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COMPACT-LIKE OPERATORS IN LATTICE-NORMED
SPACES

A. AYDIN'*, E. YU. EMELYANOV"? N. ERKURSUN OZCAN?® M. A. A.
MARABEH!

ABSTRACT. A linear operator T' between two lattice-normed spaces is
said to be p-compact if, for any p-bounded net z., the net Tz, has
a p-convergent subnet. p-Compact operators generalize several known
classes of operators such as compact, weakly compact, order weakly com-
pact, AM-compact operators, etc. Similar to M-weakly and L-weakly
compact operators, we define p-M-weakly and p-L-weakly compact op-
erators and study some of their properties. We also study up-continuous
and up-compact operators between lattice-normed vector lattices.

1. INTRODUCTION

It is known that order convergence in vector lattices is not topological
in general. Nevertheless, via order convergence, continuous-like operators
(namely, order continuous operators) can be defined in vector lattices with-
out using any topological structure. On the other hand, compact operators
play an important role in functional analysis. Our aim in this paper is to
introduce and study compact-like operators in lattice-normed spaces and in
lattice-normed vector lattices by developing topology-free techniques.

Recall that a net (z4)aca in a vector lattice X is order convergent (or o-
convergent, for short) to z € X, if there exists another net (yg)gep satisfying
ys 4 0, and for any § € B, there exists ag € A such that |z, — 2| < yg

for all @ > ag. In this case we write z, 2y 2. In a vector lattice X , a net
Zo 1s unbounded order convergent (or uo-convergent, for short) to x € X if
|To — 2| Au>0 for every u € X ; see [10]. In this case we write zq — .
In a normed lattice (X, ||-||), a net x, is unbounded norm convergent to
r € X, written as xo — 1z, if |||ze — 2| Aul — 0 for every u € X; see
[7]. Clearly, if the norm is order continuous then uo-convergence implies
un-convergence. Throughout the paper, all vector lattices are assumed to
be real and Archimedean.

Let X be a vector space, E be a vector lattice, and p : X — FE, be a
vector norm (i.e. p(x) =0« z =0, p(Ax) = |[A|p(z) for all A e R, x € X
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and p(x + y) < p(x) + p(y) for all z,y € X) then the triple (X,p, F) is
called a lattice-normed space, abbreviated as LNS. The lattice norm p in an
LNS (X, p, E) is said to be decomposable if for all z € X and ey,es € Ey, it
follows from p(x) = e; + e, that there exist 21, 29 € X such that z = x1+ x5
and p(zy) = e for k = 1,2. If X is a vector lattice, and the vector norm
p is monotone (i.e. |z| < |y| = p(z) < p(y)) then the triple (X,p, E) is
called a lattice-normed vector lattice, abbreviated as LNVL. In this article
we usually use the pair (X, F) or just X to refer to an LNS (X, p, F) if there
is no confusion.

We abbreviate the convergence p(zq — x) >0 as P, ¢ and say in this
case that z, p-converges to x. A net (z4)aeca in an LNS (X, p, E) is said
to be p-Cauchy if the net (2o — Zos)(a,0/)cAxa P-converges to 0. An LNS
(X,p, E) is called (sequentially) p-complete if every p-Cauchy (sequence) net
in X is p-convergent. In an LNS (X, p, E) a subset A of X is called p-bounded
if there exists e € E such that p(a) < e for all a € A. An LNVL (X,p, E) is
called op-continuous if o — 0 implies that p(za) 0.

A net x, in an LNVL (X, p, E) is said to be unbounded p-convergent to
x € X (shortly, 2, up-converges to & or 2o — ), if p(|za — z| A u) =0 for
all u € X ; see [4, Def.6].

Let (X,p, E) be an LNS and (E,||:||g) be a normed lattice. The mized
norm on X is defined by p-||z||g = ||p(x)|| g for all z € X. In this case the
normed space (X, p-||-||g) is called a mized-normed space (see, for example
13, 7.1.1, p.292)).

A net z, in an LNS (X, p, E) is said to relatively uniformly p-converge

to 2 € X (written as, z, —» z) if there is e € E, such that for any ¢ > 0,
there is a. satisfying p(z, — ) < e for all @ > a.. In this case we say that
Zo Tp-converges to x. A net x, in an LNS (X,p, F) is called rp-Cauchy
if the net (To — Tar)(a,a')caxa TP-converges to 0. It is easy to see that for

a sequence x, in an LNS (X,p, E), =, Py 2 iff there exist e € E, and a
numerical sequence €5 | 0 such that for all k¥ € N and there is ny € N
satisfying p(z, — z) < ege for all n > ng. An LNS (X, p, E) is said to be
rp-complete if every rp-Cauchy sequence in X is rp-convergent. It should
be noticed that in a rp-complete LNS every rp-Cauchy net is rp-convergent.
Indeed, assume x,, is a rp-Cauchy net in a rp-complete LNS (X, p, F). Then
an element e € E, exists such that, for all n € N, there is an «a,, such that
p(To — o) < %e for all a, @/ > ;. We select a strictly increasing sequence
ay,. Then it is clear that z,, is rp-Cauchy sequence, and so there is x € X
such that z,, Py 2. Let ng € N. Hence, there is oy, such that for all

a > ap, we have p(Ta — Tay,,) < ioe and, for all n > ng p(z — za,, ) < Le,

< 76
from which it follows that x, LN

We recall the following result (see for example [13], 7.1.2,p.293]). If (X, p, F)
is an LNS such that (E,||-||z) is a Banach space then (X, p-||-||z) is norm
complete iff the LNS (X, p, E) is rp-complete. On the other hand, it is
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not difficult to see that if an LNS is sequentially p-complete then it is rp-
complete. Thus, the following result follows readily.

Lemma 1. Let (X,p, E) be an LNS such that (E,||-|g) is a Banach space.
If (X,p, E) is sequentially p-complete then (X, p-||-||g) is a Banach space.

Consider LNSs (X, p, FE) and (Y, m, F'). A linear operator T': X — Y is
said to be dominated if there is a positive operator S : £ — F satisfying
m(Tz) < S(p(x)) for all x € X. In this case, S is called a dominant for T.
The set of all dominated operators from X to Y is denoted by M(X,Y).
In the ordered vector space L™~(E, F') of all order bounded operators from
FE into F, if there is a least element of all dominants of an operator T' then
such element is called the ezact dominant of T and denoted by |T|; see [13]
4.1.1,p.142].

By considering [13], 4.1.3(2),p.143] and Kaplan’s example [2| Ex.1.17],
we see that not every dominated operator possesses an exact dominant.
On the other hand if X is decomposable and F' is order complete then
every dominated operator T': X — Y has an exact dominant |T|; see [13]
4.1.2,p.142).

We refer the reader for more information on LNSs to [5, 8l [12] 13] and
[]. Tt should be noticed that the theory of lattice-normed spaces is well-
developed in the case of decomposable lattice norms (cf. [12l 13]). In [0]
and [I7] the authors studied some classes of operators in LNSs under the
assumption that the lattice norms are decomposable. In this article, we
usually do not assume lattice norms to be decomposable.

Throughout this article, L(X,Y") denotes the space of all linear operators
between vector spaces X and Y. For normed spaces X and Y we use B(X,Y)
for the space of all norm bounded linear operators from X into Y. We write
L(X) for L(X, X) and for B(X) for B(X,X). If X is a normed space then
X* denotes the topological dual of X and Bx denotes the closed unit ball
of X. For any set A of a vector lattice X, we denote by sol(A) the solid hull
of A, ie. sol(A) ={z € X :|z| < |a| for some a € A}.

The following standard fact will be used throughout this article.

Lemma 2. Let (X, ||-||) be a normed space. Then x, I, iff for any sub-
|

, -l
sequence Tp, there is a further subsequence Ty, such that Ty, — -

The structure of this paper is as follows. In section 2, we recall definitions
of p-continuous and p-bounded operators between LNSs. We study the rela-
tion between p-continuous operators and norm continuous operators acting
in mixed-normed spaces; see Proposition [3] and Theorem [II We show that
every p-continuous operator is p-bounded. We end this section by giving a
generalization of the fact that any positive operator from a Banach lattice
into a normed lattice is norm bounded in Theorem [21

In section 3, we introduce the notions of p-compact and sequentially p-
compact operator between LNSs. These operators generalize several known
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classes of operators such as compact, weakly compact, order weakly com-
pact, and AM-compact operators; see Example Bl Also the relation be-
tween sequentially p-compact operators and compact operators acting in
mixed-normed spaces are investigated; see Propositions [[] and § Finally
we introduce the notion of a p-semicompact operator and study some of its
properties.

In section 4, we define p-M-weakly and p-L-weakly compact operators
which correspond respectively to M-weakly and L-weakly compact opera-
tors. Several properties of these operators are investigated.

In section 5, the notions of (sequentially) up-continuous and (sequentially)
up-compact operators acting between LNVLs, are introduced. Composition
of a sequentially up-compact operator with a dominated lattice homomor-
phism is considered in Theorem B Corollary @ and Corollary Bl

2. p-CONTINUOUS AND p-BOUNDED OPERATORS

In this section we recall the notion of a p-continuous operator in an LNS
which generalizes the notion of order continuous operator in a vector lattice.

Definition 1. Let X, Y be two LNSs and T € L(X,Y). Then

(1) T is called p-continuous if Ta 20 in X implies Txoa 20 in Y. If
the condition holds only for sequences then T is called sequentially
p-continuous.

(2) T is called p-bounded if it maps p-bounded sets in X to p-bounded
sets in Y.

Remark 1.

(i) The collection of all p-continuous operators between LNSSs is a vector
space.

(ii) Using rp-convergence one can introduce the following notion:
A linear operator T' from an LNS (X, E) into another LNS (Y, F) is

called rp-continuous if T P0in X implies T'x 04nY. But this
notion is not that interesting because it coincides with p-boundedness
of an operator (see [5, Thm. 5.3.3 (a) ]).

(iii) A p-continuous (respectively, sequentially p-continuous ) operator be-
tween two LNSs is also known as bo-continuous (respectively, sequen-
tially bo-continuous) see e.g. [13), 4.3.1,p.156].

(iv) Let (X, E) be a decomposable LNS and let F' be an order complete
vector lattice. Then T € M, (X,Y) iff its exact dominant |T)| is order
continuous [13, Thm.4.3.2], where M, (X,Y) denotes the set of all
dominated bo-continuous operators from X to Y.

(v) Every dominated operator is p-bounded. The converse not need be
true, for example consider the identity operator I : (s, ||, lo0) —
(boo, III, R). It is p-bounded but not dominated (see [5, Rem.,p.388]).
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Next we illustrate p-continuity and p-boundedness of operators in partic-
ular LNSs.

Example 1.
(i) Let X and Y be vector lattices then T € L(X,Y) is (o-) order con-
tinuous iff T : (X, ||, X) — (Y, ||, Y) is (sequentially) p-continuous.
(ii) Let X andY be vector lattices then T € L™(X,Y) iff T : (X, ||, X) —
(Y, |, Y) is p-bounded.
(iii) Let (X, |‘|lx) and (Y, ||-|ly) be normed spaces then T € B(X,Y) iff
T: (X, |-|x,R) = (Y, |-y, R) is p-continuous iff T : (X, ||-[|x,R) —
(Y, [|lly,R) is p-bounded.
(iv) Let X be a vector lattice and (Y, ||-|ly) be a normed space. Then T €
L(X,Y) is called order-to-norm continuous if To — 0 in X implies

Tz M 0, see [15] Sect.4,p.468]. Therefore, T : X — Y is order-
to-norm continuous iff T : (X, ||, X) — (Y, ||-]ly,R) is p-continuous.

Lemma 3. Given an op-continuous LNVL (Y, m, F) and a vector lattice X .
IfT: X =Y is(0-) order continuous then T : (X,|-|,X) — (Y,m, F) is
(sequentially) p-continuous.

Proof. Assume that X 3 2,20 in (X,|-|,X) then z, >0 in X. Thus,
Tzo—0in Y as T is order continuous. Since (Y,m, F) is op-continuous
then m(Tzq) 0 in F. Therefore, Taq 20 in Y and so T is p-continuous.

The sequential case is similar. O

Proposition 1. Let (X,p, E) be an op-continuous LNVL, (Y, m,F) be an
LNVL and T : (X,p,E) — (Y,m, F) be a (sequentially) p-continuous posi-
tive operator. Then T : X —Y is (0-) order continuous.

Proof. We show only the order continuity of 7', the sequential case is analo-
gous. Assume z,, | 0in X. Since X is op-continuous then p(z,) | 0. Hence,
Zo 20 in X. By the p-continuity of T, we have m(Txq) >0 in F. Since
0 < T then Tz, J. Also we have m(Tx,) >0, so it follows from [4, Prop.1]
that Tz, | 0. Thus, T is order continuous. O

Corollary 1. Let (X,p,E) be an op-continuous LNVL, (Y,m,F) be an
LNVL such that Y is order complete. If T : (X,p,E) — (Y,m,F) is p-
continuous and T € L™~ (X,Y) then T : X — Y s order continuous.

Proof. Since Y is order complete and T is order bounded then T'= T+ — T~
by Riesz-Kantorovich formula. Now, Proposition [l implies that T and T~
are both order continuous. Hence, T is also order continuous. O

Proposition 2. Let (X, ||-||x) be a o-order continuous Banach lattice. Then
TeBX)iff T:(X,|],X) = (X,]'l|x,R) is sequentially p-continuous.

Proof. (=) Assume that T € B(X), and let z, >0 in (X,|-|,X). Then
2, >0 in X. Since (X, ||||x) is o-order continuous Banach lattice then
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20 11X, 0 and hence T 055 0. Therefore, T : (X, |-, X) = (X, |-l x,R)
is sequentially p-continuous.
(<) Assume T : (X, ||, X) = (X, |||lx,R) to be sequentially p-continuous.

Suppose z, M 0 and let x,, be a subsequence. Then clearly x,, —>“'”X 0.

Since (X, ||-||x) is a Banach lattice, there is a subsequence T, such that
; 20in X (cf. [I8, Thm.VIL.2.1]), and so Ty, 20in (X, ||, X). Since T

is sequentially p-continuous then T’ Ty, M 0. Thus, it follows from Lemma

Ty,

that Tz, M 0. O

Proposition 3. Let (X,p, E) be an LNVL with a Banach lattice (E, |-||g)
and (Y, m, F') be an LNS with a o-order continuous normed lattice (F, ||-||r).
IfT: (X,p,E) — (Y,m, F) is sequentially p-continuous then T : (X, p-||||r)
— (Y,m-||-||r) is norm continuous.

Proof. Let x,, be a sequence in X such that x,, rlle, g (ie. |lp(zn)lle —
0). Given a subsequence x,, then |p(zy, )|z — 0. Since (E,|-|g) is a

Banach lattice, there is a further subsequence Ty, such that p(:nnkj) 30
in E (cf. [I8, Thm.VII.2.1]). Hence, Loy, 20 in (X,p,E). Now, the p-
continuity of 7" implies m(T' :Enkj)i>0 in F. But F' is o-order continuous

and so Hm(Ta;nk])HF — 0 or m—HTmnijF — 0. Hence, Lemma [2] implies
m-||Tx,||p — 0. So T is norm continuous. O

The next theorem is a partial converse of Proposition [3l

Theorem 1. Suppose (X,p,E) to be an LNS with an order continuous
(respectively, o-order continuous) normed lattice (E, ||||g) and (Y, m, F) to
be an LNS with an atomic Banach lattice (F, ||-||r). Assume further that:
(i) T: (X,p-|I'llg) = (Y,m-||-|F) is norm continuous, and
(ii) T: (X,p, E) = (Y,m, F) is p-bounded.
Then T : (X,p, E) — (Y,m, F) is p-continuous (respectively, sequentially
p-continuous).

Proof. We assume that (E, ||-||g) is an order continuous normed lattice and

show the p-continuity of 7', the other case is similar. Suppose magO in
(X,p,E) then p(x,) >0 in E and so there is ag such that p(z,) < e for
all @ > ag. Thus, (z4)a>a, is p-bounded and, since T' is p-bounded then
(TTo)a>aq is p-bounded in (Y, m, F).

Since (E, ||-||) is order continuous and p(z4) = 0 in E then ||p(zq)||z — 0
or p-||za||z — 0. The norm continuity of T": (X, p-||-||g) — (Y, m-||-||) en-
sures that ||[m(Txq)||p — 0 or m-||Tzy||r — 0. In particular, |m(Tx,)||r —
0 for a > ay.

Let a € F be an atom, and f, be the biorthogonal functional corre-
sponding to a then f,(m(T'z,)) — 0. Since m(T'z,) is order bounded for all
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a > agand f, (m(Txa)) — 0 for any atom a € F, the atomicity of F' implies
that m(Tx,) >0 in F as ag < a — oo. Thus, T : (X,p, E) — (Y,m, F) is
p-continuous. O

The next result extends the well-known fact that every order continuous
operator between vector lattices is order bounded, and its proof is similar
to [1, Thm.2.1].

Proposition 4. Let T be a p-continuous operator between LNSs (X,p, F)
and (Y,m,F) then T is p-bounded.

Proof. Assume that T : X — Y is p-continuous. Let A C X be p-bounded
(i.e. there is e € F such that p(a) < e for all a € A). Let I = Nx A
be an index set with the lexicographic order. That is: (m,a’) < (n,a) iff
m < n or else m = n and p(a’) < p(a). Clearly, I is directed upward.
Define the following net as z(, o) = 1. Then P(T(na)) = 1p(a) < Le. So
P(Z(n,a)) % 0in E or T(n,q) 2, 0. By p-continuity of T, we get m(Tx(, q)) 20.
So there is a net (23)gep such that zg | 0 in F' and for any 8 € B, there
exists (n',a") € I satisfying m(T2z(,q)) < 2 for all (n,a) > (n',d’). Fix
Bo € B. Then there is (ng,a0) € I satisfying m(Tx(,q)) < 25, for all
(n,a) > (ng,ap). In particular, (ng + 1,a) > (ng,ap) for all a € A. Thus,
(T2 (ng11,0) = m(ﬁT&) < zg, or m(Ta) < (ng + 1)z, for all a € A.
Therefore, T is p-bounded. O

Remark 2.

(i) It is known that the converse of Proposition [{] is not true. For
example, let X = C[0,1] then X* = X~ and X = X, = {0}.
Here X[ denotes the o-order continuous dual of X and X, denotes
the order continuous dual of X. So, for any 0 # f € X* we have
(X, X) = (R,][,R) is p-bounded, which is not p-continuous.

(i) If T : (X,E) — (Y,F) between two LNVLs is p-continuous then
T : X — Y as an operator between two wvector lattices need not
be order bounded. Let’s consider Lozamnovsky’s example (cf. 12,
Exer.10,p.289]). If T : L1]0,1] — co is defined by

T(f) = </01 F(@)sina d:n,/olf(:n)sin2x d:n,...).

Then it can be shown that T is norm bounded which is not order
bounded. So T : (L1[0,1],]|-/|z,,R) — (co, ||*[|ccs R) is p-continuous
and T : L1[0,1] — ¢o is not order bounded.

Recall that T € L(X,Y); where X and Y are normed spaces, is called
Dunford-Pettis if z,, — 0 in X implies Tz, M) 0OinY.
Proposition 5. Let (X, ||-||x) be a normed lattice and (Y, ||-||y') be a normed
space. Put E := RX" and define p : X — E, by p(z)[f] = |f|(|z]) for
f e X*. Itis easy to see that (X,p, E) is an LNVL (cf. [4 Ex.4]).
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(i) If T € L(X,Y) is a Dunford-Pettis operator then T : (X,p,E) —
(Y, [|-]ly,R) is sequentially p-continuous.

(ii) The converse holds true if the lattice operations of X are weakly
sequentially continuous.

Proof. (i) Assume that z, =0 in X. Then p(z,) =0 in E, and hence
p(zn)[f] = 0 or |f|(|xn]) — 0 for all f € X*. From which, it follows
that |z,| 0 and so z, — 0 in X. Since T is a Dunford-Pettis operator

then Tz, M 0.

(ii) Assume that x, — 0. Since the lattice operations of X are weakly
sequentially continuous then we get |z,| 0. So, for all f € X*, we have

|£|(|zn]) = 0 or p(z,)[f] — 0. Thus, z, >0 and, since T is sequentially
p-continuous, we get Tx,, M 0. Therefore, T' is Dunford-Pettis. O
Remark 3. It should be noticed that there are many classes of Banach
lattices that satisfy condition (ii) of Proposition [A.  For example the lat-
tice operations of atomic order continuous Banach lattices, AM -spaces and
Banach lattices with atomic topological dual are all weakly sequentially con-
tinuous (see respectively, [16, Prop. 2.5.23], [2, Thm. 4.31] and [3, Cor.
2.2])

It is known that any positive operator from a Banach lattice into a normed
lattice is norm continuous or, equivalently, is norm bounded (see e.g., [2]
Thm.4.3]). Similarly we have the following result.

Theorem 2. Let (X,p,E) be a sequentially p-complete LNVL such that
(E,||'llg) is a Banach lattice, and let (Y, ||-||y) be a normed lattice. If T :

X — Y is a positive operator then T is p-bounded as an operator from
(X,p, E) into (Y, [y, R).

Proof. Assume that T : (X,p,E) — (Y,]|[ly,R) is not p-bounded. Then
there is a p-bounded subset A of X such that T'(A) is not norm bounded
in Y. Thus, there is e € F; such that p(a) < e for all a € A, but T'(A) is
not norm bounded in Y. Hence, for any n € N, there is an xz,, € A such
that ||Tx,|y > n3. Since |Tz,| < T|x,|, we may assume without loss of

1

[e.e]
generality that z, > 0. Consider the series »_ —3Zn In the mixed-norm

n=1

space (X, p-||-||g), which is a Banach lattice due to Lemmal[ll Then

> 1 <1 <1
Zp—llmwnllE = Z pllp(:ﬂn)HE <llelle Z 3 <00
n=1 n=1 n=1

o
Since the series > #azn is absolutely convergent, it converges to some ele-
n=1
— 1 1
ment, say x, i.e. T = 21 ~52n € X. Clearly, z > 5z, for every n € N and,
n—=
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since T' > 0 then T'(x) > #Txn, which implies ||Tz||y > #HTQ:TLHY > n for
all n € N; a contradiction. O

Example 2. (Sequential p-completeness in Theorem [2 can not be removed)

Let T : (coo, |, o) — (R, |-|,R) be defined by T'(xy,) = > naxy. ThenT >0
n=1
and clearly the LNVL (coo, ||, ls) is not sequentially p-complete.
Consider the p-bounded sequence e, in (coo, | |,lx). Since Te, = n for
all n € N, the sequence Te, is not norm bounded in R. Hence, T is not
p-bounded.

Example 3. (Norm completeness of (E, ||-||p) can not be removed in The-

orem [Q) Consider the LNVL (coo,p,coo), where p(xy) = (. |xn|)er. It

n=1
can be seen easily that (coo,p,coo) 1S sequentially p-complete. Note that
(c00s ||*]loo) s mot morm complete. Define S : (coo,p,co0) — (R,]|,R) by

o0

S(xy) = > nxy. Then S >0, pley) < e1 for each n € N. But Se,, =n is
n=1
not bounded in R.

It is well-known that the adjoint of an order bounded operator between
two vector lattices is always order bounded and order continuous (see, for
example [2, Thm.1.73]). The following two results deal with a similar situ-
ation.

Theorem 3. Let (X,||'||x) be a normed lattice and Y be a vector lattice.
Let Y[ denote the o-order continuous dual of Y. If 0 < T : (X, |||x,R) —
(Y, |-|,Y) is sequentially p-continuous and p-bounded then the operator T™ :
(Y21 LYS) = (X5 ||| x+, R) defined by T~ (f) := f oT is p-continuous.

Proof. First, we prove that T7(f) € X* for each f € Y”. Assume z,, M> 0.
Since T is sequentially p-continuous then Tz, =0 in Y. Since f is o-order
continuous then f(Tx,) — 0 or (foT)(x,) — 0. Hence, we have foT € X*.

Next, we show that 7" is p-continuous. Assume 0 < fo—0 in Y, we
show [|T fal[x+ — 0 or [ faoT|x+ — 0. Now, |[faoT|[x- = sup |(faoT)x|.
rEDX

Since Bx is p-bounded in (X, ||-||x,R) and 7" is p-bounded operator then
T(Bx) is order bounded in Y. So there exists y € Y, such that —y < Tz <y
for all z € Bx. Hence — foy < (faoT)x < fay for all z € Bx and for all a.
So || faoT ||x* € [—fay, fay] for all .. It follows from [I8, Thm.VIII.2.3] that
lién fay = 0. Thus, lingfa oT| x+ = 0. Therefore, T is p-continuous. [

Theorem 4. Let X be a vector lattice and Y be an AL-space. Assume
0<T:(X,|'],X) = (Y,]|]ly,R) is sequentially p-continuous. Define T :
Y* |- [[y=,R) = (X~ |-, X™) by T~(f) = foT. Then T~ is sequentially
p-continuous and p-bounded.

Proof. Clearly, if f € Y* then f o T is order bounded, and so T™(f) € X™.
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We prove that T is p-bounded. Let A C Y™ be a p-bounded set in
(Y*/||-|[y+,R) then there is 0 < ¢ < oo such that || f||y> < ¢ for all f € A.
Since Y* is an AM-space with a strong unit then A is order bounded in Y*;
i.e., thereis a g € Y such that —g < f < g for all f € A. That is, —g(y) <
f(y) < g(y) for any y € Y., which implies —g(T'z) < f(Tx) < g(Tz) for all
x € Xy. Thus, —goT < foT <goT or —goT <T~f < goT for every
f € A. Therefore, T~ (A) is p-bounded in (X, |-[, X™).

Next, we show that T is sequentially p-continuous. Assume 0 < f,, ””—Y*>

0 in (Y*,|-|[y=). Since Y* is an AM-space with a strong unit, say e, then

In M 0. It follows from [14, Thm.62.4] that f, e-converges to zero in Y*.

Thus, there is a sequence € | 0 in R such that for all £ € N there is ny € N
satisfying f,, < exe for all n > ny. In particular, f,(Tx) < epe(Tx) for all
x € X, and for all n > ng. From which it follows that f, o T' e-converges
to zero in X~ and so f,, oT =0 in X~. Hence, T™(f,) >0 in X~ and T
is sequentially p-continuous. O

3. p-CoMPACT OPERATORS

Given normed spaces X and Y. Recall that 7' € L(X,Y) is said to be
compact if T'(By) is relatively compact in Y. Equivalently, T is compact
iff for any norm bounded sequence x,, in X there is a subsequence x,,, such
that the sequence T'x,, is convergent in Y. Motivated by this, we introduce
the following notions.

Definition 2. Let X, Y be two LNSs and T € L(X,Y). Then
(1) T is called p-compact if, for any p-bounded net x, in X, there is a
subnet Tq, such that T, 3>y mY for somey €Y.
(2) T is called sequentially p-compact if, for any p-bounded sequence x,

in X, there is a subsequence x,, such that Tz, LN y in'Y for some
yey.

Example 4. (A sequentially p-compact operator need not be p-compact)
Let’s take the vector lattice

a,(R):={f:R—>R:3ae€R,Ve >0, card({z € R:|f(z)—a| >¢c}) <N;}.

Consider the identity operator I on (cx, (R),|-|,ex, (R)). Let f, be a p-

bounded sequence in (cx, (R), ||, ex, (R)). So there is g € cx, (R) such that

0< f, <g for alln € N.

For any n € N, there is a, € Ry such that for all € > 0, card({x eR:

|f(z)—an| > €}) < Ny. Clearly the sequence a,, is bounded in R, so there is a

subsequence ay, and a € R such that a,, — a as k — 0o. For each m,k € N,
o o

let App, ={z € R: |fp,(x) —an,| > %} Put A= |J U Amn, and let
m=1k=1

h = axg\a then fn, 2 h, since order convergence in ex, (R) is pointwise

convergence. Thus, I is sequentially p-compact.
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On the other hand; let F(R) be the collection of all finite subsets of R.
For each o € F(R) let fo := Xr\a- Then fo <1 € ey, (R) and aq = 1. But,
for every subnet fq,, we have fq, () /A 1 for any x € R, so Jas does not
converge in order to 1. Therefore, I is not p-compact.

In connection with Example [ the following question arises naturally.

Question 1. Is it true that every p-compact operator is sequentially p-
compact?

Definition 3. Let X, Y be two LNSs and T € L(X,Y). Then
(1) T is called rp-compact, if for any p-bounded net x,, in X, there is a

subnet xo, such that Txq, P, yinY for somey €Y.
(2) T is called sequentially rp-compact, if for any p-bounded sequence

zn n X, there is a subsequence x,, such that Tx,, E)y inY for
some y €Y.

Remark 4.

(i) Every (sequentially) rp-compact is (sequentially) p-compact.

(ii) The converse of (i) in the sequential case need not to be true. Con-
sider the identity operator I on ({xo,|-|,¥o0). It can be easily seen
that I is sequentially p-compact but is not sequentially rp-compact.

(iii) We do not know whether or not every rp-compact operator is sequen-
tially rp-compact and whether or not the vice versa is true.

In the following example we show that p-compact operators generalize
many well-known classes of operators.

Example 5.
(i) Let (X,|llx) and (Y, |||lv) be normed spaces. ThenT : (X, ||-||x,R) —
(Y, |-y, R) is (sequentially) p-compact iff T : X — Y is compact.

(ii) Let X be a vector lattice and'Y be a normed space. An operator T €
L(X,Y) is said to be AM-compact if T|—x, x| is relatively compact
for every x € X1 (cf. [16, Def.3.7.1]). Therefore, T € L(X,Y) is
AM -compact operator iff T : (X, ||, X) = (Y, |||ly,R) is p-compact.

(i) Let X andY be normed spaces. An operator T € L(X,Y") is said to

be weakly compact if T(Bx) is relatively weakly compact.
Let X be a normed space and (Y, ||-||y) be a normed lattice. Let E :=
RY" and consider the LNVL (Y, p, E), where p(y)[f] = | f|(|y|) for all
feY* ThenT e L(X,Y) is weakly compact iff T : (X, ||| x,R) —
(Y,p, E) is sequentially p-compact.

(iv) Let X be a vector lattice and 'Y be a normed space. An operator T €
L(X,Y) is said to be order weakly compact if T|—x,x] is relatively
weakly compact for every x € X1 (cf. [16], Def.3.4.1.ii)]).

Let X be a vector lattice and (Y, ||-||y) be a normed lattice. Let
E :=RY" and consider the LNVL (Y,p, E), where p(y)[f] = |f|(Jy])
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for all f € Y*. Then T € L(X,Y) is order weakly compact iff
T:(X,|],X) — (Y,p, E) is sequentially p-compact.

Remark 5. It is known that any compact operator is norm continuous, but
in general we may have a p-compact operator which is not p-continuous.
Indeed, consider the following example taken from [15]. Denote by B the
Boolean algebra of the Borel subsets of [0, 1] equals up to measure null sets.
Let U be any ultrafilter on B. Then it can be shown that the linear operator
o Loo[0,1] — R defined by
1
= lim ——
eu(h) o [ £

Aelt
is AM-compact which is not order-to-norm continuous; see [15, Ex.4.2].
That is, the operator ¢y : (Loo[0, 1], ]|, Loc[0,1]) — (R, ||, R) s p-compact,
which is not p-continuous.

Example 6. (A sequentially p-compact operator need not be p-bounded)
Let’s consider again Lozanovsky’s example (cf. [2 Exer.lO,p.289]). IfT .
L1[0,1] — ¢ is defined by

T(f) = </01 f(z)sinz da;,/ol f(z)sin2zx dzx, >

Then it can be shown that T is not order bounded. So T is not p-bounded
as an operator from the LNS (L1[0,1], ||, L1[0,1]) into the LNS (co, ||, c0)-

On the other hand, let f, be a p-bounded sequence in (Ll[O, 1], ||, L1 [0, 1])
then f,, is order bounded in L1[0,1]. By a standard diagonal argument there
are a subsequence fp, and a sequence a = (a)ken € co such that T fy, %a
in co. Therefore, T : (L1[0,1],]-, L1[0,1]) — (co,|-|,co) is sequentially p-
compact.

Since any compact operator is norm bounded, the following question arises
naturally.

Question 2. Is it true that every p-compact operator is p-bounded?
Regarding (sequentially) rp-compact operators, we have the following.

Question 3.

(1) Is it true that every rp-compact operator is p-bounded or equivalently
rp-continuous?
(2) Is it true that every sequentially rp-compact operator is p-bounded?

Let (X, E) be a decomposable LNS and (Y, F') be an LNS such that F is
order complete then, by [13], 4.1.2,p.142], each dominated operator T': X —
Y has the exact dominant |T'|. Therefore, the triple (M (X,Y),p, L™ (E, F))
is an LNS, where p : M(X,Y) — L7(E, F) is defined by p(T) = || (see,
for example [I3], 4.2.1,p.150]). Thus, if T}, is a net in M (X,Y’) then T, 57
in M(X,Y), whenever |T,, — T| >0 in L~(E, F).
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Theorem 5. Let (X, p, E) be a decomposable LNS and (Y, q, F) be a sequen-
tially p-complete LNS such that F' is order complete. If T,, is a sequence in

M(X,Y) and each T,, is sequentially p-compact with T, 57T in M(X,Y)
then T 1is sequentially p-compact.

Proof. Let x, be a p-bounded sequence in X then there is e € E such that
p(zy) < e for all n € N. By a standard diagonal argument, there exists a

subsequence z,, such that for any m € N, T}, 2, LN Ym for some y,, € Y.
We show that g, is a p-Cauchy sequence in Y.

Q(ym - yj) = Q(ym - menk + menk - erxnk + ,T]xnk - yj)
< qm — Tmzny,) + ¢(Tnwny, — Tjan,) + q(Tjan, —y;)-
The first and the third terms in the last inequality both order converge to

zero as m — oo and j — oo, respectively. Since T,, € M(X,Y) for all
m € N then

Q(menk - zj”k) < |Tm - TJ|(p($nk)) < |Tm - le(e)-

Since T}, > T in M(X,Y) then, by [18, Thm.VIII.2.3], it follows that |1}, —
Tj|(e)i>0 in F, as m,j — oo. Thus, q(ym —yj)3>0 in F as m,j — oo.
Therefore, y,, is p-Cauchy. Since Y is sequentially p-complete then there is
y € Y such that q(ym, — y) =0 in F as m — co. Hence,

((Txn, —y) < @((Ton, — Tmn,) + Q( T, — Ym) + q(Ym — y)
< |Tm - TI (p(xnk)) + Q(menk - ym) + q(ym - y)
< T = Tl(e) + q(Timxn, — Ym) + ¢(Ym — ).

Fix m € N and let £ — oo then

limsup ¢(Txn, — ) < |Tnm — T|(e) + q(ym — y)-

k—o0

But m € N is arbitrary, so limsup ¢(Tz,, —y) = 0. Hence, q(T'z,, —y) 20.
k—o0

Therefore, T is sequentially p-compact. O

Proposition 6. Let (X,p,E) be an LNS and R, T,S € L(X).

(i) If T is (sequentially) p-compact and S is (sequentially) p-continuous
then S o T is (sequentially) p-compact.

(ii) If T is (sequentially) p-compact and R is p-bounded then T o R is
(sequentially) p-compact.

Proof. (i) Assume z, to be a p-bounded net in X. Since T is p-compact,
there are a subnet z,, and x € X such that p(T're, — ) 20. Tt follows
from the p-continuity of S that p(S(T$aﬁ) — Sz) 2 0. Therefore, SoT is
p-compact.

(ii) Assume z, to be a p-bounded net in X. Since R is p-bounded then
Rz, is p-bounded. Now, the p-compactness of 1" implies that there are a
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subnet z,, and z € X such that p(T(Rza,) — 2) 2 0. Therefore, T o R is
p-compact.
The sequential case is analogous. O

Proposition 7. Let (X,p,E) be an LNS, where (E,||g) is a normed
lattice and (Y,m,F) be an LNS, where (F,|-||r) is a Banach lattice. If
T:(X,p-|l'llg) = (Y,m-||-|r) is compact then T : (X,p,E) — (Y,m, F) is
sequentially p-compact.

Proof. Let z,, be a p-bounded sequence in (X,p, F). Then there is e € E
such that p(xz,) < e for all n € N. So |p(z,)||lg < |le]|lg < oo. Hence,
%y, is norm bounded in (X, p-|-||g). Since T' is compact then there are a
subsequence z,, and y € Y such that m-||Tz,, —y|r — 0 or [|m(Tx,, —
Y)llr — 0. Since (F,||-||r) is a Banach lattice then, by [I8, Thm.VII.2.1]
there is a further subsequence Ty, such that m(Txnkj —v) 2 0. Therefore,

T:(X,p,E) = (Y,m,F) is sequentially p-compact. O

Proposition 8. Let (X,p, E) be an LNS, where (E,||-||g) is an AM -space
with a strong unit. Let (Y,m,F) be an LNS, where (F,||-|r) is an order
continuous normed lattice. If T : (X,p,E) — (Y,m,F) is sequentially p-
compact then T : (X, p-|-||g) = (Y,m-||-||F) is compact.

Proof. Let x, be a normed bounded sequence in (X,p-||||g). That is:
p-llznllE = |lp(zn)||E < k < oo forall n € N. Since (E, ||-||g) is an AM-space
with a strong unit then p(z,,) is order bounded in E. Thus, z,, is a p-bounded
sequence in (X, p, E). Since T is sequentially p-compact, there are a subse-
quence x,, and y € Y such that m(Tz,, —y) >0 in F. Since (F, ||-|r) is
order continuous then ||m(T'z,, —y)||r — 0 or m-||Tz,, —y||r — 0. Thus,
the operator T : (X, p-|||g) — (Y, m-||-||) is compact. O

The following result could be known but since we do not have a reference
for it we include a proof for the sake of completeness.

Lemma 4. Let X be an atomic vector lattice. Then a net x4 is uo-null iff
it is pointwise null, (that is, |xo| A a0 for all atoms in X).

Proof. The forward implication is trivial.

For the converse, let z, be a pointwise null net in X. Without loss of
generality, we may assume that z, > 0. Take v € X;. Then we need to
show that z, Au—>0. Consider the following directed set A = Prin(£2) x N,
where  is the collection of all atoms in X. For each § = (F,n) € A,

put ys = % > a+ >, P,u, where P, denotes the band projection onto
acF a€Q\F

span{a}. It is easy to see that ys | 0 and for any § € A there is an «; such
that for any o > a5 we have that 0 < zo Au < ys5. Therefore, zo Au—0. O

Remark 6. If X is an atomic K B-space then every order bounded net has
an order convergent subnet. Indeed, let x, be an order bounded net in X.
Then clearly x4 is norm bounded and so, by [11, Thm.7.5] there is a subnet
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Tay such that zag 2 for some x € X. But, in atomic order continuous
Banach lattices un-convergence coincides with pointwise convergence (see
[11, Cor. 4.14]). Therefore, by Lemma[f] xq, = . Thus Top 2z, since To
is order bounded.

Proposition 9. Let X be a vector lattice and (Y, m, F') be an op-continuous
LNVL such thatY is atomic K B-space. If T € L™ (X,Y) thenT : (X, ||, X)
— (Y,m, F) is p-compact.

Proof. Let z, be a p-bounded net in (X, |-|, X) then z, is order bounded
in X. Since T is order bounded then Tz, is order bounded in Y, which is
an atomic K B-space. So, by Remark [6] there are a subnet Ta, and y €Y
such that Tz, 2 y. Since (Y, m, F') is op-continuous then m(Txa,—y) 2 0.
Thus, T is p-compact. O

Proposition 10. Let (X,p, E) and (Y,|-,Y) be two LNVLs such that'Y is
an atomic KB-space. If T : (X,p,E) — (Y,|-|,Y) is p-bounded then T is
p-compact.

Proof. Let z, be a p-bounded net in X. Since T is p-bounded then Tz, is
order bounded in Y. Since Y is an atomic K B-space then, by Remark [6],
there is a subnet x,, such that Tz, 2y for some y € Y. Therefore, T is
p-compact. O

Remark 7.

(i) We can not omit the atomicity in Propositions [4 and [I(} consider
the identity operator I on (L1[0,1],]|-|, L1]0,1]) then the sequence of
Rademacher functions is order bounded and has no order convergent
subsequence, so I is not p-compact.

(i1) The identity operator I on (¢1,]-],41) satisfies the conditions of Propo-
sition[d, so I is p-compact. This shows that the identity operator on
an infinite dimensional space can be p-compact.

(iii) We do not know whether or not the identity operator I on the LNS
(Loo[0,1], 1], Loo [0, 1]) could be p-compact or sequentially p-compact.

Proposition 11. Let (X,p, E) and (Y,m,F) be LNSs. Let T : (X,p, E) —
(Y,m, F) be a p-bounded finite rank operator. Then T is p-compact.

Proof. Without lost of generality, we may suppose that T is given by Tx =
f(z)yo for some p-bounded functional f : (X,p, E) — (R, |-|,R) and yp € Y.

Let 24 be a p-bounded net in X then f(z,) is bounded in R, so there is
a subnet z, such that f(x,,) — A for some A € R. Now, m(Txq, — Ayo) =

m((fxaﬁ —Nyo) = |f(zags) — Alm(yo) 20 in F. Thus, T is p-compact. [

Example 7. (The p-boundedness of T in Proposition[I1l can not be removed)
Let (X,p,E) be an LNS and f : (X,p,E) — (R, ||, R) be a linear functional
which is not p-bounded. Then there is a p-bounded sequence x,, such that
|f(xn)| = n for alln € N. Therefore, any rank one operator T : (X, p, E) —
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(Y,m, F) given by the rule Tz = f(x)yg, where 0 # yo € Y, is not p-
compact.

Recall that:

(1) A subset A of a normed lattice (X, ||-||) is called almost order bounded
if, for any € > 0, there is u. € X, such that

(2] = ue) ™ = lllz] —ue Afzll <& (V2 € A).

(2) Given an LNVL (X,p, E). A subset A of X is said to be p-almost
order bounded if, for any w € F,, there is x,, € X such that

p(([z] = 20)7) =p(lz] — 2w Al2]) Sw (Vo € A),

see [, Def.7]. If (X, ||-||) is a normed lattice then a subset A of X is p-
almost order bounded in (X, ||-||, R) iff A is almost order bounded in
X. On the other hand, if X is a vector lattice, a subset in (X, |-|, X)
is p-almost order bounded iff it is order bounded in X.

(3) An operator 7" € L(X,Y), where X is a normed space and Y is
a normed lattice, is called semicompact if T(Bx) is almost order
bounded in Y.

Definition 4. Let (X, FE) be an LNS and (Y, F) be an LNVL. A linear
operator T : X — Y is called p-semicompact if, for any p-bounded set A in
X, we have that T(A) is p-almost order bounded in'Y .

Remark 8.

(i) Any p-semicompact operator is p-bounded operator.

(ii) Let T,S € L(X), where X is an LNS. If T is p-semicompact and S
is p-compact then it follows easily from Proposition[d (ii), that SoT
18 p-compact.

(iii) Given T € L(X,Y); where X is a normed space and Y is a normed
lattice. Then T is semicompact iff T : (X, ||||x,R) = (Y, ||y, R) s
p-semicompact.

(iv) For vector lattices X and Y, we have T € L™ (X,Y) iff T : (X, ||, X)
— (Y, |-, Y) is p-semicompact.

Proposition 12. Let (X,p,E) be an LNS with an AM-space (E.|-||r)
possessing a strong unit and (Y,m,F) be an LNVL with a normed lat-
tice (F\|"llp). If T : (X,p,E) — (Y,m,F) is p-semicompact then T :
(X, p-lI'lle) = (Y,m-||||F) is semicompact.

Proof. Consider the closed unit ball By of (X, p-||-||g). Then p-||z||z <1 or
lp(x)||g <1 for all x € Bx. We show that T'(Bx) is almost order bounded
in (Y,m-||-||r). Given € > 0. Let w € F such that

(3.1) lwl|F =e.

Since ||p(z)||lg < 1 for all z € Bx and (E,||-||g) is an AM-space with a
strong unit, there exists e € E such that p(xz) < e for all x € Bx. Thus,
Bx is p-bounded in (X, p, E) and, since T is p-semicompact, we get that
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T(Bx) is p-almost order bounded in (Y, m, F’). So, for w € F in ([3.1), there
is Y € Y, such that m((|Tz|—yw)") < w for all z € Bx, which implies that
||m((|Tx| —yw)+)||F < ||lw||F for all z € Bx. Hence, m-||(|Tz| —yw)t||r < €
for all x € Bx. Therefore, T' is semicompact. U

Proposition 13. Let (X,p,E) and (Y,m,F) be two LNVLs. Suppose a
positive linear operator T : X — Y to be p-semicompact. If 0 < S < T then
S is p-semicompact.

Proof. Let A be a p-bounded set in X. Put |A]| := {|a| : a € A}. Clearly
|A| is p-bounded. Since T is p-semicompact then T'(|A]) is p-almost order
bounded. Given w € F, there is y,, € Y such that
m((T)a| = yuw)™) < w (a € A).
Thus, for any a € A,
Sla] < Tla| = (Slal — yu)™ < (Tlal = yw)™ = m((Sla] —yuw)") < w
Since (|Sa| — yu)T < (Sla| — yu) T, we have
m((1Sal = yu)*) < m((Slal —y.)*) <w (V€ A).
Therefore, S(A) is p-almost order bounded, and S is p-semicompact. O

A linear operator T' from an LNS (X, E) to a Banach space (Y, ||-||y) is
called generalized AM -compact or GAM -compact if, for any p-bounded set
Ain X, T(A) is relatively compact in (Y, ||-||y); see [I7, p.1281]. Clearly, T :
(X,p, E) = (Y, |||ly,R) is GAM-compact iff it is (sequentially) p-compact.

Proposition 14. Let (X, p, E) be an LNS and (Y, m, F') be an op-continuous
LNVL with a norming Banach lattice (Y, |||ly). If T : (X,p, E) = (Y. |-|ly)
is GAM -compact then T : (X,p, E) — (Y, m, F) is sequentially p-compact.

Proof. Let x,, be a p-bounded sequence in X. Since T is GAM-compact then
there are a subsequence z,, and some y € Y such that ||Tz,, —y|y — 0. As
(Y, ||Illv) is Banach lattice then, by [I8, Thm.VII.2.1], there is a subsequence

Tn, such that T Tny, 2y in Y. Then, by op-continuity of (Y, m, F), we get

Ta;nkj LN y in Y. Hence, T is sequentially p-compact. O

In particular, if (X,p, F) is an LNS, (Y,]]||y) is a Banach lattice and
T:(X,p,E) = (Y,|]ly) is GAM-compact operator then, since (Y, |-|,Y)
is always op-continuous LNVL, we get that T : (X,p, E) — (Y,|,Y) is
sequentially p-compact.

It is known that any compact operator is semicompact. So, the following
question arises naturally.

Question 4. Is it true that every p-compact operator is p-semicompact?

It should be noticed that, if Question [2] has a negative answer then Ques-
tion [ has a negative answer as well, since every p-semicompact operator is
p-bounded, and if Question [2] has a positive answer then every p-compact
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operator T : (X, ||, X) — (Y,]||,Y) is p-semicompact, where X and Y are
vector lattices.

The converse of Question [dlis known to be false. For instance, the identity
operator I on ({oo, ||*]|oo) is semicompact which is not compact.

4. p-M-WEAKLY AND p-L-WEAKLY COMPACT OPERATORS

Recall that an operator 7' € B(X,Y) from a normed lattice X into a
normed space Y is called M-weakly compact, whenever lim ||T'z,,|| = 0 holds
for every norm bounded disjoint sequence z,, in X, and T' € B(X,Y) from a
normed space X into a normed lattice Y is called L-weakly compact, when-
ever lim ||y, || = 0 holds for every disjoint sequence y,, in sol(T(Bx)) (see
for example, [16, Def.3.6.9]). Similarly we have:

Definition 5. Let T : (X,p,E) — (Y,m, F) be a p-bounded and sequentially
p-continuous operator between LNSSs.

(1) If X is an LNVL and m(Txz,) >0 for every p-bounded disjoint se-
quence T, in X then T is said to be p-M-weakly compact.

(2) If Y is an LNVL and m(yy) 250 for every disjoint sequence y, in
sol(T(A)), where A is a p-bounded subset of X, then T is said to be
p-L-weakly compact.

Remark 9.

(1) Let (X, ||-]|x) be a normed lattice and (Y, ||-|ly) be a normed space.
Assume T € B(X,Y) then T : (X, [||x,R) = (Y, [||ly,R) is p-M-
weakly compact iff T : X —'Y is M-weakly compact.

(2) Let (X, ||]|x) be a normed space and (Y, ||-|ly) be a normed lattice.
Assume T € B(X,Y) then T : (X, ||| x,R) = (Y, |‘|ly,R) @s p-L-
weakly compact iff T : X — 'Y is L-weakly compact.

In the sequel, the following fact will be used frequently.

Remark 10. If z,, is a disjoint sequence in a vector lattice X then x, — 0
(see [10, Cor.3.6]). If, in addition, x, is order bounded in X then clearly

:Eni>0.

It is shown below that, in some cases, the collection of p-M and p-L-
weakly compact operators can be very large.

Proposition 15. Assume X to be a vector lattice and (Y, ||||y) a normed
space. If T : (X, |, X) = (Y,|I|ly,R) is p-bounded and sequentially p-
continuous then T is p-M -weakly compact.

Proof. Let x,, be a p-bounded disjoint sequence in (X, |-|,X). Then z, is
order bounded in X and, by Remark [0, we get z, — 0. That is, z, 20 in

X, ||, X). Since T is sequentially p-continuous then Tz, M 0. Therefore,
Yy

T: (X, |-, X) = (Y, |llv,R) is p-M-weakly compact. O
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Corollary 2. Let (X, ||-||x) be a normed lattice and Y be a vector lattice.
Let Y~ denote the o-order continuous dual of Y. If 0 <T : (X, |||x,R) —
(Y, |, Y) is sequentially p-continuous and p-bounded then the operator T™ :
(2, 1L Y2) = (X" [Flxe,R) defined by T~(f) == f o T is p-M-weakly
compact.

Proof. Theorem [B] implies that T is p-continuous, and so it is p-bounded
by Propositiondl Thus, we get from Proposition [I5] that 7" is p-M-weakly
compact. U

Proposition 16. Assume (X, ||-||x) to be a normed lattice and Y a vector
lattice. If T : (X, |||lx,R) — (Y,[|:|,Y) is p-bounded and sequentially p-
continuous operator then T is p-L-weakly compact.

Proof. Let A be a p-bounded set in (X, |-||x,R). Since T is a p-bounded
operator then T'(A) is p-bounded in (Y, |-|,Y), i.e. T(A) is order bounded
and hence sol(T'(A)) is order bounded. Let y, be a disjoint sequence in
sol(T'(A)). Then, by Remark [0, we have y, >0 in Y, ie. y,->0 in
(Y, ||, Y). Thus, T is p-L-weakly compact. O

Corollary 3. Let X be a vector lattice and Y be an AL-space. Assume
0<T:(X,|,X) = (Y,|'llv,R) to be sequentially p-continuous. Define
T (Y*7||||Y*7R) - (XN7|'|7XN) by TN(f) = foT. Then T™ is p-L-
weakly compact.

Proof. TheoremMlimplies that T is sequentially p-continuous and p-bounded,
and so we get, by Proposition [I6], that T is p-L-weakly compact. O

It is known that any order continuous operator is order bounded, but this
fails for o-order continuous operators; see [2, Exer.10,p.289]. Therefore, we
need the order boundedness condition in the following proposition.

Proposition 17. If T : X — Y is an order bounded o-order continuous
operator between vector lattices then T : (X, |-|,X) — (Y,||,Y) is both p-
M -weakly and p-L-weakly compact.

Proof. Clearly, T : (X, |-],X) — (Y,|-],Y) is both sequentially p-continuous
and p-bounded.

First, we show that T is p-M-weakly compact. Let z, be a p-bounded
disjoint sequence of X. Then, by Remark [0, we get z, —0 in X and so
Tz, >0 in Y. Therefore, T is p-M-weakly compact.

Next, we show that T is p- L-weakly compact. Let A be a p-bounded set in
(X, -], X) then A is order bounded in X. Thus, T'(A) is order bounded and
so sol(T(A)) is order bounded in Y. If y, is a disjoint sequence in sol(T'(A))
then again, by Remark [0, y, =0 or y, —0 in (Y, |-|,Y). Therefore, T is
p-L-weakly compact. O

Next, we show that p-M-weakly and p- L-weakly compact operators satisfy
the domination property.
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Proposition 18. Let (X,p, E) and (Y, m,F) be LNVLs and let S,T : X —
Y be two linear operators such that 0 < S <T.

(i) If T is p-M-weakly compact then S is p-M -weakly compact.

(ii) If T is p-L-weakly compact then S is p-L-weakly compact.

Proof. (i) Since T is sequentially p-continuous and p-bounded then it is
easily seen that S is sequentially p-continuous and p-bounded. Let x,, be a
p-bounded disjoint sequence in X. Then |z, | is also p-bounded and disjoint.
Since T is p-M-weakly compact then m(T|z,|) =0 in F. Now, 0 < S|z,| <
T|xy| for all n € N and since the lattice norm is monotone then we get
m(S|z,|) >0 in F. Now, |Sz,| < S|z,| for all n € N and so m(Sz,) =
m(|Sz,|) < m(S|z,|) =0 in F. Thus, S is p-M-weakly compact.

(ii) It is easy to see that S is sequentially p-continuous and p-bounded. Let
A be a p-bounded subset of X. Put |A| = {|a| : a € A}. Clearly, sol(S(A)) C
so0l(S(JA])) and since 0 < S < T, we have sol(S(|A])) C sol(T(|A|)). Let y,
be a disjoint sequence in sol(S(A)) then y, is in sol(T(|A])) and, since T’
is p-L-weakly compact then m(S|z,|) =0 in F. Therefore, S is p-L-weakly
compact. U

The following result is a variant of [2, Thm.4.36].

Theorem 6. Let (X,p, E) be a sequentially p-complete LNVL such that
(E,|I'llg) is a Banach lattice, and let (Y,m,F) be an LNS. Assume T :
(X,p,E) = (Y,m,F) to be sequentially p-continuous, and let A be a p-
bounded solid subset of X.

If m(Tx,) >0 holds for each disjoint sequence x,, in A then, for each
atom a in F' and each € > 0, there exists 0 < u € I 4 satisfying

fa(m(T(]a;\ —u)t)) <e
for all x € A, where I4 denotes the ideal generated by A in X.

Proof. Suppose the claim is false. Then there is an atom ag € F and g5 > 0
such that, for each > 0 in I4, we have fo, (m(T(|z| —u)™)) > & for some
x € A. In particular, there exists a sequence x, in A such that

(4.1) Foo (T (2| =47 Y i) D)) > 0 (vn € ).
=1

o0
Now, put y = > 27"|xy,|. Lemma [Il implies that y € X. Also let w,, =
n=1

n n

(|ens1]—4" Y |z:) T and vy, = (|xny1]|—4" > |2 —27"y)T. By [2, Lm.4.35],
i=1 =1

the sequence v, is disjoint. Also since A is solid and 0 < v,, < |2,41| holds,

we see that v, in A and so, by the hypothesis, m(T'z,) > 0.

On the other hand, 0 < w,, — v, < 27"y and so p(w, — vy) < 27 "p(y).
Thus, p(w, — Un)3>0 in F. Since T is sequentially p-continuous then
m(T(wy, —vy)) =0 in F. Now, m(Tw,) < m(T(w, —vy,)) +m(Tv,) implies
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that m(Tw,) >0 in F. In particular, f,, (m(Twn)) — 0 as n — oo, which
contradicts (d.1]). O

In [2, Thm.5.60], the approximation properties were provided for M-
weakly and L-weakly compact operators. The following two propositions
are similar to [2, Thm.5.60] in the case of p-M-weakly and p-L-weakly com-
pact operators.

Proposition 19. Let (X,p, E) be a sequentially p-complete LNVL with a
Banach lattice (E, ||-||g), (Y,m,F) be an LNS, T : (X,p,E) — (Y, m, F) be
p-M -weakly compact, and A be a p-bounded solid subset of X. Then, for
each atom a in F' and each € > 0, there exists some u € X1 such that

Ja(m(T (|2 —u)7)) <e
holds for all x € A.

Proof. Let A be a p-bounded solid subset of X. Since T is p-M-weakly
compact then m(7T'zy) 20 for every disjoint sequence in A. By Theorem

[6l for any atom a € F and any € > 0, there exists u € X, such that
fa(m(T(Jz| —w)T)) < e for all z € A. O

Proposition 20. Let (X, p, E) be an LNS and (Y, m, F) be a sequentially p-
complete LNVL with a Banach lattice F. Assume T : (X,p, E) — (Y,m, F)
to be p-L-weakly compact and A to be p-bounded in X. Then, for each atom
a in F and each € > 0, there exists some u € Y, in the ideal generated by
T(X) satisfying

fa(m(|Tz| —w)h)) <e
for all x € A.

Proof. Let A be a p-bounded subset of X. Since T is p-L-weakly compact,
m(yn) — 0 for any disjoint sequence y,, in sol(T(A)). Consider the identity
operator [ on (Y, m, F'). By Theorem [@] for any atom a € F and each ¢ > 0,
there exists u € Y4 in the ideal generated by sol(T(A)) (and so in the ideal
generated by T'(X)) such that

fa(m(lyl =) 7)) <e
for all y € sol(T(A)). In particular,
fa(m(|Tz| —uw)h)) <e
for all x € A. O
The next two results provide relations between p-M-weakly and p-L-

weakly compact operators, which are known for M-weakly and L-weakly
compact operators; e.g. [2, Thm.5.67 and Exer.4(a),p:337]

Theorem 7. Let (X, p, E) be a sequentially p-complete LNVL with a norm-
ing Banach lattice (E,||-||g), (Y,m,F) be an op-continuous LNVL with an
atomic norming lattice F and T € L™(X,Y). If T : (X,p,E) — (Y,m, F)
18 p-M -weakly compact then T is p-L-weakly compact.
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Proof. Let A be a p-bounded subset of X and let y,, be a disjoint sequence
in sol(T(A)). Then there is a sequence x,, in A such that |y,| < |Tz,]| for
allm € N. Let @ € F be an atom. Given € > 0 then, by Proposition [19],
there is u € X4 such that
fa(m(T(|2] —u)™)) <e
holds for all = € sol(A). In particular, for all n € N, we have
fa(m(T(z)f —uw)%)) <e and fo(m(T(z, —u)*)) <e
Thus, for each n € N,
gl < |Tzn| < T |+ Tz, |
T (2} —u)T +T (2} Aw)|+|T (2, —u)™ +T(x, Au)|
T(zy —w) ™| + [T () Au)| + [Ty — )|+ T (2, Au)l
T(ay —w) ™|+ |T(xy —w)" |+ T2y Au)+ |T|(z, Au)
T(ay —w) |+ |T(ay —u) |+ 2|T|u.

u

VAN VARRVAN

u

By Riesz decomposition property, for all n € N, there exist u,,v, > 0 such
that y,, = up+v, and 0 < u,, < |T(z} —u)T|+|T(z;, —u)t], 0 < v, < 2|T|u.
Since y,, is disjoint sequence and v, < |y,| for all n € N then the sequence
vy, is disjoint. Moreover, it is order bounded. Hence, v, — o. Since (Y, m, F)

is op-continuous then m(v,) > 0. In particular, f, (m(vn)) — 0 as n — oco.
So, for given € > 0, there is ng € N such that f,(m(v,)) < € for all n > ny.
Thus, for any n > ng, we have

fa(m(yn)) > fa(m(un)) + fa(m(vn))
< u(m(T (@ —u)) + fu(m(T (e —u)h) +e < 3.

Hence, f, (m(yn)) — 0 as n — oo. Since T is p-bounded then m(y,) is

A

order bounded. The atomicity of F implies m(y,) 0 in F. Therefore, T
is p-L-weakly compact. O

Proposition 21. Let (X,p, E) and (Y,m,F) be LNVLs. If T : (X,p,E) —
(Y,m, F) is a p-L-weakly compact lattice homomorphism then T is p-M -
weakly compact.

Proof. Let x, be a p-bounded disjoint sequence in X. Since T is lattice
homomorphism then we have that Tz, is disjoint in Y. Clearly Tz, €
sol ({Ta;n neN }) Since T is a p- L-weakly compact lattice homomorphism

then m(T(mn)) 20 in F. Therefore, T is p-M-weakly compact. O

We end up this section by an investigation of the relation between p-M-
weakly (respectively, p-L-weakly) compact operators and M-weakly (respec-
tively, L-weakly) compact operators acting in mixed-normed spaces.

Proposition 22. Given an LNVL (X,p,E) with (E,|||g), which is an
AM -space with a strong unit. Let an LNS (Y,m,F) be such that (F,|-||F)
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is a o-order continuous normed lattice. If T : (X,p, E) — (Y,m, F) is p-M-
weakly compact then T : (X, p-||-||g) = (Y, m-||||F) is M -weakly compact.

Proof. By Proposition B it follows that 7' : (X, p-||-[|g) — (Y, m-|-||r) is
norm continuous. Let z,, be a norm bounded disjoint sequence in (X, p-||-|| ).
Then p-||lzp||lg < M < oo or ||p(zy)||r < M < oo for all n € N. Since
(E,||'|lg) is an AM-space with a strong unit then there is e € E, such
that p(z,) < e for all n € N. Thus, z, is a p-bounded disjoint sequence
in (X,p,E). Since T : (X,p, E) — (Y,m, F) is p-M-weakly compact then
m(Tz,) >0 in F. It follows from the g-order continuity of (F,|-||r), that
|m(Tzy)||r — 0 or nh_{l;om‘HTanF = 0. Therefore, T : (X,p-|I'||lg) —

(Y, m-||-||r) is M-weakly compact. O

Proposition 23. Suppose (X,p, E) to be an LNVL with a o-order contin-
uous normed lattice (E, ||-||g) and (Y,m,F) to be an LNS with an atomic
normed lattice (F,||-||r). Assume further that:

(i) T:(X,p,E) — (Y,m, F) is p-bounded;

(i) T: (X, p-|"llg) = (Y,m-||-||F) is M-weakly compact.
Then T : (X,p, E) — (Y,m, F) is p-M-weakly compact.

Proof. The assumptions, together with Theorem[I] imply that 7" : (X, p, F) —
(Y, m, F) is sequentially p-continuous.

Assume z,, to be a p-bounded disjoint sequence in (X,p, E). Then z,
is disjoint and norm bounded in (E,p-||-||g). Since T : (X,p-|||lg) —
(Y, m-||-||r) is M-weakly compact then lim m-||Tz,||r = 0or lim ||m(Tz,)|Fr

n—oo n—oo
= 0. Since z,, is p-bounded and T": (X, p, E) — (Y, m, F') is p-bounded then
m(Txy) is order bounded in F. Let a € F' be an atom then

| fo (m(T2))| < I falllm(Tan)|lr — 0 as n — oo

Since F is atomic then m(T'z,) > 0. Therefore, T : (X,p, E) — (Y, m, F) is
p-M-weakly compact. O

Proposition 24. Assume (X, p, E) to be an LNS with an AM -space (E, ||| g)
possessing a strong unit, and (Y,m,F) to be an LNVL with a o-order con-

tinuous normed lattice (F,||r). If T : (X,p, E) = (Y,m, F) is p-L-weakly

compact then T : (X, p-|-||g) = (Y,m-||-|F) is L-weakly compact.

Proof. Proposition Bl implies that T : (X, p-|-[|g) — (Y, m-||-||F) is norm
continuous. Let Bx be the closed unit ball of (X, p-||-||g). Then p-||z||g <1
or [[p(x)|lzg < 1 for all x € Bx. Since (E,|-||g) is an AM-space with
a strong unit then there is an element e € E, such that p(z) < e for
each ¢ € Bx. So Bx is p-bounded. Let y, be a disjoint sequence in
sol(T(Bx)). Since T : (X,p,E) — (Y, m, F) is p-L-weakly compact then
m(yn) =0 in F. Since (F,|-|r) is o-order continuous normed lattice then
)l 0 or Tin mlonlle = 0. So T (Xope|-5) — (V|- ) i
L-weakly compact. O
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Proposition 25. Let (X, p, E) be an LNS with a o-order continuous normed
lattice, (Y,m,F) be an LNVL with an atomic normed lattice (F,|-[|r). As-
sume that:

(i) T:(X,p,E) — (Y,m, F) is p-bounded, and

(i) T: (X, p-|"llg) = (Y,m-||-|F) is L-weakly compact.
Then T : (X,p, E) — (Y, m, F) is p-L-weakly compact.

Proof. Theorem [l implies that T : (X,p, E) — (Y, m, F) is sequentially p-
continuous. Let A be a p-bounded set. Then there is e € E4 such that
p(a) < e for all a € A. Hence, |p(a)llg < |le||g for all a € A or p-|ja|lg <
|le]| g for each a € A. Thus, A is norm bounded in (X, p-||-||g). Let y, be
a disjoint sequence in sol(T'(A)). Since T : (X,p-||-|g) = (Y,m-||||F) is
L-weakly compact then nh_)llolo m-||yn|lF = 0 or nlgl;o|]m(yn)\\p = 0.

Since T : (X, p, E) — (Y, m, F) is p-bounded and A is p-bounded then T'(A)
is p-bounded in Y and so sol(T'(A)) is p-bounded in Y. Hence, y, is a p-
bounded sequence in (Y, m, F'); i.e. m(y,) is order bounded in F'. Let a € F’
be an atom and consider its biorthogonal functional f,. Then

[fa(m(yn))| < lfallllm(yn)llr — 0 as n— oo.

So, for any atom a € F, lim fa(m(yn)) = 0 and, since m(y,) is order
n—oo

bounded in an atomic vector lattice F, m(y,) =0 in F. Thus, T is p-L-
weakly compact. O

5. up-CONTINUOUS AND up-COMPACT OPERATORS

Using the up-convergence in LNVLs, we introduce the following notions.
Definition 6. Let X, Y be two LNVLs and T € L(X,Y). Then:

(1) T is called up-continuous if 220 in X implies Txq —20 in Y,
if the condition holds for sequences then T is called sequentially up-
continuous;

(2) T is called up-compact if for any p-bounded net x, in X there is a
subnet xq, such that Txq, B)y inY for somey €Y,

(3) T is called sequentially-up-compact if for any p-bounded sequence x,,

in X there is a subsequence T, such that T'zy, 22, y Y for some
yey.

Remark 11.

(i) The notion of up-continuous operators is motivated by two recent
notions, namely: o-unbounded order continuous (ouo-continuous)
mappings between vector lattices (see [9, p.23]), and un-continuous
functionals on Banach lattices (see [11], p.17]).

(ii) If T is (sequentially) p-continuous operator then T is (sequentially)
up-continuous.

(iii) If T is (sequentially) p-compact operator then T is (sequentially) up-
compact.
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(iv) Let (X,||-||x) be a normed space and (Y,||:||y) be a normed lattice.
An operator T € B(X,Y) is called (sequentially) un-compact if for
every norm bounded net x, (respectively, every norm bounded se-
quence x,), its image has a subnet (respectively, subsequence), which
is un-convergent; see [I1, Sec.9,p.28|. Therefore, T € B(X,Y)
is (sequentially) un-compact iff T : (X, |||x,R) = (Y,|-[ly,R) is
(sequentially) up-compact.

Proposition 26. Let (X, E), (Y,F) be two LNVLs and T € L(X,Y). If T
18 up-compact and p-semicompact operator then T is p-compact.

Proof. Let x, be a p-bounded net in X. Then Tz, is p-almost order bounded
net in Y, as T is p-semicompact operator. Moreover, since T is up-compact
then there is a subnet x,, such that T'zq, gy for some y € Y. It follows

by [4, Prop.9], that Tz, 2, y. Therefore, T is p-compact. O

Similar to Proposition [0 for any S,T € L(X), where X is an LNVL the
following holds:
(i) If S is p-bounded and T is up-compact then 7" o S is up-compact.
(ii) If S is up-continuous and 71" is up-compact then SoT' is up-compact.

Now we investigate composition of a sequentially up-compact operator
with a dominated lattice homomorphism.

Theorem 8. Let (X,p, E) be an LNVL, (Y,m,F) an LNVL with an order
continuous Banach lattice (F,||-||F), and (Z,q,G) an LNVL with a Banach
lattice (G, ||"||lg). If T € L(X,Y) is a sequentially up-compact operator and
S e L(Y,Z) is a dominated surjective lattice homomorphism then S o T is
sequentially up-compact.

Proof. Let x, be a p-bounded sequence in X. Since T is sequentially up-

compact then there is a subsequence z,,, such that Tz, 22, y in Y for some
yeY. Let u € Z,. Since S is surjective lattice homomorphism, we have

some v € Y such that Sv = u. Since Tz, —y then m(|Tx,, —y| Av) >0
in F. Clearly, F is order complete and so, by [I, Prop.1.5], there are fj | 0
and kg € N such that

(5.1) m(Tan, Yl AV) < fi (k= ko).

Note also || fx||r 4 0in F, as (F,||-||#) is an order continuous Banach lattice.
Since S is dominated then there is a positive operator R : ' — G such that
q(S(|Txnk —y|lA v)) < R(m(|Txnk —y| A v))

Taking into account that S is a lattice homomorphism and Sv = u, we get,

by (&), that
(5.2) q(|S o Txp, — Sy| Au) < Rfy (k > ko).

Since R is positive then by [2, Thm.4.3] it is norm continuous. Hence,
[Rfellc 4 0. Also, by [18, Thm.VIL2.1], there is a subsequence fy, of
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(fk)k>ko such that Rfy, 2 01in G, and so Rfk; 1 0in G. So (5.2]) becomes
q(\Sonnkj — Syl Nu) < Rfy; (j € N).

Since u € Z is arbitrary, SoT (mnkj) 2P, Sy. Therefore, SoT is sequentially
up-compact. O

Remark 12. In connection with the proof of Theorem [§ it should be men-
tioned that, if the operator T is up-compact and S is a surjective lattice
homomorphism with an order continuous dominant then it can be easily
seen that S o T is up-compact.

Recall that, for an LNVL (X,p, E), a sublattice Y of X is called up-
reqular if, for any net gy, in Y, the convergence y,, 2,0 in Y implies Yo 20
in X; see [4, Def.10 and Sec.3.4].

Corollary 4. Let (X,p,E) be an LNVL, (Y,m,F) an LNVL with an order
continuous Banach lattice (F, ||-||r), and (Z,q,G) an LNVL with a Banach
lattice (G,||"|lg). If T € L(X,Y) is a sequentially up-compact operator,
S e L(Y,Z) is a dominated lattice homomorphism, and S(Y') is up-regular
i Z then S oT is sequentially up-compact.

Proof. Since S is a lattice homomorphism then S(Y') is a vector sublattice
of Z. So (S(Y),q,@G) is an LNVL. Thus, by Theorem [, we have S o T :
(X,p, E) — (S(Y), q,G) is sequentially up-compact.

Next, we show that SoT : (X,p,E) — (Z,q,G) is sequentially up-
compact. Let x,, be a p-bounded sequence in X. Then there is a subsequence
Ty, such that S o T(z,,) —>z in S(Y) for some z € S(Y). Since S(Y) is
up-regular in Z, we have S o T (zy, ) P 2 in Z. Therefore, SoT : X — Z is
sequentially up-compact. O

The next result is similar to [II, Prop.9.4.].

Corollary 5. Let (X,p,E) be an LNVL, (Y, m,F) an LNVL with an order
continuous Banach lattice (F, ||-||r), and (Z,q,G) an LNVL with a Banach
lattice (G, |"||l¢). If T € L(X,Y) is a sequentially up-compact operator,
S € L(Y,Z) is a dominated lattice homomorphism, and Igy (the ideal
generated by S(Y')) is up-reqular in Z then SoT is sequentially up-compact.

Proof. Let x, be a p-bounded sequence in X. Since T sequentially up-
compact, there exist a subsequence z,, and yo € Y such that T'z,, 2>yo
mY. Let 0 < u € Is(y). Then there is y € Y, such that 0 < u < Sy.
Therefore, we have for a dominant R:
q(S(| Tz, — yol Ay)) < R(m(| Tz, — yol Ay))

and so

qa((1STzp, — Syol A Sy)) < R(m(|Tzp, — yol Ay))-
It follows from 0 < u < Sy, that

q((|STzn, — Syo| Aw)) < R(m(|Tzn, — yo| Aw)).
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Now, the argument given in the proof of Theorem [§ can be repeated here
as well. Thus, we have that SoT : (X,p, E) — (Igy),q,G) is sequentially
up-compact. Since Ig(y) is up-regular in Z then it can be easily seen that
SoT : X — Z is sequentially up-compact. O

We conclude this section by a result which might be compared with Propo-
sition 9.9 in [I1].

Proposition 27. Let (X,p,E) be an LNS and let (Y,||ly) be a o-order
continuous normed lattice. If T : (X,p, E) — (Y,||,Y) is sequentially up-
compact and p-bounded then T : (X,p, E) — (Y, |||ly) is GAM -compact.

Proof. Let x, be a p-bounded sequence in X. Since T is up-compact, there
exist a subsequence z,, and some y € Y such that Tz, —»y in (V,|-|,Y)
and, by the o-order continuity of (Y;||-|]y), we have Tz, —=y in Y. More-
over, since T is p-bounded then T'z,, is p-bounded (Y, |-|,Y") or order bounded

lI-lly

in Y, and so we get T'x,,, —— y. Therefore, T is G AM-compact. O
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