$u\tau$ -CONVERGENCE IN LOCALLY SOLID VECTOR LATTICES

Y. A. DABBOORASAD^{1,2}, E. Y. EMELYANOV², AND M. A. A. MARABEH²

ABSTRACT. Let x_{α} be a net in a locally solid vector lattice (X, τ) ; we say that x_{α} is unbounded τ -convergent to a vector $x \in X$ if $|x_{\alpha} - x| \wedge w \xrightarrow{\tau} 0$ for all $w \in X_+$. In this paper, we study general properties of unbounded τ -convergence (shortly, $u\tau$ -convergence). $u\tau$ -Convergence generalizes unbounded norm convergence and unbounded absolute weak convergence in normed lattices that have been investigated recently. Besides, we introduce $u\tau$ -topology and study briefly metrizability and completeness of this topology.

1. INTRODUCTION AND PRELIMINARIES

The subject of "unbounded convergence" has attracted many researchers [25, 23, 11, 13, 9, 8, 27, 15, 5, 17, 16, 12, 22]. It is well-investigated in vector lattices and normed lattices [11, 14, 13, 27]. In the present paper, we study unbounded convergence in locally solid vector lattices. Results in this article extend previous works [8, 13, 15, 27].

For a net x_{α} in a vector lattice X, we write $x_{\alpha} \xrightarrow{o} x$, if x_{α} converges to xin order. This means that there is a net y_{β} , possibly over a different index set, such that $y_{\beta} \downarrow 0$ and, for every β , there exists α_{β} satisfying $|x_{\alpha} - x| \leq y_{\beta}$ whenever $\alpha \geq \alpha_{\beta}$. A net x_{α} is unbounded order convergent to a vector $x \in X$ if $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$ for every $u \in X_{+}$. We write $x_{\alpha} \xrightarrow{uo} x$ and say that x_{α} uo-converges to x. Clearly, order convergence implies uo-convergence and they coincide for order bounded nets. For a measure space (Ω, Σ, μ) and for a sequence f_{n} in $L_{p}(\mu)$ $(0 \leq p \leq \infty)$, $f_{n} \xrightarrow{uo} 0$ iff $f_{n} \to 0$ almost everywhere (cf. [13, Rem. 3.4]). It is well known that almost everywhere convergence is not topological in general [18]. Therefore, the uo-convergence might not be topological. Quite recently, it has been shown that order convergence is never topological in infinite dimensional vector lattices [7].

For a net x_{α} in a normed lattice $(X, \|\cdot\|)$, we write $x_{\alpha} \xrightarrow{\|\cdot\|} x$ if x_{α} converges to x in norm. We say that x_{α} unbounded norm converges to $x \in X$ (or x_{α}

Date: September 27, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary:46A16, 46A40. Secondary: 32F45.

Key words and phrases. Banach lattice, vector lattice, $u\tau$ -convergence, $u\tau$ -topology, uo-convergence, un-convergence, un-topology.

un-converges to x) if $|x_{\alpha} - x| \wedge u \xrightarrow{\|\cdot\|} 0$ for every $u \in X_+$. We write $x_{\alpha} \xrightarrow{un} x$. Clearly, norm convergence implies un-convergence. The un-convergence is topological, and the corresponding topology (which is known as un-topology) was investigated in [15]. A net x_{α} is unbounded absolute weak convergent to $x \in X$ (or x_{α} uaw-converges to x) if $|x_{\alpha} - x| \wedge u \xrightarrow{w} 0$ for all $u \in X_+$, where "w" refers the weak convergence. We write $x_{\alpha} \xrightarrow{uaw} x$. Absolute weak convergence implies uaw-convergence. The notions of uaw-convergence and uaw-topology were introduced in [27].

If X is a vector lattice, and τ is a linear topology on X that has a base at zero consisting of solid sets, then the pair (X, τ) is called a *locally solid* vector lattice. It should be noted that all topologies considered throughout this article are assumed to be Hausdorff. It follows from [2, Thm. 2.28] that a linear topology τ on a vector lattice X is locally solid iff it is generated by a family $\{\rho_j\}_{j\in J}$ of Riesz pseudonorms. Moreover, if a family of Riesz pseudonorms generates a locally solid topology τ on a vector lattice X, then $x_{\alpha} \xrightarrow{\tau} x$ in X iff $\rho_j(x_{\alpha} - x) \xrightarrow{\alpha} 0$ in \mathbb{R} for each $j \in J$. Since X is Hausdorff, then the family $\{\rho_j\}_{j\in J}$ of Riesz pseudonorms is separating; i.e., if $\rho_j(x) = 0$ for all $j \in J$, then x = 0. In this article, unless otherwise, the pair (X, τ) refers to as a locally solid vector lattice.

A subset A in a topological vector space (X, τ) is called *topologically* bounded (or simply τ -bounded) if, for every τ -neighborhood V of zero, there exists some $\lambda > 0$ such that $A \subseteq \lambda V$. If ρ is a Riesz pseudonorm on a vector lattice X and $x \in X$, then $\frac{1}{n}\rho(x) \leq \rho(\frac{1}{n}x)$ for all $n \in \mathbb{N}$. Indeed, if $n \in \mathbb{N}$ then $\rho(x) = \rho(n\frac{1}{n}x) \leq n\rho(\frac{1}{n}x)$. The following standard fact is included for the sake of completeness.

Proposition 1. Let (X, τ) be a locally solid vector lattice with a family of a Riesz pseudonorms $\{\rho_j\}_{j\in J}$ that generates the topology τ . If a subset A of X is τ -bounded then $\rho_j(A)$ is bounded in \mathbb{R} for any $j \in J$.

Proof. Let $A \subseteq X$ be τ -bounded and $j \in J$. Put $V := \{x \in X : \rho_j(x) < 1\}$. Clearly, V is a neighborhood of zero in X. Since A is τ -bounded, there is $\lambda > 0$ satisfying $A \subseteq \lambda V$. Thus $\rho_j(\frac{1}{\lambda}a) \le 1$ for all $a \in A$. There exists $n \in \mathbb{N}$ with $n > \lambda$. Now, $\frac{1}{n}\rho_j(a) \le \rho_j(\frac{1}{n}a) \le \rho_j(\frac{1}{\lambda}a) \le 1$ for all $a \in A$. Hence, $\sup_{a \in A} \rho_j(a) \le n < \infty$.

Next, we discuss the converse of the proposition above.

Let $\{\rho_j\}_{j\in J}$ be a family of Riesz pseudonorms for a locally solid vector lattice (X, τ) . For $j \in J$, let $\tilde{\rho}_j := \frac{\rho_j}{1+\rho_j}$. Then $\tilde{\rho}_j$ is a Riesz pseudonorm on X. Moreover, the family $(\tilde{\rho}_j)_{j\in J}$ generates the topology τ on X. Clearly, $\tilde{\rho}_j(A) \leq 1$ for any subset A of X, but still we might have a subset that is not τ -bounded.

Recall that a locally solid vector lattice (X, τ) is said to have the *Lebesgue* property if $x_{\alpha} \downarrow 0$ in X implies $x_{\alpha} \xrightarrow{\tau} 0$; or equivalently $x_{\alpha} \xrightarrow{o} 0$ implies $x_{\alpha} \xrightarrow{\tau} 0$; and (X, τ) is said to have the σ -Lebesgue property if $x_n \downarrow 0$ in X implies $x_n \xrightarrow{\tau} 0$. Finally, (X, τ) is said to have the Levi property if $0 \le x_{\alpha} \uparrow$ and the net x_{α} is τ -bounded, then x_{α} has the supremum in X; and (X, τ) is said to have the σ -Levi property if $0 \le x_n \uparrow$ and x_n is τ -bounded, then x_n has supremum in X; see [2, Def. 3.16].

Let X be a vector lattice, and take $0 \neq u \in X_+$. Then a net x_{α} in X is said to be *u*-uniformly convergent to a vector $x \in X$ if, for each $\varepsilon > 0$, there exists some α_{ε} such that $|x_{\alpha} - x| \leq \varepsilon u$ holds for all $\alpha \geq \alpha_{\varepsilon}$; and x_{α} is said to be *u*-uniformly Cauchy if, for each $\varepsilon > 0$, there exists some α_{ε} such that, for all $\alpha, \alpha' \geq \alpha_{\varepsilon}$, we have $|x_{\alpha} - x_{\alpha'}| \leq \varepsilon u$. A vector lattice X is said to be *u*-uniformly complete if every *u*-uniformly Cauchy sequence in X is *u*-uniformly convergent; and X is said to be uniformly complete if X is *u*-uniformly complete for each $0 \neq u \in X_+$.

Let X be a vector lattice. An element $0 \neq e \in X_+$ is called a *strong unit* if $I_e = X$ (equivalently, for every $x \ge 0$, there exists $n \in \mathbb{N}$ such that $x \le ne$), and $0 \neq e \in X_+$ is called a *weak unit* if $B_e = X$ (equivalently, $x \land ne \uparrow x$ for every $x \in X_+$). Here B_e denotes the band generated by e. If (X, τ) is a topological vector lattice, then $0 \neq e \in X_+$ is called a *quasi-interior point*, if the principal ideal I_e is τ -dense in X [20, Def. II.6.1]. It is known that

strong unit \Rightarrow quasi-interior point \Rightarrow weak unit.

Recall that a Banach lattice X is called an AM-space if $||x \vee y|| = \max\{||x||, ||y||\}$ for all $x, y \in X$ with $x \wedge y = 0$.

Let (X, τ) be a sequentially complete locally solid vector lattice. Then it follows from the proof of [4, Cor. 2.59] that it is uniformly complete. So, for each $0 \neq u \in X_+$, let I_u be the ideal generated by u and $\|\cdot\|_u$ be the norm on I_u given by

$$||x||_u = \inf\{r > 0 : |x| \le ru\} \quad (x \in X).$$

Then, by [4, Thm. 2.58], the pair $(I_u, \|.\|_u)$ is a Banach lattice. Now Theorem 3.4 in [1] implies that $(I_u, \|\cdot\|_u)$ is an *AM*-space with a strong unit u, and then, by [1, Thm. 3.6], it is lattice isometric (uniquely, up to a homeomorphism) to C(K) for some compact Hausdorff space K in such a way, that the strong unit u is identified with the constant function 1 on K.

For unexplained terminologies and notions we refer to [2, 3].

2. Unbounded τ -convergence

Suppose (X, τ) is a locally solid vector lattice. Let x_{α} be a net in X. We say that x_{α} is unbounded τ -convergent to $x \in X$ if, for any $w \in X_+$, we have $|x_{\alpha} - x| \wedge w \xrightarrow{\tau} 0$. In this case, we write $x_{\alpha} \xrightarrow{u\tau} x$ and say that x_{α} $u\tau$ -converges to x. Obviously, if $x_{\alpha} \xrightarrow{\tau} x$ then $x_{\alpha} \xrightarrow{u\tau} x$. The converse holds if the net x_{α} is order bounded. Note also that $u\tau$ -convergence respects linear and lattice operations. It is clear that $u\tau$ -convergence is a generalization of *un*-convergence [8, 15] and, of *uaw*-convergence [27].

Let \mathcal{N}_{τ} be a neighborhood base at zero consisting of solid sets for (X, τ) . For each $0 \neq w \in X_+$ and $V \in \mathcal{N}_{\tau}$, let

$$U_{V,w} := \{ x \in X : |x| \land w \in V \}.$$

It can be easily shown that the collection

4

$$\mathcal{N}_{u\tau} \coloneqq \{ U_{V,w} : V \in \mathcal{N}_{\tau}, 0 \neq w \in X_+ \}$$

forms a neighborhood base at zero for a locally solid topology; we call it $u\tau$ -topology, where u refers to as *unbounded*. Moreover, $x_{\alpha} \xrightarrow{u\tau} 0$ iff $x_{\alpha} \to 0$ with respect to $u\tau$ -topology. Indeed, suppose $x_{\alpha} \xrightarrow{u\tau} 0$. Given a neighborhood $U_{V,w} \in \mathcal{N}_{u\tau}$. Then there are $0 \neq w \in X_+$ and $V \in \mathcal{N}_{\tau}$ such that

$$U_{V,w} = \{ x \in X : |x| \land w \in V \}.$$

Now, $x_{\alpha} \xrightarrow{u\tau} 0$ implies $|x_{\alpha}| \wedge w \xrightarrow{\tau} 0$. So, there is α_0 such that, for all $\alpha \geq \alpha_0$, we have $|x_{\alpha}| \wedge w \in V$. That is $x_{\alpha} \in U_{V,w}$ for all $\alpha \geq \alpha_0$. Thus, $x_{\alpha} \to 0$ in the $u\tau$ -topology.

Conversely, assume $x_{\alpha} \to 0$ in the $u\tau$ -topology. Given $0 \neq w \in X_+$ and $V \in \mathcal{N}_{\tau}$. Then, $U_{V,w}$ is a zero neighborhood in the $u\tau$ -topology. So, there is α' such that $x_{\alpha} \in U_{V,w}$ for all $\alpha \geq \alpha'$. That is, $|x_{\alpha}| \wedge w \in V$ for all $\alpha \geq \alpha'$. Thus, $|x_{\alpha}| \wedge w \xrightarrow{\tau} 0$ or $x_{\alpha} \xrightarrow{u\tau} 0$. The locally solid $u\tau$ -topology will be referred to as unbounded τ -topology.

The neighborhood base at zero for the $u\tau$ -topology on X has an equivalent representation in terms of a family $(\rho_j)_{j\in J}$ of Riesz pseudonorms that generates the topology τ . For $\varepsilon > 0$, $j \in J$, and $0 \neq w \in X_+$, let $V_{\varepsilon,w,j} \coloneqq \{x \in X :$ $\rho_j(|x| \land w) < \varepsilon\}$. Clearly, the collection $\{V_{\varepsilon,w,j} : \varepsilon > 0, 0 \neq w \in X_+, j \in J\}$ generates the $u\tau$ -topology.

It is known that the topology of any linear topological space can be derived from a unique translation-invariant uniformity, i.e., any linear topological space is uniformisable (cf. [21, Thm. 1.4]). It follows from [10, Thm. 8.1.20] that any linear topological space is completely regular. In particular, the unbounded τ -convergence is completely regular.

Since $x_{\alpha} \xrightarrow{\tau} 0$ implies $x_{\alpha} \xrightarrow{u\tau} 0$, then the τ -topology in general is finer than $u\tau$ -topology. The next result should be compared with [15, Lm. 2.1].

Lemma 1. Let (X, τ) be a sequentially complete locally solid vector lattice, where τ is generated by a family $(\rho_j)_{j\in J}$ of Riesz pseudonorms. Let $\varepsilon > 0$, $j \in J$, and $0 \neq w \in X_+$. Then either $V_{\varepsilon,w,j}$ is contained in [-w,w], or it contains a non-trivial ideal.

Proof. Suppose that $V_{\varepsilon,w,j}$ is not contained in [-w,w]. Then there exists $x \in V_{\varepsilon,w,j}$ such that $x \notin [-w,w]$. Replacing x with |x|, we may assume x > 0. Since $x \notin [-w,w]$, then $y = (x-w)^+ > 0$. Now, letting $z = x \lor w$, we have that the ideal I_z generated by z, is lattice and norm isomorphic to

C(K) for some compact and Hausdorff space K, where z corresponds to the constant function 1. Also x, y, and w in I_z correspond to x(t), y(t), and w(t) in C(K) respectively.

Our aim is to show that for all $\alpha \ge 0$ and $t \in K$, we have

$$(\alpha y)(t) \wedge w(t) \le x(t) \wedge w(t).$$

For this, note that $y(t) = (x - w)^+(t) = (x - w)(t) \lor 0$. Let $t \in K$ be arbitrary.

- Case (1): If (x w)(t) > 0, then $x(t) \wedge w(t) = w(t) \ge (\alpha y)(t) \wedge w(t)$ for all $\alpha \ge 0$, as desired.
- Case (2): If (x w)(t) < 0, then $(\alpha y)(t) \wedge w(t) \le (\alpha y)(t) = \alpha(x w)(t) \lor 0 = 0 \le x(t) \land w(t)$, as desired.

Hence, for all $\alpha \geq 0$ and $t \in K$, we have $(\alpha w)(t) \wedge w(t) \leq x(t) \wedge w(t)$ and so $(\alpha y) \wedge w \leq x \wedge w$ for all $\alpha \geq 0$. Note, that $\alpha y, w, x \in X_+$. Thus $\rho_j(|\alpha y| \wedge w) \leq \rho_j(|x| \wedge w) < \varepsilon$, so $\alpha y \in V_{\varepsilon,w,j}$ and, since $V_{\varepsilon,w,j}$ is solid, then $I_z \subseteq V_{\varepsilon,w,j}$.

Note that the sequential completeness in Lemma 1 can be removed, as we see in the following corollary.

Theorem 1. Let (X, τ) be a locally solid vector lattice, where τ is generated by a family $(\rho_j)_{j\in J}$ of Riesz pseudonorms. Let $\varepsilon > 0$, $j \in J$, and $0 \neq w \in X_+$. Then either $V_{\varepsilon,w,j}$ is contained in [-w,w] or $V_{\varepsilon,w,j}$ contains a non-trivial ideal.

Proof. Given $\varepsilon > 0$, $j \in J$, and $0 \neq w \in X_+$. Let $(\hat{X}, \hat{\tau})$ be the topological completion of (X, τ) . In particular, $(\hat{X}, \hat{\tau})$ is sequentially complete. Let $\hat{V}_{\varepsilon,w,j} = \{\hat{x} \in \hat{X} : \hat{\rho}_j(|\hat{x}| \wedge w) < \varepsilon\}$. Then $V_{\varepsilon,w,j} = X \cap \hat{V}_{\varepsilon,w,j}$. By Lemma 1, either $\hat{V}_{\varepsilon,w,j}$ is a subset of $[-w, w]_{\hat{X}}$ in \hat{X} or $\hat{V}_{\varepsilon,w,j}$ contains a non-trivial ideal of \hat{X} . If $\hat{V}_{\varepsilon,w,j} \subseteq [-w, w]_{\hat{X}}$, then

$$V_{\varepsilon,w,j} = X \cap \hat{V}_{\varepsilon,w,j} \subseteq X \cap [-w,w]_{\hat{X}} = [-w,w] \subseteq X.$$

If $\hat{V}_{\varepsilon,w,j}$ contains a non-trivial ideal, then $\hat{V}_{\varepsilon,w,j} \not\subseteq [-w,w]_{\hat{X}}$. So, there is $\hat{x} \in \hat{V}_{\varepsilon,w,j}$ with $\hat{x} \notin [-w,w]_{\hat{X}}$. Since $[-w,w]_{\hat{X}}$ is $\hat{\tau}$ -closed, then there is a solid neighborhood $N_{\hat{x}}$ of \hat{x} in \hat{X} such that $N_{\hat{x}} \cap [-w,w]_{\hat{X}} = \emptyset$. Hence, $N_{\hat{x}} \cap \hat{V}_{\varepsilon,w,j} \cap [-w,w]_{\hat{X}} = \emptyset$, and $N_{\hat{x}} \cap \hat{V}_{\varepsilon,w,j}$ is open in \hat{X} with $\hat{x} \in N_{\hat{x}} \cap \hat{V}_{\varepsilon,w,j}$. By τ -density of X in \hat{X} , we may take $x \in X \cap N_{\hat{x}} \cap \hat{V}_{\varepsilon,w,j}$. Since $|x| \in X \cap N_{\hat{x}} \cap \hat{V}_{\varepsilon,w,j}$, we may also assume that $x \in X_+$.

Let $y := (x - w)^+$, then y > 0 and $y \in X_+$. By the same argument in Lemma 1, we get $(\alpha y) \wedge w \leq x \wedge w$ for all $\alpha \in \mathbb{R}_+$. Since $x \in \hat{V}_{\varepsilon,w,j}$, then $\alpha y \in \hat{V}_{\varepsilon,w,j}$ for all $\alpha \in \mathbb{R}_+$. But $\alpha y \in X_+$ for all $\alpha \in \mathbb{R}_+$ and, since $V_{\varepsilon,w,j} = X \cap \hat{V}_{\varepsilon,w,j}$, we get $\alpha y \in V_{\varepsilon,w,j}$ for all $\alpha \in \mathbb{R}_+$. Since $V_{\varepsilon,w,j}$ is solid, we conclude that the principal ideal I_y taken in X is a subset of $V_{\varepsilon,w,j}$. \Box **Lemma 2.** Let (X, τ) be a locally solid vector lattice, where τ is generated by a family $(\rho_j)_{j \in J}$ of Riesz pseudonorms. If $V_{\varepsilon,w,j}$ is contained in [-w,w], then w is a strong unit.

Proof. Suppose $V_{\varepsilon,w,j} \subseteq [-w,w]$. Since $V_{\varepsilon,w,j}$ is absorbing, for any $x \in X_+$, there exist $\alpha > 0$ such that $\alpha x \in V_{\varepsilon,w,j}$, and so $\alpha x \in [-w,w]$, or $x \leq \frac{1}{\alpha}w$. Thus w is a strong unit, as desired.

Proposition 2. Let $e \in X_+$. Then e is a quasi-interior point in (X, τ) iff e is a quasi-interior point in the topological completion $(\hat{X}, \hat{\tau})$.

Proof. The backward implication is trivial.

For the forward implication let $\hat{x} \in \hat{X}_+$. Our aim is to show that $\hat{x} - \hat{x} \wedge ne \xrightarrow{\tau} 0$ in \hat{X} as $n \to \infty$. By [2, Thm. 2.40], $\hat{X}_+ = \overline{X}_+^{\hat{\tau}}$. So, there is a net x_{α} in X_+ such that $x_{\alpha} \xrightarrow{\hat{\tau}} \hat{x}$ in \hat{X} . Let $j \in J$ and $\varepsilon > 0$. Since $\hat{\rho}_j(x_{\alpha} - \hat{x}) \to 0$, then there is α_{ε} satisfying

(2.1)
$$\hat{\rho}_j(x_{\alpha_{\varepsilon}} - \hat{x}) < \varepsilon.$$

Since e is a quasi-interior point in X and $x_{\alpha_{\varepsilon}} \in X_+$, then $x_{\alpha_{\varepsilon}} - x_{\alpha_{\varepsilon}} \wedge ne \xrightarrow{\tau} 0$ in X as $n \to \infty$. Thus, there is $n_{\varepsilon} \in \mathbb{N}$ such that

(2.2)
$$\hat{\rho}_j(x_{\alpha_{\varepsilon}} - ne \wedge x_{\alpha_{\varepsilon}}) = \rho_j(x_{\alpha_{\varepsilon}} - ne \wedge x_{\alpha_{\varepsilon}}) < \varepsilon \quad (\forall n \ge n_{\varepsilon}).$$

Now, $0 \leq \hat{x} - \hat{x} \wedge ne = \hat{x} - x_{\alpha_{\varepsilon}} + x_{\alpha_{\varepsilon}} - ne \wedge x_{\alpha_{\varepsilon}} + ne \wedge x_{\alpha_{\varepsilon}} - \hat{x} \wedge ne$. So $\hat{\rho}_j(\hat{x} - \hat{x} \wedge ne) \leq \hat{\rho}_j(\hat{x} - x_{\alpha_{\varepsilon}}) + \hat{\rho}_j(x_{\alpha_{\varepsilon}} - ne \wedge x_{\alpha_{\varepsilon}}) + \hat{\rho}_j(ne \wedge x_{\alpha_{\varepsilon}} - \hat{x} \wedge ne)$. For $n \geq n_{\varepsilon}$, we have, by (2.1), (2.2), and [3, Thm. 1.9(2)], that

$$\hat{\rho}_j(\hat{x} - \hat{x} \wedge ne) \le \varepsilon + \varepsilon + \hat{\rho}_j(x_{\alpha_\varepsilon} - \hat{x}) \le 3\varepsilon.$$

Therefore, e is a quasi-interior point in \hat{X} .

The technique used in the proof of [15, Thm. 3.1] can be used in the following theorem as well, and so we omit its proof.

Theorem 2. Let (X, τ) be a sequentially complete locally solid vector lattice, where τ is generated by a family $(\rho_j)_{j \in J}$ of Riesz pseudonorms. Let $e \in X_+$. The following are equivalent:

- (1) e is a quasi-interior point;
- (2) for every net x_{α} in X_+ , if $x_{\alpha} \wedge e \xrightarrow{\tau} 0$ then $x_{\alpha} \xrightarrow{u\tau} 0$;
- (3) for every sequence x_n in X_+ , if $x_n \wedge e \xrightarrow{\tau} 0$ then $x_n \xrightarrow{u\tau} 0$.

3. Unbounded τ -convergence in sublattices

Let Y be a sublattice of a locally solid vector lattice (X, τ) . If y_{α} is a net in Y such that $y_{\alpha} \xrightarrow{u\tau} 0$ in X, then clearly, $y_{\alpha} \xrightarrow{u\tau} 0$ in Y. The converse does not hold in general. For example, the sequence e_n of standard unit vectors is *un*-null in c_0 , but not in ℓ_{∞} . In this section, we study when the $u\tau$ -convergence passes from a sublattice to the whole space. Recall that a sublattice Y of a vector lattice X is majorizing if, for every $x \in X_+$, there exists $y \in Y_+$ with $x \leq y$. The following theorem extends [15, Thm. 4.3] to locally solid vector lattices.

Theorem 3. Let (X, τ) be a locally solid vector lattice and Y be a sublattice of X. If y_{α} is a net in Y and $y_{\alpha} \xrightarrow{u\tau} 0$ in Y, then $y_{\alpha} \xrightarrow{u\tau} 0$ in X in each of the following cases:

- (1) Y is majorizing in X;
- (2) Y is τ -dense in X;
- (3) Y is a projection band in X.
- *Proof.* (1) Trivial.
 - (2) Let $u \in X_+$. Fix $\varepsilon > 0$ and take $j \in J$. Since Y is τ -dense in X, then there is $v \in Y_+$ such that $\rho_j(u-v) < \varepsilon$. But $y_\alpha \xrightarrow{u\tau} 0$ in Y and so, in particular, $\rho_j(|y_\alpha| \wedge v) \to 0$. So there is α_0 such that $\rho_j(|y_\alpha| \wedge v) < \varepsilon$ for all $\alpha \ge \alpha_0$. It follows from $u \le v + |u - v|$, that $|y_\alpha| \wedge u \le$ $|y_\alpha| \wedge v + |u - v|$, and so $\rho_j(|y_\alpha| \wedge u) < \rho_j(|y_\alpha| \wedge v) + \rho_j(u - v) < 2\varepsilon$. Thus, $\rho_j(|y_\alpha| \wedge u) \to 0$ in \mathbb{R} . Since $j \in J$ was chosen arbitrary, we conclude that $y_\alpha \xrightarrow{u\tau} 0$ in X.
 - (3) Let $u \in X_+$. Then u = v + w, where $v \in Y_+$ and $w \in Y_+^d$. Now $|y_{\alpha}| \wedge u = |y_{\alpha}| \wedge v + |y_{\alpha}| \wedge w = |y_{\alpha}| \wedge v$, since $y_{\alpha} \in Y$. Then $|y_{\alpha}| \wedge u = |y_{\alpha}| \wedge v \xrightarrow{\tau} 0$ in X.

Corollary 1. If (X, τ) is a locally solid vector lattice and $x_{\alpha} \xrightarrow{u\tau} 0$ in X, then $x_{\alpha} \xrightarrow{u\tau} 0$ in the Dedekind completion X^{δ} of X.

Corollary 2. If (X, τ) is a locally solid vector lattice and $x_{\alpha} \xrightarrow{u\tau} 0$ in X, then $x_{\alpha} \xrightarrow{u\tau} 0$ in the topological completion \hat{X} of X.

The next result generalizes Corollary 4.6 in [15] and Proposition 16 in [27].

Theorem 4. Let (X, τ) be a topologically complete locally solid vector lattice that possesses the Lebesgue property, and Y be a sublattice of X. If $y_{\alpha} \xrightarrow{u\tau} 0$ in Y, then $y_{\alpha} \xrightarrow{u\tau} 0$ in X.

Proof. Suppose $y_{\alpha} \xrightarrow{u\tau} 0$ in Y. By Theorem 3(1), $y_{\alpha} \xrightarrow{u\tau} 0$ in the ideal I(Y) generated by Y in X. By Theorem 3(2), $y_{\alpha} \xrightarrow{u\tau} 0$ in the closure $\overline{\{I(Y)\}}^{\tau}$ of I(Y). It follows from [2, Thm. 3.7] that $\overline{\{I(Y)\}}^{\tau}$ is a band in X. Now, [2, Thm. 3.24] assures that X is Dedekind complete, and so $\overline{\{I(Y)\}}^{\tau}$ is a projection band in X. Then $y_{\alpha} \xrightarrow{u\tau} 0$ in X, in view of Theorem 3(3).

Suppose that (X, τ) is a locally solid vector lattice possessing the Lebesgue property. Then, in view of [2, Thms. 3.23 and 3.26], its topological completion $(\hat{X}, \hat{\tau})$ possesses the Lebesgue property as well. Hence, by [2, Thm.

3.24], \hat{X} is Dedekind complete. Since $X \subseteq \hat{X}$, there holds $X^{\delta} \subseteq (\hat{X})^{\delta} = \hat{X}$. So, $X \subseteq X^{\delta} \subseteq \hat{X}$. Now, Theorem 4 assures that, given a net z_{α} in X^{δ} , if $z_{\alpha} \xrightarrow{u\tau} 0$ in X^{δ} then $z_{\alpha} \xrightarrow{u\tau} 0$ in \hat{X} .

4. UNBOUNDED RELATIVELY UNIFORMLY CONVERGENCE

In this section we discuss unbounded relatively uniformly convergence. Recall that a net x_{α} in a vector lattice X is said to be *relatively uniformly* convergent to $x \in X$ if, there is $u \in X_+$ such that for any $n \in \mathbb{N}$, there exists α_n satisfying $|x_{\alpha} - x| \leq \frac{1}{n}u$ for $\alpha \geq \alpha_n$. In this case we write $x_{\alpha} \xrightarrow{ru} x$ and the vector $u \in X_+$ is called *regulator*, see [24, Def. III.11.1].

If $x_{\alpha} \xrightarrow{ru} 0$ in a locally solid vector lattice (X, τ) , then $x_{\alpha} \xrightarrow{\tau} 0$. Indeed, let V be a solid neighborhood at zero. Since $x_{\alpha} \xrightarrow{ru} 0$, then there is $u \in X_{+}$ such that, for a given $\varepsilon > 0$, there is α_{ε} satisfying $|x_{\alpha}| \leq \varepsilon u$ for all $\alpha \geq \alpha_{\varepsilon}$. Since V is absorbing, there is $c \geq 1$ such that $\frac{1}{c}u \in V$. There is some α_{0} such that $|x_{\alpha}| \leq \frac{1}{c}u$ for all $\alpha \geq \alpha_{0}$. Since V is solid and $|x_{\alpha}| \leq \frac{1}{c}u$ for all $\alpha \geq \alpha_{0}$, then $x_{\alpha} \in V$ for all $\alpha \geq \alpha_{0}$. That is $x_{\alpha} \xrightarrow{\tau} 0$.

The following result might be considered as an ru-version of Theorem 1 in [7].

Theorem 5. Let X be a vector lattice. Then the following conditions are equivalent.

(1) There exists a linear topology τ on X such that, for any net x_{α} in X: $x_{\alpha} \xrightarrow{r_{u}} 0$ iff $x_{\alpha} \xrightarrow{\tau} 0$.

(2) There exists a norm $\|\cdot\|$ on X such that, for any net x_{α} in X: $x_{\alpha} \xrightarrow{ru} 0$ iff $\|x_{\alpha}\| \to 0$.

(3) X has a strong order unit.

Proof. $(1) \Rightarrow (3)$ It follows from [7, Lem. 1].

(3) \Rightarrow (2) Let $e \in X$ be a strong order unit. Then $x_{\alpha} \xrightarrow{ru} 0$ iff $||x_{\alpha}||_e \to 0$, where $||x||_e := \inf\{r : |x| \leq re\}.$

 $(2) \Rightarrow (1)$ It is trivial.

Let X be a vector lattice. A net x_{α} in X is said to be unbounded relatively uniformly convergent to $x \in X$ if $|x_{\alpha} - x| \wedge w \xrightarrow{ru} 0$ for all $w \in X_{+}$. In this case, we write $x_{\alpha} \xrightarrow{uru} x$. Clearly, if $x_{\alpha} \xrightarrow{uru} 0$ in a locally solid vector lattice (X, τ) , then $x_{\alpha} \xrightarrow{u\tau} 0$.

In general, *uru*-convergence is also not topological. Indeed, consider the vector lattice $L_1[0, 1]$. It satisfies the diagonal property for order convergence by [19, Thm. 71.8]. Now, by combining Theorems 16.3, 16.9, and 68.8 in [19] we get that for any sequence f_n in $L_1[0, 1]$ $f_n \xrightarrow{o} 0$ iff $f_n \xrightarrow{ru} 0$. In particular, $f_n \xrightarrow{uo} 0$ iff $f_n \xrightarrow{uru} 0$. But the *uo*-convergence in $L_1[0, 1]$ is equivalent to *a.e.*-convergence which is not topological, see [18].

However, in some vector lattices the *uru*-convergence could be topological. For example, if X is a vector lattice with a strong unit e, It follows from Theorem 5, that *ru*-convergence is equivalent to the norm convergence $\|\cdot\|_e$, where $\|x\|_e := \inf\{\lambda > 0 : |x| \le \lambda e\}, x \in X$. Thus *uru*-convergence in X is topological.

Consider vector lattice c_{00} of eventually zero sequences. It is well known that in c_{00} : $x_{\alpha} \xrightarrow{ru} 0$ iff $x_{\alpha} \xrightarrow{o} 0$. For the sake of completeness we include a proof of this fact. Clearly, $x_{\alpha} \xrightarrow{ru} 0 \Rightarrow x_{\alpha} \xrightarrow{o} 0$. For the converse, suppose $x_{\alpha} \xrightarrow{o} 0$ in c_{00} . Then there is a net $y_{\beta} \downarrow 0$ in c_{00} such that, for any β , there is α_{β} satisfying $|x_{\alpha}| \leq y_{\beta}$ for all $\alpha \geq \alpha_{\beta}$. Let e_n denote the sequence of standard unit vectors in c_{00} . Fix β_0 . Then $y_{\beta_0} = c_1^{\beta_0} e_{k_1} + \dots + c_n^{\beta_0} e_{k_n}, c_i^{\beta_0} \in$ $\mathbb{R}, i = 1, \dots, n$. Since y_{β} is decreasing, then $y_{\beta} \leq y_{\beta_0}$ for all $\beta \geq \beta_0$. So, $y_{\beta} = c_1^{\beta} e_{k_1} + \dots + c_n^{\beta} e_{k_n}$ for all $\beta \geq \beta_0, c_i^{\beta} \in \mathbb{R}, i = 1, \dots, n$. Since $y_{\beta} \downarrow 0$ then $\lim_{\beta} c_i^{\beta} = 0$ for all $i = 1, \dots, n$. Let $u = e_{k_1} + \dots + e_{k_n}$. Given $\varepsilon > 0$. Then, there is $\beta_{\varepsilon} \geq \beta_0$ such that $c_i^{\beta} < \varepsilon$ for all $\beta \geq \beta_{\varepsilon}$ for $i = 1, \dots, n$. Consider $y_{\beta_{\varepsilon}}$ then there is α_{ε} such that $|x_{\alpha}| \leq y_{\beta_{\varepsilon}}$ for all $\alpha \geq \beta_{\varepsilon}$. But $y_{\beta_{\varepsilon}} = c_1^{\beta_{\varepsilon}} e_{k_1} + \dots + c_n^{\beta_{\varepsilon}} e_{k_n} \leq \varepsilon u$. So, $|x_{\alpha}| \leq \varepsilon u$ for all $\alpha \geq \alpha_{\varepsilon}$. That is $x_{\alpha} \xrightarrow{ru} 0$. Thus, the *uru*-convergence in c_{00} coincides with the *uo*-convergence which is pointwise convergence and, therefore, is topological.

Proposition 3. Let X be Lebesgue and complete metrizable locally solid vector lattice. then $x_{\alpha} \xrightarrow{ru} 0$ iff $x_{\alpha} \xrightarrow{o} 0$.

Proof. The necessity is obvious. For the sufficiency assume that $x_{\alpha} \stackrel{o}{\to} 0$. Then there exists $y_{\beta} \downarrow 0$ such that for any β there is α_{β} with $|x_{\alpha}| \leq y_{\beta}$ as $\alpha \geq \alpha_{\beta}$. Since $d(y_{\beta}, 0) \to 0$, there exists an increasing sequence $(\beta_k)_k$ of indeces with $d(ky_{\beta_k}, 0) \leq \frac{1}{2^k}$. Let $s_n = \sum_{k=1}^n ky_{\beta_k}$. We show the sequence s_n is Cauchy. For n > m,

$$d(s_n, s_m) = d(s_n - s_m, 0) = d\left(\sum_{k=m+1}^n k y_{\beta_k}, 0\right) \le \sum_{k=m+1}^n d(k y_{\beta_k}, 0) \le \sum_{k=m+1}^n \frac{1}{2^k} \to 0, \text{ as } n, m \to \infty$$

Since X is complete, then the sequence s_n converges to some $u \in X_+$. That is, $u := \sum_{k=1}^{\infty} k y_{\beta_k}$. Then

$$|k|x_{\alpha}| \leqslant ky_{\beta_k} \leqslant u \quad (\forall \alpha \geqslant \alpha_{\beta_k})$$

which means that $x_{\alpha} \xrightarrow{ru} 0$.

Let $X = \mathbb{R}^{\Omega}$ be the vector lattice of all real-valued functions on a set Ω .

Proposition 4. In the vector lattice $X = \mathbb{R}^{\Omega}$, the following conditions are equivalent:

(1) for any net f_{α} in X: $f_{\alpha} \xrightarrow{o} 0$ iff $f_{\alpha} \xrightarrow{ru} 0$;

(2) Ω is countable.

Proof. (1) \Rightarrow (2) Suppose $f_{\alpha} \xrightarrow{o} 0 \Leftrightarrow f_{\alpha} \xrightarrow{ru} 0$ for any sequence f_{α} in $X = \mathbb{R}^{\Omega}$. Our aim is to show that Ω is countable. Assume, in contrary, that Ω is uncountable. Let $\mathcal{F}(\Omega)$ be the collection of all finite subsets of Ω . For each $\alpha \in \mathcal{F}(\Omega)$, put $f_{\alpha} = \mathcal{X}_{\alpha}$. Clearly, $f_{\alpha} \uparrow \mathbb{1}$, where $\mathbb{1}$ denotes the constant function one on Ω . Then $\mathbb{1} - f_{\alpha} \downarrow 0$ or $\mathbb{1} - f_{\alpha} \xrightarrow{o} 0$ in \mathbb{R}^{Ω} . So, there is $0 \leq g \in \mathbb{R}^{\Omega}$ such that, for any $\varepsilon > 0$, there exists α_{ε} satisfying $\mathbb{1} - f_{\alpha} \leq \varepsilon g$ for all $\alpha \geqslant \alpha_{\varepsilon}$. Let $n \in \mathbb{N}$. Then there is a finite set $\alpha_n \subseteq \Omega$ such that $\mathbb{1} - f_{\alpha_n} \leq \frac{1}{n}g$. Consequently, $g(x) \geqslant n$ for all $x \in \Omega \setminus \alpha_n$. Let $S = \bigcup_{n=1}^{\infty} \alpha_n$. Then S is countable and $\Omega \setminus S \neq \emptyset$. Moreover, for each $x \in \Omega \setminus S$, we have $g(x) \geqslant n$ for all $n \in \mathbb{N}$, which is impossible.

(2) \Rightarrow (1) Suppose that Ω is countable. So, we may assume that X = s, the space of all sequences. Since, from $x_{\alpha} \xrightarrow{ru} 0$ always follows that $x_{\alpha} \xrightarrow{o} 0$, it is enough to show that if $x_{\alpha} \xrightarrow{o} 0$ then $x_{\alpha} \xrightarrow{ru} 0$. To see this, let $(x_{\alpha}^{n})_{n} = x_{\alpha} \xrightarrow{o} 0$. Then, the net x_{α} is eventually bounded, say $|x_{\alpha}| \leq u = (u_{n})_{n} \in s$. Take $w := (nu_{n})_{n} \in s$. We show that $x_{\alpha} \xrightarrow{ru} 0$ with the regulator w. Let $k \in \mathbb{N}$. Since $x_{\alpha} \xrightarrow{o} 0$, then for each $n \in \mathbb{N}$, $x_{\alpha}^{n} \to 0$ in \mathbb{R} . Hence, there is α_{k} such that $k|x_{\alpha}^{1}| < u_{1}$, $k|x_{\alpha}^{2}| < u_{2}$, \cdots , $k|x_{\alpha}^{k-1}| < u_{k-1}$ for all $\alpha \geq \alpha_{k}$. Note that for $n \geq k$, $k|x_{\alpha}^{n}| < u_{n}$. Therefore, $k|x_{\alpha}| < w$ for all $\alpha \geq \alpha_{k}$.

It follows from Proposition 4 that, for countable Ω , the *uru*-convergence in \mathbb{R}^{Ω} coincides with the *uo*-convergence (which is pointwise) and therefore is topological. We do not know, whether or not the countability of Ω is necessary for the property that *uru*-convergence is topological in \mathbb{R}^{Ω} .

5. TOPOLOGICAL ORTHOGONAL SYSTEMS AND METRIZABILILTY

A collection $\{e_{\gamma}\}_{\gamma\in\Gamma}$ of positive vectors in a vector lattice X is called an orthogonal system if $e_{\gamma} \wedge e_{\gamma'} = 0$ for all $\gamma \neq \gamma'$. If, moreover, $x \wedge e_{\gamma} = 0$ for all $\gamma \in \Gamma$ implies x = 0, then $\{e_{\gamma}\}_{\gamma\in\Gamma}$ is called a maximal orthogonal system. It follows from Zorn's Lemma that every vector lattice containing at least one non-zero element has a maximal orthogonal system. Motivated by Definition III.5.1 in [20], we introduce the following notion.

Definition 1. Let (X, τ) be a topological vector lattice. An orthogonal system $Q = \{e_{\gamma}\}_{\gamma \in \Gamma}$ of non-zero elements in X_+ is said to be a topological orthogonal system if the ideal I_Q generated by Q is τ -dense in X.

Lemma 3. If $Q = \{e_{\gamma}\}_{\gamma \in \Gamma}$ is a topological orthogonal system in a topological vector lattice (X, τ) , then Q is a maximal orthogonal system in X.

Proof. Assume $x \wedge e_{\gamma} = 0$ for all $\gamma \in \Gamma$. By the assumption, there is a net x_{α} in the ideal I_Q such that $x_{\alpha} \xrightarrow{\tau} x$. Without lost of generality, we may assume $0 \leq x_{\alpha} \leq x$ for all α . Since $x_{\alpha} \in I_Q$, then there are $0 < \mu_{\alpha} \in \mathbb{R}$ and $\gamma_1, \gamma_2, \ldots, \gamma_n$, such that $0 \leq x_{\alpha} \leq \mu_{\alpha}(e_{\gamma_1} + e_{\gamma_2} + \cdots + e_{\gamma_n})$. So $0 \leq x_{\alpha} = x_{\alpha} \wedge x \leq \mu_{\alpha}(e_{\gamma_1} + e_{\gamma_2} + \cdots + e_{\gamma_n}) \wedge x = \mu_{\alpha}e_{\gamma_1} \wedge x + \cdots + \mu_{\alpha}e_{\gamma_n} \wedge x = 0$.

We recall the following construction from [20, p.169]. Let X be a vector lattice and $Q = \{e_{\gamma}\}_{\gamma \in \Gamma}$ be a maximal orthogonal system of X. Let $\mathscr{F}(\Gamma)$ denote the collection of all finite subsets of Γ ordered by inclusion. For each $(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma)$ and $x \in X_+$, define

$$x_{n,H} \coloneqq \sum_{\gamma \in H} x \wedge n e_{\gamma}.$$

Clearly $\{x_{n,H} : (n,H) \in \mathbb{N} \times \mathcal{F}(\Gamma)\}$ is directed upward, and

(5.1) $x_{n,H} \le x \text{ for all } (n,H) \in \mathbb{N} \times \mathscr{F}(\Gamma).$

Moreover, Proposition II.1.9 in [20] implies $x_{n,H} \uparrow x$.

Theorem 6. Let $Q = \{e_{\gamma}\}_{\gamma \in \Gamma}$ be an orthogonal system of a locally solid vector lattice (X, τ) , then Q is a topological orthogonal system iff we have $x_{n,H} \xrightarrow{\tau} x$ over $(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma)$ for each $x \in X_+$.

Proof. For the backward implication take $x \in X_+$. Since

$$x_{n,H} = \sum_{\gamma \in H} x \wedge ne_{\gamma} \le n \sum_{\gamma \in H} e_{\gamma},$$

then $x_{n,H} \in I_Q$ for each $(n,H) \in \mathbb{N} \times \mathscr{F}(\Gamma)$. Also, we have, by assumption, $x_{n,H} \xrightarrow{\tau} x$. Thus, $x \in \overline{I}_Q^{\tau}$, i.e., Q is a topological orthogonal system of X.

For the forward implication, note that Q is a maximal orthogonal system, by Lemma 3. Let $x \in X_+$, and $j \in J$. Given $\varepsilon > 0$. Let $V_{\varepsilon,x,j} := \{z \in X : \rho_j(z-x) < \varepsilon\}$. Then $V_{\varepsilon,x,j}$ is a neighborhood of x in the τ -topology. Since I_Q is dense in X with respect to the τ -topology, there is $x_{\varepsilon} \in I_Q$ with $0 \le x_{\varepsilon} \le x$ such that $\rho_j(x_{\varepsilon} - x) < \varepsilon$. Now, $x_{\varepsilon} \in I_Q$ implies that there are $H_{\varepsilon} \in \mathscr{F}(\Gamma)$ and $n_{\varepsilon} \in \mathbb{N}$ such that

(5.2)
$$x_{\varepsilon} \le n_{\varepsilon} \sum_{\gamma \in H_{\varepsilon}} e_{\gamma}.$$

Let

(5.3)
$$w \coloneqq x \wedge \sum_{\gamma \in H_{\varepsilon}} n_{\varepsilon} e_{\gamma}$$

It follows from $0 \leq w \leq \sum_{\gamma \in H_{\varepsilon}} n_{\varepsilon} e_{\gamma}$ and the Riesz decomposition property, that, for each $\gamma \in H_{\varepsilon}$, there exists y_{γ} with

(5.4)
$$0 \le y_{\gamma} \le n_{\varepsilon} e_{\gamma}$$

such that

(5.5)
$$w = \sum_{\gamma \in H_{\varepsilon}} y_{\gamma}.$$

From (5.3) and (5.5), we have

(5.6)
$$y_{\gamma} \leq x \quad (\forall \gamma \in H_{\varepsilon}).$$

Also, (5.4) and (5.6) imply that $y_{\gamma} \leq n_{\varepsilon} e_{\gamma} \wedge x$. Now

(5.7)
$$w = \sum_{\gamma \in H_{\varepsilon}} y_{\gamma} \leq \sum_{\gamma \in H_{\varepsilon}} x \wedge n_{\varepsilon} e_{\gamma} = x_{n_{\varepsilon}, H_{\varepsilon}}.$$

But, from (5.2) and (5.3), we get

$$(5.8) 0 \le x_{\varepsilon} \le w.$$

Thus, it follows from (5.7), (5.8), and (5.1), that $0 \leq x_{\varepsilon} \leq x_{n_{\varepsilon},H_{\varepsilon}} \leq x$. Hence, $0 \leq x - x_{n_{\varepsilon},H_{\varepsilon}} \leq x - x_{\varepsilon}$ and so $\rho_j(x - x_{n,H}) \leq \rho_j(x - x_{n_{\varepsilon},H_{\varepsilon}}) \leq \rho_j(x - x_{\varepsilon})$ for each $(n,H) \geq (n_{\varepsilon},H_{\varepsilon})$. Therefore $x_{n,H} \xrightarrow{\tau} x$.

The following corollary can be proven easily.

Corollary 3. Let (X, τ) be a locally solid vector lattice. The following statements are equivalent:

- (1) $e \in X_+$ is a quasi-interior point;
- (2) for each $x \in X_+$, $x x \wedge ne \xrightarrow{\tau} 0$ as $n \to \infty$.

Corollary 4. Let (X, τ) be a locally solid vector lattice possessing the σ -Lebesgue property. Then every weak unit in X is a quasi-interior point.

Proof. Let $x \in X^+$, and let e be a weak unit. Then $x \wedge ne \uparrow x$. So, by the σ -Lebesgue property, we get $x - x \wedge ne \xrightarrow{\tau} 0$ as $n \to \infty$.

Theorem 7. Let (X, τ) be a locally solid vector lattice, and $Q = \{e_{\gamma}\}_{\gamma \in \Gamma}$ be a topological orthogonal system of (X, τ) . Then $x_{\alpha} \xrightarrow{u\tau} 0$ iff $|x_{\alpha}| \wedge e_{\gamma} \xrightarrow{\tau} 0$ for every $\gamma \in \Gamma$.

Proof. The forward implication is trivial. For the backward implication, assume $|x_{\alpha}| \wedge e_{\gamma} \xrightarrow{\tau} 0$ for every $\gamma \in \Gamma$. Let $u \in X_{+}$, $j \in J$. Fix $\varepsilon > 0$. We

have

$$\begin{aligned} |x_{\alpha}| \wedge u &= |x_{\alpha}| \wedge (u - u_{n,H} + u_{n,H}) \\ &\leq |x_{\alpha}| \wedge (u - u_{n,H}) + |x_{\alpha}| \wedge u_{n,H} \\ &\leq (u - u_{n,H}) + |x_{\alpha}| \wedge \sum_{\gamma \in H} u \wedge ne_{\gamma} \\ &\leq (u - u_{n,H}) + |x_{\alpha}| \wedge \sum_{\gamma \in H} ne_{\gamma} \\ &\leq (u - u_{n,H}) + n \left(|x_{\alpha}| \wedge \sum_{\gamma \in H} e_{\gamma} \right) \\ &= (u - u_{n,H}) + n \sum_{\gamma \in H} |x_{\alpha}| \wedge e_{\gamma}. \end{aligned}$$

Now, Theorem 6 assures that $u_{n,H} \xrightarrow{\tau} u$, and so, there exists $(n_{\varepsilon}, H_{\varepsilon}) \in \mathbb{N} \times \mathscr{F}(\Gamma)$ such that

(5.9)
$$\rho_j(u - u_{n_{\varepsilon}, H_{\varepsilon}}) < \varepsilon.$$

Thus, $|x_{\alpha}| \wedge u \leq u - u_{n_{\varepsilon},H_{\varepsilon}} + \sum_{\gamma \in H_{\varepsilon}} n_{\varepsilon}(e_{\gamma} \wedge |x_{\alpha}|)$. But, by the assumption, $e_{\gamma} \wedge |x_{\alpha}| \xrightarrow{\tau} 0$ for all $\gamma \in \Gamma$, and so $n_{\varepsilon}(e_{\gamma} \wedge |x_{\alpha}|) \xrightarrow{\tau} 0$. Hence, there is $\alpha_{\varepsilon,H_{\varepsilon}}$ such that

(5.10)
$$\rho_j \left(n_{\varepsilon}(e_{\gamma} \wedge |x_{\alpha}|) \right) < \frac{\varepsilon}{|H_{\varepsilon}|} \quad (\forall \alpha \ge \alpha_{\varepsilon, H_{\varepsilon}}, \ \forall \gamma \in H_{\varepsilon}).$$

Here $|H_{\varepsilon}|$ denotes the cardinality of H_{ε} . For $\alpha \geq \alpha_{\varepsilon,H_{\varepsilon}}$, we have

$$\rho_{j}(|x_{\alpha}| \wedge u) \leq \rho_{j}(u - u_{n_{\varepsilon},H_{\varepsilon}}) + \rho_{j}\left(n_{\varepsilon}\sum_{\gamma \in H_{\varepsilon}}|x_{\alpha}| \wedge e_{\gamma}\right)$$
$$\leq \varepsilon + \sum_{\gamma \in H_{\varepsilon}}\rho_{j}\left(n_{\varepsilon}(e_{\gamma} \wedge |x_{\alpha}|)\right) < \varepsilon + \sum_{\gamma \in H_{\varepsilon}}\frac{\varepsilon}{|H_{\varepsilon}|} = 2\varepsilon,$$

where the second inequality follows from (5.9) and the third one from (5.10). Therefore, $\rho_j(|x_{\alpha}| \wedge u) \to 0$, and so $x_{\alpha} \xrightarrow{u\tau} 0$.

The following corollary is immediate.

Corollary 5. Let (X, τ) be a locally solid vector lattice, and $e \in X_+$ be a quasi-interior point. Then $x_{\alpha} \xrightarrow{u\tau} 0$ iff $|x_{\alpha}| \wedge e \xrightarrow{\tau} 0$.

Recall that a topological vector space is metrizable iff it has a countable neighborhood base at zero, [2, Thm. 2.1]. In particular, a locally solid vector lattice (X, τ) is metrizable iff its topology τ is generated by a countable family $(\rho_k)_{k \in \mathbb{N}}$ of Riesz pseudonorms. The following result gives a sufficient condition for the metrizability of $u\tau$ -topology.

14 Y. A. DABBOORASAD^{1,2}, E. Y. EMELYANOV², AND M. A. A. MARABEH²

Proposition 5. Let (X, τ) be a complete metrizable locally solid vector lattice. If X has a countable topological orthogonal system, then the $u\tau$ -topology is metrizable.

Proof. First note that, since (X, τ) is metrizable, τ is generated by a countable family $(\rho_k)_{k \in \mathbb{N}}$ of Riesz pseudonorms.

Now suppose $(e_n)_{n \in \mathbb{N}}$ to be a topological orthogonal system. For each $n \in \mathbb{N}$, put $d_n(x, y) \coloneqq \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{\rho_k(|x-y| \wedge e_n)}{1 + \rho_k(|x-y| \wedge e_n)}$. Note that each d_n is a semimetric, and $d_n(x, y) \leq 1$ for all $x, y \in X$. If $d_n(x, y) = 0$, then $\rho_k(|x-y| \wedge e_n) = 0$ for all $k \in \mathbb{N}$, so $(|x-y| \wedge e_n) = 0$. For $x, y \in X$, let $d(x, y) \coloneqq \sum_{n=1}^{\infty} \frac{1}{2^n} d_n(x, y)$. Clearly, d(x, y) is nonnegative and satisfies the triangle inequality, and d(x, y) = d(y, x) for all $x, y \in X$. Now d(x, y) = 0 iff $d_n(x, y) = 0$ for all $n \in \mathbb{N}$ iff $\rho_k(|x-y| \wedge e_n) = 0$ for all $k \in \mathbb{N}$ iff $(|x-y| \wedge e_n) = 0$ for all $k \in \mathbb{N}$ iff $u_n(x, y) = 0$ for all $n \in \mathbb{N}$ iff |x-y| = 0 iff x = y. Thus (X, d) is a metric space. Finally, it is easy to see from Theorem 7 that d generates the $u\tau$ -topology.

Recall that a topological space X is called *submetrizable* if its topology is finer that some metric topology on X.

Proposition 6. Let (X, τ) be a metrizable locally solid vector lattice. If X has a weak unit, then the $u\tau$ -topology is submetrizable.

Proof. Note that, since (X, τ) is metrizable, then τ is generated by a countable family $(\rho_k)_{k \in \mathbb{N}}$ of Riesz pseudonorms.

Suppose that $e \in X_+$ is a weak unit. Put $d(x,y) := \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{\rho_k(|x-y| \wedge e)}{1+\rho_k(|x-y| \wedge e)}$. Note that d(x,y) = 0 iff $\rho_k(|x-y| \wedge e) = 0$ for all $k \in \mathbb{N}$ iff $|x-y| \wedge e = 0$ and, since e is a weak unit, x = y. It can easily be shown that d satisfies the triangle inequality. Assume $x_\alpha \xrightarrow{u\tau} x$. Then, for all $u \in X_+$, $\rho_k(|x-y| \wedge u) \to 0$ for all $k \in \mathbb{N}$. In particular, $\rho_k(|x-y| \wedge e) \to 0$ for all $k \in \mathbb{N}$. Then in a similar argument to [24, p.200], it can be shown that $x_\alpha \xrightarrow{d} x$. Therefore, the $u\tau$ -topology is finer than the metric topology generated by d, and hence $u\tau$ -topology is submetrizable.

We do not know whether the converse of propositions 5, and 6 is true or not.

6. UNBOUNDED τ -Completeness

A subset A of a locally solid vector lattice (X, τ) is said to be (*sequentially*) $u\tau$ -complete if, it is (sequentially) complete in the $u\tau$ -topology. In this section, we relate sequential $u\tau$ -completeness of subsets of X with the Lebesgue and Levi properties. First, we remind the following theorem.

Theorem 8. [26, Thm. 1] If (X, τ) is a locally solid vector lattice, then the following statements are equivalent:

- (1) (X, τ) has the Lebesque and Levi properties;
- (2) X is τ -complete, and c_0 is not lattice embeddable in (X, τ) .

Recall that two locally solid vector lattices (X_1, τ_1) and (X_2, τ_2) are said to be *isomorphic*, if there exists a lattice isomorphism from X_1 onto X_2 that is also a homeomorphism; in other words, if there exists a mapping from X_1 onto X_2 that preserves the algebraic, the lattice, and the topological structures. A locally solid vector lattice (X_1, τ_1) is said to be *lattice embeddable* into another locally solid vector lattice (X_2, τ_2) if there exists a sublattice Y_2 of X_2 such that (X_1, τ_1) and (Y_2, τ_2) are isomorphic.

Note that (X, τ) can have the Lebesgue and Levi properties and simultaneously contains c_0 as a sublattice, but not as a lattice embeddable copy. The following example illustrates this.

Example 1. Let s denote the vector lattice of all sequences in \mathbb{R} with coordinatewise ordering. Clearly, c_0 is a sublattice of s. Define the following separating family of Riesz pseudonorms

$$\mathcal{R} \coloneqq \{\rho_j : \rho_j((x_n)_{n \in \mathbb{N}}) \coloneqq |x_j|\}$$

for each $j \in \mathbb{N}$ and $(x_n)_n \in s$. Then \mathcal{R} generates a locally solid topology τ on s. It can be easily shown that (s, τ) has the Lebesgue and Levi properties. Although c_0 is a sublattice of s, but $(c_0, \|\cdot\|_{\infty})$ is not lattice embeddable in (s, τ) . To see this, consider the sequence e_n of the standard unit vectors in c_0 . Then the sequence e_n is not norm null in $(c_0, \|\cdot\|_{\infty})$, whereas $e_n \xrightarrow{\tau} 0$ in (s, τ) .

Proposition 7. Let (X, τ) be a complete locally solid vector lattice. If every τ -bounded subset of X is sequentially $u\tau$ -complete, then X has the Lebesgue and Levi properties.

Proof. Suppose X does not possess the Lebesgue or Levi properties. Then, by Theorem 8, c_0 is lattice embeddable in (X, τ) . Let $s_n = \sum_{k=1}^n e_k$, where e_k 's denote the standard unit vectors in c_0 . Clearly, the sequence s_n is normbounded in c_0 and so it is τ -bounded in (X, τ) . Note that $||e_k||_{\infty} = 1 \rightarrow 0$, and so e_k is not τ -null. It follows from [15, Lm. 6.1] that s_n is un-Cauchy in c_0 , but is not un-convergent in c_0 . That is s_n is $u\tau$ -Cauchy which is not $u\tau$ -convergent, a contradiction.

Using the proof of the previous result and [26, Thm. 1'], one can easily prove the following result.

Proposition 8. Let X be a Dedekind complete vector lattice equipped with a sequentially complete topology τ . If every τ -bounded subset of X is sequentially $u\tau$ -complete, then X has the σ -Lebesgue and σ -Levi properties.

16 Y. A. DABBOORASAD^{1,2}, E. Y. EMELYANOV², AND M. A. A. MARABEH²

Clearly, every finite dimensional locally solid vector lattice (X, τ) is $u\tau$ complete. On the contrary of [15, Prop. 6.2], we provide an example of a τ complete locally solid vector lattice (X, τ) possessing the Lebesgue property
such that it is $u\tau$ -complete and dim $X = \infty$.

Example 2. Let X = s and $\mathcal{R} = (\rho_j)_{j \in \mathbb{N}}$ such that $\rho_j((x_n)) \coloneqq |x_j|$, where $(x_n)_{n \in \mathbb{N}} \in s$. It is easy to see that (X, \mathcal{R}) is τ -complete and has the Lebesgue property. Now, we show that (X, \mathcal{R}) is $u\tau$ -complete. Suppose x^{α} is $u\tau$ -Cauchy net. Then, for each $u \in X_+$, we have $|x^{\alpha} - x^{\beta}| \wedge u \xrightarrow{\tau} 0$. Now, $u = u_n$ and, $x^{\alpha} = x_n^{\alpha}$. Let $j \in \mathbb{N}$, then $\rho_j(|x^{\alpha} - x^{\beta}| \wedge u) \to 0$ in \mathbb{R} over α, β iff $|x_j^{\alpha} - x_j^{\beta}| \wedge u_j \to 0$ in \mathbb{R} iff $|x_j^{\alpha} - x_j^{\beta}| \wedge u_j \to 0$ in \mathbb{R} iff $|x_j^{\alpha} - x_j^{\beta}| \to 0$ in \mathbb{R} over α, β . Thus, $(x_j^{\alpha})_{\alpha}$ is Cauchy in \mathbb{R} and so there is $x_j \in \mathbb{R}$ such that $x_j^{\alpha} \to x_j$ in \mathbb{R}

over α . Let $x = (x_j)_{j \in \mathbb{N}} \in s$, then, clearly, $x^{\alpha} \xrightarrow{u\tau} x$.

References

- Y. Abramovich and C. D. Aliprantis, An invitation to operator theory, Vol. 50. Providence, RI: American Mathematical Society, 2002.
- [2] C. D. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces with applications to economics, Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, 2003.
- [3] C. D. Aliprantis and O. Burkinshaw, Positive Operators, 2nd edition, Springer-Verlag, Berlin and Heidelberg, 2006.
- [4] C. D. Aliprantis, R. Tourky, Cones and Duality, Vol. 84. Providence, RI: American Mathematical Society, 2007.
- [5] A. Aydın, E. Yu. Emelyanov, N. Erkurşun Özcan, and M. A. A. Marabeh. Unbounded *p*-convergence in Lattice-Normed Vector Lattices, *preprint*, arXiv:1609.05301.
- [6] A. Aydın, E. Yu. Emelyanov, N. Erkurşun Özcan, and M. A. A. Marabeh. Compact-Like Operators in Lattice-Normed Spaces, *preprint*, arXiv:1701.03073v2.
- [7] Y. Dabboorasad, E. Y. Emelyanov, and M. A. A. Marabeh, Order convergence in infinite-dimensional vector lattices is not topological, *preprint*, arXiv:1705.09883v1.
- [8] Y. Deng, M. O'Brien, and V. G. Troitsky, Unbounded norm convergence in Banach lattices, *Positivity*, to appear, DOI:10.1007/s11117-016-0446-9.
- [9] E. Yu. Emelyanov and M. A. A. Marabeh, Two measure-free versions of the Brezis-Lieb Lemma, *Vladikavkaz Math. J.*, 18(1), 2016, 21–25.
- [10] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
- [11] N. Gao, Unbounded order convergence in dual spaces, J. Math. Anal. Appl., 419, 347–354, 2014.
- [12] N. Gao, D. H. Leung, and F. Xanthos, The dual representation problem of risk measures, *preprint*, arXiv:1610.08806.

- [13] N. Gao, V. G. Troitsky, and F. Xanthos, Uo-convergence and its applications to Cesàro means in Banach lattices, *Israel J. Math.*, to appear, arXiv:1509.07914.
- [14] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, J. Math. Anal. Appl., 415, 931–947, 2014.
- [15] M. Kandić, M. A. A. Marabeh, and V. G. Troitsky, Unbounded norm topology in Banach lattices, J. Math. Anal. Appl., 451, 259–279, 2017.
- [16] M. Kandić, H. Li, and V. G. Troitsky, Unbounded norm topology beyond normed lattices, *preprint*, arXiv:1703.10654.
- [17] H. Li and Z. Chen Some loose ends on unbounded order convergence, *Positivity*, DOI 10.1007/s11117-017-0501-1, 2017.
- [18] E. T. Ordman, Convergence almost everywhere is not topological, Amer. Math. Monthly, Vol. 2, 182–183, 1966.
- [19] W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, North-Holland Publishing Co., Amsterdam-London, 1971.
- [20] H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin, 1974.
- [21] H. H. Schaefer and M. P. Wolff, Topological vector spaces, second edition, Graduate Texts in Mathematics, 3, Springer-Verlag, New York, 1999.
- [22] M. A. Taylor, Unbounded topologies and uo-convegence in locally solid vector lattices, *preprint*, arXiv:1706.01575.
- [23] V. G. Troitsky, Measures of non-compactness of operators on Banach lattices, *Positivity*, 8(2), 165–178, 2004.
- [24] B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Scientific Publications, Ltd., Groningen, 1967.
- [25] A. W. Wickstead, Weak and unbounded order convergence in Banach lattices, J. Austral. Math. Soc. Ser. A, 24(3), 312–319, 1977.
- [26] W. Wnuk, Locally solid Riesz spaces not containing c₀, Bull. Polish Acad. Sci. Math. Vol. 36, no. 1-2, 51–56, 1988.
- [27] O. Zabeti, Unbounded Absolute Weak Convergence in Banach Lattices, preprint. arXiv:1608.02151v5.

1 DEPARTMENT OF MATHEMATICS, ISLAMIC UNIVERSITY OF GAZA, P.O.BOX 108, GAZA CITY, PALESTINE.

E-mail address: yasad@iugaza.edu.ps, ysf_atef@hotmail.com

 2 Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey.

E-mail address: yousef.dabboorasad@metu.edu.tr, eduard@metu.edu.tr, mohammad.marabeh@metu.edu.tr, m.maraabeh@gmail.com