$u \tau$-CONVERGENCE IN LOCALLY SOLID VECTOR LATTICES

Y. A. DABBOORASAD ${ }^{1,2}$, E. Y. EMELYANOV ${ }^{2}$, AND M. A. A. MARABEH ${ }^{2}$

Abstract

Let x_{α} be a net in a locally solid vector lattice (X, τ); we say that x_{α} is unbounded τ-convergent to a vector $x \in X$ if $\left|x_{\alpha}-x\right| \wedge w \xrightarrow{\tau} 0$ for all $w \in X_{+}$. In this paper, we study general properties of unbounded τ-convergence (shortly, $u \tau$-convergence). $u \tau$-Convergence generalizes unbounded norm convergence and unbounded absolute weak convergence in normed lattices that have been investigated recently. Besides, we introduce $u \tau$-topology and study briefly metrizabililty and completeness of this topology.

1. Introduction and preliminaries

The subject of "unbounded convergence" has attracted many researchers [25, 23, 11, 13, 9, 8, ,27, 15, [5, 17, 16, 12, 22]. It is well-investigated in vector lattices and normed lattices [11, 14, 13, 27]. In the present paper, we study unbounded convergence in locally solid vector lattices. Results in this article extend previous works [8, 13, 15, 27].

For a net x_{α} in a vector lattice X, we write $x_{\alpha} \xrightarrow{o} x$, if x_{α} converges to x in order. This means that there is a net y_{β}, possibly over a different index set, such that $y_{\beta} \downarrow 0$ and, for every β, there exists α_{β} satisfying $\left|x_{\alpha}-x\right| \leqslant y_{\beta}$ whenever $\alpha \geqslant \alpha_{\beta}$. A net x_{α} is unbounded order convergent to a vector $x \in X$ if $\left|x_{\alpha}-x\right| \wedge u \xrightarrow{o} 0$ for every $u \in X_{+}$. We write $x_{\alpha} \xrightarrow{u o} x$ and say that x_{α} uo-converges to x. Clearly, order convergence implies uo-convergence and they coincide for order bounded nets. For a measure space (Ω, Σ, μ) and for a sequence f_{n} in $L_{p}(\mu)(0 \leq p \leq \infty), f_{n} \xrightarrow{u o} 0$ iff $f_{n} \rightarrow 0$ almost everywhere (cf. [13, Rem. 3.4]). It is well known that almost everywhere convergence is not topological in general [18]. Therefore, the uo-convergence might not be topological. Quite recently, it has been shown that order convergence is never topological in infinite dimensional vector lattices [7.

For a net x_{α} in a normed lattice $(X,\|\cdot\|)$, we write $x_{\alpha} \xrightarrow{\|\cdot\|} x$ if x_{α} converges to x in norm. We say that x_{α} unbounded norm converges to $x \in X$ (or x_{α}

[^0]un-converges to $x)$ if $\left|x_{\alpha}-x\right| \wedge u \xrightarrow{\|\cdot\|} 0$ for every $u \in X_{+}$. We write $x_{\alpha} \xrightarrow{u n} x$. Clearly, norm convergence implies un-convergence. The un-convergence is topological, and the corresponding topology (which is known as un-topology) was investigated in [15]. A net x_{α} is unbounded absolute weak convergent to $x \in X$ (or x_{α} uaw-converges to x) if $\left|x_{\alpha}-x\right| \wedge u \xrightarrow{w} 0$ for all $u \in X_{+}$, where " w " refers the weak convergence. We write $x_{\alpha} \xrightarrow{u a w} x$. Absolute weak convergence implies uaw-convergence. The notions of uaw-convergence and uaw-topology were introduced in [27].

If X is a vector lattice, and τ is a linear topology on X that has a base at zero consisting of solid sets, then the pair (X, τ) is called a locally solid vector lattice. It should be noted that all topologies considered throughout this article are assumed to be Hausdorff. It follows from [2, Thm. 2.28] that a linear topology τ on a vector lattice X is locally solid iff it is generated by a family $\left\{\rho_{j}\right\}_{j \in J}$ of Riesz pseudonorms. Moreover, if a family of Riesz pseudonorms generates a locally solid topology τ on a vector lattice X, then $x_{\alpha} \xrightarrow{\tau} x$ in X iff $\rho_{j}\left(x_{\alpha}-x\right) \underset{\alpha}{\rightarrow} 0$ in \mathbb{R} for each $j \in J$. Since X is Hausdorff, then the family $\left\{\rho_{j}\right\}_{j \in J}$ of Riesz pseudonorms is separating; i.e., if $\rho_{j}(x)=0$ for all $j \in J$, then $x=0$. In this article, unless otherwise, the pair (X, τ) refers to as a locally solid vector lattice.

A subset A in a topological vector space (X, τ) is called topologically bounded (or simply τ-bounded) if, for every τ-neighborhood V of zero, there exists some $\lambda>0$ such that $A \subseteq \lambda V$. If ρ is a Riesz pseudonorm on a vector lattice X and $x \in X$, then $\frac{1}{n} \rho(x) \leq \rho\left(\frac{1}{n} x\right)$ for all $n \in \mathbb{N}$. Indeed, if $n \in \mathbb{N}$ then $\rho(x)=\rho\left(n \frac{1}{n} x\right) \leq n \rho\left(\frac{1}{n} x\right)$. The following standard fact is included for the sake of completeness.

Proposition 1. Let (X, τ) be a locally solid vector lattice with a family of a Riesz pseudonorms $\left\{\rho_{j}\right\}_{j \in J}$ that generates the topology τ. If a subset A of X is τ-bounded then $\rho_{j}(A)$ is bounded in \mathbb{R} for any $j \in J$.

Proof. Let $A \subseteq X$ be τ-bounded and $j \in J$. Put $V:=\left\{x \in X: \rho_{j}(x)<1\right\}$. Clearly, V is a neighborhood of zero in X. Since A is τ-bounded, there is $\lambda>0$ satisfying $A \subseteq \lambda V$. Thus $\rho_{j}\left(\frac{1}{\lambda} a\right) \leq 1$ for all $a \in A$. There exists $n \in \mathbb{N}$ with $n>\lambda$. Now, $\frac{1}{n} \rho_{j}(a) \leq \rho_{j}\left(\frac{1}{n} a\right) \leq \rho_{j}\left(\frac{1}{\lambda} a\right) \leq 1$ for all $a \in A$. Hence, $\sup _{a \in A} \rho_{j}(a) \leq n<\infty$.

Next, we discuss the converse of the proposition above.
Let $\left\{\rho_{j}\right\}_{j \in J}$ be a family of Riesz pseudonorms for a locally solid vector lattice (X, τ). For $j \in J$, let $\tilde{\rho}_{j}:=\frac{\rho_{j}}{1+\rho_{j}}$. Then $\tilde{\rho}_{j}$ is a Riesz pseudonorm on X. Moreover, the family $\left(\tilde{\rho}_{j}\right)_{j \in J}$ generates the topology τ on X. Clearly, $\tilde{\rho}_{j}(A) \leq 1$ for any subset A of X, but still we might have a subset that is not τ-bounded.

Recall that a locally solid vector lattice (X, τ) is said to have the Lebesgue property if $x_{\alpha} \downarrow 0$ in X implies $x_{\alpha} \xrightarrow{\tau} 0$; or equivalently $x_{\alpha} \xrightarrow{o} 0$ implies
$x_{\alpha} \xrightarrow{\tau} 0$; and (X, τ) is said to have the σ-Lebesgue property if $x_{n} \downarrow 0$ in X implies $x_{n} \xrightarrow{\tau} 0$. Finally, (X, τ) is said to have the Levi property if $0 \leq x_{\alpha} \uparrow$ and the net x_{α} is τ-bounded, then x_{α} has the supremum in X; and (X, τ) is said to have the σ-Levi property if $0 \leq x_{n} \uparrow$ and x_{n} is τ-bounded, then x_{n} has supremum in X, see [2, Def. 3.16].

Let X be a vector lattice, and take $0 \neq u \in X_{+}$. Then a net x_{α} in X is said to be u-uniformly convergent to a vector $x \in X$ if, for each $\varepsilon>0$, there exists some α_{ε} such that $\left|x_{\alpha}-x\right| \leq \varepsilon u$ holds for all $\alpha \geqslant \alpha_{\varepsilon}$; and x_{α} is said to be u-uniformly Cauchy if, for each $\varepsilon>0$, there exists some α_{ε} such that, for all $\alpha, \alpha^{\prime} \geqslant \alpha_{\varepsilon}$, we have $\left|x_{\alpha}-x_{\alpha^{\prime}}\right| \leq \varepsilon u$. A vector lattice X is said to be u-uniformly complete if every u-uniformly Cauchy sequence in X is u-uniformly convergent; and X is said to be uniformly complete if X is u-uniformly complete for each $0 \neq u \in X_{+}$.

Let X be a vector lattice. An element $0 \neq e \in X_{+}$is called a strong unit if $I_{e}=X$ (equivalently, for every $x \geqslant 0$, there exists $n \in \mathbb{N}$ such that $x \leqslant n e$), and $0 \neq e \in X_{+}$is called a weak unit if $B_{e}=X$ (equivalently, $x \wedge n e \uparrow x$ for every $x \in X_{+}$). Here B_{e} denotes the band generated by e. If (X, τ) is a topological vector lattice, then $0 \neq e \in X_{+}$is called a quasi-interior point, if the principal ideal I_{e} is τ-dense in X [20, Def. II.6.1]. It is known that

$$
\text { strong unit } \Rightarrow \text { quasi-interior point } \Rightarrow \text { weak unit. }
$$

Recall that a Banach lattice X is called an $A M$-space if $\|x \vee y\|=\max \{\|x\|,\|y\|\}$ for all $x, y \in X$ with $x \wedge y=0$.

Let (X, τ) be a sequentially complete locally solid vector lattice. Then it follows from the proof of [4, Cor. 2.59] that it is uniformly complete. So, for each $0 \neq u \in X_{+}$, let I_{u} be the ideal generated by u and $\|\cdot\|_{u}$ be the norm on I_{u} given by

$$
\|x\|_{u}=\inf \{r>0:|x| \leq r u\} \quad(x \in X) .
$$

Then, by [4, Thm. 2.58], the pair $\left(I_{u},\|\cdot\|_{u}\right)$ is a Banach lattice. Now Theorem 3.4 in $\left[1\right.$ implies that $\left(I_{u},\|\cdot\|_{u}\right)$ is an $A M$-space with a strong unit u, and then, by [1, Thm. 3.6], it is lattice isometric (uniquely, up to a homeomorphism) to $C(K)$ for some compact Hausdorff space K in such a way, that the strong unit u is identified with the constant function $\mathbb{1}$ on K.

For unexplained terminologies and notions we refer to [2, 3].

2. Unbounded τ-CONVERGENCE

Suppose (X, τ) is a locally solid vector lattice. Let x_{α} be a net in X. We say that x_{α} is unbounded τ-convergent to $x \in X$ if, for any $w \in X_{+}$, we have $\left|x_{\alpha}-x\right| \wedge w \xrightarrow{\tau} 0$. In this case, we write $x_{\alpha} \xrightarrow{u \tau} x$ and say that x_{α} $u \tau$-converges to x. Obviously, if $x_{\alpha} \xrightarrow{\tau} x$ then $x_{\alpha} \xrightarrow{u \tau} x$. The converse holds if the net x_{α} is order bounded. Note also that $u \tau$-convergence respects linear
and lattice operations. It is clear that $u \tau$-convergence is a generalization of un-convergence [8, 15] and, of uaw-convergence [27].

Let \mathcal{N}_{τ} be a neighborhood base at zero consisting of solid sets for (X, τ). For each $0 \neq w \in X_{+}$and $V \in \mathcal{N}_{\tau}$, let

$$
U_{V, w}:=\{x \in X:|x| \wedge w \in V\} .
$$

It can be easily shown that the collection

$$
\mathcal{N}_{u \tau}:=\left\{U_{V, w}: V \in \mathcal{N}_{\tau}, 0 \neq w \in X_{+}\right\}
$$

forms a neighborhood base at zero for a locally solid topology; we call it $u \tau$ topology, where u refers to as unbounded. Moreover, $x_{\alpha} \xrightarrow{u \tau} 0$ iff $x_{\alpha} \rightarrow 0$ with respect to $u \tau$-topology. Indeed, suppose $x_{\alpha} \xrightarrow{u \tau} 0$. Given a neighborhood $U_{V, w} \in \mathcal{N}_{u \tau}$. Then there are $0 \neq w \in X_{+}$and $V \in \mathcal{N}_{\tau}$ such that

$$
U_{V, w}=\{x \in X:|x| \wedge w \in V\}
$$

Now, $x_{\alpha} \xrightarrow{u \tau} 0$ implies $\left|x_{\alpha}\right| \wedge w \xrightarrow{\tau} 0$. So, there is α_{0} such that, for all $\alpha \geq \alpha_{0}$, we have $\left|x_{\alpha}\right| \wedge w \in V$. That is $x_{\alpha} \in U_{V, w}$ for all $\alpha \geq \alpha_{0}$. Thus, $x_{\alpha} \rightarrow 0$ in the $u \tau$-topology.

Conversely, assume $x_{\alpha} \rightarrow 0$ in the $u \tau$-topology. Given $0 \neq w \in X_{+}$and $V \in \mathcal{N}_{\tau}$. Then, $U_{V, w}$ is a zero neighborhood in the $u \tau$-topology. So, there is α^{\prime} such that $x_{\alpha} \in U_{V, w}$ for all $\alpha \geq \alpha^{\prime}$. That is, $\left|x_{\alpha}\right| \wedge w \in V$ for all $\alpha \geq \alpha^{\prime}$. Thus, $\left|x_{\alpha}\right| \wedge w \xrightarrow{\tau} 0$ or $x_{\alpha} \xrightarrow{u \tau} 0$. The locally solid $u \tau$-topology will be referred to as unbounded τ-topology.

The neighborhood base at zero for the $u \tau$-topology on X has an equivalent representation in terms of a family $\left(\rho_{j}\right)_{j \in J}$ of Riesz pseudonorms that generates the topology τ. For $\varepsilon>0, j \in J$, and $0 \neq w \in X_{+}$, let $V_{\varepsilon, w, j}:=\{x \in X$: $\left.\rho_{j}(|x| \wedge w)<\varepsilon\right\}$. Clearly, the collection $\left\{V_{\varepsilon, w, j}: \varepsilon>0,0 \neq w \in X_{+}, j \in J\right\}$ generates the $u \tau$-topology.

It is known that the topology of any linear topological space can be derived from a unique translation-invariant uniformity, i.e., any linear topological space is uniformisable (cf. [21, Thm. 1.4]). It follows from [10, Thm. 8.1.20] that any linear topological space is completely regular. In particular, the unbounded τ-convergence is completely regular.

Since $x_{\alpha} \xrightarrow{\tau} 0$ implies $x_{\alpha} \xrightarrow{u \tau} 0$, then the τ-topology in general is finer than $u \tau$-topology. The next result should be compared with [15, Lm. 2.1].

Lemma 1. Let (X, τ) be a sequentially complete locally solid vector lattice, where τ is generated by a family $\left(\rho_{j}\right)_{j \in J}$ of Riesz pseudonorms. Let $\varepsilon>0$, $j \in J$, and $0 \neq w \in X_{+}$. Then either $V_{\varepsilon, w, j}$ is contained in $[-w, w]$, or it contains a non-trivial ideal.

Proof. Suppose that $V_{\varepsilon, w, j}$ is not contained in $[-w, w]$. Then there exists $x \in V_{\varepsilon, w, j}$ such that $x \notin[-w, w]$. Replacing x with $|x|$, we may assume $x>0$. Since $x \notin[-w, w]$, then $y=(x-w)^{+}>0$. Now, letting $z=x \vee w$, we have that the ideal I_{z} generated by z, is lattice and norm isomorphic to
$C(K)$ for some compact and Hausdorff space K, where z corresponds to the constant function $\mathbb{1}$. Also x, y, and w in I_{z} correspond to $x(t), y(t)$, and $w(t)$ in $C(K)$ respectively.

Our aim is to show that for all $\alpha \geq 0$ and $t \in K$, we have

$$
(\alpha y)(t) \wedge w(t) \leq x(t) \wedge w(t)
$$

For this, note that $y(t)=(x-w)^{+}(t)=(x-w)(t) \vee 0$.
Let $t \in K$ be arbitrary.

- Case (1): If $(x-w)(t)>0$, then $x(t) \wedge w(t)=w(t) \geq(\alpha y)(t) \wedge w(t)$ for all $\alpha \geq 0$, as desired.
- Case (2): If $(x-w)(t)<0$, then $(\alpha y)(t) \wedge w(t) \leq(\alpha y)(t)=\alpha(x-$ $w)(t) \vee 0=0 \leq x(t) \wedge w(t)$, as desired.
Hence, for all $\alpha \geq 0$ and $t \in K$, we have $(\alpha w)(t) \wedge w(t) \leq x(t) \wedge w(t)$ and so $(\alpha y) \wedge w \leq x \wedge w$ for all $\alpha \geq 0$. Note, that $\alpha y, w, x \in X_{+}$. Thus $\rho_{j}(|\alpha y| \wedge w) \leq \rho_{j}(|x| \wedge w)<\varepsilon$, so $\alpha y \in V_{\varepsilon, w, j}$ and, since $V_{\varepsilon, w, j}$ is solid, then $I_{z} \subseteq V_{\varepsilon, w, j}$.

Note that the sequential completeness in Lemma 1 can be removed, as we see in the following corollary.

Theorem 1. Let (X, τ) be a locally solid vector lattice, where τ is generated by a family $\left(\rho_{j}\right)_{j \in J}$ of Riesz pseudonorms. Let $\varepsilon>0, j \in J$, and $0 \neq$ $w \in X_{+}$. Then either $V_{\varepsilon, w, j}$ is contained in $[-w, w]$ or $V_{\varepsilon, w, j}$ contains a non-trivial ideal.
Proof. Given $\varepsilon>0, j \in J$, and $0 \neq w \in X_{+}$. Let $(\hat{X}, \hat{\tau})$ be the topological completion of (X, τ). In particular, $(\hat{X}, \hat{\tau})$ is sequentially complete. Let $\hat{V}_{\varepsilon, w, j}=\left\{\hat{x} \in \hat{X}: \hat{\rho}_{j}(|\hat{x}| \wedge w)<\varepsilon\right\}$. Then $V_{\varepsilon, w, j}=X \cap \hat{V}_{\varepsilon, w, j}$. By Lemma 11, either $\hat{V}_{\varepsilon, w, j}$ is a subset of $[-w, w]_{\hat{X}}$ in \hat{X} or $\hat{V}_{\varepsilon, w, j}$ contains a non-trivial ideal of \hat{X}. If $\hat{V}_{\varepsilon, w, j} \subseteq[-w, w]_{\hat{X}}$, then

$$
V_{\varepsilon, w, j}=X \cap \hat{V}_{\varepsilon, w, j} \subseteq X \cap[-w, w]_{\hat{X}}=[-w, w] \subseteq X
$$

If $\hat{V}_{\varepsilon, w, j}$ contains a non-trivial ideal, then $\hat{V}_{\varepsilon, w, j} \nsubseteq[-w, w]_{\hat{X}}$. So, there is $\hat{x} \in \hat{V}_{\varepsilon, w, j}$ with $\hat{x} \notin[-w, w]_{\hat{X}}$. Since $[-w, w]_{\hat{X}}$ is $\hat{\tau}$-closed, then there is a solid neighborhood $N_{\hat{x}}$ of \hat{x} in \hat{X} such that $N_{\hat{x}} \cap[-w, w]_{\hat{X}}=\emptyset$. Hence, $N_{\hat{x}} \cap \hat{V}_{\varepsilon, w, j} \cap[-w, w]_{\hat{X}}=\emptyset$, and $N_{\hat{x}} \cap \hat{V}_{\varepsilon, w, j}$ is open in \hat{X} with $\hat{x} \in N_{\hat{x}} \cap \hat{V}_{\varepsilon, w, j}$. By τ-density of X in \hat{X}, we may take $x \in X \cap N_{\hat{x}} \cap \hat{V}_{\varepsilon, w, j}$. Since $|x| \in$ $X \cap N_{\hat{x}} \cap \hat{V}_{\varepsilon, w, j}$, we may also assume that $x \in X_{+}$.

Let $y:=(x-w)^{+}$, then $y>0$ and $y \in X_{+}$. By the same argument in Lemma 1, we get $(\alpha y) \wedge w \leq x \wedge w$ for all $\alpha \in \mathbb{R}_{+}$. Since $x \in \hat{V}_{\varepsilon, w, j}$, then $\alpha y \in \hat{V}_{\varepsilon, w, j}$ for all $\alpha \in \mathbb{R}_{+}$. But $\alpha y \in X_{+}$for all $\alpha \in \mathbb{R}_{+}$and, since $V_{\varepsilon, w, j}=X \cap \hat{V}_{\varepsilon, w, j}$, we get $\alpha y \in V_{\varepsilon, w, j}$ for all $\alpha \in \mathbb{R}_{+}$. Since $V_{\varepsilon, w, j}$ is solid, we conclude that the principal ideal I_{y} taken in X is a subset of $V_{\varepsilon, w, j}$.

Lemma 2. Let (X, τ) be a locally solid vector lattice, where τ is generated by a family $\left(\rho_{j}\right)_{j \in J}$ of Riesz pseudonorms. If $V_{\varepsilon, w, j}$ is contained in $[-w, w]$, then w is a strong unit.

Proof. Suppose $V_{\varepsilon, w, j} \subseteq[-w, w]$. Since $V_{\varepsilon, w, j}$ is absorbing, for any $x \in X_{+}$, there exist $\alpha>0$ such that $\alpha x \in V_{\varepsilon, w, j}$, and so $\alpha x \in[-w, w]$, or $x \leq \frac{1}{\alpha} w$. Thus w is a strong unit, as desired.
Proposition 2. Let $e \in X_{+}$. Then e is a quasi-interior point in (X, τ) iff e is a quasi-interior point in the topological completion $(\hat{X}, \hat{\tau})$.
Proof. The backward implication is trivial.
For the forward implication let $\hat{x} \in \hat{X}_{+}$. Our aim is to show that $\hat{x}-\hat{x} \wedge n e \xrightarrow{\tau}$ 0 in \hat{X} as $n \rightarrow \infty$. By [2, Thm. 2.40], $\hat{X}_{+}=\bar{X}_{+}^{\hat{\tau}}$. So, there is a net x_{α} in X_{+}such that $x_{\alpha} \xrightarrow{\hat{\tau}} \hat{x}$ in \hat{X}. Let $j \in J$ and $\varepsilon>0$. Since $\hat{\rho}_{j}\left(x_{\alpha}-\hat{x}\right) \rightarrow 0$, then there is α_{ε} satisfying

$$
\begin{equation*}
\hat{\rho}_{j}\left(x_{\alpha_{\varepsilon}}-\hat{x}\right)<\varepsilon . \tag{2.1}
\end{equation*}
$$

Since e is a quasi-interior point in X and $x_{\alpha_{\varepsilon}} \in X_{+}$, then $x_{\alpha_{\varepsilon}}-x_{\alpha_{\varepsilon}} \wedge n e \xrightarrow{\tau} 0$ in X as $n \rightarrow \infty$. Thus, there is $n_{\varepsilon} \in \mathbb{N}$ such that

$$
\begin{equation*}
\hat{\rho}_{j}\left(x_{\alpha_{\varepsilon}}-n e \wedge x_{\alpha_{\varepsilon}}\right)=\rho_{j}\left(x_{\alpha_{\varepsilon}}-n e \wedge x_{\alpha_{\varepsilon}}\right)<\varepsilon \quad\left(\forall n \geqslant n_{\varepsilon}\right) . \tag{2.2}
\end{equation*}
$$

Now, $0 \leq \hat{x}-\hat{x} \wedge n e=\hat{x}-x_{\alpha_{\varepsilon}}+x_{\alpha_{\varepsilon}}-n e \wedge x_{\alpha_{\varepsilon}}+n e \wedge x_{\alpha_{\varepsilon}}-\hat{x} \wedge n e$. So $\hat{\rho}_{j}(\hat{x}-\hat{x} \wedge n e) \leq \hat{\rho}_{j}\left(\hat{x}-x_{\alpha_{\varepsilon}}\right)+\hat{\rho}_{j}\left(x_{\alpha_{\varepsilon}}-n e \wedge x_{\alpha_{\varepsilon}}\right)+\hat{\rho}_{j}\left(n e \wedge x_{\alpha_{\varepsilon}}-\hat{x} \wedge n e\right)$. For $n \geqslant n_{\varepsilon}$, we have, by (2.1), (2.2), and [3, Thm. 1.9(2)], that

$$
\hat{\rho}_{j}(\hat{x}-\hat{x} \wedge n e) \leq \varepsilon+\varepsilon+\hat{\rho}_{j}\left(x_{\alpha_{\varepsilon}}-\hat{x}\right) \leq 3 \varepsilon .
$$

Therefore, e is a quasi-interior point in \hat{X}.
The technique used in the proof of [15, Thm. 3.1] can be used in the following theorem as well, and so we omit its proof.

Theorem 2. Let (X, τ) be a sequentially complete locally solid vector lattice, where τ is generated by a family $\left(\rho_{j}\right)_{j \in J}$ of Riesz pseudonorms. Let $e \in X_{+}$. The following are equivalent:
(1) e is a quasi-interior point;
(2) for every net x_{α} in X_{+}, if $x_{\alpha} \wedge e \xrightarrow{\tau} 0$ then $x_{\alpha} \xrightarrow{u \tau} 0$;
(3) for every sequence x_{n} in X_{+}, if $x_{n} \wedge e \xrightarrow{\tau} 0$ then $x_{n} \xrightarrow{u \tau} 0$.

3. Unbounded τ-CONVERGENCE in Sublattices

Let Y be a sublattice of a locally solid vector lattice (X, τ). If y_{α} is a net in Y such that $y_{\alpha} \xrightarrow{u \tau} 0$ in X, then clearly, $y_{\alpha} \xrightarrow{u \tau} 0$ in Y. The converse does not hold in general. For example, the sequence e_{n} of standard unit vectors is $u n$-null in c_{0}, but not in ℓ_{∞}. In this section, we study when the $u \tau$-convergence passes from a sublattice to the whole space.

Recall that a sublattice Y of a vector lattice X is majorizing if, for every $x \in X_{+}$, there exists $y \in Y_{+}$with $x \leqslant y$. The following theorem extends [15, Thm. 4.3] to locally solid vector lattices.

Theorem 3. Let (X, τ) be a locally solid vector lattice and Y be a sublattice of X. If y_{α} is a net in Y and $y_{\alpha} \xrightarrow{u \tau} 0$ in Y, then $y_{\alpha} \xrightarrow{u \tau} 0$ in X in each of the following cases:
(1) Y is majorizing in X;
(2) Y is τ-dense in X;
(3) Y is a projection band in X.

Proof. (1) Trivial.
(2) Let $u \in X_{+}$. Fix $\varepsilon>0$ and take $j \in J$. Since Y is τ-dense in X, then there is $v \in Y_{+}$such that $\rho_{j}(u-v)<\varepsilon$. But $y_{\alpha} \xrightarrow{u \tau} 0$ in Y and so, in particular, $\rho_{j}\left(\left|y_{\alpha}\right| \wedge v\right) \rightarrow 0$. So there is α_{0} such that $\rho_{j}\left(\left|y_{\alpha}\right| \wedge v\right)<\varepsilon$ for all $\alpha \geqslant \alpha_{0}$. It follows from $u \leq v+|u-v|$, that $\left|y_{\alpha}\right| \wedge u \leq$ $\left|y_{\alpha}\right| \wedge v+|u-v|$, and so $\rho_{j}\left(\left|y_{\alpha}\right| \wedge u\right)<\rho_{j}\left(\left|y_{\alpha}\right| \wedge v\right)+\rho_{j}(u-v)<2 \varepsilon$. Thus, $\rho_{j}\left(\left|y_{\alpha}\right| \wedge u\right) \rightarrow 0$ in \mathbb{R}. Since $j \in J$ was chosen arbitrary, we conclude that $y_{\alpha} \xrightarrow{u \tau} 0$ in X.
(3) Let $u \in X_{+}$. Then $u=v+w$, where $v \in Y_{+}$and $w \in Y_{+}^{d}$. Now $\left|y_{\alpha}\right| \wedge u=\left|y_{\alpha}\right| \wedge v+\left|y_{\alpha}\right| \wedge w=\left|y_{\alpha}\right| \wedge v$, since $y_{\alpha} \in Y$. Then $\left|y_{\alpha}\right| \wedge u=\left|y_{\alpha}\right| \wedge v \xrightarrow{\tau} 0$ in X.

Corollary 1. If (X, τ) is a locally solid vector lattice and $x_{\alpha} \xrightarrow{u \tau} 0$ in X, then $x_{\alpha} \xrightarrow{u \tau} 0$ in the Dedekind completion X^{δ} of X.

Corollary 2. If (X, τ) is a locally solid vector lattice and $x_{\alpha} \xrightarrow{u \tau} 0$ in X, then $x_{\alpha} \xrightarrow{u \tau} 0$ in the topological completion \hat{X} of X.

The next result generalizes Corollary 4.6 in [15] and Proposition 16 in [27.

Theorem 4. Let (X, τ) be a topologically complete locally solid vector lattice that possesses the Lebesgue property, and Y be a sublattice of X. If $y_{\alpha} \xrightarrow{u \tau} 0$ in Y, then $y_{\alpha} \xrightarrow{u \tau} 0$ in X.

Proof. Suppose $y_{\alpha} \xrightarrow{u \tau} 0$ in Y. By Theorem (3)(II), $y_{\alpha} \xrightarrow{u \tau} 0$ in the ideal $I(Y)$ generated by Y in X. By Theorem (3(2), $y_{\alpha} \xrightarrow{u \tau} 0$ in the closure $\overline{\{I(Y)\}}^{\top}$ of $I(Y)$. It follows from [2, Thm. 3.7] that $\overline{\{I(Y)\}}^{\tau}$ is a band in X. Now, [2. Thm. 3.24] assures that X is Dedekind complete, and so $\overline{\{I(Y)\}}$ is a projection band in X. Then $y_{\alpha} \xrightarrow{u \tau} 0$ in X, in view of Theorem (3)(3).

Suppose that (X, τ) is a locally solid vector lattice possessing the Lebesgue property. Then, in view of [2, Thms. 3.23 and 3.26], its topological completion ($\hat{X}, \hat{\tau}$) possesses the Lebesgue property as well. Hence, by [2, Thm.
3.24], \hat{X} is Dedekind complete. Since $X \subseteq \hat{X}$, there holds $X^{\delta} \subseteq(\hat{X})^{\delta}=\hat{X}$. So, $X \subseteq X^{\delta} \subseteq \hat{X}$. Now, Theorem 4 assures that, given a net z_{α} in X^{δ}, if $z_{\alpha} \xrightarrow{u \tau} 0$ in X^{δ} then $z_{\alpha} \xrightarrow{u \tau} 0$ in \hat{X}.

4. UNBOUNDED RELATIVELY UNIFORMLY CONVERGENCE

In this section we discuss unbounded relatively uniformly convergence. Recall that a net x_{α} in a vector lattice X is said to be relatively uniformly convergent to $x \in X$ if, there is $u \in X_{+}$such that for any $n \in \mathbb{N}$, there exists α_{n} satisfying $\left|x_{\alpha}-x\right| \leq \frac{1}{n} u$ for $\alpha \geqslant \alpha_{n}$. In this case we write $x_{\alpha} \xrightarrow{r u} x$ and the vector $u \in X_{+}$is called regulator, see [24, Def. III.11.1].

If $x_{\alpha} \xrightarrow{r u} 0$ in a locally solid vector lattice (X, τ), then $x_{\alpha} \xrightarrow{\tau} 0$. Indeed, let V be a solid neighborhood at zero. Since $x_{\alpha} \xrightarrow{r u} 0$, then there is $u \in X_{+}$ such that, for a given $\varepsilon>0$, there is α_{ε} satisfying $\left|x_{\alpha}\right| \leq \varepsilon u$ for all $\alpha \geq \alpha_{\varepsilon}$. Since V is absorbing, there is $c \geq 1$ such that $\frac{1}{c} u \in V$. There is some α_{0} such that $\left|x_{\alpha}\right| \leq \frac{1}{c} u$ for all $\alpha \geq \alpha_{0}$. Since V is solid and $\left|x_{\alpha}\right| \leq \frac{1}{c} u$ for all $\alpha \geq \alpha_{0}$, then $x_{\alpha} \in V$ for all $\alpha \geq \alpha_{0}$. That is $x_{\alpha} \xrightarrow{\tau} 0$.

The following result might be considered as an $r u$-version of Theorem 1 in [7.

Theorem 5. Let X be a vector lattice. Then the following conditions are equivalent.
(1) There exists a linear topology τ on X such that, for any net x_{α} in X : $x_{\alpha} \xrightarrow{\text { ru }} 0$ iff $x_{\alpha} \xrightarrow{\tau} 0$.
(2) There exists a norm $\|\cdot\|$ on X such that, for any net x_{α} in $X: x_{\alpha} \xrightarrow{r u} 0$ iff $\left\|x_{\alpha}\right\| \rightarrow 0$.
(3) X has a strong order unit.

Proof. (1) \Rightarrow (3) It follows from [7, Lem. 1].
$(3) \Rightarrow(2)$ Let $e \in X$ be a strong order unit. Then $x_{\alpha} \xrightarrow{r u} 0$ iff $\left\|x_{\alpha}\right\|_{e} \rightarrow 0$, where $\|x\|_{e}:=\inf \{r:|x| \leqslant r e\}$.
$(2) \Rightarrow(1)$ It is trivial.
Let X be a vector lattice. A net x_{α} in X is said to be unbounded relatively uniformly convergent to $x \in X$ if $\left|x_{\alpha}-x\right| \wedge w \xrightarrow{r u} 0$ for all $w \in X_{+}$. In this case, we write $x_{\alpha} \xrightarrow{u r u} x$. Clearly, if $x_{\alpha} \xrightarrow{u r u} 0$ in a locally solid vector lattice (X, τ), then $x_{\alpha} \xrightarrow{u \tau} 0$.

In general, uru-convergence is also not topological. Indeed, consider the vector lattice $L_{1}[0,1]$. It satisfies the diagonal property for order convergence by [19, Thm. 71.8]. Now, by combining Theorems 16.3, 16.9, and 68.8 in [19] we get that for any sequence f_{n} in $L_{1}[0,1] f_{n} \xrightarrow{o} 0$ iff $f_{n} \xrightarrow{r u} 0$. In particular, $f_{n} \xrightarrow{u o} 0$ iff $f_{n} \xrightarrow{u r u} 0$. But the uo-convergence in $L_{1}[0,1]$ is equivalent to a.e.-convergence which is not topological, see [18].

However, in some vector lattices the uru-convergence could be topological. For example, if X is a vector lattice with a strong unit e, It follows from Theorem 5, that $r u$-convergence is equivalent to the norm convergence $\|\cdot\|_{e}$, where $\|x\|_{e}:=\inf \{\lambda>0:|x| \leq \lambda e\}, x \in X$. Thus uru-convergence in X is topological.

Consider vector lattice c_{00} of eventually zero sequences. It is well known that in $c_{00}: x_{\alpha} \xrightarrow{r u} 0$ iff $x_{\alpha} \xrightarrow{o} 0$. For the sake of completeness we include a proof of this fact. Clearly, $x_{\alpha} \xrightarrow{r u} 0 \Rightarrow x_{\alpha} \xrightarrow{o} 0$. For the converse, suppose $x_{\alpha} \xrightarrow{o} 0$ in c_{00}. Then there is a net $y_{\beta} \downarrow 0$ in c_{00} such that, for any β, there is α_{β} satisfying $\left|x_{\alpha}\right| \leq y_{\beta}$ for all $\alpha \geq \alpha_{\beta}$. Let e_{n} denote the sequence of standard unit vectors in c_{00}. Fix β_{0}. Then $y_{\beta_{0}}=c_{1}^{\beta_{0}} e_{k_{1}}+\cdots+c_{n}^{\beta_{0}} e_{k_{n}}, c_{i}^{\beta_{0}} \in$ $\mathbb{R}, i=1, \ldots, n$. Since y_{β} is decreasing, then $y_{\beta} \leq y_{\beta_{0}}$ for all $\beta \geq \beta_{0}$. So, $y_{\beta}=c_{1}^{\beta} e_{k_{1}}+\cdots+c_{n}^{\beta} e_{k_{n}}$ for all $\beta \geq \beta_{0}, c_{i}^{\beta} \in \mathbb{R}, i=1, \ldots, n$. Since $y_{\beta} \downarrow 0$ then $\lim _{\beta} c_{i}^{\beta}=0$ for all $i=1, \ldots, n$. Let $u=e_{k_{1}}+\cdots+e_{k_{n}}$. Given $\varepsilon>0$. Then, there is $\beta_{\varepsilon} \geq \beta_{0}$ such that $c_{i}^{\beta}<\varepsilon$ for all $\beta \geq \beta_{\varepsilon}$ for $i=1, \ldots, n$. Consider $y_{\beta_{\varepsilon}}$ then there is α_{ε} such that $\left|x_{\alpha}\right| \leq y_{\beta_{\varepsilon}}$ for all $\alpha \geq \beta_{\varepsilon}$. But $y_{\beta_{\varepsilon}}=c_{1}^{\beta_{\varepsilon}} e_{k_{1}}+\cdots+c_{n}^{\beta_{\varepsilon}} e_{k_{n}} \leq \varepsilon u$. So, $\left|x_{\alpha}\right| \leq \varepsilon u$ for all $\alpha \geq \alpha_{\varepsilon}$. That is $x_{\alpha} \xrightarrow{r u} 0$. Thus, the uru-convergence in c_{00} coincides with the uo-convergence which is pointwise convergence and, therefore, is topological.

Proposition 3. Let X be Lebesgue and complete metrizable locally solid vector lattice. then $x_{\alpha} \xrightarrow{r u} 0$ iff $x_{\alpha} \xrightarrow{o} 0$.

Proof. The necessity is obvious. For the sufficiency assume that $x_{\alpha} \xrightarrow{o} 0$. Then there exists $y_{\beta} \downarrow 0$ such that for any β there is α_{β} with $\left|x_{\alpha}\right| \leqslant y_{\beta}$ as $\alpha \geqslant \alpha_{\beta}$. Since $d\left(y_{\beta}, 0\right) \rightarrow 0$, there exists an increasing sequence $\left(\beta_{k}\right)_{k}$ of indeces with $d\left(k y_{\beta_{k}}, 0\right) \leqslant \frac{1}{2^{k}}$. Let $s_{n}=\sum_{k=1}^{n} k y_{\beta_{k}}$. We show the sequence s_{n} is Cauchy. For $n>m$,

$$
\begin{aligned}
d\left(s_{n}, s_{m}\right)=d\left(s_{n}-s_{m}, 0\right)=d\left(\sum_{k=m+1}^{n} k y_{\beta_{k}}, 0\right) & \leq \sum_{k=m+1}^{n} d\left(k y_{\beta_{k}}, 0\right) \\
& \leq \sum_{k=m+1}^{n} \frac{1}{2^{k}} \rightarrow 0, \text { as } n, m \rightarrow \infty
\end{aligned}
$$

Since X is complete, then the sequence s_{n} converges to some $u \in X_{+}$. That is, $u:=\sum_{k=1}^{\infty} k y_{\beta_{k}}$. Then

$$
k\left|x_{\alpha}\right| \leqslant k y_{\beta_{k}} \leqslant u \quad\left(\forall \alpha \geqslant \alpha_{\beta_{k}}\right)
$$

which means that $x_{\alpha} \xrightarrow{r u} 0$.
Let $X=\mathbb{R}^{\Omega}$ be the vector lattice of all real-valued functions on a set Ω.

Proposition 4. In the vector lattice $X=\mathbb{R}^{\Omega}$, the following conditions are equivalent:
(1) for any net f_{α} in $X: f_{\alpha} \xrightarrow{o} 0$ iff $f_{\alpha} \xrightarrow{r u} 0$;
(2) Ω is countable.

Proof. (1) $\Rightarrow(2)$ Suppose $f_{\alpha} \xrightarrow{o} 0 \Leftrightarrow f_{\alpha} \xrightarrow{r u} 0$ for any sequence f_{α} in $X=\mathbb{R}^{\Omega}$. Our aim is to show that Ω is countable. Assume, in contrary, that Ω is uncountable. Let $\mathcal{F}(\Omega)$ be the collection of all finite subsets of Ω. For each $\alpha \in \mathcal{F}(\Omega)$, put $f_{\alpha}=\mathcal{X}_{\alpha}$. Clearly, $f_{\alpha} \uparrow \mathbb{1}$, where $\mathbb{1}$ denotes the constant function one on Ω. Then $\mathbb{1}-f_{\alpha} \downarrow 0$ or $\mathbb{1}-f_{\alpha} \xrightarrow{o} 0$ in \mathbb{R}^{Ω}. So, there is $0 \leq g \in \mathbb{R}^{\Omega}$ such that, for any $\varepsilon>0$, there exists α_{ε} satisfying $\mathbb{1}-f_{\alpha} \leq \varepsilon g$ for all $\alpha \geqslant \alpha_{\varepsilon}$. Let $n \in \mathbb{N}$. Then there is a finite set $\alpha_{n} \subseteq \Omega$ such that $\mathbb{1}-f_{\alpha_{n}} \leq \frac{1}{n} g$. Consequently, $g(x) \geqslant n$ for all $x \in \Omega \backslash \alpha_{n}$. Let $S=\cup_{n=1}^{\infty} \alpha_{n}$. Then S is countable and $\Omega \backslash S \neq \emptyset$. Moreover, for each $x \in \Omega \backslash S$, we have $g(x) \geqslant n$ for all $n \in \mathbb{N}$, which is impossible.
$(2) \Rightarrow(1)$ Suppose that Ω is countable. So, we may assume that $X=s$, the space of all sequences. Since, from $x_{\alpha} \xrightarrow{r u} 0$ always follows that $x_{\alpha} \xrightarrow{o} 0$, it is enough to show that if $x_{\alpha} \xrightarrow{o} 0$ then $x_{\alpha} \xrightarrow{r u} 0$. To see this, let $\left(x_{\alpha}^{n}\right)_{n}=$ $x_{\alpha} \xrightarrow{o} 0$. Then, the net x_{α} is eventually bounded, say $\left|x_{\alpha}\right| \leqslant u=\left(u_{n}\right)_{n} \in s$. Take $w:=\left(n u_{n}\right)_{n} \in s$. We show that $x_{\alpha} \xrightarrow{r u} 0$ with the regulator w. Let $k \in \mathbb{N}$. Since $x_{\alpha} \xrightarrow{o} 0$, then for each $n \in \mathbb{N}, x_{\alpha}^{n} \rightarrow 0$ in \mathbb{R}. Hence, there is α_{k} such that $k\left|x_{\alpha}^{1}\right|<u_{1}, k\left|x_{\alpha}^{2}\right|<u_{2}, \cdots, k\left|x_{\alpha}^{k-1}\right|<u_{k-1}$ for all $\alpha \geqslant \alpha_{k}$. Note that for $n \geqslant k, k\left|x_{\alpha}^{n}\right|<u_{n}$. Therefore, $k\left|x_{\alpha}\right|<w$ for all $\alpha \geqslant \alpha_{k}$.

It follows from Proposition 4 that, for countable Ω, the uru-convergence in \mathbb{R}^{Ω} coincides with the uo-convergence (which is pointwise) and therefore is topological. We do not know, whether or not the countability of Ω is necessary for the property that uru-convergence is topological in \mathbb{R}^{Ω}.

5. Topological orthogonal systems and metrizabililty

A collection $\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ of positive vectors in a vector lattice X is called an orthogonal system if $e_{\gamma} \wedge e_{\gamma^{\prime}}=0$ for all $\gamma \neq \gamma^{\prime}$. If, moreover, $x \wedge e_{\gamma}=0$ for all $\gamma \in \Gamma$ implies $x=0$, then $\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ is called a maximal orthogonal system. It follows from Zorn's Lemma that every vector lattice containing at least one non-zero element has a maximal orthogonal system. Motivated by Definition III.5.1 in [20], we introduce the following notion.

Definition 1. Let (X, τ) be a topological vector lattice. An orthogonal system $Q=\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ of non-zero elements in X_{+}is said to be a topological orthogonal system if the ideal I_{Q} generated by Q is τ-dense in X.

Lemma 3. If $Q=\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ is a topological orthogonal system in a topological vector lattice (X, τ), then Q is a maximal orthogonal system in X.

Proof. Assume $x \wedge e_{\gamma}=0$ for all $\gamma \in \Gamma$. By the assumption, there is a net x_{α} in the ideal I_{Q} such that $x_{\alpha} \xrightarrow{\tau} x$. Without lost of generality, we may assume $0 \leq x_{\alpha} \leq x$ for all α. Since $x_{\alpha} \in I_{Q}$, then there are $0<\mu_{\alpha} \in \mathbb{R}$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$, such that $0 \leq x_{\alpha} \leq \mu_{\alpha}\left(e_{\gamma_{1}}+e_{\gamma_{2}}+\cdots+e_{\gamma_{n}}\right)$. So $0 \leq x_{\alpha}=x_{\alpha} \wedge x \leq \mu_{\alpha}\left(e_{\gamma_{1}}+e_{\gamma_{2}}+\cdots+e_{\gamma_{n}}\right) \wedge x=\mu_{\alpha} e_{\gamma_{1}} \wedge x+\cdots+\mu_{\alpha} e_{\gamma_{n}} \wedge x$ $=0$. Hence $x_{\alpha}=0$ for all α, and so $x=0$.

We recall the following construction from [20, p.169]. Let X be a vector lattice and $Q=\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ be a maximal orthogonal system of X. Let $\mathscr{F}(\Gamma)$ denote the collection of all finite subsets of Γ ordered by inclusion. For each $(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma)$ and $x \in X_{+}$, define

$$
x_{n, H}:=\sum_{\gamma \in H} x \wedge n e_{\gamma} .
$$

Clearly $\left\{x_{n, H}:(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma)\right\}$ is directed upward, and

$$
\begin{equation*}
x_{n, H} \leq x \quad \text { for all } \quad(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma) . \tag{5.1}
\end{equation*}
$$

Moreover, Proposition II.1.9 in [20] implies $x_{n, H} \uparrow x$.
Theorem 6. Let $Q=\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ be an orthogonal system of a locally solid vector lattice (X, τ), then Q is a topological orthogonal system iff we have $x_{n, H} \xrightarrow{\tau} x$ over $(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma)$ for each $x \in X_{+}$.

Proof. For the backward implication take $x \in X_{+}$. Since

$$
x_{n, H}=\sum_{\gamma \in H} x \wedge n e_{\gamma} \leq n \sum_{\gamma \in H} e_{\gamma},
$$

then $x_{n, H} \in I_{Q}$ for each $(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma)$. Also, we have, by assumption, $x_{n, H} \xrightarrow{\tau} x$. Thus, $x \in \bar{I}_{Q}^{\tau}$, i.e., Q is a topological orthogonal system of X.

For the forward implication, note that Q is a maximal orthogonal system, by Lemma 3, Let $x \in X_{+}$, and $j \in J$. Given $\varepsilon>0$. Let $V_{\varepsilon, x, j}:=\{z \in$ $\left.X: \rho_{j}(z-x)<\varepsilon\right\}$. Then $V_{\varepsilon, x, j}$ is a neighborhood of x in the τ-topology. Since I_{Q} is dense in X with respect to the τ-topology, there is $x_{\varepsilon} \in I_{Q}$ with $0 \leq x_{\varepsilon} \leq x$ such that $\rho_{j}\left(x_{\varepsilon}-x\right)<\varepsilon$. Now, $x_{\varepsilon} \in I_{Q}$ implies that there are $H_{\varepsilon} \in \mathscr{F}(\Gamma)$ and $n_{\varepsilon} \in \mathbb{N}$ such that

$$
\begin{equation*}
x_{\varepsilon} \leq n_{\varepsilon} \sum_{\gamma \in H_{\varepsilon}} e_{\gamma} . \tag{5.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
w:=x \wedge \sum_{\gamma \in H_{\varepsilon}} n_{\varepsilon} e_{\gamma} . \tag{5.3}
\end{equation*}
$$

It follows from $0 \leq w \leq \sum_{\gamma \in H_{\varepsilon}} n_{\varepsilon} e_{\gamma}$ and the Riesz decomposition property, that, for each $\gamma \in H_{\varepsilon}$, there exists y_{γ} with

$$
\begin{equation*}
0 \leq y_{\gamma} \leq n_{\varepsilon} e_{\gamma} \tag{5.4}
\end{equation*}
$$

such that

$$
\begin{equation*}
w=\sum_{\gamma \in H_{\varepsilon}} y_{\gamma} . \tag{5.5}
\end{equation*}
$$

From (5.3) and (5.5), we have

$$
\begin{equation*}
y_{\gamma} \leq x \quad\left(\forall \gamma \in H_{\varepsilon}\right) \tag{5.6}
\end{equation*}
$$

Also, (5.4) and (5.6) imply that $y_{\gamma} \leq n_{\varepsilon} e_{\gamma} \wedge x$. Now

$$
\begin{equation*}
w=\sum_{\gamma \in H_{\varepsilon}} y_{\gamma} \leq \sum_{\gamma \in H_{\varepsilon}} x \wedge n_{\varepsilon} e_{\gamma}=x_{n_{\varepsilon}, H_{\varepsilon}} . \tag{5.7}
\end{equation*}
$$

But, from (5.2) and (5.3), we get

$$
\begin{equation*}
0 \leq x_{\varepsilon} \leq w . \tag{5.8}
\end{equation*}
$$

Thus, it follows from (5.7), (5.8), and (5.1), that $0 \leq x_{\varepsilon} \leq x_{n_{\varepsilon}, H_{\varepsilon}} \leq x$. Hence, $0 \leq x-x_{n_{\varepsilon}, H_{\varepsilon}} \leq x-x_{\varepsilon}$ and so $\rho_{j}\left(x-x_{n, H}\right) \leq \rho_{j}\left(x-x_{n_{\varepsilon}, H_{\varepsilon}}\right) \leq$ $\rho_{j}\left(x-x_{\varepsilon}\right)$ for each $(n, H) \geq\left(n_{\varepsilon}, H_{\varepsilon}\right)$. Therefore $x_{n, H} \xrightarrow{\tau} x$.

The following corollary can be proven easily.
Corollary 3. Let (X, τ) be a locally solid vector lattice. The following statements are equivalent:
(1) $e \in X_{+}$is a quasi-interior point;
(2) for each $x \in X_{+}, x-x \wedge n e \xrightarrow{\tau} 0$ as $n \rightarrow \infty$.

Corollary 4. Let (X, τ) be a locally solid vector lattice possessing the σ Lebesgue property. Then every weak unit in X is a quasi-interior point.

Proof. Let $x \in X^{+}$, and let e be a weak unit. Then $x \wedge n e \uparrow x$. So, by the σ-Lebesgue property, we get $x-x \wedge n e \xrightarrow{\tau} 0$ as $n \rightarrow \infty$.

Theorem 7. Let (X, τ) be a locally solid vector lattice, and $Q=\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ be a topological orthogonal system of (X, τ). Then $x_{\alpha} \xrightarrow{u \tau} 0$ iff $\left|x_{\alpha}\right| \wedge e_{\gamma} \xrightarrow{\tau} 0$ for every $\gamma \in \Gamma$.

Proof. The forward implication is trivial. For the backward implication, assume $\left|x_{\alpha}\right| \wedge e_{\gamma} \xrightarrow{\tau} 0$ for every $\gamma \in \Gamma$. Let $u \in X_{+}, j \in J$. Fix $\varepsilon>0$. We
have

$$
\begin{aligned}
\left|x_{\alpha}\right| \wedge u & =\left|x_{\alpha}\right| \wedge\left(u-u_{n, H}+u_{n, H}\right) \\
& \leq\left|x_{\alpha}\right| \wedge\left(u-u_{n, H}\right)+\left|x_{\alpha}\right| \wedge u_{n, H} \\
& \leq\left(u-u_{n, H}\right)+\left|x_{\alpha}\right| \wedge \sum_{\gamma \in H} u \wedge n e_{\gamma} \\
& \leq\left(u-u_{n, H}\right)+\left|x_{\alpha}\right| \wedge \sum_{\gamma \in H} n e_{\gamma} \\
& \leq\left(u-u_{n, H}\right)+n\left(\left|x_{\alpha}\right| \wedge \sum_{\gamma \in H} e_{\gamma}\right) \\
& =\left(u-u_{n, H}\right)+n \sum_{\gamma \in H}\left|x_{\alpha}\right| \wedge e_{\gamma}
\end{aligned}
$$

Now, Theorem 6 assures that $u_{n, H} \xrightarrow{\tau} u$, and so, there exists $\left(n_{\varepsilon}, H_{\varepsilon}\right) \in$ $\mathbb{N} \times \mathscr{F}(\Gamma)$ such that

$$
\begin{equation*}
\rho_{j}\left(u-u_{n_{\varepsilon}, H_{\varepsilon}}\right)<\varepsilon \tag{5.9}
\end{equation*}
$$

Thus, $\left|x_{\alpha}\right| \wedge u \leq u-u_{n_{\varepsilon}, H_{\varepsilon}}+\sum_{\gamma \in H_{\varepsilon}} n_{\varepsilon}\left(e_{\gamma} \wedge\left|x_{\alpha}\right|\right)$. But, by the assumption, $e_{\gamma} \wedge\left|x_{\alpha}\right| \xrightarrow{\tau} 0$ for all $\gamma \in \Gamma$, and so $n_{\varepsilon}\left(e_{\gamma} \wedge\left|x_{\alpha}\right|\right) \xrightarrow{\tau} 0$. Hence, there is $\alpha_{\varepsilon, H_{\varepsilon}}$ such that

$$
\begin{equation*}
\rho_{j}\left(n_{\varepsilon}\left(e_{\gamma} \wedge\left|x_{\alpha}\right|\right)\right)<\frac{\varepsilon}{\left|H_{\varepsilon}\right|} \quad\left(\forall \alpha \geq \alpha_{\varepsilon, H_{\varepsilon}}, \forall \gamma \in H_{\varepsilon}\right) \tag{5.10}
\end{equation*}
$$

Here $\left|H_{\varepsilon}\right|$ denotes the cardinality of H_{ε}. For $\alpha \geq \alpha_{\varepsilon, H_{\varepsilon}}$, we have

$$
\begin{aligned}
\rho_{j}\left(\left|x_{\alpha}\right| \wedge u\right) & \leq \rho_{j}\left(u-u_{n_{\varepsilon}, H_{\varepsilon}}\right)+\rho_{j}\left(n_{\varepsilon} \sum_{\gamma \in H_{\varepsilon}}\left|x_{\alpha}\right| \wedge e_{\gamma}\right) \\
& \leq \varepsilon+\sum_{\gamma \in H_{\varepsilon}} \rho_{j}\left(n_{\varepsilon}\left(e_{\gamma} \wedge\left|x_{\alpha}\right|\right)\right)<\varepsilon+\sum_{\gamma \in H_{\varepsilon}} \frac{\varepsilon}{\left|H_{\varepsilon}\right|}=2 \varepsilon
\end{aligned}
$$

where the second inequality follows from (5.9) and the third one from (5.10). Therefore, $\rho_{j}\left(\left|x_{\alpha}\right| \wedge u\right) \rightarrow 0$, and so $x_{\alpha} \xrightarrow{u \tau} 0$.

The following corollary is immediate.
Corollary 5. Let (X, τ) be a locally solid vector lattice, and $e \in X_{+}$be a quasi-interior point. Then $x_{\alpha} \xrightarrow{u \tau} 0$ iff $\left|x_{\alpha}\right| \wedge e \xrightarrow{\tau} 0$.

Recall that a topological vector space is metrizable iff it has a countable neighborhood base at zero, [2, Thm. 2.1]. In particular, a locally solid vector lattice (X, τ) is metrizable iff its topology τ is generated by a countable family $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ of Riesz pseudonorms. The following result gives a sufficient condition for the metrizabililty of $u \tau$-topology.

Proposition 5. Let (X, τ) be a complete metrizable locally solid vector lattice. If X has a countable topological orthogonal system, then the $u \tau$-topology is metrizable.

Proof. First note that, since (X, τ) is metrizable, τ is generated by a countable family $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ of Riesz pseudonorms.

Now suppose $\left(e_{n}\right)_{n \in \mathbb{N}}$ to be a topological orthogonal system. For each $n \in \mathbb{N}$, put $d_{n}(x, y):=\sum_{k=1}^{\infty} \frac{1}{2^{2}} \frac{\rho_{k}\left(|x-y| \wedge e_{n}\right)}{1+\rho_{k}\left(|x-y| \wedge e_{n}\right)}$. Note that each d_{n} is a semimetric, and $d_{n}(x, y) \leq 1$ for all $x, y \in X$. If $d_{n}(x, y)=0$, then $\rho_{k}(\mid x-$ $\left.y \mid \wedge e_{n}\right)=0$ for all $k \in \mathbb{N}$, so $\left(|x-y| \wedge e_{n}\right)=0$. For $x, y \in X$, let $d(x, y):=\sum_{n=1}^{\infty} \frac{1}{2^{n}} d_{n}(x, y)$. Clearly, $d(x, y)$ is nonnegative and satisfies the triangle inequality, and $d(x, y)=d(y, x)$ for all $x, y \in X$. Now $d(x, y)=0$ iff $d_{n}(x, y)=0$ for all $n \in \mathbb{N}$ iff $\rho_{k}\left(|x-y| \wedge e_{n}\right)=0$ for all $k \in \mathbb{N}$ iff $\left(|x-y| \wedge e_{n}\right)=0$ for all $n \in \mathbb{N}$ iff $|x-y|=0$ iff $x=y$. Thus (X, d) is a metric space. Finally, it is easy to see from Theorem 7 that d generates the $u \tau$-topology.

Recall that a topological space X is called submetrizable if its topology is finer that some metric topology on X.

Proposition 6. Let (X, τ) be a metrizable locally solid vector lattice. If X has a weak unit, then the ut-topology is submetrizable.

Proof. Note that, since (X, τ) is metrizable, then τ is generated by a countable family $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ of Riesz pseudonorms.

Suppose that $e \in X_{+}$is a weak unit. Put $d(x, y):=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\rho_{k}(|x-y| \wedge e)}{1+\rho_{k}(|x-y| \wedge e)}$. Note that $d(x, y)=0$ iff $\rho_{k}(|x-y| \wedge e)=0$ for all $k \in \mathbb{N}$ iff $|x-y| \wedge e=0$ and, since e is a weak unit, $x=y$. It can easily be shown that d satisfies the triangle inequality. Assume $x_{\alpha} \xrightarrow{u \tau} x$. Then, for all $u \in X_{+}, \rho_{k}(|x-y| \wedge u) \rightarrow$ 0 for all $k \in \mathbb{N}$. In particular, $\rho_{k}(|x-y| \wedge e) \rightarrow 0$ for all $k \in \mathbb{N}$. Then in a similar argument to [24, p.200], it can be shown that $x_{\alpha} \xrightarrow{d} x$. Therefore, the $u \tau$-topology is finer than the metric topology generated by d, and hence $u \tau$-topology is submetrizable.

We do not know whether the converse of propositions 5, and 6 is true or not.

6. Unbounded τ-Completeness

A subset A of a locally solid vector lattice (X, τ) is said to be (sequentially) $u \tau$-complete if, it is (sequentially) complete in the $u \tau$-topology. In this section, we relate sequential $u \tau$-completeness of subsets of X with the Lebesgue and Levi properties. First, we remind the following theorem.

Theorem 8. [26, Thm. 1] If (X, τ) is a locally solid vector lattice, then the following statements are equivalent:
(1) (X, τ) has the Lebesgue and Levi properties;
(2) X is τ-complete, and c_{0} is not lattice embeddable in (X, τ).

Recall that two locally solid vector lattices $\left(X_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$ are said to be isomorphic, if there exists a lattice isomorphism from X_{1} onto X_{2} that is also a homeomorphism; in other words, if there exists a mapping from X_{1} onto X_{2} that preserves the algebraic, the lattice, and the topological structures. A locally solid vector lattice (X_{1}, τ_{1}) is said to be lattice embeddable into another locally solid vector lattice $\left(X_{2}, \tau_{2}\right)$ if there exists a sublattice Y_{2} of X_{2} such that (X_{1}, τ_{1}) and $\left(Y_{2}, \tau_{2}\right)$ are isomorphic.

Note that (X, τ) can have the Lebesgue and Levi properties and simultaneously contains c_{0} as a sublattice, but not as a lattice embeddable copy. The following example illustrates this.

Example 1. Let s denote the vector lattice of all sequences in \mathbb{R} with coordinatewise ordering. Clearly, c_{0} is a sublattice of s. Define the following separating family of Riesz pseudonorms

$$
\mathcal{R}:=\left\{\rho_{j}: \rho_{j}\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right):=\left|x_{j}\right|\right\}
$$

for each $j \in \mathbb{N}$ and $\left(x_{n}\right)_{n} \in s$. Then \mathcal{R} generates a locally solid topology τ on s. It can be easily shown that (s, τ) has the Lebesgue and Levi properties. Although c_{0} is a sublattice of s, but $\left(c_{0},\|\cdot\|_{\infty}\right)$ is not lattice embeddable in (s, τ). To see this, consider the sequence e_{n} of the standard unit vectors in c_{0}. Then the sequence e_{n} is not norm null in $\left(c_{0},\|\cdot\|_{\infty}\right)$, whereas $e_{n} \xrightarrow{\tau} 0$ in (s, τ).

Proposition 7. Let (X, τ) be a complete locally solid vector lattice. If every τ-bounded subset of X is sequentially $u \tau$-complete, then X has the Lebesgue and Levi properties.

Proof. Suppose X does not possess the Lebesgue or Levi properties. Then, by Theorem 8, c_{0} is lattice embeddable in (X, τ). Let $s_{n}=\sum_{k=1}^{n} e_{k}$, where e_{k} 's denote the standard unit vectors in c_{0}. Clearly, the sequence s_{n} is normbounded in c_{0} and so it is τ-bounded in (X, τ). Note that $\left\|e_{k}\right\|_{\infty}=1 \nrightarrow 0$, and so e_{k} is not τ-null. It follows from [15, Lm. 6.1] that s_{n} is un-Cauchy in c_{0}, but is not un-convergent in c_{0}. That is s_{n} is $u \tau$-Cauchy which is not $u \tau$-convergent, a contradiction.

Using the proof of the previous result and [26, Thm. 1'], one can easily prove the following result.

Proposition 8. Let X be a Dedekind complete vector lattice equipped with a sequentially complete topology τ. If every τ-bounded subset of X is sequentially $u \tau$-complete, then X has the σ-Lebesgue and σ-Levi properties.

Clearly, every finite dimensional locally solid vector lattice (X, τ) is $u \tau$ complete. On the contrary of [15, Prop. 6.2], we provide an example of a τ complete locally solid vector lattice (X, τ) possessing the Lebesgue property such that it is $u \tau$-complete and $\operatorname{dim} X=\infty$.

Example 2. Let $X=s$ and $\mathcal{R}=\left(\rho_{j}\right)_{j \in \mathbb{N}}$ such that $\rho_{j}\left(\left(x_{n}\right)\right):=\left|x_{j}\right|$, where $\left(x_{n}\right)_{n \in \mathbb{N}} \in$ s. It is easy to see that (X, \mathcal{R}) is τ-complete and has the Lebesgue property. Now, we show that (X, \mathcal{R}) is $u \tau$-complete. Suppose x^{α} is $u \tau$ Cauchy net. Then, for each $u \in X_{+}$, we have $\left|x^{\alpha}-x^{\beta}\right| \wedge u \xrightarrow{\tau} 0$. Now, $u=u_{n}$ and, $x^{\alpha}=x_{n}^{\alpha}$. Let $j \in \mathbb{N}$, then $\rho_{j}\left(\left|x^{\alpha}-x^{\beta}\right| \wedge u\right) \rightarrow 0$ in \mathbb{R} over α, β iff $\left|x_{j}^{\alpha}-x_{j}^{\beta}\right| \wedge u_{j} \rightarrow 0$ in \mathbb{R} iff $\left|x_{j}^{\alpha}-x_{j}^{\beta}\right| \rightarrow 0$ in \mathbb{R} over α, β.
Thus, $\left(x_{j}^{\alpha}\right)_{\alpha}$ is Cauchy in \mathbb{R} and so there is $x_{j} \in \mathbb{R}$ such that $x_{j}^{\alpha} \rightarrow x_{j}$ in \mathbb{R} over α. Let $x=\left(x_{j}\right)_{j \in \mathbb{N}} \in s$, then, clearly, $x^{\alpha} \xrightarrow{u \tau} x$.

References

[1] Y. Abramovich and C. D. Aliprantis, An invitation to operator theory, Vol. 50. Providence, RI: American Mathematical Society, 2002.
[2] C. D. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces with applications to economics, Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, 2003.
[3] C. D. Aliprantis and O. Burkinshaw, Positive Operators, 2nd edition, Springer-Verlag, Berlin and Heidelberg, 2006.
[4] C. D. Aliprantis, R. Tourky, Cones and Duality, Vol. 84. Providence, RI: American Mathematical Society, 2007.
[5] A. Aydın, E. Yu. Emelyanov, N. Erkurşun Özcan, and M. A. A. Marabeh. Unbounded p-convergence in Lattice-Normed Vector Lattices, preprint, arXiv:1609.05301.
[6] A. Aydın, E. Yu. Emelyanov, N. Erkurşun Özcan, and M. A. A. Marabeh. Compact-Like Operators in Lattice-Normed Spaces, preprint, arXiv:1701.03073v2.
[7] Y. Dabboorasad, E. Y. Emelyanov, and M. A. A. Marabeh, Order convergence in infinite-dimensional vector lattices is not topological, preprint, arXiv: 1705.09883 v 1 .
[8] Y. Deng, M. O'Brien, and V. G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity, to appear, DOI:10.1007/s11117-016-04469.
[9] E. Yu. Emelyanov and M. A. A. Marabeh, Two measure-free versions of the Brezis-Lieb Lemma, Vladikavkaz Math. J., 18(1), 2016, 21-25.
[10] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
[11] N. Gao, Unbounded order convergence in dual spaces, J. Math. Anal. Appl., 419, 347-354, 2014.
[12] N. Gao, D. H. Leung, and F. Xanthos, The dual representation problem of risk measures, preprint, arXiv:1610.08806.
[13] N. Gao, V. G. Troitsky, and F. Xanthos, Uo-convergence and its applications to Cesàro means in Banach lattices, Israel J. Math., to appear, arXiv:1509.07914.
[14] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, J. Math. Anal. Appl., 415, 931-947, 2014.
[15] M. Kandić, M. A. A. Marabeh, and V. G. Troitsky, Unbounded norm topology in Banach lattices, J. Math. Anal. Appl., 451, 259-279, 2017.
[16] M. Kandić, H. Li, and V. G. Troitsky, Unbounded norm topology beyond normed lattices, preprint, arXiv:1703.10654.
[17] H. Li and Z. Chen Some loose ends on unbounded order convergence, Positivity, DOI 10.1007/s11117-017-0501-1, 2017.
[18] E. T. Ordman, Convergence almost everywhere is not topological, Amer. Math. Monthly, Vol. 2, 182-183, 1966.
[19] W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, NorthHolland Publishing Co., Amsterdam-London, 1971.
[20] H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin, 1974.
[21] H. H. Schaefer and M. P. Wolff, Topological vector spaces, second edition, Graduate Texts in Mathematics, 3, Springer-Verlag, New York, 1999.
[22] M. A. Taylor, Unbounded topologies and uo-convegence in locally solid vector lattices, preprint, arXiv:1706.01575.
[23] V. G. Troitsky, Measures of non-compactness of operators on Banach lattices, Positivity, 8(2), 165-178, 2004.
[24] B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Scientific Publications, Ltd., Groningen, 1967.
[25] A. W. Wickstead, Weak and unbounded order convergence in Banach lattices, J. Austral. Math. Soc. Ser. A, 24(3), 312-319, 1977.
[26] W. Wnuk, Locally solid Riesz spaces not containing c_{0}, Bull. Polish Acad. Sci. Math. Vol. 36, no. 1-2, 51-56, 1988.
[27] O. Zabeti, Unbounded Absolute Weak Convergence in Banach Lattices, preprint. arXiv:1608.02151v5.

1 Department of Mathematics, Islamic University of Gaza, P.O.Box 108, Gaza City, Palestine.

E-mail address: yasad@iugaza.edu.ps, ysf_atef@hotmail.com
${ }^{2}$ Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey.

E-mail address: yousef.dabboorasad@metu.edu.tr, eduard@metu.edu.tr, mohammad.marabeh@metu.edu.tr, m.maraabeh@gmail.com

[^0]: Date: September 27, 2018.
 2010 Mathematics Subject Classification. Primary:46A16, 46A40. Secondary: 32F45.
 Key words and phrases. Banach lattice, vector lattice, $u \tau$-convergence, $u \tau$-topology, uo-convergence, un-convergence, un-topology.

