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Abstract: Recently measure-free versions of the Brezis–Lieb lemma were proved for unbounded order convergence in

vector lattices. In this article, we extend these versions to convergence vector lattices.
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1. Introduction

The Brezis–Lieb lemma [4, Theorem 2] has numerous applications mainly in calculus of variations (see for

example [5, 9]). We begin with its statement. Let j : C → C be a continuous function with j(0) = 0. In

addition, let j satisfy the following hypothesis: for every sufficiently small ε > 0, there exist two continuous,

nonnegative functions φε and ψε such that

|j(a+ b)− j(a)| ≤ εφε(a) + ψε(b) (1)

for all a, b ∈ C . The following result has been stated and proved by Brezis and Lieb in [4].

Theorem 1.1 (Brezis–Lieb lemma, [4, Theorem 2]) . Let (Ω,Σ, µ) be a measure space. Let the mapping j

satisfy the above hypothesis, and let fn = f + gn be a sequence of measurable functions from Ω to C such that :

(i) gn
a.e.−−→ 0 ;

(ii) j ◦ f ∈ L1 ;

(iii)
∫
φε ◦ gndµ ≤ C <∞ for some C independent of ε and n ;

(iv)
∫
ψε ◦ fdµ <∞ for all ε > 0 .

Then, as n→ ∞ , ∫
|j(f + gn)− j(gn)− j(f)|dµ→ 0 . (2)
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Recall that a subset A in a normed lattice (X, ∥·∥) is said to be almost order bounded if for any ε > 0

there is uε ∈ X+ such that supa∈A

∥∥|a| − uε ∧ |a|
∥∥ < ε . Motivated by the proof of Theorem 1.1 the following

results were proven in [7].

Proposition 1.2 [7, Proposition 1.2] (Brezis–Lieb lemma for mappings on L0 ) . Let (Ω,Σ, µ) be a measure

space, fn = f + gn be a sequence in L0(µ) such that gn
a.e.−−→ 0 , and J : L0(µ) → L0(µ) be a mapping satisfying

J(0) = 0 that preserves almost everywhere convergence and such that the sequence
(
J(fn)−J(gn)

)
n∈N is almost

order bounded. Then, as n→ ∞ ,

∫
|J(f + gn)−

(
J(gn) + J(f)

)
|dµ→ 0 . (3)

Proposition 1.3 [7, Proposition 1.3]
(
Brezis–Lieb lemma for uniform integrable sequence

(
J(fn)−J(gn)

)
n∈N

)
.

Let (Ω,Σ, µ) be a finite measure space, fn = f + gn be a sequence in L0(µ) such that gn
a.e.−−→ 0 , and

J : L0(µ) → L0(µ) be a mapping satisfying J(0) = 0 that preserves almost everywhere convergence and

such that the sequence
(
J(fn)− J(gn)

)
n∈N is uniformly integrable. Then

lim
n→∞

∫
|J(f + gn)−

(
J(gn) + J(f)

)
|dµ = 0 . (4)

Recall that a sequence (xn) in a vector lattice X is order convergent (or o -convergent, for short) to

x ∈ X if there is a sequence (zn) in X satisfying zn ↓ 0 and |xn − x| ≤ zn for all n ∈ N (we write xn
o−→ x);

see e.g. [10, Theorem 16.1]. In a vector lattice X , a sequence (xn) is unbounded order convergent (or uo -

convergent, for short) to x ∈ X if |xn −x| ∧ y o−→ 0 for all y ∈ X+ (we write xn
uo−→ x). It is well known that if

(Ω,Σ, µ) is a measure space, then in Lp spaces (1 ≤ p ≤ ∞), uo -convergence of sequences is the same as the

almost everywhere convergence; see e.g. [8].

Definition 1.1 [7, page 23] A mapping f : X → Y between vector lattices is said to be σ -unbounded order

continuous (in short, σuo-continuous) if xn
uo−→ x in X implies f(xn)

uo−→ f(x) in Y .

In [7] we gave two variants of the Brezis–Lieb lemma in vector lattice setting by replacing a.e.-convergence

by uo -convergence, integral functionals by strictly positive functionals, and the continuity of the scalar function

j (in Theorem 1.1) by the σ -unbounded order continuity of the mapping J : X → Y between vector lattices

X and Y . As standard references for basic notions on vector lattices we adopt the books [1, 10, 14] and on

unbounded order convergence the paper [8]. In this article, all vector lattices are assumed to be Archimedean.

Let Y be a vector lattice and l be a strictly positive linear functional on Y . Define the following norm

on Y :

∥y∥l := l(|y|). (5)

Then the ∥·∥l -completion (Yl, ∥·∥l) of (Y, ∥·∥l) is an AL -space, and so it is an order continuous Banach

lattice. The following result is a measure-free version of Proposition 1.2.
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Proposition 1.4 [7, Proposition 2.2] (A Brezis–Lieb lemma for strictly positive linear functionals) . Let X be

a vector lattice and Yl be the AL-space constructed above. Let J : X → Yl be σuo-continuous with J(0) = 0 ,

and (xn) be a sequence in X such that:

1. xn
uo−→ x in X ;

2. the sequence (J(xn)− J(xn − x))n∈N is almost order bounded in Yl .

Then
lim

n→∞
∥J(xn)− J(xn − x)− J(x)∥l = 0. (6)

Similar to Proposition 1.4 one can easily show the following result.

Proposition 1.5 Let X and Y be vector lattices and l be a strictly positive linear functional on Y . Let

J : X → Y be σuo-continuous with J(0) = 0 , and (xn) be a sequence in X such that:

1. xn
uo−→ x in X ;

2. the sequence (J(xn)− J(xn − x))n∈N is almost order bounded in Y .

Then
lim

n→∞
∥J(xn)− J(xn − x)− J(x)∥l = 0. (7)

The next result is another measure-free version of Proposition 1.2.

Proposition 1.6 [7, Proposition 2.3] (A Brezis–Lieb lemma for σuo-continuous linear functionals) . Let X,Y

be vector lattices and l be a σuo-continuous functional on Y . Assume further J : X → Y is a σuo-continuous

mapping with J(0) = 0 and (xn) is a sequence in X such that xn
uo−→ x . Then

lim
n→∞

l(J(xn)− J(xn − x)− J(x)) = 0 . (8)

2. Two variants of the Brezis–Lieb lemma in convergence vector lattices

Recently, order convergence in vector lattices has been studied from the viewpoint of convergence structures;

see e.g. [2, 12, 13], and in this section we recall basic notions related to convergence structures and use them to

investigate variants of the Brezis–Lieb lemma. For unexplained notions and results we refer the reader to the

monograph [3].

A filter F on a set X is a nonempty collection of subsets of X that does not contain the empty set and

is closed under the formation of finite intersections and supersets. A subset B of a filter F is called a basis of

F and F the filter generated by B if each set in F contains a set of B . If B is a collection of nonempty subsets

of X that is directed downward with respect to inclusion, then [B] = {F ⊆ X : B ⊆ F for some B ∈ B} is the

filter generated by B . If B = {x} then we write [x] for [{x}] . If f : X → Y is a mapping then {f(F ) : F ∈ F}
is the basis of a filter called the image filter of F under f and denoted by f(F).

Definition 2.1 Let X be a set. A mapping λ from X into the power set of the set of all filters on X is called

a convergence structure on X and (X,λ) a convergence space if the following hold for all x ∈ X :
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1. [x] ∈ λ(x) ;

2. for all filters F ,G ∈ λ(x) the intersection F ∩ G ∈ λ(x) ;

3. if F ∈ λ(x) , then G ∈ λ(x) for all filters G on X for which G ⊇ F .

Let (X,λ) be a convergence space. A filter F on X converges to x in the space X if F ∈ λ(x). We

write F → x in (X,λ) or F → x in X . The element x is called the limit of F .

Every topological space is a convergence space; see e.g. [3, Examples 1.1.2(i)], but the converse is not

necessarily true; see e.g. [3, Examples 1.1.2(iii)]. Throughout this article, R refers to the convergence space

induced by its standard topology. That is, a filter F → x in R iff F ⊇ Ux , where Ux is the neighbourhood

filter of x (the collection of all topological neighbourhoods of x).

Let X and Y be convergence spaces. A mapping f : X → Y is called continuous at a point x ∈ X if

f(F) → f(x) in Y whenever F → x in X . The mapping f is called continuous if it is continuous at every

point of X .

If F is a filter on X1 and G is a filter on X2 then the product filter F × G is the filter on X1 × X2

generated by {F × G : F ∈ F , G ∈ G} . Let X1 and X2 be convergence spaces; then a filter F on X1 ×X2

converges to (x1, x2) iff pi(F) converges to pi((x1, x2)), for each i ∈ {1, 2} , where pi is the projection of

X1 ×X2 onto Xi .

Given a convergence space (X,λ), for a sequence (xn) in X the Fréchet filter of (xn) denoted by

< (xn) > is the filter generated by {Ak}k∈N , where Ak = {xn : n ≥ k} . A sequence (xn) converges to a point

x ∈ X if the Fréchet filter < (xn) > converges to x in X . In this case we write xn
λ−→ x .

Let X be a real vector space. A convergence structure λ on X is called a vector space convergence

structure and (X,λ) a convergence vector space if addition and scalar multiplication are continuous.

Definition 2.2 Let X be a vector lattice. A vector space convergence structure λ on X is called a vector

lattice convergence structure and (X,λ) a convergence vector lattice whenever lattice operations are continuous.

It is obvious by definition that every convergence vector lattice is a convergence vector space. The converse

is not necessarily true. Let X = (L1[0, 1], τw), where τw denotes the weak topology on L1[0, 1]. Then X is

a linear topological vector space and so it is a convergence vector space, but X is not a convergence vector

lattice.

Definition 2.3 Let (X,λ) be a convergence vector lattice. A sequence (xn) in X is unbounded convergent to

x ∈ X if |xn − x| ∧ y λ−→ 0 for all y ∈ X+ . We write xn
uλ−−→ x and say xn uλ-converges to x .

Given a locally solid vector lattice (X, τ) and a sequence (xn) in X , then X is a convergence vector

lattice and xn uλ-converges to x ∈ X iff xn uτ -converges to x ; see [6]. The following notion is motivated by

Definition 1.1.

Definition 2.4 Let X and Y be two convergence vector lattices. A mapping f : X → Y is called σu-

continuous if f(xn)
uλ−−→ f(x) in Y whenever xn

uλ−−→ x in X .

The next result should be compared with Proposition 3.7 in [8].
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Lemma 2.1 Let (X,λ) be a convergence vector lattice and ∥·∥ : X → R be a continuous lattice norm. If a

sequence (xn) is almost order bounded in (X, ∥·∥) and xn
uλ−−→ x , then xn

∥·∥−−→ x .

Proof It is easy to see that the sequence (|xn − x|)n∈N is almost order bounded. Since xn
uλ−−→ x then

|xn − x| ∧ y λ−→ 0 for all y ∈ X+ . The continuity of the lattice norm assures that |xn − x| ∧ y ∥·∥−−→ 0 for all

y ∈ X+ . The remaining part of the proof is the same as in [8, Proposition 3.7]. 2

The following two results generalize Propositions 1.5 and 1.6, respectively.

Theorem 2.2 Let X and Y be convergence vector lattices and l : Y → R be a continuous strictly positive

linear functional. Suppose J : X → Y is σu-continuous mapping with J(0) = 0 and (xn) is a sequence in X

such that:

1. xn
uλ−−→ x in X ;

2. the sequence (J(xn)− J(xn − x))n∈N is almost order bounded in (Y, ∥·∥l) .

Then
lim

n→∞
∥J(xn)− J(xn − x)− J(x)∥l = 0. (9)

Proof Since xn
uλ−−→ x and J is σu -continuous, then J(xn)

uλ−−→ J(x) and J(xn − x)
uλ−−→ J(0) = 0. Thus,

J(xn)− J(xn − x)
uλ−−→ J(x). Since l : Y → R is a continuous linear functional then the norm ∥·∥l given by (5)

is continuous on Y . Thus it follows from Lemma 2.1 that ∥J(xn)− J(xn − x)− J(x)∥l → 0 as n→ ∞ . 2

Theorem 2.3 Let X and Y be convergence vector lattices. Supposing l : Y → R is a σu-continuous linear

functional, J : X → Y is σu-continuous mapping with J(0) = 0 and xn
uλ−−→ x in X . Then

lim
n→∞

l(J(xn)− J(xn − x)− J(x)) = 0 . (10)

Proof Since xn
uλ−−→ x and J is σu-continuous with J(0) = 0, then J(xn) − J(xn − x) − J(x)

uλ−−→ 0. The

conclusion now follows from the σu-continuity of the linear functional l . 2

Finally, we show that Propositions 1.5 and 1.6 follow from Theorems 2.2 and 2.3.

Let X be a vector lattice and x ∈ X . The following relation

F ∈ λo(x) ⇔
{
[un, vn] : n ∈ N

}
⊆ F , (11)

with (un), (vn) ⊆ X increasing and decreasing to x , respectively, defines a vector lattice convergence structure

on X and so (X,λo) is a convergence vector lattice; see [12, Corollary 12, Theorem 14, and Proposition 15].

Moreover, a sequence (xn) in X converges to x ∈ X iff (xn) order converges to x ; see e.g. [12, Corollary 12],

[2, Theorem 16(iii)], or [11, Definition II.1.7].

Let X and Y be vector lattices equipped with the vector lattice convergence structure λo given in (11).

Then xn
uλ−−→ x in (X,λo) iff xn

uo−→ x in X and a mapping f : X → Y is σu -continuous iff it is σuo-continuous

(in the sense of Definition 1.1).

Therefore, if we equip the vector lattices X and Y in Theorems 2.2 and 2.3 with the vector lattice

convergence structure λo , then we obtain Propositions 1.5 and 1.6, respectively.
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