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uτ-CONVERGENCE IN LOCALLY SOLID VECTOR

LATTICES

Y. A. DABBOORASAD1,2, E. Y. EMELYANOV2, AND M. A. A. MARABEH2

Abstract. Let xα be a net in a locally solid vector lattice (X, τ ); we say

that xα is unbounded τ -convergent to a vector x ∈ X if |xα−x|∧w
τ
−→ 0

for all w ∈ X+. In this paper, we study general properties of unbounded

τ -convergence (shortly, uτ -convergence). uτ -Convergence generalizes

unbounded norm convergence and unbounded absolute weak conver-

gence in normed lattices that have been investigated recently. Besides,

we introduce uτ -topology and study briefly metrizabililty and complete-

ness of this topology.

1. Introduction and preliminaries

The subject of “unbounded convergence” has attracted many researchers
[25, 23, 11, 13, 9, 8, 27, 15, 5, 17, 16, 12, 22]. It is well-investigated in vector
lattices and normed lattices [11, 14, 13, 27]. In the present paper, we study
unbounded convergence in locally solid vector lattices. Results in this article
extend previous works [8, 13, 15, 27].

For a net xα in a vector lattice X, we write xα
o
−→ x, if xα converges to x

in order. This means that there is a net yβ, possibly over a different index
set, such that yβ ↓ 0 and, for every β, there exists αβ satisfying |xα−x| 6 yβ
whenever α > αβ. A net xα is unbounded order convergent to a vector x ∈ X

if |xα − x| ∧ u
o
−→ 0 for every u ∈ X+. We write xα

uo
−→ x and say that xα

uo-converges to x. Clearly, order convergence implies uo-convergence and
they coincide for order bounded nets. For a measure space (Ω,Σ, µ) and for

a sequence fn in Lp(µ) (0 ≤ p ≤ ∞), fn
uo
−→ 0 iff fn → 0 almost everywhere

(cf. [13, Rem. 3.4]). It is well known that almost everywhere convergence
is not topological in general [18]. Therefore, the uo-convergence might not
be topological. Quite recently, it has been shown that order convergence is
never topological in infinite dimensional vector lattices [7].

For a net xα in a normed lattice (X, ‖·‖), we write xα
‖·‖
−−→ x if xα converges

to x in norm. We say that xα unbounded norm converges to x ∈ X (or xα
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un-converges to x) if |xα−x|∧u
‖·‖
−−→ 0 for every u ∈ X+. We write xα

un
−→ x.

Clearly, norm convergence implies un-convergence. The un-convergence is
topological, and the corresponding topology (which is known as un-topology)
was investigated in [15]. A net xα is unbounded absolute weak convergent

to x ∈ X (or xα uaw-converges to x) if |xα − x| ∧ u
w
−→ 0 for all u ∈ X+,

where “w” refers the weak convergence. We write xα
uaw
−−→ x. Absolute weak

convergence implies uaw-convergence. The notions of uaw -convergence and
uaw-topology were introduced in [27].

If X is a vector lattice, and τ is a linear topology on X that has a base
at zero consisting of solid sets, then the pair (X, τ) is called a locally solid

vector lattice. It should be noted that all topologies considered throughout
this article are assumed to be Hausdorff. It follows from [2, Thm. 2.28] that
a linear topology τ on a vector lattice X is locally solid iff it is generated
by a family {ρj}j∈J of Riesz pseudonorms. Moreover, if a family of Riesz
pseudonorms generates a locally solid topology τ on a vector lattice X, then

xα
τ
−→ x in X iff ρj(xα − x) −→

α
0 in R for each j ∈ J . Since X is Hausdorff,

then the family {ρj}j∈J of Riesz pseudonorms is separating; i.e., if ρj(x) = 0
for all j ∈ J , then x = 0. In this article, unless otherwise, the pair (X, τ)
refers to as a locally solid vector lattice.

A subset A in a topological vector space (X, τ) is called topologically

bounded (or simply τ -bounded) if, for every τ -neighborhood V of zero, there
exists some λ > 0 such that A ⊆ λV . If ρ is a Riesz pseudonorm on a vector
lattice X and x ∈ X, then 1

n
ρ(x) ≤ ρ( 1

n
x) for all n ∈ N. Indeed, if n ∈ N

then ρ(x) = ρ(n 1
n
x) ≤ nρ( 1

n
x). The following standard fact is included for

the sake of completeness.

Proposition 1. Let (X, τ) be a locally solid vector lattice with a family of

a Riesz pseudonorms {ρj}j∈J that generates the topology τ . If a subset A of

X is τ -bounded then ρj(A) is bounded in R for any j ∈ J .

Proof. Let A ⊆ X be τ -bounded and j ∈ J . Put V := {x ∈ X : ρj(x) < 1}.
Clearly, V is a neighborhood of zero in X. Since A is τ -bounded, there is
λ > 0 satisfying A ⊆ λV . Thus ρj(

1
λ
a) ≤ 1 for all a ∈ A. There exists n ∈ N

with n > λ. Now, 1
n
ρj(a) ≤ ρj(

1
n
a) ≤ ρj(

1
λ
a) ≤ 1 for all a ∈ A. Hence,

supa∈A ρj(a) ≤ n < ∞. �

Next, we discuss the converse of the proposition above.
Let {ρj}j∈J be a family of Riesz pseudonorms for a locally solid vector

lattice (X, τ). For j ∈ J , let ρ̃j :=
ρj

1+ρj
. Then ρ̃j is a Riesz pseudonorm on

X. Moreover, the family (ρ̃j)j∈J generates the topology τ on X. Clearly,
ρ̃j(A) ≤ 1 for any subset A of X, but still we might have a subset that is
not τ -bounded.

Recall that a locally solid vector lattice (X, τ) is said to have the Lebesgue

property if xα ↓ 0 in X implies xα
τ
−→ 0; or equivalently xα

o
−→ 0 implies
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xα
τ
−→ 0; and (X, τ) is said to have the σ-Lebesgue property if xn ↓ 0 in X

implies xn
τ
−→ 0. Finally, (X, τ) is said to have the Levi property if 0 ≤ xα ↑

and the net xα is τ -bounded, then xα has the supremum in X; and (X, τ)
is said to have the σ-Levi property if 0 ≤ xn ↑ and xn is τ -bounded, then xn
has supremum in X, see [2, Def. 3.16].

Let X be a vector lattice, and take 0 6= u ∈ X+. Then a net xα in X
is said to be u-uniformly convergent to a vector x ∈ X if, for each ε > 0,
there exists some αε such that |xα − x| ≤ εu holds for all α > αε; and xα
is said to be u-uniformly Cauchy if, for each ε > 0, there exists some αε

such that, for all α,α′ > αε, we have |xα − xα′ | ≤ εu. A vector lattice X
is said to be u-uniformly complete if every u-uniformly Cauchy sequence in
X is u-uniformly convergent; and X is said to be uniformly complete if X is
u-uniformly complete for each 0 6= u ∈ X+.

Let X be a vector lattice. An element 0 6= e ∈ X+ is called a strong unit if
Ie = X (equivalently, for every x > 0, there exists n ∈ N such that x 6 ne),
and 0 6= e ∈ X+ is called a weak unit if Be = X (equivalently, x ∧ ne ↑ x
for every x ∈ X+). Here Be denotes the band generated by e. If (X, τ) is a
topological vector lattice, then 0 6= e ∈ X+ is called a quasi-interior point,
if the principal ideal Ie is τ -dense in X [20, Def. II.6.1]. It is known that

strong unit ⇒ quasi-interior point ⇒ weak unit.

Recall that a Banach lattice X is called an AM -space if ‖x∨y‖ = max{‖x‖, ‖y‖}
for all x, y ∈ X with x ∧ y = 0.

Let (X, τ) be a sequentially complete locally solid vector lattice. Then it
follows from the proof of [4, Cor. 2.59] that it is uniformly complete. So, for
each 0 6= u ∈ X+, let Iu be the ideal generated by u and ‖·‖u be the norm
on Iu given by

‖x‖u = inf{r > 0 : |x| ≤ ru} (x ∈ X).

Then, by [4, Thm. 2.58], the pair (Iu, ‖.‖u) is a Banach lattice. Now
Theorem 3.4 in [1] implies that (Iu, ‖·‖u) is an AM -space with a strong unit
u, and then, by [1, Thm. 3.6], it is lattice isometric (uniquely, up to a
homeomorphism) to C(K) for some compact Hausdorff space K in such a
way, that the strong unit u is identified with the constant function 1 on K.

For unexplained terminologies and notions we refer to [2, 3].

2. Unbounded τ-convergence

Suppose (X, τ) is a locally solid vector lattice. Let xα be a net in X. We
say that xα is unbounded τ -convergent to x ∈ X if, for any w ∈ X+, we

have |xα − x| ∧ w
τ
−→ 0. In this case, we write xα

uτ
−→ x and say that xα

uτ -converges to x. Obviously, if xα
τ
−→ x then xα

uτ
−→ x. The converse holds

if the net xα is order bounded. Note also that uτ -convergence respects linear
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and lattice operations. It is clear that uτ -convergence is a generalization of
un-convergence [8, 15] and, of uaw-convergence [27].

Let Nτ be a neighborhood base at zero consisting of solid sets for (X, τ).
For each 0 6= w ∈ X+ and V ∈ Nτ , let

UV,w := {x ∈ X : |x| ∧ w ∈ V }.

It can be easily shown that the collection

Nuτ := {UV,w : V ∈ Nτ , 0 6= w ∈ X+}

forms a neighborhood base at zero for a locally solid topology; we call it uτ -

topology, where u refers to as unbounded. Moreover, xα
uτ
−→ 0 iff xα → 0 with

respect to uτ -topology. Indeed, suppose xα
uτ
−→ 0. Given a neighborhood

UV,w ∈ Nuτ . Then there are 0 6= w ∈ X+ and V ∈ Nτ such that

UV,w = {x ∈ X : |x| ∧ w ∈ V }.

Now, xα
uτ
−→ 0 implies |xα|∧w

τ
−→ 0. So, there is α0 such that, for all α ≥ α0,

we have |xα| ∧ w ∈ V . That is xα ∈ UV,w for all α ≥ α0. Thus, xα → 0 in
the uτ -topology.

Conversely, assume xα → 0 in the uτ -topology. Given 0 6= w ∈ X+ and
V ∈ Nτ . Then, UV,w is a zero neighborhood in the uτ -topology. So, there
is α′ such that xα ∈ UV,w for all α ≥ α′. That is, |xα| ∧ w ∈ V for all

α ≥ α′. Thus, |xα| ∧ w
τ
−→ 0 or xα

uτ
−→ 0. The locally solid uτ -topology will

be referred to as unbounded τ -topology.
The neighborhood base at zero for the uτ -topology onX has an equivalent

representation in terms of a family (ρj)j∈J of Riesz pseudonorms that gener-
ates the topology τ . For ε > 0, j ∈ J , and 0 6= w ∈ X+, let Vε,w,j := {x ∈ X :
ρj(|x| ∧ w) < ε}. Clearly, the collection {Vε,w,j : ε > 0, 0 6= w ∈ X+, j ∈ J}
generates the uτ -topology.

It is known that the topology of any linear topological space can be derived
from a unique translation-invariant uniformity, i.e., any linear topological
space is uniformisable (cf. [21, Thm. 1.4]). It follows from [10, Thm.
8.1.20] that any linear topological space is completely regular. In particular,
the unbounded τ -convergence is completely regular.

Since xα
τ
−→ 0 implies xα

uτ
−→ 0, then the τ -topology in general is finer

than uτ -topology. The next result should be compared with [15, Lm. 2.1].

Lemma 1. Let (X, τ) be a sequentially complete locally solid vector lattice,

where τ is generated by a family (ρj)j∈J of Riesz pseudonorms. Let ε > 0,
j ∈ J , and 0 6= w ∈ X+. Then either Vε,w,j is contained in [−w,w], or it

contains a non-trivial ideal.

Proof. Suppose that Vε,w,j is not contained in [−w,w]. Then there exists
x ∈ Vε,w,j such that x 6∈ [−w,w]. Replacing x with |x|, we may assume
x > 0. Since x 6∈ [−w,w], then y = (x− w)+ > 0. Now, letting z = x ∨ w,
we have that the ideal Iz generated by z, is lattice and norm isomorphic to
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C(K) for some compact and Hausdorff space K, where z corresponds to the
constant function 1. Also x, y, and w in Iz correspond to x(t), y(t), and
w(t) in C(K) respectively.

Our aim is to show that for all α ≥ 0 and t ∈ K, we have

(αy)(t) ∧ w(t) ≤ x(t) ∧ w(t).

For this, note that y(t) = (x− w)+(t) = (x− w)(t) ∨ 0.
Let t ∈ K be arbitrary.

• Case (1): If (x−w)(t) > 0, then x(t)∧w(t) = w(t) ≥ (αy)(t)∧w(t)
for all α ≥ 0, as desired.

• Case (2): If (x − w)(t) < 0, then (αy)(t) ∧ w(t) ≤ (αy)(t) = α(x −
w)(t) ∨ 0 = 0 ≤ x(t) ∧ w(t), as desired.

Hence, for all α ≥ 0 and t ∈ K, we have (αw)(t) ∧ w(t) ≤ x(t) ∧ w(t)
and so (αy) ∧ w ≤ x ∧ w for all α ≥ 0 . Note, that αy,w, x ∈ X+. Thus
ρj(|αy| ∧w) ≤ ρj(|x| ∧w) < ε, so αy ∈ Vε,w,j and, since Vε,w,j is solid, then
Iz ⊆ Vε,w,j. �

Note that the sequential completeness in Lemma 1 can be removed, as we
see in the following corollary.

Theorem 1. Let (X, τ) be a locally solid vector lattice, where τ is generated

by a family (ρj)j∈J of Riesz pseudonorms. Let ε > 0, j ∈ J , and 0 6=
w ∈ X+. Then either Vε,w,j is contained in [−w,w] or Vε,w,j contains a

non-trivial ideal.

Proof. Given ε > 0, j ∈ J , and 0 6= w ∈ X+. Let (X̂, τ̂ ) be the topological

completion of (X, τ). In particular, (X̂, τ̂ ) is sequentially complete. Let

V̂ε,w,j = {x̂ ∈ X̂ : ρ̂j(|x̂| ∧ w) < ε}. Then Vε,w,j = X ∩ V̂ε,w,j. By Lemma

1, either V̂ε,w,j is a subset of [−w,w]
X̂

in X̂ or V̂ε,w,j contains a non-trivial

ideal of X̂ . If V̂ε,w,j ⊆ [−w,w]
X̂
, then

Vε,w,j = X ∩ V̂ε,w,j ⊆ X ∩ [−w,w]
X̂

= [−w,w] ⊆ X.

If V̂ε,w,j contains a non-trivial ideal, then V̂ε,w,j * [−w,w]
X̂
. So, there is

x̂ ∈ V̂ε,w,j with x̂ /∈ [−w,w]
X̂
. Since [−w,w]

X̂
is τ̂ -closed, then there is

a solid neighborhood Nx̂ of x̂ in X̂ such that Nx̂ ∩ [−w,w]
X̂

= ∅. Hence,

Nx̂∩ V̂ε,w,j∩ [−w,w]
X̂

= ∅, and Nx̂∩ V̂ε,w,j is open in X̂ with x̂ ∈ Nx̂∩ V̂ε,w,j.

By τ -density of X in X̂ , we may take x ∈ X ∩ Nx̂ ∩ V̂ε,w,j. Since |x| ∈

X ∩Nx̂ ∩ V̂ε,w,j, we may also assume that x ∈ X+.
Let y := (x − w)+, then y > 0 and y ∈ X+. By the same argument

in Lemma 1, we get (αy) ∧ w ≤ x ∧ w for all α ∈ R+. Since x ∈ V̂ε,w,j,

then αy ∈ V̂ε,w,j for all α ∈ R+. But αy ∈ X+ for all α ∈ R+ and, since

Vε,w,j = X ∩ V̂ε,w,j, we get αy ∈ Vε,w,j for all α ∈ R+. Since Vε,w,j is solid,
we conclude that the principal ideal Iy taken in X is a subset of Vε,w,j. �
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Lemma 2. Let (X, τ) be a locally solid vector lattice, where τ is generated

by a family (ρj)j∈J of Riesz pseudonorms. If Vε,w,j is contained in [−w,w],
then w is a strong unit.

Proof. Suppose Vε,w,j ⊆ [−w,w]. Since Vε,w,j is absorbing, for any x ∈ X+,

there exist α > 0 such that αx ∈ Vε,w,j , and so αx ∈ [−w,w], or x ≤ 1
α
w.

Thus w is a strong unit, as desired. �

Proposition 2. Let e ∈ X+. Then e is a quasi-interior point in (X, τ) iff

e is a quasi-interior point in the topological completion (X̂, τ̂ ).

Proof. The backward implication is trivial.

For the forward implication let x̂ ∈ X̂+. Our aim is to show that x̂−x̂∧ne
τ
−→

0 in X̂ as n → ∞. By [2, Thm. 2.40], X̂+ = X
τ̂
+. So, there is a net xα in

X+ such that xα
τ̂
−→ x̂ in X̂ . Let j ∈ J and ε > 0. Since ρ̂j(xα − x̂) → 0,

then there is αε satisfying

(2.1) ρ̂j(xαε − x̂) < ε.

Since e is a quasi-interior point in X and xαε ∈ X+, then xαε −xαε ∧ne
τ
−→ 0

in X as n → ∞. Thus, there is nε ∈ N such that

(2.2) ρ̂j(xαε − ne ∧ xαε) = ρj(xαε − ne ∧ xαε) < ε (∀n > nε).

Now, 0 ≤ x̂ − x̂ ∧ ne = x̂ − xαε + xαε − ne ∧ xαε + ne ∧ xαε − x̂ ∧ ne. So
ρ̂j(x̂− x̂ ∧ ne) ≤ ρ̂j(x̂− xαε) + ρ̂j(xαε − ne ∧ xαε) + ρ̂j(ne ∧ xαε − x̂ ∧ ne).
For n > nε, we have, by (2.1), (2.2), and [3, Thm. 1.9(2)], that

ρ̂j(x̂− x̂ ∧ ne) ≤ ε+ ε+ ρ̂j(xαε − x̂) ≤ 3ε.

Therefore, e is a quasi-interior point in X̂. �

The technique used in the proof of [15, Thm. 3.1] can be used in the
following theorem as well, and so we omit its proof.

Theorem 2. Let (X, τ) be a sequentially complete locally solid vector lattice,

where τ is generated by a family (ρj)j∈J of Riesz pseudonorms. Let e ∈ X+.

The following are equivalent:

(1) e is a quasi-interior point;

(2) for every net xα in X+, if xα ∧ e
τ
−→ 0 then xα

uτ
−→ 0;

(3) for every sequence xn in X+, if xn ∧ e
τ
−→ 0 then xn

uτ
−→ 0.

3. Unbounded τ-convergence in sublattices

Let Y be a sublattice of a locally solid vector lattice (X, τ). If yα is a net

in Y such that yα
uτ
−→ 0 in X, then clearly, yα

uτ
−→ 0 in Y . The converse

does not hold in general. For example, the sequence en of standard unit
vectors is un-null in c0, but not in ℓ∞. In this section, we study when the
uτ -convergence passes from a sublattice to the whole space.
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Recall that a sublattice Y of a vector lattice X is majorizing if, for every
x ∈ X+, there exists y ∈ Y+ with x 6 y. The following theorem extends
[15, Thm. 4.3] to locally solid vector lattices.

Theorem 3. Let (X, τ) be a locally solid vector lattice and Y be a sublattice

of X. If yα is a net in Y and yα
uτ
−→ 0 in Y , then yα

uτ
−→ 0 in X in each of

the following cases:

(1) Y is majorizing in X;
(2) Y is τ -dense in X;
(3) Y is a projection band in X.

Proof. (1) Trivial.
(2) Let u ∈ X+. Fix ε > 0 and take j ∈ J . Since Y is τ -dense in X, then

there is v ∈ Y+ such that ρj(u−v) < ε. But yα
uτ
−→ 0 in Y and so, in

particular, ρj(|yα| ∧ v) → 0. So there is α0 such that ρj(|yα| ∧ v) < ε
for all α > α0. It follows from u ≤ v + |u − v|, that |yα| ∧ u ≤
|yα| ∧ v+ |u− v|, and so ρj(|yα| ∧ u) < ρj(|yα| ∧ v) + ρj(u− v) < 2ε.
Thus, ρj(|yα| ∧ u) → 0 in R. Since j ∈ J was chosen arbitrary, we

conclude that yα
uτ
−→ 0 in X.

(3) Let u ∈ X+. Then u = v + w, where v ∈ Y+ and w ∈ Y d
+. Now

|yα| ∧ u = |yα| ∧ v + |yα| ∧ w = |yα| ∧ v, since yα ∈ Y . Then

|yα| ∧ u = |yα| ∧ v
τ
−→ 0 in X.

�

Corollary 1. If (X, τ) is a locally solid vector lattice and xα
uτ
−→ 0 in X,

then xα
uτ
−→ 0 in the Dedekind completion Xδ of X.

Corollary 2. If (X, τ) is a locally solid vector lattice and xα
uτ
−→ 0 in X,

then xα
uτ
−→ 0 in the topological completion X̂ of X.

The next result generalizes Corollary 4.6 in [15] and Proposition 16 in
[27].

Theorem 4. Let (X, τ) be a topologically complete locally solid vector lattice

that possesses the Lebesgue property, and Y be a sublattice of X. If yα
uτ
−→ 0

in Y , then yα
uτ
−→ 0 in X.

Proof. Suppose yα
uτ
−→ 0 in Y . By Theorem 3(1), yα

uτ
−→ 0 in the ideal I(Y )

generated by Y in X. By Theorem 3(2), yα
uτ
−→ 0 in the closure {I(Y )}

τ

of I(Y ). It follows from [2, Thm. 3.7] that {I(Y )}
τ
is a band in X. Now,

[2, Thm. 3.24] assures that X is Dedekind complete, and so {I(Y )}
τ
is a

projection band in X. Then yα
uτ
−→ 0 in X, in view of Theorem 3(3). �

Suppose that (X, τ) is a locally solid vector lattice possessing the Lebesgue
property. Then, in view of [2, Thms. 3.23 and 3.26], its topological com-

pletion (X̂, τ̂) possesses the Lebesgue property as well. Hence, by [2, Thm.
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3.24], X̂ is Dedekind complete. Since X ⊆ X̂ , there holds Xδ ⊆ (X̂)δ = X̂.

So, X ⊆ Xδ ⊆ X̂. Now, Theorem 4 assures that, given a net zα in Xδ , if

zα
uτ
−→ 0 in Xδ then zα

uτ
−→ 0 in X̂.

4. unbounded relatively uniformly convergence

In this section we discuss unbounded relatively uniformly convergence.
Recall that a net xα in a vector lattice X is said to be relatively uniformly

convergent to x ∈ X if, there is u ∈ X+ such that for any n ∈ N, there exists

αn satisfying |xα − x| ≤ 1
n
u for α > αn. In this case we write xα

ru
−→ x and

the vector u ∈ X+ is called regulator, see [24, Def. III.11.1].

If xα
ru
−→ 0 in a locally solid vector lattice (X, τ), then xα

τ
−→ 0. Indeed,

let V be a solid neighborhood at zero. Since xα
ru
−→ 0, then there is u ∈ X+

such that, for a given ε > 0, there is αε satisfying |xα| ≤ εu for all α ≥ αε.
Since V is absorbing, there is c ≥ 1 such that 1

c
u ∈ V . There is some α0

such that |xα| ≤
1
c
u for all α ≥ α0. Since V is solid and |xα| ≤

1
c
u for all

α ≥ α0, then xα ∈ V for all α ≥ α0. That is xα
τ
−→ 0.

The following result might be considered as an ru-version of Theorem 1
in [7].

Theorem 5. Let X be a vector lattice. Then the following conditions are

equivalent.

(1) There exists a linear topology τ on X such that, for any net xα in X:

xα
ru
−→ 0 iff xα

τ
−→ 0.

(2) There exists a norm ‖·‖ on X such that, for any net xα in X: xα
ru
−→ 0

iff ‖xα‖ → 0.
(3) X has a strong order unit.

Proof. (1) ⇒ (3) It follows from [7, Lem. 1].

(3) ⇒ (2) Let e ∈ X be a strong order unit. Then xα
ru
−→ 0 iff ‖xα‖e → 0,

where ‖x‖e := inf{r : |x| 6 re}.
(2) ⇒ (1) It is trivial. �

Let X be a vector lattice. A net xα in X is said to be unbounded relatively

uniformly convergent to x ∈ X if |xα − x| ∧ w
ru
−→ 0 for all w ∈ X+. In this

case, we write xα
uru
−−→ x. Clearly, if xα

uru
−−→ 0 in a locally solid vector lattice

(X, τ), then xα
uτ
−→ 0.

In general, uru-convergence is also not topological. Indeed, consider the
vector lattice L1[0, 1]. It satisfies the diagonal property for order convergence
by [19, Thm. 71.8]. Now, by combining Theorems 16.3, 16.9, and 68.8 in [19]

we get that for any sequence fn in L1[0, 1] fn
o
−→ 0 iff fn

ru
−→ 0. In particular,

fn
uo
−→ 0 iff fn

uru
−−→ 0. But the uo-convergence in L1[0, 1] is equivalent to

a.e.-convergence which is not topological, see [18].
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However, in some vector lattices the uru-convergence could be topological.
For example, if X is a vector lattice with a strong unit e, It follows from
Theorem 5, that ru-convergence is equivalent to the norm convergence ‖·‖e,
where ‖x‖e:= inf{λ > 0 : |x| ≤ λe}, x ∈ X. Thus uru-convergence in X is
topological.

Consider vector lattice c00 of eventually zero sequences. It is well known

that in c00: xα
ru
−→ 0 iff xα

o
−→ 0. For the sake of completeness we include a

proof of this fact. Clearly, xα
ru
−→ 0 ⇒ xα

o
−→ 0. For the converse, suppose

xα
o
−→ 0 in c00. Then there is a net yβ ↓ 0 in c00 such that, for any β, there

is αβ satisfying |xα| ≤ yβ for all α ≥ αβ. Let en denote the sequence of

standard unit vectors in c00. Fix β0. Then yβ0
= cβ0

1 ek1 + · · ·+ cβ0
n ekn , c

β0

i ∈
R, i = 1, . . . , n. Since yβ is decreasing, then yβ ≤ yβ0

for all β ≥ β0.

So, yβ = cβ1ek1 + · · · + cβnekn for all β ≥ β0, c
β
i ∈ R, i = 1, . . . , n. Since

yβ ↓ 0 then limβ c
β
i = 0 for all i = 1, . . . , n. Let u = ek1 + · · · + ekn .

Given ε > 0. Then, there is βε ≥ β0 such that cβi < ε for all β ≥ βε
for i = 1, . . . , n. Consider yβε

then there is αε such that |xα| ≤ yβε
for

all α ≥ βε. But yβε
= cβε

1 ek1 + · · · + cβε
n ekn ≤ εu. So, |xα| ≤ εu for all

α ≥ αε. That is xα
ru
−→ 0. Thus, the uru-convergence in c00 coincides

with the uo-convergence which is pointwise convergence and, therefore, is
topological.

Proposition 3. Let X be Lebesgue and complete metrizable locally solid

vector lattice. then xα
ru
−→ 0 iff xα

o
−→ 0.

Proof. The necessity is obvious. For the sufficiency assume that xα
o
−→ 0.

Then there exists yβ ↓ 0 such that for any β there is αβ with |xα| 6 yβ as
α > αβ . Since d(yβ, 0) → 0, there exists an increasing sequence (βk)k of

indeces with d(kyβk
, 0) 6 1

2k
. Let sn =

∑n
k=1 kyβk

. We show the sequence
sn is Cauchy. For n > m,

d(sn, sm) = d(sn − sm, 0) = d
(

n
∑

k=m+1

kyβk
, 0
)

≤
n
∑

k=m+1

d
(

kyβk
, 0
)

≤
n
∑

k=m+1

1

2k
→ 0, as n,m → ∞.

Since X is complete, then the sequence sn converges to some u ∈ X+. That

is, u :=
∞
∑

k=1

kyβk
. Then

k|xα| 6 kyβk
6 u (∀α > αβk

)

which means that xα
ru
−→ 0. �

Let X = R
Ω be the vector lattice of all real-valued functions on a set Ω.
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Proposition 4. In the vector lattice X = R
Ω, the following conditions are

equivalent:

(1) for any net fα in X: fα
o
−→ 0 iff fα

ru
−→ 0;

(2) Ω is countable.

Proof. (1) ⇒ (2) Suppose fα
o
−→ 0 ⇔ fα

ru
−→ 0 for any sequence fα in

X = R
Ω. Our aim is to show that Ω is countable. Assume, in contrary, that

Ω is uncountable. Let F(Ω) be the collection of all finite subsets of Ω. For
each α ∈ F(Ω), put fα = Xα. Clearly, fα ↑ 1, where 1 denotes the constant

function one on Ω. Then 1 − fα ↓ 0 or 1 − fα
o
−→ 0 in R

Ω. So, there is
0 ≤ g ∈ R

Ω such that, for any ε > 0, there exists αε satisfying 1 − fα ≤ εg
for all α > αε. Let n ∈ N. Then there is a finite set αn ⊆ Ω such that
1 − fαn ≤ 1

n
g. Consequently, g(x) > n for all x ∈ Ω \ αn. Let S = ∪∞

n=1αn.
Then S is countable and Ω \ S 6= ∅. Moreover, for each x ∈ Ω \ S, we have
g(x) > n for all n ∈ N, which is impossible.

(2) ⇒ (1) Suppose that Ω is countable. So, we may assume that X = s,

the space of all sequences. Since, from xα
ru
−→ 0 always follows that xα

o
−→ 0,

it is enough to show that if xα
o
−→ 0 then xα

ru
−→ 0. To see this, let (xnα)n =

xα
o
−→ 0. Then, the net xα is eventually bounded, say |xα| 6 u = (un)n ∈ s.

Take w := (nun)n ∈ s. We show that xα
ru
−→ 0 with the regulator w. Let

k ∈ N. Since xα
o
−→ 0, then for each n ∈ N, xnα → 0 in R. Hence, there is αk

such that k|x1α| < u1, k|x
2
α| < u2, · · · , k|x

k−1
α | < uk−1 for all α > αk. Note

that for n > k, k|xnα| < un. Therefore, k|xα| < w for all α > αk. �

It follows from Proposition 4 that, for countable Ω, the uru-convergence
in R

Ω coincides with the uo-convergence (which is pointwise) and therefore
is topological. We do not know, whether or not the countability of Ω is
necessary for the property that uru-convergence is topological in R

Ω.

5. Topological orthogonal systems and metrizabililty

A collection {eγ}γ∈Γ of positive vectors in a vector lattice X is called an
orthogonal system if eγ ∧ eγ′ = 0 for all γ 6= γ′. If, moreover, x ∧ eγ = 0
for all γ ∈ Γ implies x = 0, then {eγ}γ∈Γ is called a maximal orthogonal

system. It follows from Zorn’s Lemma that every vector lattice containing
at least one non-zero element has a maximal orthogonal system. Motivated
by Definition III.5.1 in [20], we introduce the following notion.

Definition 1. Let (X, τ) be a topological vector lattice. An orthogonal sys-

tem Q = {eγ}γ∈Γ of non-zero elements in X+ is said to be a topological
orthogonal system if the ideal IQ generated by Q is τ -dense in X.

Lemma 3. If Q = {eγ}γ∈Γ is a topological orthogonal system in a topological

vector lattice (X, τ), then Q is a maximal orthogonal system in X.
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Proof. Assume x ∧ eγ = 0 for all γ ∈ Γ. By the assumption, there is a net

xα in the ideal IQ such that xα
τ
−→ x. Without lost of generality, we may

assume 0 ≤ xα ≤ x for all α. Since xα ∈ IQ, then there are 0 < µα ∈ R

and γ1, γ2, . . . , γn, such that 0 ≤ xα ≤ µα(eγ1 + eγ2 + · · · + eγn). So
0 ≤ xα = xα∧x ≤ µα(eγ1 + eγ2 + · · ·+ eγn)∧x = µαeγ1 ∧x+ · · ·+µαeγn ∧x
= 0. Hence xα = 0 for all α, and so x = 0. �

We recall the following construction from [20, p.169]. Let X be a vector
lattice and Q = {eγ}γ∈Γ be a maximal orthogonal system of X. Let F(Γ)
denote the collection of all finite subsets of Γ ordered by inclusion. For each
(n,H) ∈ N × F(Γ) and x ∈ X+, define

xn,H :=
∑

γ∈H

x ∧ neγ .

Clearly {xn,H : (n,H) ∈ N × F(Γ)} is directed upward, and

(5.1) xn,H ≤ x for all (n,H) ∈ N × F(Γ).

Moreover, Proposition II.1.9 in [20] implies xn,H ↑ x.

Theorem 6. Let Q = {eγ}γ∈Γ be an orthogonal system of a locally solid

vector lattice (X, τ), then Q is a topological orthogonal system iff we have

xn,H
τ
−→ x over (n,H) ∈ N × F(Γ) for each x ∈ X+.

Proof. For the backward implication take x ∈ X+. Since

xn,H =
∑

γ∈H

x ∧ neγ ≤ n
∑

γ∈H

eγ ,

then xn,H ∈ IQ for each (n,H) ∈ N × F(Γ). Also, we have, by assumption,

xn,H
τ
−→ x. Thus, x ∈ I

τ
Q, i.e., Q is a topological orthogonal system of X.

For the forward implication, note that Q is a maximal orthogonal system,
by Lemma 3. Let x ∈ X+, and j ∈ J . Given ε > 0. Let Vε,x,j := {z ∈
X : ρj(z − x) < ε}. Then Vε,x,j is a neighborhood of x in the τ -topology.
Since IQ is dense in X with respect to the τ -topology, there is xε ∈ IQ with
0 ≤ xε ≤ x such that ρj(xε − x) < ε. Now, xε ∈ IQ implies that there are
Hε ∈ F(Γ) and nε ∈ N such that

(5.2) xε ≤ nε

∑

γ∈Hε

eγ .

Let

(5.3) w := x ∧
∑

γ∈Hε

nεeγ .

It follows from 0 ≤ w ≤
∑

γ∈Hε

nεeγ and the Riesz decomposition property,

that, for each γ ∈ Hε, there exists yγ with

(5.4) 0 ≤ yγ ≤ nεeγ
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such that

(5.5) w =
∑

γ∈Hε

yγ .

From (5.3) and (5.5), we have

(5.6) yγ ≤ x (∀γ ∈ Hε).

Also, (5.4) and (5.6) imply that yγ ≤ nεeγ ∧ x. Now

(5.7) w =
∑

γ∈Hε

yγ ≤
∑

γ∈Hε

x ∧ nεeγ = xnε,Hε .

But, from (5.2) and (5.3), we get

(5.8) 0 ≤ xε ≤ w.

Thus, it follows from (5.7), (5.8), and (5.1), that 0 ≤ xε ≤ xnε,Hε ≤ x.
Hence, 0 ≤ x − xnε,Hε ≤ x − xε and so ρj(x − xn,H) ≤ ρj(x − xnε,Hε) ≤

ρj(x− xε) for each (n,H) ≥ (nε,Hε). Therefore xn,H
τ
−→ x. �

The following corollary can be proven easily.

Corollary 3. Let (X, τ) be a locally solid vector lattice. The following

statements are equivalent:

(1) e ∈ X+ is a quasi-interior point;

(2) for each x ∈ X+, x− x ∧ ne
τ
−→ 0 as n → ∞.

Corollary 4. Let (X, τ) be a locally solid vector lattice possessing the σ-
Lebesgue property. Then every weak unit in X is a quasi-interior point.

Proof. Let x ∈ X+, and let e be a weak unit. Then x ∧ ne ↑ x. So, by the

σ-Lebesgue property, we get x− x ∧ ne
τ
−→ 0 as n → ∞. �

Theorem 7. Let (X, τ) be a locally solid vector lattice, and Q = {eγ}γ∈Γ
be a topological orthogonal system of (X, τ). Then xα

uτ
−→ 0 iff |xα|∧ eγ

τ
−→ 0

for every γ ∈ Γ.

Proof. The forward implication is trivial. For the backward implication,

assume |xα| ∧ eγ
τ
−→ 0 for every γ ∈ Γ. Let u ∈ X+, j ∈ J . Fix ε > 0. We
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have

|xα| ∧ u = |xα| ∧ (u− un,H + un,H)

≤ |xα| ∧ (u− un,H) + |xα| ∧ un,H

≤ (u− un,H) + |xα| ∧
∑

γ∈H

u ∧ neγ

≤ (u− un,H) + |xα| ∧
∑

γ∈H

neγ

≤ (u− un,H) + n
(

|xα| ∧
∑

γ∈H

eγ
)

= (u− un,H) + n
∑

γ∈H

|xα| ∧ eγ .

Now, Theorem 6 assures that un,H
τ
−→ u, and so, there exists (nε,Hε) ∈

N × F(Γ) such that

(5.9) ρj(u− unε,Hε) < ε.

Thus, |xα| ∧ u ≤ u − unε,Hε +
∑

γ∈Hε

nε(eγ ∧ |xα|). But, by the assumption,

eγ ∧ |xα|
τ
−→ 0 for all γ ∈ Γ, and so nε(eγ ∧ |xα|)

τ
−→ 0. Hence, there is αε,Hε

such that

(5.10) ρj
(

nε(eγ ∧ |xα|)
)

<
ε

|Hε|
(∀α ≥ αε,Hε , ∀γ ∈ Hε).

Here |Hε| denotes the cardinality of Hε. For α ≥ αε,Hε , we have

ρj(|xα| ∧ u) ≤ ρj(u− unε,Hε) + ρj
(

nε

∑

γ∈Hε

|xα| ∧ eγ
)

≤ ε+
∑

γ∈Hε

ρj
(

nε(eγ ∧ |xα|)
)

< ε+
∑

γ∈Hε

ε

|Hε|
= 2ε,

where the second inequality follows from (5.9) and the third one from (5.10).

Therefore, ρj(|xα| ∧ u) → 0, and so xα
uτ
−→ 0. �

The following corollary is immediate.

Corollary 5. Let (X, τ) be a locally solid vector lattice, and e ∈ X+ be a

quasi-interior point. Then xα
uτ
−→ 0 iff |xα| ∧ e

τ
−→ 0.

Recall that a topological vector space is metrizable iff it has a countable
neighborhood base at zero, [2, Thm. 2.1]. In particular, a locally solid vector
lattice (X, τ) is metrizable iff its topology τ is generated by a countable
family (ρk)k∈N of Riesz pseudonorms. The following result gives a sufficient
condition for the metrizabililty of uτ -topology.
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Proposition 5. Let (X, τ) be a complete metrizable locally solid vector lat-

tice. If X has a countable topological orthogonal system, then the uτ -topology
is metrizable.

Proof. First note that, since (X, τ) is metrizable, τ is generated by a count-
able family (ρk)k∈N of Riesz pseudonorms.

Now suppose (en)n∈N to be a topological orthogonal system. For each

n ∈ N, put dn(x, y) :=
∞
∑

k=1

1
2k

ρk(|x−y|∧en)
1+ρk(|x−y|∧en)

. Note that each dn is a semi-

metric, and dn(x, y) ≤ 1 for all x, y ∈ X. If dn(x, y) = 0, then ρk(|x −
y| ∧ en) = 0 for all k ∈ N, so (|x − y| ∧ en) = 0. For x, y ∈ X, let

d(x, y) :=
∞
∑

n=1

1
2n dn(x, y). Clearly, d(x, y) is nonnegative and satisfies the

triangle inequality, and d(x, y) = d(y, x) for all x, y ∈ X. Now d(x, y) = 0
iff dn(x, y) = 0 for all n ∈ N iff ρk(|x − y| ∧ en) = 0 for all k ∈ N iff
(|x − y| ∧ en) = 0 for all n ∈ N iff |x − y| = 0 iff x = y. Thus (X, d) is a
metric space. Finally, it is easy to see from Theorem 7 that d generates the
uτ -topology. �

Recall that a topological space X is called submetrizable if its topology is
finer that some metric topology on X.

Proposition 6. Let (X, τ) be a metrizable locally solid vector lattice. If X
has a weak unit, then the uτ -topology is submetrizable.

Proof. Note that, since (X, τ) is metrizable, then τ is generated by a count-
able family (ρk)k∈N of Riesz pseudonorms.

Suppose that e ∈ X+ is a weak unit. Put d(x, y) :=
∞
∑

k=1

1
2k

ρk(|x−y|∧e)
1+ρk(|x−y|∧e) .

Note that d(x, y) = 0 iff ρk(|x − y| ∧ e) = 0 for all k ∈ N iff |x− y| ∧ e = 0
and, since e is a weak unit, x = y. It can easily be shown that d satisfies the

triangle inequality. Assume xα
uτ
−→ x. Then, for all u ∈ X+, ρk(|x−y|∧u) →

0 for all k ∈ N. In particular, ρk(|x − y| ∧ e) → 0 for all k ∈ N. Then in a

similar argument to [24, p.200], it can be shown that xα
d
−→ x. Therefore,

the uτ -topology is finer than the metric topology generated by d, and hence
uτ -topology is submetrizable. �

We do not know whether the converse of propositions 5, and 6 is true or
not.

6. Unbounded τ-Completeness

A subsetA of a locally solid vector lattice (X, τ) is said to be (sequentially)
uτ -complete if, it is (sequentially) complete in the uτ -topology. In this sec-
tion, we relate sequential uτ -completeness of subsets of X with the Lebesgue
and Levi properties. First, we remind the following theorem.
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Theorem 8. [26, Thm. 1] If (X, τ) is a locally solid vector lattice, then the

following statements are equivalent:

(1) (X, τ) has the Lebesgue and Levi properties;
(2) X is τ -complete, and c0 is not lattice embeddable in (X, τ).

Recall that two locally solid vector lattices (X1, τ1) and (X2, τ2) are said
to be isomorphic, if there exists a lattice isomorphism from X1 onto X2 that
is also a homeomorphism; in other words, if there exists a mapping from X1

onto X2 that preserves the algebraic, the lattice, and the topological struc-
tures. A locally solid vector lattice (X1, τ1) is said to be lattice embeddable

into another locally solid vector lattice (X2, τ2) if there exists a sublattice
Y2 of X2 such that (X1, τ1) and (Y2, τ2) are isomorphic.

Note that (X, τ) can have the Lebesgue and Levi properties and simul-
taneously contains c0 as a sublattice, but not as a lattice embeddable copy.
The following example illustrates this.

Example 1. Let s denote the vector lattice of all sequences in R with co-

ordinatewise ordering. Clearly, c0 is a sublattice of s. Define the following

separating family of Riesz pseudonorms

R := {ρj : ρj((xn)n∈N) := |xj |}

for each j ∈ N and (xn)n ∈ s. Then R generates a locally solid topology τ
on s. It can be easily shown that (s, τ) has the Lebesgue and Levi properties.

Although c0 is a sublattice of s, but (c0, ‖·‖∞) is not lattice embeddable in

(s, τ). To see this, consider the sequence en of the standard unit vectors in

c0. Then the sequence en is not norm null in (c0, ‖·‖∞), whereas en
τ
−→ 0 in

(s, τ).

Proposition 7. Let (X, τ) be a complete locally solid vector lattice. If every

τ -bounded subset of X is sequentially uτ -complete, then X has the Lebesgue

and Levi properties.

Proof. Suppose X does not possess the Lebesgue or Levi properties. Then,
by Theorem 8, c0 is lattice embeddable in (X, τ). Let sn =

∑n
k=1 ek, where

ek’s denote the standard unit vectors in c0. Clearly, the sequence sn is norm-
bounded in c0 and so it is τ -bounded in (X, τ). Note that ‖ek‖∞ = 1 9 0,
and so ek is not τ -null. It follows from [15, Lm. 6.1] that sn is un-Cauchy
in c0, but is not un-convergent in c0. That is sn is uτ -Cauchy which is not
uτ -convergent, a contradiction. �

Using the proof of the previous result and [26, Thm. 1′], one can easily
prove the following result.

Proposition 8. Let X be a Dedekind complete vector lattice equipped with

a sequentially complete topology τ . If every τ -bounded subset of X is se-

quentially uτ -complete, then X has the σ-Lebesgue and σ-Levi properties.
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Clearly, every finite dimensional locally solid vector lattice (X, τ) is uτ -
complete. On the contrary of [15, Prop. 6.2], we provide an example of a τ -
complete locally solid vector lattice (X, τ) possessing the Lebesgue property
such that it is uτ -complete and dimX = ∞.

Example 2. Let X = s and R = (ρj)j∈N such that ρj((xn)) := |xj |, where
(xn)n∈N ∈ s. It is easy to see that (X,R) is τ -complete and has the Lebesgue

property. Now, we show that (X,R) is uτ -complete. Suppose xα is uτ -

Cauchy net. Then, for each u ∈ X+, we have |xα − xβ| ∧ u
τ
−→ 0. Now,

u = un and, xα = xαn. Let j ∈ N, then ρj(|x
α − xβ| ∧ u) → 0 in R over α, β

iff |xαj − xβj | ∧ uj → 0 in R iff |xαj − xβj | → 0 in R over α, β.

Thus, (xαj )α is Cauchy in R and so there is xj ∈ R such that xαj → xj in R

over α. Let x = (xj)j∈N ∈ s, then, clearly, xα
uτ
−→ x.
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