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Abstract

In this paper, depending on max-min composition, and continuing the work in
[10], we study the Ergodicity of a particular class of finite fuzzy Markov
chains where the last row of the fuzzy transition matrices consists of arbitrary
values (between zero and 1) while the other rows’ entries are one in one place
and zero elsewhere. Under certain conditions, we show that a fuzzy Markov
chain in this class is Ergodic. We do the same when the last row is replaced by
any row.
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Introduction

Fuzzy set theory is a branch that deals precisely with imprecision and ambiguity, and
first introduced by Lotfi Zadeh in his well-known paper entitled "Fuzzy Sets" in
1965[16].

Fuzzy Markov chains have been discussed in the literature and many authors
published articles in this area [1-5], [7-9], [13], and [15]. In [11] and [12] Sanchez
first introduced the concept of greatest eigen fuzzy set. In [1] and [2] Avrachenkov
and Sanchez used the concept of greatest eigen fuzzy set to find the stationary
solution of fuzzy Markov chains. In [5] Garcia (et al.) have performed a simulation
study on fuzzy Markov chains from which they have shown that most of fuzzy
Markov chains are not Ergodic. In [13] Sujatha (et al.) studied the limit behavior of
cyclic non-homogeneous fuzzy Markov chains.
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In [10], we considered finite fuzzy Markov chains where the first row of the
transition matrices consists of arbitrary values (between zero and 1) while the other
rows’ entries are one in one place and zero elsewhere. For such a class of fuzzy
Markov chains, we first studied the limit behavior of 2 x 2 and 3 x 3 cases and
investigated conditions that guarantee ergodicity. After that for n X n, with n > 4
case, we stated and proved a theorem about the ergodicity of such fuzzy Markov
chains. In this paper we replace the first row by the last row and an arbitrary row
respectively. We state and prove propositions related with ergodicity of such fuzzy
Markov chains.

Fuzzy Markov Chains [1] and [2]
Let S = {1, ..., n} be a finite state space.

Definition 1: A (finite) fuzzy set or a fuzzy distribution, on S, is defined by a
mapping x from S to [0,1], represented by a vector x = (x4, ..., X,), With x; denoting
x(i), 0 < x; < 1,i € S. The set of all fuzzy sets on S is denoted by F(S).

Definition 2: A fuzzy relation P is defined as a fuzzy set on the Cartesian product
SxS. P is represented by a matrix {pij}injzl’ with p;; denoting P(i,j), 0 < p;; <
1,i,j €S.

Definition 3: At each time instant t,t = 0,1, ..., the state of the system is described by
the fuzzy set ( or distribution ) x® € F(S). The transition law of the fuzzy Markov
chain given by the fuzzy relation P as follows, at time instant t,t=1,2,...

(t+1) _ (t) nEr
X, = ni}Ea;Sx{xi A pu},] € S.

)

We refer to x(© as the initial fuzzy set (or the initial distribution).
It is natural to define the powers of the fuzzy transition matrix. Namely,
t t—-1 1 0
pi(]') = max {pik A p1(<j )}’pi(j) = Pjj ,pi(]- ) = 8j,
where §;; is a Kronecker delta.

Note that the fuzzy state xl((t) at time instant t,t = 1,2, ... can be calculated by the

formula
(0)

® _ ® _
X = r?ea}sx{xl APy },k =1,..,n.
Theorem 4([6] and [14]): The powers of the fuzzy transition matrix {pi]-}injzleither

n
converge to idempotent {pl(f)} , Where T is a finite number, or oscillate with a finite
ij=1

period v starting from some finite power.
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Definition 5: Let the powers of fuzzy transition matrix converge in t steps to a non
periodic solution, then the associated fuzzy Markov chain is called nonperiodic (or
aperiodic) and P* = P" is called a limiting fuzzy transition matrix.

Definition 6: The fuzzy Markov chain is called ergodic if it is aperiodic and the
limiting transition matrix has identical rows.

A Quick Review
As we mentioned in [10], theorem 4 above is general and does not give us information
which fuzzy Markov chains are ergodic . Also, J. C. F. Garcia et al. have performed a
simulation study on fuzzy Markov chains from which they have shown that most of
fuzzy Markov chains are not ergodic [5]. Besides, in [1] Avrachenkov and Sanchez
introduced an open problem about the general conditions that guarantee the ergodicity
of fuzzy Markov chains. These results motivates to study the ergodicity of fuzzy
Markov chains.

Let P = [ﬁi]-] be an n x n fuzzy transition matrix. Suppose that p;; = 0 or 1 for

ie{1,..,n}—{k}, j=1,..,n and in each of these rows —all rows except the k™
one— exactly one entry is 1, where 1 <k < n . In [10] we studied the ergodicity of
such fuzzy Markov chains when k = 1. In this paper we study the ergodicity when
k = n and when k is arbitrary, respectively.

2 x 2 and 3 x 3 Cases
We consider k = 2 and k = 3 for 2 X 2 and 3 x 3 fuzzy Markov chains respectively,
from which, the following are ergodic:

1. P= _O _1 with 0 < py1 < ppr < 1.
P21 P22
0 0 17
2. P=[0 0 1 |with0<ps <Psy <Pss <1.
—I_)31 I_)32 §33—
0 0 17
3. P=|0 0 1 |with0<p3;;<p3;<ps3=<1
I_)Bl I_)BZ ﬁ33
0 1 0
4. P=|0 0 1 |with0 <ps <Psy <Pas <1.
I_)31 I_)32 §33
0 1 0

(8]
vl
I
o
o
U=y

with 0 < P3; < Pz

IA
g=ll
&
IA
=
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[ 0
6. P=|1
-I_)Bl
[ 0
7. P=|1
-I_)31

0
0
1_332
0
0

I_)32

11
0
P33
17

0

§33—
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Sﬁ32 Sﬁ33 =< 1.

<Pp31<p3z =1

We conclude from cases 2-7 above that in additionto p; =0 or 1 fori=1,2,j =
1,2,3 and in each of the first and second rows exactly one entry is 1 the following
conditions were satisfied:

1. ps3 is the maximum among the entries in the last row.

2. ﬁii # 1fori= 1,2.
3. If I_)ll = 1then I_)]l =0fori# j, i= 1,2,j =1,2,3.

Next we similarly consider k = 2 for 3 x 3 fuzzy transition matrices from which
we have the following are ergodic:

1.

avll
I
el
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a~ll
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el
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We conclude from above that in addition to p;; =0 or 1 for i =1,3,j = 1,2,3,
and in each of the first and third rows exactly one entry is 1 the following conditions

were satisfied:

1. p,, is the maximum among the entries in the second row.
2. ﬁii # 1fori= 1,3.

3. |fﬁ1] = 1thenl_)]'i =Of0r1¢],1= 1,3,j =

1,2,3.
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The general Case

Proposition 1: Forn >4 let P = [ﬁi]-] be an n X n fuzzy transition matrix, such that
pjj=0orl1fori=1,..n—1,j=1,..,nand in each row except possibly the last
one, exactly one entry is 1. Assuming the following conditions hold:

Pnn 1S the maximum among the entries in the last row.

ﬁii # 1fori= 1,..,n—1.

|fﬁ1] = 1then I_)ll =0fori=+ j, i=1,..,n— 1,] =1,..,n

Pi;n = Piyn =" = Pipn = 1 where ke{n—-3,n—2,n—-1} and
iy, 1y, o, i € {1,2, ...,n — 1}

NS

Then, by max-min composition P is ergodic.
Proof. If k=n-3 then pPjn=DPin=""=Pi,,n=1 iz, in3€
{1,2, e, — 1}, and I_)in—ljl = ﬁin—zjz =1 for in—liin—Z € {1,2, e, — 1} -
{i, i, ..., ip—3} forjy,j, € {1,2,...,n — 1}

Eitheri,_; <ip_,ori,_; > i,_, we may assume thati,_; <i,_,.

Case 1: If j; = j, then

r o 0 0 1 T
0 0 0 1
0 1 0 0 |«—rowiy_4
0 0 0 1
P=10 0 0o 1
0 1 0 0 |«—rowi, o
0 0 0 1
0 0 0 1
ﬁnl ﬁn_;u’,_ ﬁ?‘!?ﬂ -1 ﬁnn-
e?’!?‘!
En(n-1) column n—k+1
LetE, = : = [e,,,,r e,,.;,,_ﬂr - SO . e,,lr]=than E, is an n X n permutation matrix

rown—k+1-=| €k

En1
and E,E, = I, . Consider T = E, PE, .
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_;5111 f)nji f)n(n—lj ﬁﬂﬂ_
0 - 0 - 0 1
0 0 0 1
0 1 0 0 |-rown—i, ,+1
Ep=|0 0 0 1
0 0 0 1
0 1 0 0 |-rown—i, 1+1
0 0 0 1
Lo - 0 - 0 1
columnn—j, +1
o \ i
[Prn Pnn-1) " Pnj, = Pn,]|
1 0 e 0 0
10 0 - 0
0 0 1 - 0 |rown—i,,+1
T=gPE,=|1 O 0 9
1 0 0 0
0 0 1 0 f=row n—i, ,+1
1 0 0 0
10 0 0

Therefore, T satisfies the conditions of Theorem 1[10] and there is k € N such that
T™ =TK, form =k, k+ 1,k + 2, ..., where the rows are identical in TX. Therefore,
" = TX = (E,PE,)™ = TK

m — times
E, PP I,PE, = TX = E,P"E, = TX\ = P™ =E,TXE,, m =k k+ 1, .

Since E,, is a permutation matrix we conclude that the rows are identical in E,TXE,,.
Hence, P is ergodic.

Case 2: j; # jthen either j; <j, orj; > j, we may assume that j; < j,.
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We use the same E,, as in Case 1and consider the composition T = E,PE,
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=
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Therefore T satisfies the conditions of Theorem 1 [10] and as in case 1 above we

conclude that P is ergodic.

Similar argument appliesfork =n—2andk =n — 1.

Proposition 2: Forn > 4 let P = [ﬁi]-] be an n X n fuzzy transition matrix such that,
pj=0or1foriefl,..,n}—{k}j=1,..,n where 1 <k <n, and in each row
except possibly the k™ one, exactly one entry is 1.Assuming the following conditions

hold:
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1. Pyx is the maximum among the entries in the k™ row.

2. pij#1 for,ie€ {1, ...,n} - {k}

3. If I_)l] = 1then I_)Jl =0fori+ j, i€ {1, ...,n} - {k},] =1,..,n.

4, ﬁilk = ﬁizk = e = ﬁi]k =1 where |l € {n —3,n—2,n— 1} and ilrin ...,i] €
{1,...,n} — {k}.

Then, by max-min composition P is ergodic.

Proof. If I =n—3 then pj,x = Pi,k = ** = Pi,_.k = 1, 11,1z, .., in—3 € {1,...,n} —
{k}, and pi,_,j, = Di,,j, =1 for in_q,in—2 €{1,..,n} —{i}, iy, ...,in_3,k} for
juiz € {1,...,n} —{k}. Either i,_; <i,_, or i,y >i,_, we may assume that
in—1 < in—z-

Case 1: If j; = j, then

0 0 1 0 e 00 e 007
0 - 0 1 0 0 0
o - 0 0 0 e 1 e 0 lerowi,
0 - 0 1 0 e 00 e 0
B 0 - 0 1 0 T |
P =Py Pre-1) DPrr Prgerry = Prj, = Prn
o - 0 1 0 -0 -0
o - 0 1 0 0 0
0o - 0 0 0 e 1 e 0 erow iy,
o - 0 1 0 -0 -0
0 0 1 0 0 0
nk
€n2
e
?:13 ktPcolumn
LetE, = [®nk-v|= [enkT enZT enBT en(k—l]T eniT en(k+1]T en(k+2)T ennT]z
en1 |« Ethrow
Cn(k+1)
En(k+2)
L ey,

then E, is an n X n permutation matrix and E,E, = I, . Consider the composition
T = E,PE,.
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[Pr1 """ Pr(k—1) Prk Prk+1) ' Prjy " Prn
0 - 0 1 0 e 0 -0
0 = 0 1 0 = 0 =« 0
0 e 0 0 0 1 0 |[=row iy
0 = 0 1 0 = 0 =« 0
E‘np _ - s - - : s . " -
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0 [=row ip_3
0 0 1 0 0 0
0 0 1 0 0 0 -
Drre Pez " Pre-1) DPrr Prgeer) ™ DPrjy o P
1 0 -~ 0 0 0 - 0 - 0
1 0 - 0 0 0 = 0 = 0
0 0 —~ 0 0 0 o 1 - 0krowiy,
1 0 - 0 0 0 = 0 - 0
T=EnPE, = 1 0 0 0 0 0 0 — k™ row
1 0 0 0 0 0 0
0 0 0 0 0 1 e 0 JeTow iy o
1 0 0 0 0 0 0
1 0 0 0 0 0 0

Therefore T satisfies the conditions of Theorem 1 [10] and as in Case 1 of
proposition 1 above we conclude that P is ergodic.

Case 2: j; # jpthen either j; <j, orj; > j, we may assume that j; < jj.
We use the same E,, as in Case 1 and consider the composition T = E,PE,

F T 0 1 0 e 0 e 07
0 0 0 1 0 0 =0
0 « 1 = 0 0 0 = 0 - 0 rowiy,
0 - 0 e 0 1 0 e 0 0
o w0 0 1 0 e 0 0
P=|Pyy - Brj, - Pre-v) Prk Dresny = Prjy — Prn
0 - 0 e 0 1 0 e 0 0
0 - 0 o 1 o0 0 0
0 - 0 0o 0 0 1 0 | row i,

0 - 0 - 0 1 0 e 0 -0
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E,P=
T=E,PE, =

Pr1

0

Pj,
0
0
1
0

293
0
0
1
0

=R-

Prge-1) Prk
0 1
0 1
0 0
0 1
0 1
0 1
0 0
0 1
0 1

k™ column

Pr(k-1) DPr
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Pr(re+1)

Prk+1)

0
0
0
0

oo -

0
0
0
0

Prj,

0
0
0
0

Prj,

0
0
0
0

Saed F. Mallak et al

= row i, 4

0 |« k™ row

= TOW iy o

“row iy 4
0 [« k™ row

l— row i, 5

Therefore T satisfies the conditions of Theorem 1 [10] and as in Case 1 of
proposition 1 above we conclude that P is ergodic.

Similar argument appliesforl=n—2andl =n — 1.

We may prove proposition 2 using another permutation matrix E,, as follows:

If 1=n-—3 then ﬁilk = ﬁizk == ﬁin—sk =1, il,iz, ...,in_3 € {1, ...,n} - {k},
and pi__j, = Pi,_,j, =1 for in_1,in—2 € {1,..,n} —{iy, i, ...,ih_3,k} for ji,j, €
{1, ...,n} — {k}. Either i,_; <i,_, 0ri,_; > i,_, we may assume that i,_; < ip_j.

Case 1: If j; =j, then

0

-]
Il
=
=
=

0

0

0

0

0
Prk—1)

0

=]

[ R SR

1
Drx
1

=]

0

Dree+1)

0

=

0
Prj,
0

=

— raw iy q

— Tow i, o
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Let

En = |€n(n—k+2)

e,

[

Epthen Ep is an nXxn permutation matrix and EjE, =1,
composition T = E,PE,,.

0
0
0
0

b
Il

€n2

Enk
€nn-1)
€nin-2)

nl

€n (n—k)

nn

[Pk1

T T T
= [enk €n(n-1) €nin-2)
« k™ row

Prk-1)

0
0
0
0

Pk Prin-1) Pr(n-2) °
0 0 -

Prk Pr(ren)

1

1
0
1

columnn—j; +1

DPrj,

0
0
1
0

0
0
0
0

[=N=1

0

0

T T
Enin—k+2) €n1

f"kh
0

“ Dr(n-k+2) Pr1  Prin-t)

0
0
0
0

I=R=10

k™ column

|

T T T
Enin—k) - €nn ]:

Consider the

—row n—i, ,+1

L k™ row

—row n—iy ;+1

Pin]

0

0

0

0

0

0

0

0

0

* Prz DPrn]
0 0
0 0
0 0
0 0
o 0
0 0
0 0
0 0
0o ol

Therefore T satisfies the conditions of Theorem
proposition 1 above we conclude that P is ergodic.

l—row n—i, ,+1

— k™ row

—row m—ip q+1

1 [10] and as in Case 1 of

Case 2: j; # jthen either j; <j, orj; > j, we may assume that j; < j,.
We use the same E,, as in case 1 and consider the composition T = E, PE,,.
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Prj,
0

columnn 7f1 +1

Prin-k+2) Pr1 Prin-k) "
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r 0 0 0 1 0
0 0 0 1 0
0 1 0 0 0
0 0 0 1 0
~lo o o 1 0
P=|Pyy - Dy, Pre-1) Drk  Prirsn)
o - 0 0 1 0
o - 0 0 1 0
o - 0 0 0 0
o - 0 0 1 0
Lo - 0 0 1 0
Dr1 " Prjy " Pre-1) Prk Prir+1)
o - 0 . 0 1 0
0 0 o 1 o0
0 0 0 0 0
0 0 0 1 0
EP=1g 0 o 1 o
0 0 o 1 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0
columnn 7]2 +1 k”‘ column
!
Pre  Prin-1) Prtn-2) -~ Prp
1 0 0 - 0 0
10 0 0 0
0 0 0 1 0
1 0 0 0 0
=1, 0 0 0 0
10 0 0 0
0 0 0 0 0
1 0 0 0 0
10 0 0 0

Py,
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0 |—row i, 4

0 |=row i, ;

f—row n—i, ,+1

— k™ row

—row n—iy 1+1

Prz  Prn

0 0

0 0

0 0 fown—i, ,+1
0 0

0 0 |« k™ row

0 0

0 0 frown—i, ;+1
0 0

0 0

Therefore T satisfies the conditions of Theorem 1 [10] and as in Case 1 of

proposition 1 above we conclude that P is ergodic.

Similar argument appliesforl=n—2andl =n — 1.

Conclusion

In this paper we continued studying the ergodocity of a particular class of finite fuzzy
Markov chains. As we mentioned in [10] we do believe that the introduced conditions

can be reduced.
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