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UNBOUNDED NORM TOPOLOGY
IN BANACH LATTICES

M. KANDIĆ, M.A.A. MARABEH, AND V.G. TROITSKY

Abstract. A net (xα) in a Banach latticeX is said to un-converge

to a vector x if
∥

∥|xα−x|∧u
∥

∥ → 0 for every u ∈ X+. In this paper,

we investigate un-topology, i.e., the topology that corresponds to

un-convergence. We show that un-topology agrees with the norm

topology iff X has a strong unit. Un-topology is metrizable iff X

has a quasi-interior point. Suppose that X is order continuous,

then un-topology is locally convex iff X is atomic. An order con-

tinuous Banach lattice X is a KB-space iff its closed unit ball BX

is un-complete. For a Banach lattice X , BX is un-compact iff X

is an atomic KB-space. We also study un-compact operators and

the relationship between un-convergence and weak*-convergence.

1. Introduction and preliminaries

For a net (xα) in a vector lattice X , we write xα
o
−→ x if (xα) con-

verges to x in order . That is, there is a net (uγ), possibly over a

different index set, such that uγ ↓ 0 and for every γ there exists α0 such

that |xα − x| 6 uγ whenever α > α0. We write xα
uo
−→ x and say that

(xα) uo-converges to x if |xα − x| ∧ u
o
−→ 0 for every u ∈ X+; “uo”

stands for “unbounded order”. For a net (xα) in a normed lattice X ,

we write xα
‖·‖
−→ x if (xα) converges to x in norm. We write xα

un
−→ x
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and say that (xα) un-converges to x if |xα − x| ∧ u
‖·‖
−→ 0 for every

u ∈ X+; “un” stands for “unbounded norm”.

A variant of uo-convergence was originally introduced in [Nak48],

while the term “uo-convergence” was first coined in [DeM64]. Re-

lationships between uo, weak, and weak* convergences were investi-

gated in [Wic77, GX14, Gao14]. Relationships between uo-convergence

and almost everywhere convergence were investigated and applied in

[GX14, EM16, GTX]. We refer the reader to [GTX] for a further re-

view of properties of uo-convergence. Un-convergence was introduced

in [Tro04] and further investigated in [DOT]. For unexplained terminol-

ogy on vector and Banach lattices we refer the reader to [AA02, AB06].

All vector lattices are assumed to be Archimedean.

Let us start by briefly going over some of the known properties

of these modes of convergence; we refer the reader to [GTX, DOT]

for details. Both uo-convergence and un-convergence respect linear

and lattice operations; limits are unique. In particular, xα
uo
−→ x

iff |xα − x|
uo
−→ 0; similarly, xα

un
−→ x iff |xα − x|

un
−→ 0. For order

bounded nets, uo-convergence agrees with order convergence while un-

convergence agrees with norm convergence. It follows that order inter-

vals are uo- and un-closed. For sequences in Lp(µ), where 1 6 p < ∞

and µ is a finite measure, it is easy to see that uo-convergence agrees

with convergence almost everywhere, see, e.g., [DeM64, Example 2].

Under the same assumptions, un-convergence agrees with convergence

in measure, see [Tro04, Example 23]. We write Lp for Lp[0, 1].

Suppose that X is a vector lattice. By [GTX, Corollary 3.6], every

disjoint sequence in X is uo-null. Recall that a sublattice Y of X is

regular if the inclusion map preserves suprema and infima of arbitrary

subsets. It was shown in [GTX, Theorem 3.2] that uo-convergence is

stable under passing to and from regular sublattices. That is, if (yα) is

a net in a regular sublattice Y of X then yα
uo
−→ 0 in Y iff yα

uo
−→ 0 in

X (in fact, this property characterizes regular sublattices).

It is clear that if X is an order continuous normed lattice then uo-

convergence implies un-convergence. Let X be a Banach lattice and

(xn) a un-null sequence in X . Then (xn) has a uo-null subsequence by
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Proposition 4.1 of [DOT]. A disjoint sequence need not be un-null. For

example, the standard unit sequence (en) in ℓ∞ is not un-null. However,

a un-null sequence has an asymptotically disjoint subsequence. More

precisely, we have the following.

Theorem 1.1. ([DOT, Theorem 3.2]) Let (xα) be a un-null net. There

is an increasing sequence of indices (αk) and a disjoint sequence (dk)

such that xαk
− dk

‖·‖
−→ 0.

While uo-convergence need not be given by a topology, it was ob-

served in [DOT] that un-convergence is topological. For every ε > 0

and non-zero u ∈ X+, put

Vε,u =
{

x ∈ X :
∥

∥|x| ∧ u
∥

∥ < ε
}

.

The collection of all sets of this form is a base of zero neighborhoods

for a topology, and the convergence in this topology agrees with un-

convergence. We will refer to this topology as un-topology.

Every time a new linear topology is discovered, one is expected to

ask several natural questions: is this topology metrizable? Is it locally-

convex? Complete? Can one characterize (relatively) compact sets?

Is this topology stronger or weaker than other known topologies? In

this paper, we study these and similar questions for un-topology. In

other words, our motivation for this paper is to investigate topological

properties of un-topology.

Throughout this paper, X will be assumed to be a Banach lattice,

unless specified otherwise. We write BX for the closed unit ball of X .

It was observed in [DOT] that xα
un
−→ x implies ‖x‖ 6 lim inf‖xα‖.

This yields that BX is un-closed.

The following facts will be used throughout the paper.

Lemma 1.2. (i) If (xα) is an increasing net in a vector lattice X

and xα
uo
−→ x then xα ↑ x;

(ii) If (xα) is an increasing net in a normed lattice X and xα
un
−→ x

then xα ↑ x and xα
‖·‖
−→ x.

Proof. Without loss of generality, xα > 0 for all α; otherwise, pick

any index α0 and consider the net (xα − xα0
)α>α0

, which converges to
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x − xα0
. Since lattice operations are uo- and un-continuous, we have

x > 0.

(i) Take any z ∈ X+. It follows from uo-continuity of lattice opera-

tions that xα ∧ z
uo
−→ x∧ z. Since the net (xα∧ z) is order bounded and

increasing, this yields xα ∧ z
o
−→ x ∧ z and, therefore xα ∧ z ↑ x ∧ z. It

follows that xα ∧ z 6 x for every α and every z ∈ X+. Applying this

with z = xα we get xα 6 x. Thus, the net (xα) is order bounded and,

therefore, xα
o
−→ x, hence xα ↑ x.

(ii) The proof is similar and uses the fact that every monotone norm

convergent net converges in order to the same limit. We note that

xα ∧ z
‖·‖
−→ x ∧ z and, therefore, xα ∧ z ↑ x ∧ z for every z ∈ X+. It

follows that the net (xα) is order bounded, which yields xα
‖·‖
−→ x and,

therefore, xα ↑ x. �

Recall that [DOT, Question 2.14] asks whether xα
un
−→ 0 implies that

there exists an increasing sequence of indices (αk) such that xαk

un
−→ 0.

The following counterexample was kindly provided to us by E. Emelyanov.

Example 1.3. Let Ω be an uncountable set; let X be the closed sub-

lattice of ℓ∞(Ω) consisting of all the functions with countable support.

For ω ∈ Ω, we write eω for the characteristic function of {ω}.

Let Λ be the set of all countable subsets of Ω, ordered by inclusion.

For each α ∈ Λ, pick any ω /∈ α and put xα = eω. We claim that

xα
un
−→ 0. Indeed, let u ∈ X+; let α0 be the support of u. Then

xα ∧ u = 0 whenever α > α0.

On the other hand, let (ωk) be any sequence in Ω; we claim that the

sequence (eωk
) is not un-null. Indeed, put β = {ωk : k ∈ N} and let

u be the characteristic function of β. Then eωk
∧ u = eωk

for every k;

hence it does not converge in norm to zero.

In particular, if (αk) is an increasing sequence of indices in Λ then

(xαk
) is not un-null.

Let e ∈ X+. Recall that the band Be generated by e is norm closed

and contains the principal ideal Ie; hence Ie ⊆ Ie ⊆ Be. Recall also

that
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• e is a strong unit when Ie = X ; equivalently, for every x > 0

there exists n ∈ N such that x 6 ne;

• e is a quasi-interior point if Ie = X ; equivalently, x∧ne
‖·‖
−→

x for every x ∈ X+;

• e is a weak unit if Be = X ; equivalently, x ∧ ne ↑ x for every

x ∈ X+.

In particular, strong unit ⇒ quasi-interior point ⇒ weak unit.

2. Strong units

It is easy to see that each Vε,u is solid. It is also absorbing, that is,

for every x ∈ X there exists λ > 0 such that λx ∈ Vε,u. The following

lemma is a dichotomy: it says that Vε,u is either “very small” or “very

large”.

Lemma 2.1. Let ε > 0, and 0 6= u ∈ X+. Then Vε,u is either contained

in [−u, u] or contains a non-trivial ideal.

Proof. Suppose that Vε,u is not contained in [−u, u]. Then there exists

x ∈ Vε,u such that x /∈ [−u, u]. Replacing x with |x|, we may assume

that x > 0. Let y = (x − u)+; then y > 0. It is an easy exercise to

show that (λy) ∧ u 6 x ∧ u for every λ > 0; it follows that λy ∈ Vε,u.

Since Vε,u is solid, it contains the principal ideal Iy. �

Lemma 2.2. If Vε,u is contained in [−u, u] then u is a strong unit.

Proof. Let x ∈ X+. There exists λ > 0 such that λx ∈ Vε,u, hence

λx ∈ [−u, u]. It follows that u is a strong unit. �

Recall that if e is a positive vector in X then the principal ideal Ie

equipped with the norm

‖x‖e = inf
{

λ > 0 : |x| 6 λe
}

is lattice isometric to C(K) for some compact Hausdorff space K, with

e corresponding to the constant one function 1; see, e.g., Theorems 3.4

and 3.6 in [AA02]. If e is a strong unit in X then Ie = X ; it is easy to

see that in this case ‖·‖e is equivalent to the original norm; it follows

that X is lattice and norm isomorphic to C(K).
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It is easy to see that if xα
‖·‖
−→ x then xα

un
−→ x, so norm topology

generally is stronger than un-topology.

Theorem 2.3. Let X be a Banach lattice. The following are equiva-

lent.

(i) Un-topology agrees with norm topology;

(ii) X has a strong unit.

Proof. Suppose that un-topology and norm topology agree. It follows

that Vε,u is contained in BX for some ε > 0 and u > 0. By Lemma 2.1,

we conclude that Vε,u is contained in [−u, u]; hence u is a strong unit

by Lemma 2.2.

Suppose now that X has a strong unit. Then X is lattice and norm

isomorphic to C(K) for some compact Hausdorff space K. Without

loss of generality, X = C(K). It follows from xα
un
−→ 0 that |xα| ∧1

‖·‖
−→

0. Since the norm in C(K) is the sup-norm, it is easy to see that

xα
‖·‖
−→ 0. �

3. Quasi-Interior points and metrizability

Given a net (xα) in a vector lattice with a weak unit e, then xα
uo
−→ x

iff |xα − x| ∧ e
o
−→ 0; see, e.g., [GTX, Corollary 3.5] (this was proved

in [Kap97] in the special case when the lattice is order complete). That

is, it suffices to test uo-convergence on a weak unit. Lemma 2.11

in [DOT] provides a similar statement for un-convergence and quasi-

interior points. We now prove that this property actually characterizes

quasi-interior points.

Theorem 3.1. Let e ∈ X+. The following are equivalent.

(i) e is a quasi-interior point;

(ii) For every net (xα) in X+, if xα ∧ e
‖·‖
−→ 0 then xα

un
−→ 0;

(iii) For every sequence (xn) in X+, if xn ∧ e
‖·‖
−→ 0 then xn

un
−→ 0.

Proof. The implication (i)⇒(ii) was proved in [DOT, Lemma 2.11].

(ii)⇒(iii) is trivial. This leaves (iii)⇒(i).

Suppose (iii). Fix x ∈ X+. We need to show that x ∧ ne
‖·‖
−→ x or,

equivalently (x − ne)+
‖·‖
−→ 0 as a sequence of n. Put u = x ∨ e. The
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ideal Iu is lattice isomorphic (as a vector lattice) to C(K) for some

compact space K, with u corresponding to 1. Since x, e ∈ Iu, we may

consider x and e as elements of C(K). Note that x∨e = 1 implies that

x and e never vanish simultaneously.

For each n ∈ N, we define

Fn =
{

t ∈ K : x(t) > ne(t)
}

and On =
{

t ∈ K : x(t) > ne(t)
}

.

Clearly, On ⊆ Fn, On is open, and Fn is closed.

Claim 1 : Fn+1 ⊆ On. Indeed, let t ∈ Fn+1. Then x(t) > (n+ 1)e(t).

If e(t) > 0 then x(t) > ne(t), so that t ∈ On. If e(t) = 0 then x(t) > 0,

hence t ∈ On.

By Urysohn’s Lemma, we find zn ∈ C(K) such that 0 6 zn 6 x, zn
agrees with x on Fn+1 and vanishes outside of On. We can also view

zn as an element of X .

Claim 2 : n(zn ∧ e) 6 x. Let t ∈ K. If t ∈ On then n(zn ∧ e)(t) 6

ne(t) < x(t). If t /∈ On then zn(t) = 0, so that the inequality is satisfied

trivially.

Claim 3 :
(

x − (n + 1)e
)+

6 zn. Again, let t ∈ K. If t ∈ Fn+1 then
(

x− (n+ 1)e
)+

6 x(t) = zn(t). If t /∈ Fn+1 then x(t) < (n+ 1)e(t), so

that
(

x− (n+ 1)e
)+

(t) = 0 and the inequality is satisfied trivially.

Now, Claim 2 yields 0 6 zn ∧ e 6 1
n
x

‖·‖
−→ 0, so that zn ∧ e

‖·‖
−→ 0.

By assumption, this yields zn
un
−→ 0. Since 0 6 zn 6 x for every n, the

sequence (zn) is order bounded and, therefore, zn
‖·‖
−→ 0. Now Claim 3

yields
(

x− (n+ 1)e
)+ ‖·‖

−→ 0, which concludes the proof. �

Theorem 3.2. Un-topology is metrizable iff X has a quasi-interior

point. If e is a quasi-interior point then d(x, y) =
∥

∥|x − y| ∧ e
∥

∥ is a

metric for un-topology.

Proof. Suppose that e ∈ X+ is a quasi-interior point and put d(x, y) =
∥

∥|x − y| ∧ e
∥

∥ for x, y ∈ X . It can be easily verified that this defines

a metric on X . Indeed, d(x, x) = 0 and d(x, y) = d(y, x) for every

x, y ∈ X . If d(x, y) = 0 then |x− y| ∧ e = 0, hence |x− y| = 0 because

e is a weak unit, so that x = y. The triangle inequality follows from

the fact that

|x− z| ∧ e 6 |x− y| ∧ e+ |y − z| ∧ e.
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Note also that xα
un
−→ x iff d(xα, x) → 0 for every net (xα) in X .

Conversely, suppose that un-topology is metrizable; let d be a metric

for it. For each n, let B 1

n
be the ball of radius 1

n
centred at zero for the

metric, that is,

B 1

n
=

{

x ∈ X : d(x, 0) 6 1
n

}

.

Since B 1

n
is a neighborhood of zero for the un-topology, it contains

Vεn,un
for some εn > 0 and un > 0. Let Mn = 2n‖un‖ + 1; then the

series e =
∑∞

n=1
un

Mn
converges. Note that Mn > 1 and un 6 Mne for

every n. We claim that e is a quasi-interior point.

It suffices that Theorem 3.1(ii) is satisfied. Suppose that xα∧e
‖·‖
−→ 0

for some net (xα) in X+. Fix n. It follows from

xα ∧ un 6 (Mnxα) ∧ (Mne) =Mn(xα ∧ e)
‖·‖
−→ 0

that xα ∧ un
‖·‖
−→ 0. Then there exists α0 such that ‖xα ∧ un‖ < εn

whenever α > α0. Consequently, xα is in Vεn,un
and, therefore, in B 1

n
.

It follows that xα → 0 in the metric, hence xα
un
−→ 0. �

Note that a linear Hausdorff topological space is metrizable iff it

is first countable, i.e., has a countable base of neighborhoods of zero,

see, e.g., [KN63, pp. 49]. Therefore, Theorem 3.2 implies, in particular,

that un-topology is first countable iff X has a quasi-interior point. This

should be compared with Corollary 2.13 and Question 2.14 in [DOT]

(we now know from Example 1.3 that Question 2.14 has a negative

answer).

Proposition 3.3. Un-topology is stronger than or equal to a metric

topology iff X has a weak unit.

Proof. Suppose that un-topology is stronger than or equal to a topology

given by a metric. Construct e as in the second part of the proof of

Theorem 3.2. We claim that e is a weak unit. Suppose that x ∧ e = 0.

It follows that x ∧ un = 0 for every n and, therefore, x ∈ Vεn,un
, hence

x ∈ B 1

n
. It follows that x = 0.

Conversely, let e ∈ X+ be a weak unit. For x, y ∈ X , define d(x, y) =
∥

∥|x− y| ∧ e
∥

∥. As in the first part of the proof of Theorem 3.2, this is

a metric and xα
un
−→ x implies d(xα, x) → 0. �
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When is every un-null sequence norm bounded? If X has a

strong unit then, by Theorem 2.3, un-topology agrees with norm topol-

ogy, hence every un-null sequence is norm null and, in particular, norm

bounded. This justifies the following question: If every un-null se-

quence in X is norm bounded (or even norm null), does this imply that

X has a strong unit? The following example shows that, in general,

the answer in negative.

Example 3.4. Let X be as in Example 1.3. Clearly, X does not have

a strong unit; it does not even have a weak unit. Yet, every un-null

sequence in X is norm null. Indeed, suppose that xn
un
−→ 0. Let u be the

characteristic function of
⋃∞

n=1 supp xn. By assumption, |xn| ∧u
‖·‖
−→ 0.

It follows that for every ε ∈ (0, 1) there exists n0 such that for every

n > n0 we have
∥

∥|xn| ∧ u
∥

∥ < ε. It follows that ‖xn‖ < ε.

However, we will see that the answer is affirmative under certain

additional assumptions.

Recall that every disjoint sequence is uo-null. Thus, if dimX = ∞,

one can take any non-zero disjoint sequence, scale it to make it norm

unbounded, and thus produce a uo-null sequence which is not norm

bounded. However, this trick does not work for un-topology because a

disjoint sequence need not be un-null. Moreover, we have the following.

Proposition 3.5. The following are equivalent.

(i) X is order continuous;

(ii) Every disjoint sequence in X is un-null;

(iii) Every disjoint net in X is un-null.

Proof. (i)⇒(ii) because every disjoint sequence is uo-null and, there-

fore, un-null. To show that (ii)⇒(i), note that every order bounded

disjoint sequence is norm null and apply [AB06, Theorem 4.14].

(iii)⇒(ii) is trivial. To show that (ii)⇒(iii), suppose that there exists

a disjoint net (xα) which is not un-null. Then there exist ε > 0 and

u ∈ X+ such that for every α there exists β > α with
∥

∥|xβ | ∧ u
∥

∥ > ε.

Inductively, we find an increasing sequence (αk) of indices such that
∥

∥|xαk
| ∧ u

∥

∥ > ε. Hence, the sequence (xαk
) is disjoint but not un-

null. �
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Corollary 3.6. If X is order continuous and every un-null sequence in

X is norm bounded then dimX < ∞ (and, therefore, X has a strong

unit).

Proof. Suppose dimX = ∞. Then there exists a non-zero disjoint

sequence in X . Scaling it if necessary, we may assume that it is not

norm bounded. Yet it is un-null. A contradiction. �

Note that Example 2.7 in [DOT] is an example of a disjoint but non

un-null sequence in an infinite-dimensional Banach lattice which is not

order continuous and lacks a strong unit.

Proposition 3.7. If X has a quasi-interior point and every un-null

sequence is norm bounded then X has a strong unit.

Proof. By Theorem 3.2, the un-topology on X is metrizable. Fix such

a metric. As before, for each n, let B 1

n
be the ball of radius 1

n
centred

at zero for the metric. For each n, B 1

n
contains Vεn,un

for some εn > 0

and un > 0. If Vεn,un
⊆ [−un, un] for some n then un is a strong

unit by Lemma 2.2. Otherwise, by Lemma 2.1, each Vεn,un
contains a

non-trivial ideal. Pick any xn in this ideal with ‖xn‖ = n. Then the

sequence (xn) is norm unbounded; yet xn ∈ B 1

n
for every n, so that

xn
un
−→ 0; a contradiction. �

4. Un-convergence in a sublattice

Recall that if (yα) is a net in a regular sublattice Y of a vector lattice

X then yα
uo
−→ 0 in Y iff yα

uo
−→ 0 in X . The situation is very different for

un-convergence. Let Y be a sublattice of a normed lattice X and (yα)

a net in Y . If yα
un
−→ 0 in X then, clearly, yα

un
−→ 0 in Y . However, the

following examples show that the converse fails even for closed ideals

or bands.

Example 4.1. The sequence of the standard unit vectors (en) is un-

null in c0 but not in ℓ∞, even though c0 is a closed ideal in ℓ∞.

Example 4.2. Let X = C[−1, 1] and Y be the set of all f ∈ X which

vanish on [−1, 0]. It is easy to see that Y is a band (though it is not

a projection band). Let (fn) be a sequence in Y+ such that ‖fn‖ = 1
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and supp fn ⊆ [ 1
n+1

, 1
n
]. Since X has a strong unit, the un-topology

on X agrees with the norm topology, hence (fn) is not un-null in X .

However, it is easy to see that (fn) is un-null in Y .

Nevertheless, there are some good news. Recall that a sublattice Y

of a vector lattice X is majorizing if for every x ∈ X+ there exists

y ∈ Y+ with x 6 y.

Theorem 4.3. Let Y be a sublattice of a normed lattice X and (yα)

a net in Y such that yα
un
−→ 0 in Y . Each of the following conditions

implies that yα
un
−→ 0 in X.

(i) Y is majorizing in X;

(ii) Y is norm dense in X;

(iii) Y is a projection band in X.

Proof. Without loss of generality, yα > 0 for every α. (i) is straight-

forward. To prove (ii), take u ∈ X+ and fix ε > 0. Find v ∈ Y+ with

‖u − v‖ < ε. By assumption, yα ∧ v
‖·‖
−→ 0. We can find α0 such that

‖yα ∧ v‖ < ε whenever α > α0. It follows from u 6 v + |u − v| that

yα ∧ u 6 yα ∧ v + |u− v|, so that

‖yα ∧ u‖ 6 ‖yα ∧ v‖+ ‖u− v‖ < 2ε.

It follows that yα ∧ u
‖·‖
−→ 0. Hence yα

un
−→ 0 in X .

To prove (iii), let u ∈ X+. Then u = v + w for some positive v ∈ Y

and w ∈ Y d. It follows from yα ⊥ w that yα ∧ u = yα ∧ v
‖·‖
−→ 0. �

Recall that every (Archimedean) vector lattice X is majorizing in its

order (or Dedekind) completion Xδ; see , e.g., [AB06, p. 101].

Corollary 4.4. If X is a normed lattice and xα
un
−→ x in X then

xα
un
−→ x in the order completion Xδ of X.

Corollary 4.5. If X is a KB-space and xα
un
−→ 0 in X then xα

un
−→ 0

in X∗∗.

Proof. By [AB06, Theorem 4.60], X is a projection band in X∗∗. The

conclusion now follows from Theorem 4.3(iii). �

Example 4.1 shows that the assumption that X is a KB-space cannot

be removed.
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Corollary 4.6. Let Y be a sublattice of an order continuous Banach

lattice X. If yα
un
−→ 0 in Y then yα

un
−→ 0 in X.

Proof. Suppose that yα
un
−→ 0 in Y . By Theorem 4.3(i), yα

un
−→ 0 in

the ideal I(Y ) generated by Y in X . By Theorem 4.3(ii), yα
un
−→ 0

in the closure I(Y ) of the ideal. Since X is order continuous, I(Y )

is a projection band in X . It now follows from Theorem 4.3(iii) that

yα
un
−→ 0 in X . �

Question 4.7. Let B be a band in X . Suppose that every net in B

which is un-null in B is also un-null in X . Does this imply that B is a

projection band?

Proposition 4.8. Every band in a normed lattice is un-closed.

Proof. Let B be a band and (xα) a net in B such that xα
un
−→ x. Fix

z ∈ Bd. Then |xα| ∧ z = 0 for every α. Since lattice operations are

un-continuous, we have |x| ∧ z = 0. It follows that x ∈ Bdd = B. �

Remark 4.9. Let B be a projection band a normed lattice X . We

write PB for the corresponding band projection. It follows easily from

0 6 PB 6 I that if xα
un
−→ x in X then PBxα

un
−→ PBx both in X and

in B.

Dense band decompositions. Let X be a Banach lattice. By a

dense band decomposition of X we mean a family B of pairwise

disjoint projection bands in X such that the linear span of all of the

bands in B is norm dense in X .

Lemma 4.10. Let B be a family of pairwise disjoint projection bands

in a Banach lattice X. B is a dense band decomposition of X iff for

every x ∈ X and every ε > 0 there exist B1, . . . , Bn in B such that
∥

∥x−
∑n

i=1 PBi
x
∥

∥ < ε.

Proof. Suppose that B is a dense band decomposition of X . Let x ∈ X

and ε > 0. By assumption, we can find distinct bands B1, . . . , Bn

and vectors x1 ∈ B1, . . . , xn ∈ Bn such that
∥

∥x −
∑n

i=1 xi
∥

∥ < ε. Put

Q = I −
∑n

i=1 PBi
. Then Q is also a band projection, hence it is a



UNBOUNDED NORM TOPOLOGY 13

lattice homomorphism and 0 6 Q 6 I. Note also that Qxi = 0 for

i = 1, . . . , n. We have

∣

∣x−

n
∑

i=1

xi
∣

∣ > Q
∣

∣x−

n
∑

i=1

xi
∣

∣ =
∣

∣Qx−

n
∑

i=1

Qxi
∣

∣ =
∣

∣x−

n
∑

i=1

PBi
x
∣

∣.

It follows that
∥

∥x−
∑n

i=1 PBi
x
∥

∥ < ε.

The converse implication is trivial. �

Our definition of a disjoint band decomposition is partially motivated

by following fact.

Theorem 4.11. ([LT79, Proposition 1.a.9]) Every order continuous

Banach lattice admits a dense band decomposition B such that each

band in B has a weak unit.

It is easy to see that if X is an order continuous Banach lattice and

B is a pairwise disjoint collection of bands such that x = sup{PBx :

B ∈ B} for every x ∈ X+ then B is a dense band decomposition.

Theorem 4.12. Suppose that B is a dense band decomposition of a

Banach lattice X. Then xα
un
−→ x in X iff PBxα

un
−→ PBx in B for each

B ∈ B.

Proof. Without loss of generality, x = 0 and xα > 0 for every α. The

forward implication follows immediately from Remark 4.9. To prove

the converse, suppose that PBxα
un
−→ 0 in B for each B ∈ B. Let

u ∈ X+; it suffices to show that xα ∧ u
‖·‖
−→ 0. Fix ε > 0. Find

B1, . . . , Bn ∈ B such that
∥

∥u −
∑n

i=1 PBi
u
∥

∥ < ε. Since PBi
xα

un
−→ 0 in

Bi as i = 1, . . . , n, we can find α0 such that
∥

∥PBi
xα ∧ PBi

u
∥

∥ < ε
n
for

every α > α0 and every i = 1, . . . , n. It follows from xα ∧ PBi
u ∈ Bi

that xα ∧ PBi
u = PBi

xα ∧ PBi
u. Therefore,

‖xα ∧ u‖ 6

∥

∥

∥
xα ∧

n
∑

i=1

PBi
u
∥

∥

∥
+
∥

∥

∥
u−

n
∑

i=1

PBi
u
∥

∥

∥
6

∥

∥

∥

n
∑

i=1

xα ∧PBi
u
∥

∥

∥
+ ε

=
∥

∥

∥

n
∑

i=1

PBi
xα ∧ PBi

u
∥

∥

∥
+ ε 6 n ·

ε

n
+ ε 6 2ε.

�



14 M. KANDIĆ, M.A.A. MARABEH, AND V.G. TROITSKY

Remark 4.13. Recall that a positive non-zero vector a in a vector

lattice X is an atom if the principal ideal Ia generated by a coincides

with span a. In this case, Ia is a projection band, and the corresponding

band projection Pa has form fa⊗a for some positive functional fa, that

is, Pax = fa(x)a. We say that X is non-atomic if it has no atoms.

We say that X is atomic if X is the band generated by all the atoms.

In the latter case, x = sup{fa(x)a : a is an atom} for every x ∈ X+.

See, e.g., [Sch74, p. 143].

It follows that if X is an order continuous atomic Banach lattice, the

family {Ia : a is an atom} is a dense band decomposition of X . Ap-

plying Theorem 4.12, we conclude that in such spaces un-convergence

is exactly the “coordinate-wise” convergence:

Corollary 4.14. Let X be an atomic order continuous Banach lattice.

Then xα
un
−→ x iff fa(xα) → fa(x) for every atom a.

Remark 4.15. The order continuity assumption cannot be removed.

Indeed, ℓ∞ is atomic, the sequence (en) converges to zero coordinate-

wise, yet it is not un-null.

The following results extends [DOT, Proposition 6.2].

Proposition 4.16. The following are equivalent:

(i) xα
w
−→ 0 implies xα

un
−→ 0 for every net (xα) in X;

(ii) xn
w
−→ 0 implies xn

un
−→ 0 for every sequence (xn) in X;

(iii) X is atomic and order continuous.

Proof. (i)⇒(ii) is trivial. The implication (ii)⇒(iii) is a part of [DOT,

Proposition 6.2]. The implication (iii)⇒(i) follows from Corollary 4.14.

�

5. AL-representations and local convexity

In this section, we will show that un-topology on an order continuous

Banach lattice X is locally convex iff X is atomic. Our main tool is the

relationship between un-convergence in X and in an AL-representation

of X .
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It was observed in [Tro04, Example 23] that for a net (xα) in Lp(µ)

where µ is a finite measure and 1 6 p <∞, one has xα
un
−→ 0 iff xα

µ
−→ 0

(i.e., the net converges to zero in measure). Note that this does not

extend to σ-finite measures. Indeed, let X = Lp(R) and let xn be the

characteristic function of [n, n + 1]. Then xn
un
−→ 0 but (xn) does not

converge to zero in measure. On the other hand, let (xα) be a net in

Lp(µ) where µ is a σ-finite measure, let (Ωn) be a countable partition of

Ω into sets of finite measure; it follows from Theorem 4.12 that xα
un
−→ 0

iff the restriction of xα to Ωn converges to zero in measure for every n.

Suppose that X is an order continuous Banach lattice with a weak

unit e. By [LT79, Theorem 1.b.14], X can be represented as an ideal of

L1(µ) for some probability measure µ. More precisely, there is a lattice

isomorphism from X onto a norm-dense ideal of L1(µ); with a slight

abuse of notation we will view X itself as an ideal of L1(µ). Moreover,

this representation may be chosen so that e corresponds to 1, L∞(µ) is

a norm-dense ideal in X , and both inclusions in L∞(µ) ⊆ X ⊆ L1(µ)

are continuous. We call L1(µ) an AL-representation for X and e.

Let (xn) be a sequence in X . It was shown in [GTX, Remark 4.6]

that xn
uo
−→ 0 in X iff xn

a.e.
−−→ 0 in L1(µ). It was shown in [DOT,

Theorem 4.6] that xn
un
−→ 0 in X iff xn

µ
−→ 0 in L1(µ). Since un-topology

and the topology of convergence in measure are both metrizable on X

because X has a weak unit, it follows that these two topologies coincide

on X . In particular, xα
un
−→ 0 in X iff xα

µ
−→ 0 in L1(µ) for every net

(xα) in X . This may also be deduced from Amemiya’s Theorem (see,

e.g., Theorem 2.4.8 in [MN91]) as follows:

xα
un
−→ 0 in X ⇔ ‖xα∧e‖X → 0

Amemiya
⇔ ‖xα∧1‖L1

→ 0 ⇔ xα
µ
−→ 0 in L1(µ)

for every net (xα) in X+.

Proposition 5.1. Let X be a non-atomic order continuous Banach

lattice and W a neighborhood of zero for un-topology. If W is convex

then W = X.

Proof. Fix e ∈ X+; we will show that e ∈ W . We know that Vε,u ⊆W

for some ε > 0 and u > 0. Consider the principal band Be. Since

X is order continuous, Be is a projection band in X ; let Pe be the
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corresponding band projection. Furthermore, Be is a non-atomic order

continuous Banach lattice with a weak unit. Let L1(Ω,F , µ) be an

AL-representation for Be with e = 1. Note that the measure µ is

non-atomic because if a measurable set A were an atom for µ then its

characteristic function χA would be an atom in X . Fix n ∈ N. Using

the non-atomicity of µ, we find a measurable partition An,1, . . . , An,n

of Ω with µ(An,i) =
1
n
as i = 1, . . . , n; see, e.g., Exercise 2 in [Hal70,

p. 174]. Since L∞(µ) ⊆ Be ⊆ L1(µ), we may view the characteristic

functions χAn,i
as elements of Be. Consider the vectors (nχAn,i

) ∧ u

as i = 1, . . . , n; they belong to Be, so that we may view them as

functions in L1(µ). Let gn be the function in this list whose norm in X

is maximal; if there are more than one, pick any one. Repeating this

construction for every n ∈ N, we produce a sequence (gn) in [0, u]∩Be.

It follows that gn 6 Peu for every n. Since Peu may be viewed as an

element of L1(µ) and the measure of the support of gn tends to zero,

it follows that ‖gn‖L1
→ 0. Amemiya’s Theorem yields ‖gn‖X → 0.

Fix n such that ‖gn‖X < ε. It follows from the definition of gn that
∥

∥(nχAn,i
) ∧ u

∥

∥

X
< ε as i = 1, . . . , n, so that nχAn,i

is in Vε,u and,

therefore, in W . Since W is convex and

e = 1=
1

n

n
∑

i=1

nχAn,i
,

we have e ∈ W . Therefore, X+ ⊆ W . Furthermore, it follows from

nχAn,i
∈ Vε,u that −nχAn,i

∈ Vε,u for all i = 1, . . . , n and, therefore,

−e ∈ W . This yields X− ⊆ W . Finally, for every x ∈ X we have

x = 1
2

(

2x+ + 2(−x−)
)

, so that x ∈ W .

�

Theorem 5.2. Let X be an order continuous Banach lattice. Un-

topology on X is locally convex iff X is atomic.

Proof. Suppose that X is atomic. By Corollary 4.14, un-topology is

determined by the family of seminorms x 7→
∣

∣fa(x)
∣

∣ where a is an

atom of X ; hence the topology is locally convex.

Suppose that un-topology is locally convex but X is not atomic. It

follows that there is e ∈ X+ such that Be is non-atomic. By Theo-

rem 4.3, un-topology on Be agrees with the relative topology induced
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on Be by un-topology on X ; in particular, it is locally convex. On the

other hand, Proposition 5.1 asserts that this topology on Be has no

proper convex neighborhoods; a contradiction. �

Un-continuous functionals. Theorem 5.2 allows us to describe un-

continuous linear functionals. For a functional ϕ ∈ X∗, we say that ϕ

is un-continuous if it is continuous with respect to the un-topology

on X or, equivalently, if xα
un
−→ 0 implies ϕ(xα) → 0.

Proposition 5.3. The set of all un-continuous functionals in X∗ is an

ideal.

Proof. It is straightforward to verify that this set is a linear subspace.

Suppose that ϕ in X∗ is un-continuous; we will show that |ϕ| is also

un-continuous. Fix δ > 0. One can find ε > 0 and u > 0 such that
∣

∣ϕ(x)
∣

∣ < δ whenever x ∈ Vε,u. Fix x ∈ Vε,u. Since Vε,u is solid, |y| 6 |x|

implies y ∈ Vε,u and, therefore,
∣

∣ϕ(y)
∣

∣ < δ. By the Riesz-Kantorovich

formula, we get
∣

∣|ϕ|(x)
∣

∣ 6 |ϕ|
(

|x|
)

= sup
{
∣

∣ϕ(y)
∣

∣ : |y| 6 |x|
}

6 δ.

It follows that |ϕ| is un-continuous. Hence, the set of all un-continuous

functionals in X∗ forms a sublattice. It is easy to see that if ϕ ∈ X∗
+

is un-continuous and 0 6 ψ 6 ϕ then ψ is also un-continuous; this

completes the proof. �

Recall that if a is an atom then fa stands for the corresponding

“coordinate functional”.

Corollary 5.4. Suppose that X is an order continuous Banach lattice

and ϕ ∈ X∗ is un-continuous.

(i) If X is atomic then ϕ = λ1fa1+ · · ·+λnfan, where λ1, . . . , λn ∈

R and a1, . . . , an are atoms;

(ii) If X is non-atomic then ϕ = 0.

Proof. By Proposition 5.3, we may assume that ϕ > 0; otherwise we

consider ϕ+ and ϕ−.

Suppose X is atomic; let A be a maximal disjoint family of atoms.

We claim that the set F := {a ∈ A : ϕ(a) 6= 0} is finite. Indeed, other-

wise, take a sequence (an) of distinct atoms in F and put xn = 1
ϕ(an)

an.
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Then xn
un
−→ 0 by Corollary 4.14, yet ϕ(xn) = 1; a contradiction. This

proves the claim.

Since X is order continuous, it follows from Remark 4.13 that X has

a disjoint band decomposition X = BF ⊕ BA\F . Since ϕ(a) = 0 for

all a ∈ A \ F , ϕ vanishes on the ideal IA\F and, therefore, on BA\F

because ϕ is order continuous. On the other hand, since F is finite,

BF = spanF and, therefore, is finite-dimensional. It follows that ϕ is

a linear combination of {fa : a ∈ F}.

Suppose now that X is non-atomic. LetW = ϕ−1(−1, 1). ThenW is

a convex neighborhood of zero for the un-topology. By Proposition 5.1,

W = X . This easily implies ϕ = 0. �

Case (i) of the preceding corollary essentially says that every un-

continuous functional on an atomic order continuous space has finite

support.

Example 5.5. Let X = ℓ2. By Corollary 5.4, the set of all un-

continuous functionals in X∗ may be identified with c00, the linear

subspace of all sequences with finite support. Clearly, it is neither

norm closed nor order closed; it is not even σ-order closed in X∗.

Example 5.6. Let X = C0(Ω) where Ω is a locally compact Hausdorff

topological space. It was observed in [Tro04, Example 20] that the

un-topology in X agrees with the topology of uniform convergence on

compact subsets of Ω.

Let ϕ ∈ X∗
+. By the Riesz Representation Theorem, there exists a

regular Borel measure µ such that ϕ(f) =
∫

f dµ for every f ∈ X ;

see, e.g., [Con99, Theorem III.5.7]. An argument similar to the proof

of [Con99, Proposition IV.4.1] shows that ϕ is un-continuous iff µ has

compact support.

6. Un-completeness

Throughout this section, X is assumed to be an order continuous Ba-

nach lattice. Since un-topology is linear, one can talk about un-Cauchy

nets. That is, a net (xα) is un-Cauchy if for every un-neighborhood U

of zero there exists α0 such that xα − xβ ∈ U whenever α, β > α0. We
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investigate whether X itself or some “nice” subset of X is un-complete.

First, we observe that the entire space is un-complete only when X is

finite-dimensional.

Lemma 6.1. Let (xn) be a positive disjoint sequence in an order con-

tinuous Banach lattice X such that (xn) is not norm null. Put sn =
∑n

i=1 xi. Then (sn) is un-Cauchy but not un-convergent.

Proof. The sequence (sn) is monotone increasing and does not converge

in norm; hence it is not un-convergent by Lemma 1.2(ii). To show that

(sn) is un-Cauchy, fix any ε > 0 and a non-zero u ∈ X+. Since xi’s

are disjoint, we have sn ∧ u =
∑n

i=1(xi ∧ u). The sequence (sn ∧ u)

is increasing and order bounded, hence is norm Cauchy by Nakano’s

Theorem; see [AB06, Theorem 4.9]. We can find n0 such that
∥

∥sm ∧

u− sn ∧ u
∥

∥ < ε whenever m > n > n0. Observe that

sm ∧ u− sn ∧ u =

m
∑

i=n+1

(xi ∧ u) = (sm − sn) ∧ u = |sm − sn| ∧ u.

It follows that
∥

∥|sm − sn| ∧ u
∥

∥ < ε, so that sm − sn ∈ Vε,u. �

Proposition 6.2. Let X be an order continuous Banach lattice. X is

un-complete iff X is finite-dimensional.

Proof. If X is finite-dimensional then it has a strong unit, so that un-

topology agrees with norm topology and is, therefore, un-complete.

Suppose now that dimX = ∞. Then X contains a disjoint normalized

positive sequence. By Lemma 6.1, X is not un-complete. �

Example 6.3. Let X = Lp with 1 < p < ∞. Pick 0 6 x ∈ L1 \ Lp

and put xn = x ∧ (n1). It is easy to see that (xn) is un-Cauchy in Lp,

yet it does not un-converge in Lp.

Even when the entire space is not un-complete, the closed unit ball

BX may still be un-complete; that is, complete in the topology in-

duced by un-topology on X . Since BX is un-closed, it is un-complete

iff every norm bounded un-Cauchy net in X is un-convergent. The fol-

lowing theorem should be compared with [GX14, Theorem 4.7], where

a similar statement was proved for uo-convergence.
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Theorem 6.4. Let X be an order continuous Banach lattice. Then

BX is un-complete iff X is a KB-space.

Proof. Suppose X is not KB. Then X contains a lattice copy of c0. Let

(xn) be the sequence in X corresponding to the unit basis of c0. Let

sn =
∑n

i=1 xi. Clearly, (sn) is norm bounded. However, by Lemma 6.1,

(sn) is un-Cauchy but not un-convergent.

Suppose now that X is a KB-space. First, we consider the case when

X has a weak unit. In this case, un-topology on X and, therefore, on

BX , is metrizable by Theorem 3.2. Hence, it suffices to prove that BX

is sequentially un-complete. Let (xn) be a sequence in BX which is

un-Cauchy in X . Let L1(µ) be an AL-representation for X . It follows

that (xn) is Cauchy with respect to convergence in measure in L1(µ).

By [Fol99, Theorem 2.30], there is a subsequence (xnk
) which converges

a.e. It follows that (xnk
) is uo-Cauchy in X by [GTX, Remark 4.6].

Then [GX14, Theorem 4.7] yields that xnk

uo
−→ x for some x ∈ X .

It follows that xnk

un
−→ x. Since (xn) is un-Cauchy, this yields that

xn
un
−→ x.

Now consider the general case. Let X be a KB-space and (xα) a net

in BX such that (xα) is un-Cauchy in X ; we need to prove that the

net is un-convergent. We may assume without loss of generality that

xα > 0 for every α; otherwise, consider (x+α ) and (x−α ), which are also

un-Cauchy because |x+α −x
+
β | 6 |xα−xβ | and |x−α −x

−
β | 6 |xα−xβ |. By

Theorem 4.11, there exists a dense band decomposition B of X such

that each B in B has a weak unit. Put

C =
{

B1 ⊕ · · · ⊕Bn : B1, . . . , Bn ∈ B
}

.

Note that C is a family of bands with weak units. Furthermore, C

is a directed set when ordered by inclusion, so the family of band

projections (PC)C∈C may be viewed as a net.

For every C ∈ C, the net (PCxα) is un-Cauchy by Remark 4.9. Since

C has a weak unit, the first part of the proof yields that (PCxα) un-

converges to some positive vector xC in C. This produces a net (xC)C∈C.

It is easy to verify that xC = xB1
+· · ·+xBn

whenever C = B1⊕· · ·⊕Bn

for some B1, . . . , Bn ∈ B. It follows that the net (xC)C∈C is increasing.

On the other hand, ‖xC‖ 6 lim infα‖PCxα‖ 6 1, so that this net is
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norm bounded. Since X is a KB-space, the net (xC)C∈C converges in

norm to some x ∈ X .

FixB ∈ B. On one hand, norm continuity of PB yields limC∈C PBxC =

PBx. On the other hand, for every C ∈ C with B ⊆ C we have

PBxC = xB, so that limC∈C PBxC = xB. It follows that PBx = xB,

so that PBxα
un
−→ PBx for every B ∈ B. Now Theorem 4.12 yields

xα
un
−→ x. �

The assumption that X is order continuous cannot be removed: for

example, ℓ∞ is not a KB-space, yet its closed unit ball is un-complete

(because the un and the norm topologies on ℓ∞ agree).

Example 6.5. The following examples show that in general BX in The-

orem 6.4 cannot be replaced with an arbitrary convex closed bounded

set. Let X = ℓ1; let C be the set of all vectors in BX whose coordi-

nates sum up to zero. Clearly, C is convex, closed, and bounded. Let

xn = 1
2
(e1 − en). Then (xn) is a sequence in C which un-converges to

1
2
e1 which is not in C. Thus, C is not un-closed in X ; in particular, C

is not un-complete.

It is easy to construct a similar example in X = L1; take C =
{

x ∈

BX :
∫

x = 0
}

and put xn = χ[0, 1
2
] −

n
2
χ[ 1

2
, 1
2
+ 1

n
], n > 2.

Proposition 6.6. Suppose that X∗ is order continuous and C is a

norm closed convex norm bounded subset of X. Then C is un-closed.

Proof. Suppose that xα
un
−→ x for a net (xα) in C and a vector x in

X . Since (xα) is norm bounded and X∗ is order continuous, [DOT,

Theorem 6.4] guarantees that (xα) converges to x weakly. Since C is

convex and closed, it is weakly closed, hence x ∈ C. �

Corollary 6.7. Let X be a reflexive Banach lattice and C a closed

convex norm bounded subset of X. Then C is un-complete.

Proof. SinceX is reflexive, X is a KB-space andX∗ is order continuous.

Let (xα) be a un-Cauchy net in C. Theorem 6.4 yields that xα
un
−→ x

for some x ∈ X , while Proposition 6.6 implies that x ∈ C. �
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7. Un-compact sets

The main result of this section is Theorem 7.5, which asserts that

BX is (sequentially) un-compact iff X is an atomic KB-space. We start

with some auxiliary results. The following theorem shows that, under

certain assumptions, un-compactness is a “local” property.

Theorem 7.1. Let X be a KB-space, B a dense band decomposition

of X, and A a un-closed norm bounded subset of X. Then A is un-

compact iff PB(A) is un-compact in B for every B ∈ B.

Proof. If A is un-compact then PB(A) is un-compact in B for every

B ∈ B because PB is un-continuous by Remark 4.9. To prove the

converse, suppose that PB(A) is un-compact in B for every B ∈ B.

Let H =
∏

B∈B B, the formal product of all the bands in B. That

is, H consists of families (xB)B∈B indexed by B, where xB ∈ B. We

equip H with the topology of coordinate-wise un-convergence; this is

the product of un-topologies on the bands that make up H . This makes

H a topological vector space. Define Φ: X → H via Φ(x) = (PBx)B∈B.

Clearly, Φ is linear. Since B is a dense band decomposition, Φ is one-

to-one. By Theorem 4.12, Φ is a homeomorphism from X equipped

with un-topology onto its range in H .

LetK be the subset ofH defined byK =
∏

B∈B PB(A). By Tikhonov’s

Theorem, K is compact in H . It is easy to see that Φ(A) ⊆ K.

We claim that Φ(A) is closed in H . Indeed, suppose that Φ(xα) → h

in H for some net (xα) in A. In particular, the net
(

Φ(xα)
)

is Cauchy

in H . Since Φ is a homeomorphism, the net (xα) is un-Cauchy in A.

Since (xα) is bounded and X is a KB-space, (xα) un-converges to some

x ∈ X by Theorem 6.4. Since A is un-closed, we have x ∈ A. It follows

that h = Φ(x), so that h ∈ Φ(A).

Being a closed subset of a compact set, Φ(A) is itself compact. Since

Φ is a homeomorphism, we conclude that A is un-compact. �

Next, we discuss relationships between the sequential and the general

variants of un-closedness and un-compactness. Recall that for a set A

in a topological space, we write A for the closure of A; we write A
σ

for the sequential closure of A, i.e., a ∈ A
σ
iff a is the limit of a
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sequence in A. We say that A is sequentially closed if A
σ
= A. It

is well known that for a metrizable topology, we always have A
σ
= A.

For a set A in a Banach lattice, we write A
un

and A
σ-un

for the

un-closure and the sequential un-closure of A, respectively. Obviously,

A
σ-un

⊆ A
un
.

Example 7.2. In general, A
un

6= A
σ-un

. Indeed, in the notation of

Example 1.3, let A = {eω : ω ∈ Ω}. It follows from Example 1.3 that

zero is in A
un

but not in A
σ-un

.

Proposition 7.3. Let A be a subset of a Banach lattice X. If X has

a quasi-interior point or X is order continuous then A
un

= A
σ-un

.

Proof. If X has a quasi-interior point then its un-topology is metrizable

by Theorem 3.2, hence A
un

= A
σ-un

.

Suppose that X is order continuous. Suppose that x ∈ A
un
; we need

to show that x ∈ A
σ-un

. Without loss of generality, x = 0. This means

that A contains a un-null net (xα). By Theorem 1.1, there exists an

increasing sequence of indices (αk) and a disjoint sequence (dk) such

that xαk
−dk

‖·‖
−→ 0. It follows that xαk

−dk
un
−→ 0. Since (dk) is disjoint,

it is uo-null and, since X is order continuous, un-null. It follows that

xαk

un
−→ 0 and, therefore, 0 ∈ A

σ-un
. �

Recall that a topological space is said to be sequentially compact

if every sequence has a convergent subsequence. In a Hausdorff topolog-

ical vector space which is metrizable (or, equivalently, first countable),

sequential compactness is equivalent to compactness, see, e.g., [Roy88,

Theorem 7.21]. We do not know whether un-compactness and sequen-

tial un-compactness are equivalent in general, yet we have the following

partial result.

Proposition 7.4. Let A be a subset of a Banach lattice X.

(i) If X has a quasi-interior point, then A is sequentially un-

compact iff A is un-compact.

(ii) Suppose that X is order continuous. If A is un-compact then

A is sequentially un-compact.

(iii) Suppose that X is a KB-space. If A is norm bounded and

sequentially un-compact then A is un-compact.
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Proof. (i) follows immediately from Theorem 3.2.

(ii) Let (xn) be a sequence in A. Find e ∈ X+ such that (xn) is

contained in Be (e.g., take e =
∑∞

n=1
xn

2n‖xn‖+1
). Since Be is un-closed,

the set A∩Be is un-compact in Be. Since e is a quasi-interior point for

Be, the un-topology on Be is metrizable, hence A ∩ Be is sequentially

un-compact. It follows that there is a subsequence (xnk
) which un-

converges in Be to some x ∈ A∩Be. By Theorem 4.3(iii), xnk

un
−→ x in

X .

(iii) Clearly, A is sequentially un-closed and, therefore, un-closed by

Proposition 7.3. Let B be as in Theorem 4.11. For each B ∈ B, the

band projection PB is un-continuous by Remark 4.9, so that PB(A)

is sequentially un-compact in B. Since B has a weak unit, the un-

topology on B is metrizable, so that PB(A) is un-compact in B. The

conclusion now follows from Theorem 7.1. �

Theorem 7.5. For a Banach lattice X, TFAE:

(i) BX is un-compact;

(ii) BX is sequentially un-compact;

(iii) X is an atomic KB-space.

Proof. First, observe that both (i) and (ii) imply that X is order con-

tinuous and atomic. Indeed, since order intervals are bounded and

un-closed, they are (sequentially) un-compact. But on order intervals,

the un-topology agrees with the norm topology, hence order intervals

are norm compact. This implies thatX is atomic and order continuous;

see, e.g., [Wnuk99, Theorem 6.1].

Suppose (i). SinceX is order continuous, Proposition 7.4(ii) yields (ii).

Suppose (ii). We already know that X is atomic. To show that X

is a KB-space, let (xn) be an increasing norm bounded sequence in

X+. By assumption, it has a un-convergent subsequence (xnk
). By

Lemma 1.2(ii), (xnk
) converges in norm, hence (xn) converges in norm.

This yields (iii).

Suppose (iii). Let A be a maximal disjoint family of atoms in X .

Then
{

Ba : a ∈ A
}

is a dense band decomposition of X . For every

a ∈ A, Pa(BX) is a closed bounded subset of the one-dimensional band
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Ba, hence Pa(BX) is norm and un-compact in Ba. Theorem 7.1 now

implies that BX is un-compact, which yields (i). �

Example 7.6. Let X = c0 and xn = e1 + · · · + en. Then (xn) is a

sequence in BX with no un-convergent subsequences.

Proposition 7.7. Let A be a subset of an order continuous Banach

lattice X. If A is relatively un-compact then A is relatively sequentially

un-compact.

Proof. Let (xn) be a sequence in A. Find e ∈ X+ such that (xn) is

contained in Be. Since A
un

is un-compact, the set A
un

∩ Be is un-

compact in Be and, therefore, sequentially un-compact in Be because

the un-topology on Be is metrizable. Hence, there is a subsequence

(xnk
) which un-converges in Be and, therefore, in X . �

8. Un-convergence and weak*-convergence

When does un-convergence imply weak*-convergence? It is

easy to see that, in general, un-convergence does not imply weak*-

convergence. Indeed, let X be an infinite-dimensional Banach lattice

with order continuous dual. Pick any unbounded disjoint sequence (fn)

in X∗. Being unbounded, (fn) cannot be weak*-null. Yet it is un-null

by Proposition 3.5. However, if we restrict ourselves to norm bounded

nets, the situation is more interesting. The following result is analo-

gous to [Gao14, Theorem 2.1]. Recall that for a net (fα) in X∗, we

write fα
|σ|(X∗,X)
−−−−−→ 0 if |fα|(x) → 0 for every x ∈ X+.

Theorem 8.1. Let X be a Banach lattice such that X∗ is order con-

tinuous. The following are equivalent:

(i) X is order continuous;

(ii) for any norm bounded net (fα) in X
∗, if fα

un
−→ 0, then fα

w∗

−→

0;

(iii) for any norm bounded net (fα) inX
∗, if fα

un
−→ 0, then fα

|σ|(X∗,X)
−−−−−→

0;

(iv) for any norm bounded sequence (fn) in X∗, if fn
un
−→ 0, then

fn
w∗

−→ 0;
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(v) for any norm bounded sequence (fn) in X∗, if fn
un
−→ 0, then

fn
|σ|(X∗,X)
−−−−−→ 0.

The proof is similar to that of [Gao14, Theorem 2.1] except that

in the proof of (iv)⇒(i) we use Proposition 3.5. Note that without

the assumption that X∗ is order continuous, we still get the following

implications:

(i) ⇒
[

(ii) ⇔ (iii)
]

⇒
[

(iv) ⇔ (v)
]

.

When does weak*-convergence imply un-convergence? Recall

that for norm bounded nets, weak*-convergence implies uo-convergence

in X∗ iff X is atomic and order continuous by [Gao14, Theorem 3.4].

Furthermore, Proposition 4.16 immediately yields the following.

Corollary 8.2. If fn
w∗

−→ 0 implies fn
un
−→ 0 for every sequence in X∗

then X∗ is atomic and order continuous.

The following example shows that the converse is false in general.

Example 8.3. Let X = c, the space of all convergent sequences. By

[AB06a, Theorem 16.14], X∗ may be identified with ℓ1 ⊕ R with the

duality given by

〈

(f, r), x
〉

= r · lim
n
xn +

∞
∑

n=1

fnxn,

where x ∈ c, f ∈ ℓ1, and r ∈ R. It is easy to see that X∗ is atomic and

order continuous. Consider the sequence
(

(en, 0)
)

inX∗, where en is the

n-th standard unit vector in ℓ1. It is easy to see that (en, 0)
w∗

−→ (0, 1)

in X∗. On the other hand, this sequence is disjoint and, therefore,

un-null. Take fn = (en,−1); it follows that (fn) is weak*-null but not

un-null. Note that in this example, X∗ is order continuous while X is

not.

Nevertheless, we will show that the converse implication is true under

the additional assumption that X is order continuous.

Theorem 8.4. The following are equivalent:

(i) For every net (fα) in X
∗, if fα

w∗

−→ 0 then fα
un
−→ 0;

(ii) X∗ is atomic and both X and X∗ are order continuous.
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Proof. (i)⇒(ii) By Corollary 8.2, X∗ is atomic and order continuous.

Suppose X is not order continuous. By [MN91, Corollary 2.4.3] there

exists a disjoint norm-bounded sequence (fn) in X
∗ which is not weak*-

null. One can then find a subsequence (fnk
), a vector x0 ∈ X and a

positive real ε so that
∣

∣fnk
(x0)

∣

∣ > ε for every k. By the Alaoglu-

Bourbaki Theorem, there is a subnet (gα) of (fnk
) such that gα

w∗

−→ g

for some g ∈ X∗. Since (fnk
) is disjoint and X∗ is order continuous,

we have fnk

un
−→ 0 and, therefore, gα

un
−→ 0. By assumption, this yields

g = 0, so that gα
w∗

−→ 0. This contradicts |gα(x0)| > ε for every α.

(ii)⇒(i) Let fα
w∗

−→ 0 in X . Let A be a maximal disjoint collection of

atoms in X∗; for each atom a ∈ A let Pa and ϕa be the corresponding

band projection and the coordinate functional, respectively; Pa and ϕa

are defined on X∗. By [MN91, Corollary 2.4.7], Pa and, therefore, ϕa,

is weak*-continuous. It follows that ϕa(fα) → 0 in α. Corollary 4.14

yields that fα
un
−→ 0. �

Proposition 8.5. Suppose that X∗ is atomic. The following are equiv-

alent.

(i) For every net (fα) in X
∗, if fα

|σ|(X∗,X)
−−−−−→ 0 then fα

un
−→ 0;

(ii) For every sequence (fn) in X
∗, if fn

|σ|(X∗,X)
−−−−−→ 0 then fn

un
−→ 0;

(iii) X∗ is order continuous.

Proof. (i)⇒(ii) is trivial.

(ii)⇒(iii) The proof is similar to that of Proposition 4.16. To show

that X∗ is order continuous, suppose that (fn) is an order bounded

positive disjoint sequence in X∗
+. It follows that fn

|σ|(X∗,X)
−−−−−→ 0 and, by

assumption, fn
un
−→ 0. Since the sequence is order bounded, this yields

fn
‖·‖
−→ 0. Therefore, X∗ is order continuous.

(iii)⇒(i) By [MN91, Proposition 2.4.5], band projections on X∗ are

|σ|(X∗, X)-continuous. The proof is now analogous to the implication

(ii)⇒(i) in Theorem 8.4. �

Simultaneous weak* and un-convergence. Section 4 of [Gao14]

contains several results that assert that if a sequence or a net in X∗

converges in both weak* and uo-topology then it also converges in some

other topology. Several of these results remain valid if uo-convergence
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is replaced with un-convergence. In particular, this works for Propo-

sition 4.1 in [Gao14]. Propositions 4.3, 4.4, and 4.6 in [Gao14] remain

valid under the additional assumption thatX∗ is order continuous (note

that the dual positive Schur property already implies that X∗ is order

continuous by [Wnuk13, Proposition 2.1]). The proofs are analogous

to the corresponding proofs in [Gao14]. Alternatively, the un-versions

of these may be deduced from the uo-versions using the following two

facts: first, every un-convergent sequence has a uo-convergent subse-

quence and, second, a sequence (xn) converges to x in a topology τ

iff every subsequence (xnk
) has a further subsequence (xnki

) such that

xnki

τ
−→ x.

9. Un-compact operators

Throughout this section, let E be a Banach space, X a Banach lat-

tice, and T ∈ L(E,X). We say that T is (sequentially) un-compact

if TBE is relatively (sequentially) un-compact in E. Equivalently, for

every bounded net (xα) (respectively, every bounded sequence (xn)) its

image has a subnet (respectively, subsequence), which is un-convergent.

Clearly, if T is compact then it is un-compact and sequentially un-

compact. Theorems 3.2 and 7.5 and Proposition 7.7 yield the following.

Proposition 9.1. Let T ∈ L(E,X).

(i) If X has a quasi-interior point then T is un-compact iff it is

sequentially un-compact;

(ii) If X is order continuous and T is un-compact then T is se-

quentially un-compact;

(iii) If X is an atomic KB-space then T is un-compact and sequen-

tially un-compact.

Proposition 9.2. The set of all un-compact operators is a linear sub-

space of L(E,X). The set of all sequentially un-compact operators in

L(E,X) is a closed subspace.

Proof. Linearity is straightforward. To prove closedness, suppose that

(Tm) is a sequence of sequentially un-compact operators in L(E,X)

and Tm
‖·‖
−→ T . We will show that T is sequentially un-compact.
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Let (xn) be a sequence in BE . For every m, the sequence (Tmxn)n

has a un-convergent subsequence. By a standard diagonal argument,

we can find a common subsequence for all these sequences. Passing to

this subsequence, we may assume without loss of generality that for

every m we have Tmxn
un
−→ ym for some ym. Note that

‖ym − yk‖ 6 lim inf
n

‖Tmxn − Tkxn‖ 6 ‖Tm − Tk‖ → 0,

so that the sequence (ym) is Cauchy and, therefore, ym
‖·‖
−→ y for some

y ∈ X .

Fix u ∈ X+ and ε > 0. Find m0 such that ‖Tm0
− T‖ < ε and

‖ym0
− y‖ < ε. Find n0 such that

∥

∥|Tm0
xn − ym0

| ∧ u
∥

∥ < ε whenever

n > n0. It follows from

|Txn − y| ∧ u 6 |Txn − Tm0
xn|+ |Tm0

xn − ym0
| ∧ u+ |ym0

− y|

that
∥

∥|Txn − y| ∧ u
∥

∥ < 3ε, so that Txn
un
−→ y. �

We do not know whether the set of all un-compact operators is closed.

It is easy to see that if we multiply a (sequentially) un-compact

operator by another bounded operator on the right, the product is

again (sequentially) un-compact. The following example shows that

this fails when we multiply on the left.

Example 9.3. The class of all (sequentially) un-compact operators is

not a left ideal. Let T : ℓ1 → L1 be defined via Ten = r+n , where (en)

is the standard unit basis of ℓ1 and (rn) is the Rademacher sequence

in L1. Note that T is neither un-compact nor sequentially un-compact

because the sequence (Ten) has no un-convergent subsequences. On

the other hand, T = TIℓ1, where Iℓ1 is the identity operator on ℓ1.

Observe that Iℓ1 is un-compact by Proposition 9.1(iii).

Proposition 9.4. In the diagram E
T
−→ X

S
−→ Y , suppose that T is

(sequentially) un-compact and S is a lattice homomorphism. If the

ideal generated by RangeS is dense in Y then ST is (sequentially)

un-compact.

Proof. We will prove the statement for the sequential case; the other

case is analogous. Let (hn) be a norm bounded sequence in E. By
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assumption, there is a subsequence (hnk
) such that Thnk

un
−→ x for

some x ∈ X . Let Z = RangeS; it is a sublattice of Y . Fix u ∈ Z+.

Then u = Sv for some v ∈ X+, and |Thnk
− x| ∧ v

‖·‖
−→ 0. Applying

S, we get
∣

∣SThnk
− Sy

∣

∣ ∧ u
‖·‖
−→ 0. Therefore, SThnk

un
−→ Sx in Z. It

follows from Theorem 4.3(i) and (ii) that SThnk

un
−→ Sx in Y . �

Example 9.5. The set of all sequentially un-compact operators is not

order closed. Let T be as in Example 9.3. Let Tn = TPn, where Pn

is the n-th basis projection on ℓ1, i.e., Tnh =
∑n

i=1 hir
+
i for h ∈ ℓ1. It

is easy to see that each Tn is finite rank and, therefore, sequentially

un-compact. Note that Tn ↑ T , yet T is not sequentially un-compact.

Proposition 9.6. Suppose that for every sequence (Tn) of sequentially

un-compact operators in L(c0, X), Tn ↑ T implies that T is sequentially

un-compact. Then X is a KB-space.

Proof. Suppose not. Then there is a lattice isomorphism T : c0 → X .

Put xn = Ten, where (en) is the standard unit basis of c0. Put Tn =

TPn, where Pn is the n-th basis projection on c0, i.e., Tnh =
∑n

i=1 hixi

for h ∈ c0. It follows that Tnh
‖·‖
−→ Th, so that Tnh ↑ Th for every h > 0

and, therefore, Tn ↑ T . For each n, Tn has finite rank and, therefore,

is sequentially un-compact.

We claim that, nevertheless, T is not sequentially un-compact. Put

wn = e1 + · · ·+ en in c0. Note that (wn) is norm bounded and Twn =

x1+· · ·+xn. Since T is an isomorphism, (Twn) is not norm-convergent.

Since (Twn) is increasing, it is not un-convergent by Lemma 1.2(ii).

Similarly, no subsequence of (Twn) is un-convergent. �

We do not know whether the converse is true.

Next, we study whether un-compactness is inherited under domi-

nation. The following example shows that, in general, the answer is

negative.

Example 9.7. Let T be as in Example 9.3. Let S : ℓ1 → L1 be defined

via Sen = 1. Then S is a rank-one operator; hence it is compact and

un-compact. Clearly, 0 6 T 6 S. Yet T is not un-compact.
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Proposition 9.8. Suppose that S, T : E → X, 0 6 S 6 T , X is

a KB-space and T is a lattice homomorphism. If T is (sequentially)

un-compact then so is S.

Proof. We will prove the sequential case; the other case is similar. Let

(hn) be a bounded sequence in E. Passing to a subsequence, we may

assume that (Thn) is un-convergent. In particular, it is un-Cauchy.

Fix u ∈ X+. Note that

|Shn−Shm|∧u 6
(

S|hn−hm|
)

∧u 6
(

T |hn−hm|
)

∧u = |Thn−Thm|∧u
‖·‖
−→ 0

as n,m → ∞. It follows that (Shn) is un-Cauchy and, therefore, un-

converges by Theorem 6.4. �

We would like to mention that the class of un-compact operators is

different from several other known classes of operators. We already

mentioned that every compact operator is un-compact. The converse

is false as the identity operator on any infinite-dimensional atomic KB-

space is un-compact but not compact.

Recall that an operator between Banach lattices is AM-compact if

it maps order intervals to relatively compact sets.

Proposition 9.9. Every order bounded un-compact operator is AM-

compact.

Proof. Let T : X → Y be an order bounded un-compact operator be-

tween Banach lattices. Fix an order interval [a, b] in X . Since T is

un-compact, T [a, b] ⊆ C for some un-compact set C. Since T is order

bounded, T [a, b] ⊆ [c, d] for some c, d ∈ Y . Note that [c, d] is un-closed,

hence C ∩ [c, d] is un-compact and, being order bounded, is compact.

It follows that T [a, b] is relatively compact. �

Note that the converse is false: the identity operator on c0 is AM-

compact but not un-compact.

The identity operator on ℓ1 is un-compact, yet it is neither L-weakly

compact nor M-weakly compact.

Finally, we note that if T is sequentially un-compact and semi-

compact then T is compact. Indeed, let (hn) be a bounded sequence in

E. There is a subsequence (hnk
) such that Thnk

un
−→ x for some x ∈ X .
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Since T is semi-compact, the sequence (Thnk
) is almost order bounded

and, therefore, Thnk

‖·‖
−→ x by [DOT, Lemma 2.9].

Finally, we discuss when weakly compact operators are un-compact.

Lemma 9.10. If xn
w
−→ x and xn

un
−→ y then x = y.

Proof. Without loss of generality, y = 0. By Theorem 1.1, there exist a

subsequence (xnk
) and a disjoint sequence (dk) such that xnk

−dk
‖·‖
−→ 0.

It follows that xnk
− dk

w
−→ 0, so that dk

w
−→ x. Now [AB06, Theo-

rem 4.34] yields x = 0. �

Theorem 9.11. A Banach lattice X is atomic and order continuous

iff T is sequentially un-compact for every Banach space E and every

weakly compact operator T : E → X.

Proof. The forward implication follows immediately from Proposition 4.16.

To prove the converse, let (xn) be a weakly null sequence in X . By

Proposition 4.16, it suffices to show that xn
un
−→ 0. Define T : ℓ1 → X

via Ten = xn. By [AB06, Theorem 5.26], T is weakly compact. By

assumption, T is sequentially un-compact. It follows that (Ten) has

a un-convergent subsequence, i.e., xnk

un
−→ x for some x ∈ X and a

subsequence (xnk
). Lemma 9.10 yields x = 0. By the same argument,

every subsequence of (xn) has a further subsequence which is un-null;

since un-convergence is topological, it follows that xn
un
−→ 0. �

Corollary 9.12. Every operator from a reflexive Banach space to an

atomic order continuous Banach lattice is sequentially un-compact.
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