Advances in Fuzzy Mathematics.

ISSN No. 973-533X Volume 6, Number 2 (2011), pp. 253-268
© Research India Publications
http://www.ripublication.com/afm.htm

A Particular Class of Ergodic Finite Fuzzy Markov
Chains

!Saed F. Mallak, “Mohammad Mara'Beh and *Abdelhalim Zaigan

!Department of Applied Mathematics,
Palestine Technical University, Kadoorie
E-mail: s.mallak@ptuk.edu.ps, saedmallak@yahoo.com
“Master Program of Applied Mathematics,

The Arab American University, Jenin
E-mail: m.maraabeh@gmail.com
*Department of Mathematics,

The Arab American University, Jenin
E-mail: azaigan@aauj.edu

Abstract

In this paper, depending on max-min composition, we study the Ergodicity of
a particular class of finite fuzzy Markov chains where the first row of the
transition matrices consists of arbitrary values (between zero and 1) while the
other rows’ entries are one in one place and zero elsewhere. Under certain
conditions, we show that a fuzzy Markov chain in this class is Ergodic.
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Introduction

Fuzzy set theory is a branch that deals precisely with imprecision and ambiguity, and
first introduced by Lotfi Zadeh in his well-known paper entitled "Fuzzy Sets" in
1965[15].

Fuzzy Markov chains have been discussed in the literature and many authors
published articles in this area [1-5], [7-9], [12], and [14]. In [10] and [11] Sanchez
first introduced the concept of greatest eigen fuzzy set. In [1] and [2] Avrachenkov
and Sanchez used the concept of greatest eigen fuzzy set to find the stationary
solution of fuzzy Markov chains. In [5] Garcia (et al.) have performed a simulation
study on fuzzy Markov chains from which they have shown that most of fuzzy
Markov chains are not Ergodic. In [12] Sujatha (et al.) studied the limit behavior of
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cyclic non-homogeneous fuzzy Markov chains.

In this paper, we consider finite fuzzy Markov chains where the first row of the
transition matrices consists of arbitrary values (between zero and 1) while the other
rows’ entries are one in one place and zero elsewhere. For such a class of fuzzy
Markov chains, we first study the limit behavior of 2 x 2 and 3 x 3 cases and
investigate conditions that guarantee ergodicity. Next for n X n, with n > 4 case, we
state and prove a theorem about the ergodicity.

Finite Fuzzy Markov Chains [1] and [2]
Let S = {1, ...,n} be a finite state space.

Definition 1: A (finite) fuzzy set or a fuzzy distribution, on S, is defined by a
mapping x from S to [0,1], represented by a vector x = (x4, ..., x,,), With x; denoting
x(i),0 < x; < 1,i € S. The set of all fuzzy sets on S is denoted by F(S).

Definition 2: A fuzzy relation P is defined as a fuzzy set on the Cartesian product
S x S. P is represented by a matrix {pi]-}:ljzl, with p;; denoting P(i, ), 0 < p;; <
1,i,j €S.

Definition 3: At each time instant ¢,t = 0,1, ..., the state of the system is described by
the fuzzy set ( or distribution ) x® € F(S). The transition law of the fuzzy Markov
chain given by the fuzzy relation P as follows, at time instant t,t = 1,2, ...

t+1 t ,
x].( ) — maxies{xi( DA pl-j},] € S.

We refer to x(© as the initial fuzzy set (or the initial distribution).
It is natural to define the powers of the fuzzy transition matrix. Namely,

t -1 L 0
pi(j) — maxkes{pik A pl(cz )}, pi(j) = Dij ,pi(],) =6

ijr
where §;; is a Kronecker delta.

Note that the fuzzy state x,ff) at time instant t,t = 1,2, ... can be calculated by the

formula
(0)

x,((t) = maxles{xl /\pl(,?},k =1,..,n
Theorem 4([6] and [13]): The powers of the fuzzy transition matrix {pi]-}?jzleither

n
converge to idempotent {pff)} ~, where 7 is a finite number, or oscillate with a
i,j=1

finite period v starting from some finite power.

Definition 5: Let the powers of fuzzy transition matrix converge in t steps to a non
periodic solution, then the associated fuzzy Markov chain is called nonperiodic (or
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aperiodic) and P* = P? is called a limiting fuzzy transition matrix.

Definition 6: The fuzzy Markov chain is called ergodic if it is aperiodic and the
limiting transition matrix has identical rows.

Motivation
Theorem 4 above is general and does not give us information which fuzzy Markov
chains have the ergodic behavior. Moreover, Garcia (et al.) have performed a
simulation study on fuzzy Markov chains from which they have shown that most of
fuzzy Markov chains are not ergodic [5]. Besides, in [1] Avrachenkov and Sanchez
introduced an open problem about the general conditions that guarantee the ergodicity
of fuzzy Markov chains. These results motivated us to study the ergodicity of fuzzy
Markov chains.

Let P = [ﬁi]-] be an n x n fuzzy transition matrix corresponding to finite fuzzy
Markov chains. Suppose that p;; = 0 or 1 fori = 2,3,...,n, j = 1,...,n and in each of

these rows —all rows except the first row— exactly one entry is 1. We want to study the
ergodicity of such fuzzy Markov chains.

2 X 2 and 3 x 3 Cases

2 X 2 Case:

P = [pil p62:| with 0 < ﬁll < ﬁlz <1.

P2 — [1212 2211],133 _ [2211 ??12]'134 _ ??12 ??11].
P11 P12 P12 P11 P11 P12

Therefore,

pr =

_ {132, for n even
P3,fornodd’

P = [pil plZ] with 0 < ﬁlz < ﬁll <1

0
p2 = [gll 5_12],133 — [gll glz]. SoP" = P2 forn =234, ...
11 P12 11 P12

According to Theorem 4, T = 2.

P = [p61 piZ:l with 0 < ﬁll < ﬁlz <1

_2_511 2512_— pn — p —
P —[0 1]—P,soP =Pforn=123,...

According to Theorem 4, T = 1.

P = [p61 piZ:l with 0 < ﬁlz < ﬁll <1



256 Saed F. Mallak et al
D2 ?511 ﬁlZ — D pn — p _
p _[O 1]_P,sop —Pforn=123, ...

According to Theorem 4, T = 1.
We conclude that case 2 above is the only ergodic one, from which we have

P11 = P12z and py, # 1.

3 x 3 Case: Assume the following two conditions :
P11 1S the maximum entry in the first row.
D22 # 1and p33 # 1.

We have the following cases:

_ [P11 P12z P13

P=|1 o OlwithOS'ﬁlgSﬁlZSﬁllsl.
1 0 0

_ ﬁll ﬁlZ ?513 _ ?511 ?512 ﬁ13 _ _

pP? = P11 P12 P13 p3= P11 P1z DPi1zl. So P" = P%forn = 2,3,4, ....
ﬁll ﬁlZ ?513 ?511 ?512 ﬁ13

According to Theorem 4, T = 2.

_ [P11 P12z P13

P=[1 0 0|witho<p,<ps<py<Ll.
1 0 0

_ ﬁll ﬁlZ ?513 _ ?511 ?512 ﬁ13 _ _

pP? = P11 P12 P13 ,P3 = P11 P1z Pi13l]. SO P" = P%forn = 2,3,4,....
ﬁll ﬁlZ ?513 ?511 ?512 ﬁ13

According to Theorem 4, t = 2.

_ [P11 P12 P13
P=|1 0 0|witho<pys<p,<py<l
0 1 0
B P11 P12z P3| _ P11 P12z DPi3] _ P11 P12z P13
P? =1py; P12 P3|, PP =|P11 Pz P3|, P* =[P P12 2513]-
1 0 0 P11 P12 P13 P11 P12z P13

So P™ = P3 forn = 3,4,5, ... . According to Theorem 4, T = 3.

~ [P11 P12 P13
P=|1 o Olwithos'ﬁleﬁBSﬁllsl.
0 1 0
B P11 P13 P3| _ P11 P13z DPis] _ P11 P13 Pi3]
P> =|py; P12 Pis|,PP=|Pu1 D1z P3|, P*=|Pun Pz D3|, P’ =
1 0 0 P11 P12 P13 P11 P13 P13
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ﬁl 1 ﬁl 3 ﬁ13

P11 P13 ?513]
P11 P13 P13

So P™ = P* for n = 4,5,6, ... . According to Theorem 4, = 4.

B P11 P12 P13
P = 0 0 1 W|th0Sﬁ13Sﬁ12Sﬁ11S1
1 0 0 L _
P11 P12 P12 P11 P12z P12 P11 P12
Pr=|1 0 0 [,PP=|P11 P12z D3|, P*=|Pu P12
_ P11 P12 P13 P11 P12z P13 P11 P12
P11 P12 P12
[2511 P12 2512]-
P11 P12 P12
So P™ = P* for n = 4,5,6, ... . According to Theorem 4, T = 4.
B P11 P12 P13
P = 0 0 1 W|th0Sﬁ12Sﬁ13Sﬁ11S1
1 0 0 _ L
P11 P12 P13 P11 Piz D13 P11 P12
Pr=|1 0 0 ,133= P11 P12z P13 p* = P11 P12
P11 P12 P13 P11 P12 P13 P11 P12
So P™ = P3 forn = 3,4,5, ... . According to Theorem 4, T = 3.
B P11 P12 P13
P = 0 0 1 W|th0Sﬁ13Sﬁ12Sﬁ11S1
0o 1 0 L _
_ P11 P12z Piz| _ P11 P12z Piz| _ P11 P12
PZ=10 1 of,P2=]0 0 1(,P*=]0 1
0 0 1 0 1 0 0 0
Therefore,
B _ {Iiz,for n even
P3,for nodd
B P11 P12 P13
P=10 0 1]With03ﬁ1zﬁﬁl3gﬁ11§1-
0 1 0 _ _
_ P11 P13z P3| _ P11 P13z Pi3| _ P11 P13
PZ=10 1 of,P’=]0 0 1(,P*=]0 1
0 0 1 0 1 0 0 0
Therefore,
B _ {Iiz,for n even
P3,for nodd

2212
2212
P12

2213
P13| -

ﬁ13

D12
0|

D13
0].

1

257

ps =
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We conclude that cases 1-6 are ergodic, cases 7 and 8 are not, since in both of
them f3 = P3, = 1 and 5o in P2 we have 532 = p52) = 1 and so pso” = pia”) =

forn=123, ...

Main Result
Notation: Let e, be a 1 X n row vector whose all entries are 0 except the k" entry
which is 1. That is,

e"":T[O e 01 0 -« - 0]

k" entry

Lemma 1: Let P = [p;;] be an n xn fuzzy matrix such that 0 < p;; < 1 for all
i, j.Then, by the max-min composition e, P is the kt" row of P.

Proof. Follows directly.

Theoreml: For n >4 let P = [ﬁij] be an n x n fuzzy transition matrix, such that
pijj=0or1fori=2,..nj=1,..,nandineach row except possibly the first one,

exactly one entry is 1. Assuming the following conditions hold:
P11 1S the maximum among the entries in the first row.
ﬁii # 1fori =2, e, N

Ifﬁl] = 1then ﬁ]l =0 fori 7‘:_]., = 2,...,n,j =1,..,n.
ﬁill = ﬁizl == ﬁikl =1 Whel’e ke {n_ 3,71— 2,11— 1} and ill iz, ...,ik €
{2,3,...,n}.

Then, by max-min composition P is ergodic.

PFOOf If k =n-— 3 then ﬁill = ﬁizl == ﬁin_31 = 1, il' iz, ey in_3 S {2,3, ...,Tl},
and ﬁin—ljl = ﬁin—zjz =1 fOI’ in_l, in_z € {2,3, ...,‘I’l} - {ili iz, ey in_g} fOI’ jl,jz €
{2,3,...,n}.

Either i,_; < i,_, Ori,_q > i,_, We may assume that i,,_; < i,,_5.

Let R™ denote the it" row in P™ (the m*™ power of P), then R™*" = R(Wpk |
During the proof R"™*" will be computed by R"™*" = R™ P and RV = R pm
fori=2,..,n.

Now we consider two cases:

Case 1. ji=j, then p, ; =p; =1 for i, 4,i,,€{23, .., n}—
{ii, iy, ..., ip—3}, and j;, = i; for some k € {1,2, ...,n — 3} otherwise (i.e. j; = i,_4 OF
Jj1 = in—2) We have p; ; = 1 which contradicts condition 2.
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P11 P12z 0 P1j, v Pin)
1 0O -« 0 - 0
1 0 0 0
0 0 1 0 —TOW ip_q
p=[1 O 0 0
1 0 0 0
0 0 1 0 —TOW iy ;
1 0 0 0
[ 1 o - 0 . o0
ConSider, PZ then Rl(lz) — Rl(zz) - ... Rl(j)s — R(l) R(Z) — Rl(jz — R(l) Rl(]j)
by Lemma 1.

=(2)

R(z) [P(z)] for j#j; PL) p,; and 27 _max{ﬁnl’ﬁun_l’ﬁun_z} by

condition 1. Therefore,
—(2)

_2511 P12z Py, 25111_
P11 P12z - P, v Pin
P11 P12z -t P, v Pin
1 o - 0 - 0 —TOW ip_q
pz —|P11 Pz D1y 7 Pn
Pi1 Pz " Pij;  Pin
1 o - 0 - 0 — TOW ip_o
Pi1 Pz Pij,  Pin
P11 D1z ﬁlj1 “* Dind
Consider, P? then R =R =..=RY =RrP, Rl(r’?l =R =R =
3 3
Rl.(,f) = R(l) by Lemma 1. R(3) ['plj)] for j #j; p1] = Py, and 'p( ) =
max{plh,}?un D1, 2} p(z) by condition 1. So, Rf) = R§2>.
If 52 =py;, then R =RV, s0 in P> we have R =R{Y = =R =

R(l) It is obvious that P* = P3. Hence, P™ = P3 for m = 3,4,5, ... . Therefore, P is
ergodlc

If p1] = P1i,_, then
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P11 P12 2511'71_1 ' Pin]
P11 P12z " Py, 7 Pin
P11 P12z " Py, 7 Pin
P11 P12z Pij; Pin —Trowi,_q
p3 — Pi1 Pz " Py, 7 Pin
P11 Pz " Py,  Pin
P11 Pz Dy Pin — TOW i,_,
P11 P12z " Py,  Pin
P11 D1z ﬁlin_1 “* Dinl
Consider, P* then
4) _ p) _ (4) 3) _ (2) 4) _ p@ _ pB _ pB) _ p@
Ri1 = Rl-2 Rzn , = =R =R Rzn_1 Rln , R R =R, by
Lemma 1. RW = pf]’)] for j#Jji, ﬁS.) = i, and
—(4
pij) = max{Pj,, Prin_,» Prin_,} = pl]1 = P1i,_,» Dy conditionl. So R(‘*) Riz), and
so in P* we have, R™ = Rg‘” = ... = R = R® 1t is obvious that P5 = P*. Hence,
P™ = P*form = 4 5,6, . Therefore, P is ergodic.
Similarly if plj = py;,_, then R = R = ... = R(Y = R®. Hence, P™ = P*

for m = 4,5,6, ... . Therefore, P is ergodic.

Case 2: j; # j, then either j; < j, or j; > j, we may assume that j; < j,. So
p_in—ljl = ﬁin—zjz = 1 fOI’ in_l, in_z € {2,3, ...,‘I’l} - {ili iz, ey in_3}, and jl,jz €

{2,3,...,n}.

Now we have the following subcases:

J1 =l j2 = iy Where k,m € {1,2, ...,n — 3}.
Jo = in_1,J1 = i, Where k € {1,2,...,n — 3}.
J1 = in_2,j2 = i, Where k € {1,2,...,n — 3}.

Note that the cases j; = i,,_1,j2 = in_p and j; = i,_,,j, = i, are not taken into
account since they contradict conditions 2 and 3 respectively. Again we keep in the
mind that i,,_; < i,,_,, and continue with this assumption throughout the proof.

We first deal with the subcase (1):
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P11 P12z > P, 0 Pij, - Pin]
1 0 « 0 -« 0 - 0
1 0 0 0 0
0 0 1 0 0 —TOW ip_q
5_|1 o 0 0 0
1 0 0 0 0
0 0 0 1 0 —TOW ip_o
1 0 0 0 0
[ 1 0O « 0 -« 0 - 0/
Consider, P2 then R® =R® =..=p® =p®W p® =pW - pW
1 2 n-3 n—-1 J1 Lk
R? =R =RY by Lemma 1. RP =53], for j #jijo 5 =Py and
—(2 _ _ (2 _ _ .y
piﬁ = max{pljl,plin_l}, pijz = max{pljz,plin_z}, by condition 1.
- _ _ (2 _(2 _ -
P11 P12 Pijz Pijz "t Pin
Pi1 Pz P1j, 0 Pij, 0 Pin
Pi1 P12z Pij, 0 Pij, 0 Pin
1 O - 0 =« 0 - 0 —TOW ip_4
p2 = P11 P12z -t P, 0 Pij, " Pin
P11 P12z > Pij, 0 Pij, o Pin
1 0 « 0 - 0 - 0 — rowi,_,
P11 P12z = Pij, 0 Pij, o Pin
P11 P12 Pijy, 0 Pij,  Pind
Consider, P3 then
B _pB® _ ... _pB _ p® 3 _ p@ _ p@ _ p@ 3 _ p@ _
Ry =Ry ===k =R~ R =R7=R-=RkR" R, =R, "=
—(3 . . . — — —
RZ =R(Y by Lemma 1. R{Y = [pij)], for j #ji,jz B\ =py; and p) =

max{ﬁnl:ﬁun_l} = 2583,
) = max{pyj, b, ,} = Beo, by condition 1. So R =R®. We have the
following subcases:

Bl = iy, and ;) = B

ﬁgi = P, and ?582 = DPlip_,-

Py = Py, and pir) = Py,
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pi,i = P1i,_,and plj = Diip_y

For the subcase i, R™® = R%® = ... = R®) = RWand it is obvious that P* = P3.
Hence, P™ = P3 for m = 3,4,5, ... . Therefore, P is ergodic.

For the subcases ii and iii we need to find P* from which we have —as previously
shown in Case 1- R™Y = R{¥ = ... = R = R® and it is obvious that P° = P*.
Hence, P™ = P* for m = 4,5,6, ... . Therefore, P is ergodic.

For the subcase iv:

P11 D1z ﬁlin_1 ﬁlin_z “t P1in]
P11 P12z " Piip, ° Plip., °° DPin
P11 P12z " Piip, ° Plip, °° DPin
?511 ?512 ?51]'1 ﬁlj2 ?51n «— row in_l
p3 — P11 P12z " Piip, ° Plip, °° DPin
P11 P12z " Piip, ° Plip, °° DPin
P11 P12z ?51]'1 ﬁlj2 ' Din —TOW iy_o
P11 P12z " Piip, ° Plip., °° DPin
P11 P12 " Piige, 0 Plin, °° Pinl
Consider P*, then R® =R" =..=R® =p® =pRP, R® =RY =

R(3) =R®, R(4) = R(3) = R(3) = R(z) by Lemma 1. R™ = [p£4)] for j # ju, jo,

p:E]) = pl] and p = max{plln 1’ pljl} Plh = p1ln 1 pijz = max{plin_z,pljz} =
Py =Py, - In P* we have R® = R® = ... = RW = RD and it is obvious that

P5 = P* Hence, P™ = P* form = 4,5,6, ... . Therefore, P is ergodic.
Next we deal with the subcase (2) in which j, =i,_4,j; =i, Where k €
{1,2,...,n— 3}

(P11 P12 P1j;  Pij, 0 Pin]

1 0 - 0 0 e 0

1 0 - 0 0 e 0

O 0 1 0 0 “— TOW in—l
p=11 0 0 0 0

1 0 0 0 0

0 0 0 1 0 —TOW iy_y

1 0 0 0 0

1 0 0 0 0




A Particular Class of Ergodic Finite Fuzzy Markov Chains 263

Consider, P2 then R® =R® =..=g® —pW p® _ p@® _ p®
i1 in 1 J1 lk

ln-3 ln—1
@ _ p@ _ p@ @) _ [z@) : . =(2) _ -
R =R~ = Rin_lby Lemma 1. R;” = [plj ] for j #ji,j2 Dij = P1js and
.. . . —(2 _ _ _ _ —(2
condition 1 implies thatpijz = max{py;,, Pri,_,} = max{psj,, Pj,} psz =

max{ﬁljz’ 2511'11—2} = max{ﬁlin—f 2511'11—2}'

- ~ 2 2 o
P11 P12z P§j3 PLQ " DPin
P11 Pz ﬁlj1 ?51]'2 “* Din
P11 P12z ﬁlj1 ?51]'2 “* Din
1 0 - 0 -« 0 - 0 — row ip_q
p2 = P11 P12z = Pij, vt Pij, 0 Pin
P11 Piz 251j1 2511'2 ' Pin
0 0 = 1 =« 0 - 0 — TOW ip_p
P11 Piz 251j1 2511'2 ' Pin
P11 D1z ﬁlj1 ?51]'2 “* Dind
Consider, P then R® = R® = ... = p® =R® p® = p® - p® - p®)
1 2 n-3 n-1 J1 lk
3 _p@ _ p@ _ p _ p® 3) _ |53 .
R =R =R =R~ = Rl.k by Lemma 1. R;™ = 2Y, ] for j #ji,J2

(3 _ —(3 _ _ (2 —(3 — — —(2
) =py; and ) = max{(py,, Pri,_,} = B Bey) = max{pyy,_, Bz} = Py SO,

R® = RP.

- _ _ 2 _ 2 _ -
P11 Pz Pijz Pijz " Pin
b1 Do e D o 53 L5
P11 P12 Pij, Pyj, Pin
_. _. _:2 _.2 _.
P11 Pz Pijz Pijz " Pin
P11 Piz 2511'1 251j2 “* Pin —TOW i,H_4
- B Do e D e 53 5
p3 =|P11 P12 Pyj, Pqj, Pin
_ _ _(2 _:2 _-
P11 Pz Pijz Pijz " Pin
1 0O - 0 =« 0 - 0 —TOW iy_y
5. Do e D e 53 5
P11 P12 1j, Pqj, Pin
_ _ _(2 _:2 _
P11 P12z Pijz Pijz  Pinl

Consider, P* then R =R® =..=pg® =r® =pP R® =R =

ln-3 ln-1 J1
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R® = R®, R® = R® = R(s) = R® = R® = R(1>by Lemma 1. R® = [5],

iy in_q 1
for  j#Ejuj, B = pl, and Py =max{py;,,Pri,_,} = Dyrs
pL) = max{py;,, Pri,_,} = pl; , by condition 1.

So, R = R As before, we have the following subcases:

Py = pyj, and piy) = Py,

P = Py, and 258) = Prip_,-

P\ = pyy,,and p7) s = = Puj,.-

P =Py, ,and p5) =y .

For the subcase i, R = R{” = ... = R® = R®and it is obvious that P® = P*.

Hence, P™ = P* for n = 4,5,6, ... . Therefore, P is ergodic.
For the subcases ii and iii we need to find PS from which we have R{® = R{® =
=R =R® =R® and it is obvious that P® = P5. Hence, P™ = P° for
m = 5,6,7, .... Therefore, P is ergodic.

For the subcase iv:

P11 P12z 2511',1_1 2511',1_2 ' Pin]

P11 P12z " DPiige, 7 Py, 0 Pin

P11 P12z " DPiige, 7 Py, 0 Pin

P11 P12z " Piig., 7 Plip, ° Pin — TOW i,_q
Pt — P11 P12z " DPiige, " Py, 0 Pin

P11 P12z " DPiige, 7 Py, 0 Pin

Pi1 Pz Pij, vt P, 7 Pin —TOW ip_o

P11 P12z " DPiige, 7 Py, 0 Pin

P11 P12z " Py, 0 Piip, - Pind

Consider, P5 then R =R> =-.=R> =r®=pRP R® =R® =

RY = R?, Rfsfz =RY = Rf:)l = R(3) R = R®by Lemma 1. R = [pﬁ”]

_ — 5
for j+#jij, B =P and  py) —max{plh,pun =800 = Priyy B =

max{pl]z'plln 2} pljz = plln 2"

So, R¥ =R® In P5, R = R{® = ... = R®® = R® = R and it is obvious
that P® = P>,

Hence, P™ = PS5 for m = 5,6,7, ... . Therefore, P is ergodic.

For the subcase (3) in which we have j; = i,_5,j, = iy, Where k € {1,2,...,n —
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3}, we deal with it similar to the subcase(2) above.

We have proved the result when k =n—3 s0 p;,1 = Pij,1 = = Pi,_,1 = 1,
ill iz, ey in_3 € {2,3, ...,Tl}, and ﬁin—ljl = ﬁin—ZjZ = 1 fOI’ in_l, in_z € {2,3, ...,Tl} -
{ii,is, oy in_3} j1,j2 € {2,3,...,n}.

Similarly we can prove the theorem when k=n—2 so p;; =Dj,1 =
ﬁin—zl = 1, il’ iz, ...,in_z € {2,3, ...,n}, and ﬁin—ljl =1 f0r in—l € {2,3, ,n} -
{is iz o in_2}, j1 €{2,3,...,n}.

Finally, for the case k =n—1, we have p,y =p3; = =py =1 and by
considering P2 we get R = R%® = ... = R®® = R™_ 1t is obvious that P™ = P2

for m = 2,3,4, ... . Therefore, P is ergodic, and this completes the proof.

Examples and the Conditions of Theorem 1:
ﬁll ?512 ﬁl?: ﬁ14
1 0 0 0 N _ _ _
1 0O 0 0 With P, = P11 = P13 = Paa-

1 0 0 0

If P =

Then by max-min composition we have

P11 P12 P13 P14 1 P12 P13 P14 P12z P11 P13 Pia
p2 — 1 ‘[1 ‘ [Pn 2212 2213 2214
1 1 P11 P12 P13 Pl
1 1 P11 P12z P13 Pisa
P11 P12 P13 DPisa P12z P11 P13 DPis
p3 = ??12 ??11 1213 1214 Pt = ??11 ??12 1213 1214.
P12 P11 P13 DPis P11 P12 P13 DPis
P12 P11 P13 DPis P11 P12 P13 DPisa

_ Therefore, P?" = P? for n = 1,2,3,... and P?"*! = P3 for n = 1,2,3, ... . Hence,
P is not ergodic. Here conditions 2,3 and 4 are satisfied but condition 1 is not
satisfied.

11 ?512 ?513 ﬁ14
o 1 0 0| oo o . .
If P = With 11 = P12 = P13 = P1a, (NOtE Py = 1).
1 0 0 0
1 0 0 0

Then by max-min composition we have

P11 Piz D1z DPisa P11 P12z D1z DPisa

B2 — _0 _1 _0 _0 P = _0 _1 _0 _0 50
1311 1312 ?313 ?314 1311 1312 ?313 ?314
P11 P12 P13 DPis P11 P12 P13 DPis

P™ = P2 for n = 2,3,4, ... . Therefore, P is not ergodic. Here conditions 1,3 and 4
are satisfied but condition 2 is not satisfied.
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P11 P12z D13 DPia
0 0 1 0
0 1 0 0

1 0 0 0
P32 = 1). Then by max-min composition we have

If P = With p1; = P12 = P13 = Pra ,(nOte that pp3 = 1and

(P11 P12 P12 D4 (D11 D1z P12 DPi4
— 0 1 0 0l - 0 0 1 0
2 _ 3 _
PP=1o 0o 1 ofP=lo 1 o of
(P11 P12 P13 Dial P11 P12 P12 Dial
(P11 D1z P12 DPi4 (P11 D1z P12 DPi4
— 0 1 0 0| = 0 0 1 0
4 _ 5 _
PP=1o o 1 ol =lo 1 0o o
P11 P12z P12 Dial P11 P12 P12 Dial
So, P?" = P* for n = 2,3,4, ... and P?"**! = P3 for n = 1,2,3, ... . Therefore, P is
not ergodic. Here conditions 1,2 and 4 are satisfied but condition 3 is not satisfied.
P11 P12 P13 Pia DPis
1 0 0 0 0
P=lo o o 1 0] with py; =p1p = P13z = Pra = Pis (note
l 0 0 0 0 1 J
0 0 0 01
only p,; = 1). Then by max min composition we have
'2?11 2212 2213 2213 2214' '2?11 2212 2213 2213 2213'
_ P11 P12z P13 Pia DPis| _ P11 P12z P13 P13 P14
P2=|0 0 0 0 1|,PP=l0 0 1 0 0|
0 0 1 0 0 0 0 0 1 0
L 0 0 0 1 0 - L 0 0 0 0 1 -
7?11 ??12 1213 1213 ??13' 7?11 ??12 1213 1213 ??13'
_ P11 P12z P13 P13z P3| _ P11 P12z P13 P13 DPi3
pP=lo o o 1 ol,PP=l0 0 0 0 1}
0 0 0 0 1 0 0 1 0 0
L 0 0 1 0 0 - L 0 0 0 1 0 -
'2?11 2212 2213 2213 2213' '2?11 2212 2213 2213 2213'
_ P11 P12z P13 P13 Pi3| _ P11 P12 P13 P13 P13
P =1|0 0 1 0 ol,LP7=1]0 0 0 1 0|
0 0 0 1 0 0 0 0 0 1
L 0 0 0 0 1 L 0 0 1 0 0 -
7?11 ??12 1213 1213 ??13' 7?11 ??12 1213 1213 ??13'
_ P11 P12z P13z P13z P3| _ P11 P12z P13z P13 DPi3
PE=1]0 0 0 0 1|,P°=]0 0 1 0 0
0 0 1 0 0 0 0 0 1 0
L 0 0 0 1 0 - L 0 0 0 0 1

So, p3ntl = p4 p3n+2 = pS5 and P3"*3 = pé forn =1,2,3, ... .

Therefore, P is
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not ergodic. Here conditions 1,2 and 3 are satisfied but condition 4 is not satisfied.

0 [ with P13 = P1p = P13 = P14 = Pys5 ,(nOte only

P15
P1s
0
0

0 |

P15
P1s
P1s
P1s

P3

PS

[P11

??11
P11
1

L0

P11

2?11
?311
P11

[2511 P12 P13 Dis 2515]
1 0 0 0 0
If P=|0 1 0 0
0 0 1 0 0
0 0 0 1 0
P21 = 1). Then by max-min composition we have
P11 D1z P13 Dis D
_ P11 P12 P13 Pia
PZ=|1 0 0 0
0 1 0 0
L0 0 1 0
P11 D1z P13 Dia
_ P11 P12 P13 DPisa
p* = P11 P12 P13 Pisa
P11 P12 P13 DPisa
L1 0 0 0

04

-ﬁl 1

P12

P12

P12
0
1

ﬁlZ
ﬁlZ
ﬁlZ
ﬁlZ
ﬁlZ

D13

P13

D13
0
0

ﬁ13
ﬁlB
ﬁ13
ﬁ13
ﬁ13

D14

P14

D14
0
0

ﬁ14-
ﬁ14
ﬁ14
ﬁ14-
ﬁ14

P> = P%, Hence, P™ = P> form = 5,6,7, ... . Therefore, P is ergodic.

P15
P1s
P1s
0
0 .

P15
P1s
P1s
P1s

~

D15

We see from 5 above that even though condition 4 of Theorem 1 does not hold the
result is satisfied.

Conclusion
Although, we put strong conditions to guarantee the ergodicity, Theorem 1 introduces
a wide class of ergodic finite fuzzy Markov chains. We do believe that these
conditions can be reduced.
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