weight in an air forced oven at 105°C for two days. Silage analyses for total N, NH₃-N, volatile fatty acids and pH were made once weekly on a fresh sampled.3 NH₃-N and pH measurements were performed according to Hadjipanayiotou (1982h;4 1994). Digestibility *in vitro* was determined by the procedure described by Tilley and Terry (1963).

Samples of TMR were collected and saved (-20°C) for later analysis according **10**7 procedures of AOAC (1990) for dry matter (DM; 105°C in a forced-air oven for 24 **11**8 method 967.03), organic matter (OM; weight loss upon ashing at 550°C for 8 h; meth**019** 942.05), N (Kjeldahl procedure; method 976.06), and ether extract (EE; Soxhlet procedu**12**0 Soxtec System, TECATOR, Hoganas, Sweden; method 920.29). Additionally, samp**12**21 were analyzed for neutral detergent fiber (aNDF; with heat stable -amylase and sodiu**12**22 sulfite) and acid detergent fiber (ADF; ANKOM 2000 fiber analyzer, ANKO**12**3 Technology Corporation, Fairport, NY, USA) according to Van Soest *et al.* (1991). Valu**2**24 for aNDF and ADF are expressed inclusive of residual ash. The offered and refus**2**25 amounts of TMRs were recorded daily for each lamb and were adjusted to ensure refu**32**6 of about 0.10 of intake and ad libitum consumption. For each lamb, samples of refus**2**27 feed were collected daily, composited at the end of study, and saved (-20°C) for la**1**28 analysis of DM, OM, CP, EE, aNDF and ADF to determine daily nutrient intake.

130 131

2.7. Digestion trial

At termination of the trial, a 6-d total collection feed and fecal trial was performed using **3**2 lambs from each experimental group. Data were utilized to calculate the appare **1**33 digestibility of CP, ADF, NDF, and NFE. All experimental animals had an adaptation **3**4 period of about 10 days and a total collection period of 7 d where feed intake and fecters **5**5

Asian Academic Research Journal of Multidisciplinary www.asianacademicresearch.org

were monitored. Animal weights were recorded on weekly basis and final live weight gain6 was calculated on the last day of the trial. 137

138

139

143

144

2.8. Statistical analysis

Data were subjected to ANOVA for a completely randomized design using SAS (1989) Differences among treatment means for significant dietary effect were detected using the LSD procedure in SAS. Unless otherwise stated, significance was declared at P < 0.05. 142

3. Results

The DM, CP, ADF and aNDF values were within the normal ranges of similar silagess prepared of agricultural wastes (Table 1). All diets contained comparable amounts of CP46 aNDF, ADF and ash (Table 2) Some silage characteristics are shown in Table (3). There? was no sign of mould. The microbiological analyses (Salmonella, Listeria, Clostridium) 048 the PL, OC, TW and on the silage were all negative. All animals were healthy throughout the feeding trial. The silage pH was within the acceptable values (Table 3). 150

151

152

3.1. Lambs performance

Silage at high levels (*i.e.* 75S and 100S) had significant effects on DM intake compared **15**3 that of lambs in other treatments (Table 4). Lambs fed the 75S and 100S had lower (*P*154 0.05) intake compared to other lambs. The DM intake at 75S and 100S levels was reducted 5 22 and 19% compared to 0S lambs, respectively. Lambs under all treatments grew the same, however, lambs fed the 75S and 100S diets had the highest (P < 0.05) feed ClB7 compared to lambs fed the 0S and 50S diets (Table 4). 158

3.2. Nutrient digestibility

Level of silage had significant effect on nutrients digestibility. The 100S improved (*P*161 0.05) the apparent digestibility of DM, ADF, NDF and crude fat (Table 5) compared to that of other silage levels.

164

165

159

160

4. Discussion

Laboratory analyses of silage showed comparable values to those associated with the silage6 made of similar ingredients (Zaza, 2010). Optimum DM content for high quality silage7 production was reported in the range of 20–35% (?????). However, DM of silage in this

Asian Academic Research Journal of Multidisciplinary www.asianacademicresearch.org

study was 450 g/kg DM. Lambs in this study showed no disease problems associated wite feeding PL, TW and OC silage (Hammad, 2002; Zaza, 2010). The lack of salmonella and other pathogens was due to the silage pH which was 5, a value that has been proposed (Roothaert *et al.*, 1992) to destroy Salmonella and other pathogens. The decrease in pH2 values after ensiling is in agreement with the objective of the ensiling technique to achieves a sufficient concentration of lactic acid produced as a result of presence of microorganism in order to inhibit other forms of microbial activity and preserve the silage materials (Christodoulou *et al.*, 2006). The silage pH was similar to what was reported by previotate research using similar ingredients (Hadjipanayiotou 1982; Hammad, 2002; Zaza, 2010). Martin et al., (1967) indicated that good quality silage should have a pH of 4.6 or lower. 178

The ensiling period of six weeks in this study is shorter than that suggested **b7**9 Hadjipanayiotou (1994) who indicated a 60 d fermentation period for crude olive cak**18**0 However, Colombato *et al.*, (2004) reported that the ensiling period of 3 weeks **18**1 optimum. On the other hand, Hadjipanayiotou (1994) showed that ensiling could be for**18**2 weeks and observed no advantage in prolonging treatment time beyond two week**18**3 Moreover, mixing olive cake with other supplements at ensiling resulted in a balanc**48**4 silage mixture and better silage characteristics (Hadjipanayiotou, 1994). There was **18**5 significant difference in the chemical composition of diets offered and refused indicati**186** that there was no apparent selection of any of the ingredients used.

Feed intake of lambs in the 75S and 100S diet groups (24.1 and 25.7 g DM/kg B**W**88 respectively) was lower compared to feed intake of lambs in the other diet groups. This9 indicates that palatability might be reduced at high silage levels. Similar trend of intake00 (25.1 g DM/kg BW) was reported by Abo Omar *et al.*, (2012) when finishing goat kitB1 were fed a high level of olive cake silage. In contrast, high intake of poultry litter/ crutB2 olive cake/ wheat bran silage (45:45:10) by fast-growing lambs has been reported b93 Hadjipanayiotou et al.,(1993). Higher voluntary intake of poultry litter/citrus pulp silage b94 lambs than by kids was also reported by Hadjipanayiotou et al.,(1993).

The improvement in the digestibility of most of the nutrients associated with the6 100S diet might be the reason behind the significant increase in feed conversion ratio in the7 high-silage groups .

The improvement in performance associated with 100S in this study might **b**<u>9</u>9 explained by the increase in the degradability of OM, CP, NDF, and ADF. In t<u>b</u><u>2</u><u>6</u>00 experiment, DM digestibility of 100S was 0.78, 12% higher than that of 0S diets. Low**26**<u>1</u>

Asian Academic Research Journal of Multidisciplinary www.asianacademicresearch.org

digestibility of DM was reported by previous research, 0.56 and 0.58 (Bartocci *et al*0,2 1982). The high level of silage used in this study (*i.e.* 100S) may have influenced rum**20**3 function as indicated in the significant improvement in digestibility of most tested fe**2d**4 nutrients compared to other silage levels. Tahmasbi *et al.*, (2002) reported that increasi**20**5 protein level in silage increased CP digestibility of the silage. In this study, digestibility **20**6 CP was significantly higher at the highest level of silage even though all diets we**20**7 isonitrogenous.

209 **5.** Conclusion 210 It is concluded that the ensiling process is an effective, simple and low-cost technique for1 preserving crude olive cake with poultry litter and tomato waste. Such a product can make2 a significant contribution to livestock production, not only as replacement for scar2e3 roughage in dry periods of the year, but also as part of a total mixed ration in intensi2/14 operations. 215 216 Acknowledgements 217 Authors are thankful to Dr. Hassan Abu Qaoud from the Faculty of Agriculture, An Najah8 National University for his help in the statistical analysis. 219 220 221

223 224

222

225

226

227

228

229 230

231

232

233

234

Asian Academic Research Journal of Multidisciplinary www.asianacademicresearch.org

235
References 236
Abo Omar J., Daya R., Galib A., 2012. Effects of different forms of olive cake on the 237
performance and carcass quality of Awassi lambs. Anim. Feed Sci. Tech. 171, 167-238
172. 239
Association of Official Analytical Chemists, 1990. In: Helrich, K. (Ed.), Official Metho2440
of Analysis of the AOAC. , 15th ed. AOAC, Arlington, VA, USA. 241
Bartocci S., Pace V., Verna M., 1982. Chemical composition and nutritive value of a b3/42
product of the tomato concentrate industry. Nutrition Abstracts Review 52, 191. 243
Christodoulou V., Bampidis V.A., Israilides C.J., Robinson R.H., Giouzelyiannis 244
Vlyssides A., 2008. Nutritional value of fermented olive wastes in growing lan2b5
rations. Anim. Feed Sci. Tech. 141, 375–383. 246
Colombatto D., Fergus M. L., Mahalingeshwara K., Phipps Richard H., Owen E., 2004. 2417
vitro evaluation of fibrolytic enzymes as additives for maize (Zea mays L.) silage248
Effects of ensiling temperature, enzyme source and addition level. Anim. Feed S249
Tech. 111, 111-128. 250
Hadjipanayiotou M., 1982. Laboratory evaluation of ensiled poultry litter. Anim. Prod. 35,1
157-161. 252
Hadjipanayiotou M., 1982b Laboratory evaluation of ensiled poultry litter. Anim. Prot53
35,157-161. 254
Hadjipanayiotou M., Verhaeghe L., Labban L.M., Shurbaji A., Kronfoleh, A.R., Al- Watts
M., Amin M., Naigm T., El-Said H., Al-Haress A.K., 1993a. Feeding ensiled poula56
excreta to ruminant animals in Syria. Livest. Res. Rural Develop. 5, 30-38. 257
Hadjipanayiotou M., 1994. Laboratory evaluation of ensiled olive cake, tomato pulp a2d8
poultry litter. Livest. Res. Rural Develop. 6, 9. 259
Hadjipanayiotou M., 1999. Feeding ensiled crude olive cake to lactating Chios ew260
Damascus goats and Friesian cows. Livest. Prod. Sci. 59, 61–66.261
Hammad W., 2002. Performance of Awassi lambs fed different levels of by-products silage62
Master Thesis. An Najah National University, Nablus, Palestine.263
Harris L.E., 1970. Nutrition Research Techniques for Domestic and Wild Animals. Volun264
1. An International Record System and Procedures for Analysing Samples. Log265
Utah, USA, pp. 211. 266

Asian Academic Research Journal of Multidisciplinary www.asianacademicresearch.org

Martin J. H., Leonard W.H., Stamp D.L., 1967. Principles of field crop production. US267
Macmillan Publishing, pp. 435. 268
National Research Council, 1985. Nutrient Requirements of Sheep, 6th rev. ed. Nation2d9
Academy Press, Washington, D.C., USA, pp. 99. 270
Nefzaoui A., 1991. Volarisation des sous-produits de l'olivier (olive by-produzo11
valorization). Options Mediterraneennes 16, 101-108. 272
Palestinian Central Bureau of Statistics, 2010. Agricultural statistics. Ramalla, Palestine, 3
pp. 209. 274
Roothaert R. L., Matthewman, 1992. Poultry wastes as foods for ruminants and associate275
aspects of animal welfare- Review. J. Anim. Sci. 5, 593-600. 276
Saqhir S., Abo Omar J., Naser O., Ghanam I., Abdallah J., 2012. Performance and carca
characteristics of finishing Black goat kids fed oil supplemented diets. Anim. Fe278
Sci. Tech. 175, 1-7. 279
Statistical Analysis System Institute, 1989. SAS/STATTM User' Guide: Statistics, Versi@80
6, vol. 2., 4th ed, Cary, NC, USA, pp. 99. 281
Tahmasbi R., Nasiri H., Naserian A., Saremi B., 2002. Effect of different levels of mix282
corn plant and tomato pomace on milk production and composition in Holstein dai283
cows. J. Anim. Sci. 80 (Suppl. 1), 299. 284
Tilley J.M.A., Terry R.A., 1963. A two-stage technique for the <i>in vitro</i> digestion of forage85
crops. J. Brit. Grass. Soc. 18,104-111. 286
Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neut2817
detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. 2B8
Dairy Sci. 74, 3583–3597. 289
Zaza A., 2008. Effects of feeding citrus pulp and olive cake silage on performance a290
digestibility of Awassi lambs. Master Thesis. An Najah National University, Nablueg1
Palestine, pp. 87.
293
294
295
296
297
298
299

Asian Academic Research Journal of Multidisciplinary www.asianacademicresearch.org

Table 1

The ingredients and chemical composition of experimental feeds incorporated with silage1 (S) fed to Assaf fattening lambs 302

	Treatment			
-	0S	50S	758	100S
Ingredient composition, g/kg D				,
Concentrate				
Yellow corn grain	495	510	51(55(
Soybean meal,44%	295	280	280	240
Wheat bran	79	79	79	79
Ammonium chloride	3	3	3	3
DCP	6	6	6	6
Limestone	17	17	17	17
Salt	3	3	3	3
Premix ¹	1	1	1	1
Soap stock	1	1	1	1
Roughage				
Barley straw	100	50	25	0
Silage ²	0	50	75	100
Chemical analysis: g/kg DM ³				
Dry matter	900	894	89(890
Crude protein	184	186	182	183
Acid detergent fiber	173	175	176	18(
aNeutral detergent fiber	550	540	519	538
Ash	65	64	71	67
Calcium	9.1	9.2	9.2	9.3
Phosphorus	6.2	6.4	6.2	6.4
ME, MJ/ kg^4	11.6	11.64	11.′	11.66

OS = no silage; 50S = 50% silage; 75S = 75% silage; 10OS= 100% silage

Asian Academic Research Journal of Multidisciplinary www.asianacademicresearch.org

¹ composition per 1 kg contained, vitamin A, 2000000 IU; vitamin D3, 40000 IU;	304
vitamin E, 400 IU; Mn, 12.8 mg; Zn, 9.0 mg; I, 1.56 mg; Fe, 6.42 mg; Co, 50 mg;	305
Se, 32 mg plus an antioxidant.	306
² silage (S) composition: olive cake, tomato wastes and poultry litter at levels of	307
700, 100 and 200 g/kg DM, respectively.	308
³ composition values obtained from the analysis of final diets ⁻	309
⁴ metabolizable energy; based on tabular values (NRC, 1985).	310
Table 2	311
Chemical composition and in vitro digestibility values of ingredients used for	312
preparing silage(S), g/kg DM ¹	313

Olive ca

Tomato w

Silage

Wheat st

DM	900	910	900	500	450	880
CP	182	280	56	120	100	40
Ash	67	57	110	70	123	66
EE	50	43	80	64	45	25
NDF	535	380	700	410	620	540
ADF	174	210	510	280	500	344
DMD^4 ,	86.0	48.0	15.5	57.0	32.0	41.0

Poultry li

Concentı

Nutrier

 ¹composition values obtained from the analysis of raw ingredients.
 314

 ²DM: dry matter; CP: crude protein; EE: ether extract; NDF: neutral detergents
 316

 fiber; ADF: acid detergent fiber.
 316

 ³silage (S) composition: olive cake, tomato wastes and poultry litter at levels of 700, 1907
 318

 and 200 g/kg DM, respectively.
 318

 ⁴DMD: dry matter digestibility.
 319

 320

321

- 322
- 323 324
- 325
- 326
- 320

Asian Academic Research Journal of Multidisciplinary www.asianacademicresearch.org

329

330

Characteristics of silage¹ (S) fed to Assaf lambs

Table 3

	Value ²
рН	4.7
NH3N, mg/dl	14.9
Acetic acid, mg/g DM	51.0
Propionic acid, mg/g DM	38.2
Butyric acid, mg/g DM	5.4
DM	450
СР	100
Ash	123
EE	45
NDF	620
ADF	500
DMD ³	32

¹ silage (S) composition: olive cake, tomato wastes and poultry litter at levels of	331
700, 100 and 200 g/kg DM, respectively.	332
² values are means of three tests.	333
DM: dry matter; CP: crude protein; EE: ether extract; NDF: neutral detergent fiber;	334
ADF: acid detergent fiber.	335
³ DMD: dry matter digestibility.	336
	337

Table 4

Effect of silage¹ (S) on feed intake, body gain, slaughter body weight (BW), empty bod39

338

Group						
	0S	50S	75S	100S	SEM ²	P value
DMI, g/kg	1927 ^a	1909 ^a	1504 ^b	1620 ^b	65.3	0.05
Initial BW, kg	35	35	35	35	2.1	
Final BW, kg	61.6	62.0	62.3	63.1	4.22	0.44
ADG, g	380	385	390	387	16.9	0.32
FCR^3 , g/g	5.1 ^a	5.0 ^a	4.0 ^b	4.2 ^b	0.34	0.05
CW, kg	28.3	29.1	29.2	29.1	2.44	0.35
EBW, kg	52.3	52.4	53.0	52.0	3.91	0.26
CDP, %	46.0	46.9	46.8	46.8	2.98	0.56

weight (EBW) and dressing percentages (DP) of Assaf fattening-lambs	340
0S = no silage; 50S = 50% silage; 75S = 75% silage; 100S = 100% silage	341
¹ silage (S) composition: olive cake, tomato wastes and poultry litter at levels of	342
700, 100 and 200 g/kg DM, respectively.	343
2 SEM = standard error of the mean.	344
3 FCR = feed conversion ratio.	345
DMI = dry matter intake; ADG = average daily gain; CW = carcass weight; EBW = em	р В ,46
body weight; CDP = commercial dressing percentage.	347
Means in the same line with different alphabets (a, b) are significantly	348
different (<i>P</i> < 0.05).	349
	350
	351
	352
	353
	354
	355
	356
	357
Asian Academic Research Journal of Multidisciplinary	

www.asianacademicresearch.org

Table 5

Group	0S	50S	75S	1005	SE	EN	P val
DM	69.7 ^b	70.8 ^b	70.6 ^b	78.7 ^a	5.07	.05	
СР	80.6 ^b	82.2 ^b	81.8 ^b	85.9 ^a	6.33	.05	
ADF	65.0 ^b	64.7 ^b	63.3 ^b	70.8^{a}	5.12	.05	
NDF	65.8 ^b	66.2 ^b	65.8 ^b	75.1 ^a	5.	9(05	
EE	69.7 ^b	73.9 ^b	70.6 ^b	78.0^{a}	4.	8905	

Effect of silage¹ (S) on the nutrients digestibility in diets fed to Assaf fattening lambs, % 359

¹silage (S) composition: olive cake, tomato wastes and poultry litter at levels of 360 700, 100 and 200 g/kg DM, respectively. 361

 2 SEM = standard error of the mean.

DM = dry matter; CP = crude protein; ADF = acid detergent fiber; NDF = neutral detergent fiber; EE = ether extract. 364

Means in the same column with different alphabets (a, b) are significantly different (P365 0.05). 366

367

362

358

368