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ABSTRACT

UNBOUNDED p-CONVERGENCE IN LATTICE-NORMED VECTOR
LATTICES

Marabeh, Mohammad A. A.
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Eduard Emel’yanov

May 2017, 69 pages

The main aim of this thesis is to generalize unbounded order convergence, unbounded
norm convergence and unbounded absolute weak convergence to lattice-normed vec-
tor lattices (LNVLs). Therefore, we introduce the follwing notion: a net (xα) in an
LNVL (X, p,E) is said to be unbounded p-convergent to x ∈ X (shortly, xα up-
converges to x) if p(|xα − x| ∧ u)

o−→ 0 in E for all u ∈ X+. Throughout this thesis,
we study general properties of up-convergence. Besides, we introduce several notions
in lattice-normed vector lattices which correspond to notions from vector and Banach
lattice theory. Finally, we study briefly the mixed-normed spaces and use them for an
investigation of up-null nets and up-null sequences in lattice-normed vector lattices.

Keywords: Vector Lattice, Lattice-Normed Vector Lattice, up-Convergence, uo-Convergence,
un-Convergence, uaw-Convergence, Mixed-Normed Space
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ÖZ

KAFES(LATTİCE)-NORMLU VEKTÖR KAFESLERDE SINIRSIZ
p-YAKINSAMA

Marabeh, Mohammad A. A.
Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Eduard Emel’yanov

Mayıs 2017 , 69 sayfa

Bu tezin asıl amacı sınırsız sıralı yankınsama, sınırsız norm yakınsama ve sınırsız
mutlak yakınsamaların kafes-normlu vektör kafeslere genellemektir. Böylece, aşa-
ğıdaki tanımları yaptık: kafes-normlu vektör kafes (X, p,E) deki bir xα neti, E de
her u ∈ X+ için p(|xα − x| ∧ u)

o−→ 0 şartını sağlarsa xα neti x elemanına sınırsız
p-yakınsaktır denir. Bu tezde, up-yakınsamanın genel özelliklerini çalıştık. Buna ila-
veten, kafes-normlu vektör kafeslerde vektör ve Banach kafes teorisiyle ilgili çeşitli
kavramlar tanımladık. Son olarak, karışık normlu alanları kısaca inceledik ve bunları
kafes normlu vektör kafeslerinde up-null ağlar ve up-null dizilerin incelenmesi için
kullandık.

Anahtar Kelimeler: Vektör Kafes, Kafes-Normlu Vektör Kafes, up-Yakınsama, uo-
Yakınsama, un-Yakınsama, uaw-Yakınsama, Karışık-Normlu Uzay
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CHAPTER 1

INTRODUCTION

A net (xα)α∈A in a vector lattice X is said to be order convergent (or o-convergent)

to a vector x ∈ X if there is another net (yβ)β∈B satisfying: (i) yβ ↓ 0; and (ii)

for each β ∈ B there exists αβ ∈ A such that |xα − x| ≤ yβ for each α ≥ αβ .

In this case we write, xα
o−→x. A net (xα) in a vector lattice X is unbounded order

convergent to a vector x ∈ X if |xα − x| ∧ u o−→ 0 for all u ∈ X+, in this case we

say that the net (xα) uo-converges to x and we write xα
uo−→x. The uo-convergence

was first defined by H. Nakano (1948) in [34] under the name of “individual con-

vergence”. Nakano extended the individual ergodic theorem (it is known also as

Birkhoff’s ergodic theorem) to particular Banach lattices; KB-spaces. The idea of

this extension is that the uo-convergence of sequences in L1(P), where P is a prob-

ability meausre, is equivalent to almost everywhere convergence. Later the name

"unbounded order convergence" was proposed by R. DeMarr (1964) in [10]. DeMarr

defined the uo-convergence in ordered vector spaces and his main result was that any

locally convex space E can be embedded in a particular ordered vector space X so

that topological convergence in E is equivalent to uo-convergence in X . The relation

between weak and uo-convergences in Banach lattices were investigated by A. Wick-

stead (1977) in [38]. In [27] S. Kaplan (1997/98) established two characterizations of

uo-convergence in order (Dedekind) complete vector lattices having weak units.

Recently, N. Gao and F. Xanthos (2014) studied uo-convergent and uo-Cauchy nets in

Banach lattices and used them to characterize Banach lattices with the positive Schur

property and KB-spaces. In addition, they applied uo-Cauchy sequences to extend

Doob’s submartingale convergence theorem to a measure-free setting; see [22]. As a
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continuation of their work, N. Gao (2014) studied unbounded order convergence in

dual spaces of Banach lattices; see [19]. In [21] N. Gao, V. Troitsky, and F. Xanthos

(2017) examined more properties of uo-convergence. In particular, they proved the

uo-convergence is stable under passing to and from regular sublattices. This fact

used to generalize several results in [22, 19]. Also, they used uo-convergence to

study the convergence of Cesàro means in Banach lattices. As a result, they obtained

an intrinsic version of Komlós’ Theorem in Banach lattices and developed a new

and unified approach to study Banach-Saks properties and Banach-Saks operators in

Banach lattices based on uo-convergence. In [13] E. Emelyanov and M. Marabeh

(2016) have used uo-convergence to derive two measure-free versions of Brezis-Lieb

lemma in vector lattices. In addition, H. Li and Z. Chen (2017) showed that every

norm bounded positive increasing net in an order continuous Banach lattice is uo-

Cauchy and that every uo-Cauchy net in an order continuous Banach lattice has a

uo-limit in the universal completion; see [30].

Unbounded order convergence is not just limited to mathematics. In fact, unbounded

order convergence has been applied in finance. It is known that coherent risk mea-

sures play an important role in financial economics and actuarial science. As risk

measures have convexity, a lot of efforts have then been dedicated to the general

study of representations of proper convex functionals. In [23] N. Gao and F. Xan-

thos have exploited uo-convergence to derive a w∗-representation theorem of proper

convex increasing functionals on particular dual Banach lattices. The work was ex-

tended in [20] by establishing representation theorems of convex functionals and risk

measures using unbounded order continuous dual of a Banach lattice.

Let X be a normed lattice, then a net (xα) in X is unbounded norm convergent to a

vector x ∈ X (or xα un-convergent to x) if |xα − x| ∧ u ‖·‖−→ 0 for all u ∈ X+. In

this case, we write xα
un−→x. The unbounded norm convergence was first defined by

V. Troitsky (2004) in [36] under the name “d-convergence”. He studied the relation

between the d-convergence and measure of non-compactness. If X = C0(Ω) where

Ω is a normal topological space, then the un-convergence inX is the same as uniform

convergence on compacta; see [36, Example 20]. In addition, if X = Lp(µ) where

1 ≤ p < ∞ and µ is a finite measure, then un-convergence and convergence in

measure agree in X; see [36, Example 23].
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The name “unbounded norm convergence” was introduced by Y. Deng, M. O’Brien,

and V. Troitsky (2016) in [11]. They studied basic properties of un-convergence and

investigated its relation with uo- and weak convergences. Finally, they showed that

un-convergence is topological.

In [25], M. Kandić, M. Marabeh, and V. Troitsky (2017) have investigated deeply

the “unbounded norm topology” (or un-topology) in Banach lattices. They showed

that the un-topology and the norm topology iff the Banach lattice has a strong unit.

The un-topology is metrizable iff the Banach lattice has a quasi-interior point. The

un-topology in an order continuous Banach lattice is locally convex iff it is atomic.

An order continuous Banach lattice X is a KB-space iff its closed unit ball BX is

un-complete. For a Banach lattice X , BX is un-compact iff X is an atomic KB-

space. Also, they studied un-compact operators and the relationship between un-

convergence and weak*-convergence.

Quite recently M. Kandić, H. Li, and V. Troitsky (2017) have genralized the concept

of unbounded norm convergence as follows: let X be a normed lattice and Y a vector

lattice such thatX is an order dense ideal in Y , then a net (yα) un-converges to y ∈ Y
with respect toX if |yα−y|∧x

‖·‖−→ 0 for every x ∈ X+. They extended several known

results about un-convergence and un-topology to this new setting in [24].

One more mode of unbounded convergence has been introduced and studied by O.

Zabeti (2016). A net (xα) in a Banach lattice X is said to be unbounded absolute

weak convergent (or uaw-convergent) to x ∈ X if |xα − x| ∧ u
w−→ 0 for all u ∈ X+;

[40]. Zabeti investigated the relations of uaw-convergence with other convergnces.

In addition, he obtained a characterization of order continuous and reflexive Banach

lattices in terms of uaw-convergence.

Let X be a vector space, E be a vector lattice, and p : X → E+ be a lattice norm(
i.e., p(x) = 0 ⇔ x = 0, p(λx) = |λ|p(x) for all λ ∈ R, x ∈ X , and p(x + y) ≤
p(x) + p(y) for all x, y ∈ X

)
, then the triple (X, p,E) is called a lattice-normed

space; abbreviated as LNS. The lattice norm p of an LNS (X, p,E) is said to be

decomposable if, for all x ∈ X and e1, e2 ∈ E+, from p(x) = e1 + e2 it follows that

there exist x1, x2 ∈ X such that x = x1 +x2 and p(xk) = ek for k = 1, 2. In this case,

the LNS (X, p,E) is referred as decomposable LNS. A net (xα) in an LNS (X, p,E)
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is p-convergent to x ∈ X if p(xα−x)
o−→ 0 inE. A net (xα) in an LNS (X, p,E) is said

to be p-Cauchy if p(xα−xβ)
o−→ 0 inE. An LNS (X, p,E) is called p-complete if every

p-Cauchy net is p-convergent. A decomposable p-complete LNS is called Banach-

Kantorovich space (or BKS for short). Now let (X, p,E) be an LNS such that X is

a vector lattice and the lattice norm p is monotone
(
i.e. |x| ≤ |y| ⇒ p(x) ≤ p(y)

)
,

then the triple (X, p,E) is called lattice-normed vector lattice, abbreviated as LNVL.

A decomposable p-complete LNVL is called Banach-Kantorovich lattice (or BKL for

short). If X is a vector lattice, then X is the lattice-normed vector lattice (X, |·|, X)

where |x| is the absolute value of x ∈ X . Also, any normed lattice (X, ‖·‖) is the

lattice-normed vector lattice (X, ‖·‖,R).

Lattice-normed spaces were first defined by Leonid Kantorovich (1936) in [26]. After

that, the theory of lattice-normed spaces was studied and then well-developed by

Semën Kutateladze, Anatoly Kusraev and their students in Novosibirsk and Vladikav-

kaz. Many results from ergodic theory, probability theory etc. have been extended to

lattice-normed vector lattices; see, e.g., [9, 14, 15, 16, 17, 18].

It should be noticed that the theory of lattice-normed spaces is well-developed under

the condition of decomposability of lattice norm; see, e.g., [8, 12, 28, 29]. In the

present thesis, we develop a general approach to lattice-normed vector lattices without

requiring decomposability of lattice norm. This approach allow us to unify many

results in the theory of vector and Banach lattices.

The structure of thesis is as follows. In Chapter 2, we provide basic notions and

results from vector lattice theory that are needed throughout this study.

Chapter 3 consists of three sections. In the first section, we review the definition of

unbounded order convergence (uo-convergence) and some of its properties. Further-

more, a characterization of uo-convergence in atomic vector lattices is given. The

second section represents an application of uo-convergence by deriving two variants

of the Brezis-Lieb lemma in vector lattices, the results of this section are published in

[13]. In the last section, we recall definitions of unbounded norm convergence (un-

convergence) and unbounded absolute weak convergence (uaw-convergence) and

some basic results.
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In Chapter 4 we study many notions related to LNVLs in parallel to the theory of

Banach lattices. For instance, an LNVL (X, p,E) is said called op-continuous if

X 3 xα
o−→ 0 implies xα

p−→ 0; a p-KB-space if, for any 0 ≤ xα ↑with p(xα) ≤ e ∈ E,

there exists x ∈ X satisfying xα
p−→ x. We give a characterization of op-continuity

in Theorem 6, and study several properties of p-KB-spaces, e.g. in Proposition 15

and in Proposition 16. A vector e ∈ X is said to be a p-unit if, for any x ∈ X+,

p(x−ne∧ x)
o−→ 0. Any p-unit is a weak unit, whereas strong units are p-units. For a

normed lattice (X, ‖·‖), a vector inX is a p-unit in (X, ‖·‖,R) iff it is a quasi-interior

point of the normed lattice (X, ‖·‖).

The main part of this thesis is Chapter 5 in which we define the unbounded p-

convergence (up-convergence) in lattice-normed vector lattices (LNVLs). The up-

convergence generalizes uo-convergence, un-convergence and unbounded absolute

weak convergence. Within Chapter 5 some basic theory of unbounded p-convergence

in LNVLs is developed in parallel to uo- and un-convergences. For example, it is

enough to check the uo-convergence at a weak unit, while the un-convergence needs

to be checked only at a quasi-interior point. Similarly, in LNVLs, up-convergence

needs to be examined at a p-unit by Theorem 9. Moreover we introduce and study

up-regular sublattices. Majorizing sublattices and projection bands are examples of

up-regular sublattices by Theorem 10. Also some further investigation of up-regular

sublattices is carried out in certain LNVLs in subsection 5.2.2.

Finally, in Chapter 6 we study properties of mixed-normed LNVLs in Proposition

28, in Theorem 13, and in Theorem 14. We also prove that in a certain LNVL,

the up-null nets are “p-almost disjoint” (see Theorem 15). These results generalize

correspondent results from [21, 11].

The results of Chapters 4, 5 and 6 appear in the preprint [4].

5



6



CHAPTER 2

PRELIMINARIES

For the convenience of the reader, we present in this chapter the general background

needed in the thesis.

Let "≤" be an order relation on a real vector space X . Then X is called an ordered

vector space, if it satisfies the following conditions: (i) x ≤ y implies x+ z ≤ y + z

for all z ∈ X; and (ii) x ≤ y implies λx ≤ λy for all λ ∈ R+.

For an ordered vector space X we let X+ := {x ∈ X : x ≥ 0}. The subset X+ is

called the positive cone of X . For each x and y in an ordered vector space X we let

x ∨ y := sup{x, y} and x ∧ y := inf{x, y}. If x ∈ X+ and x 6= 0, then we write

x > 0.

An ordered vector space X is said to be a vector lattice (or a Riesz space) if for each

pair of vectors x, y ∈ X the x∨ y and x∧ y both exist in X . Let X be a vector lattice

and x ∈ X then x+ := x∨0, x− := (−x)∨0 and |x| := (−x)∨x are the positive part,

negative part and absolute value of x, respectively. Two elements x and y of a vector

lattice X are disjoint written as x ⊥ y if |x| ∧ |y| = 0. For a nonempty set A of X

then its disjoint complement Ad is defined by Ad := {x ∈ X : x ⊥ a for all a ∈ A}
and we write Add for (Ad)d. A sequence (xn) in a vector lattice is called disjoint if

xn ⊥ xm for all n 6= m. A subset S of a vector lattice X is bounded from above

(respectively, bounded from below) if there is x ∈ X with s ≤ x (respectively, x ≤ s)

for all s ∈ S. If a, b ∈ X , then the subset [a, b] := {x ∈ X : a ≤ x ≤ b} is called

order interval inX . A subset S ofX is said to be order bounded if it is bounded from

above and below or equivalently there is u ∈ X+ so that S ⊆ [−u, u]. If a net (xα) in

7



X is increasing and x = supα xα, then we write xα ↑ x. The notation xα ↓ x means

the net net (xα) in X is decreasing and x = infα xα. A vector lattice X is said to

be Archimedean if 1
n
x ↓ 0 holds for each x ∈ X+. Throughout this thesis, all vector

lattices are assumed to be Archimedean.

A vector lattice X is called order complete or Dedekind complete if every order

bounded above subset has a supremum, equivalently if 0 ≤ xα ↑≤ u then there is

x ∈ X such that xα ↑ x.

A vector subspace Y of a vector lattice X is said to be a sublattice of X if for each

y1 and y2 in Y we have y1 ∨ y2 ∈ Y . A sublattice Y of X is order dense in X if for

each x > 0 there is 0 < y ∈ Y with 0 < y ≤ x and Y is said to be majorizing in X if

for each x ∈ X+ there exists y ∈ Y such that x ≤ y.

A linear operator T : X → Y between vector lattices is called lattice homomorphism

if |Tx| = T |x| for all x ∈ X . A one-to-one lattice homomorphism is referred as a

lattice isomorphism. Two vector lattices X and Y are said to be lattice isomorphic

when there is a lattice isomorphism from X onto Y .

If X is a vector lattice, then there is a (unique up to lattice isomorphism) order com-

plete vector lattice Xδ that contains X as a majorizing order dense sublattice. We

refer to Xδ as the order completion of X .

A subset Y of X is said to be solid if for x ∈ X and y ∈ Y such that |x|≤ |y| it

follows that x ∈ Y . A solid vector subspace of a vector lattice is referred as ideal.

Let A be a nonempty subset of X then IA the ideal generated by A is the smallest

ideal in X that contains A. This ideal is given by

IA := {x ∈ X : ∃a1, . . . , an ∈ A and λ ∈ R+with |x| ≤ λ

n∑
j=1

|aj|}.

For x0 ∈ X then Ix0 the ideal generated by x0 is referred as a principal ideal. This

ideal has the form Ix0 := {x ∈ X : ∃λ ∈ R+with |x| ≤ λ|x0|}.

A net (xα)α∈A in a vector lattice X is said to be order convergent (or o-convergent)

to a vector x ∈ X if there is another net (yβ)β∈B satisfying: (i) yβ ↓ 0; and (ii) for

each β ∈ B there exists αβ ∈ A such that |xα − x| ≤ yβ for each α ≥ αβ . In this

case we write xα
o−→x.

8



It follows from condition (ii) that an order convergent net has an order bounded tail,

whereas an order convergent sequence is order bounded. For a net (xα) in a vector

latticeX and x ∈ X we have |xα−x|
o−→ 0 iff xα

o−→x iff |xα|
o−→|x|. Thus without loss

of generality we can only deal with order null nets in X+. For an order bounded net

(xα) in an order complete vector lattice we have, xα
o−→x iff infα supβ≥α|xβ − x| =

0. A net (xα)α∈A in X is said to be order Cauchy (or o-Cauchy) if the double net

(xα − xα′)(α,α′)∈A×A is order convergent to 0. A linear operator T : X → Y between

vector lattices is said to be order continuous if xα
o−→ 0 in X implies Txα

o−→ 0 in Y .

Order convergence is the same in a vector lattice and in its order completion.

Lemma 1. [21, Corollary 2.9] For any net (xα) in a vector lattice X , xα
o−→ 0 in X

iff xα
o−→ 0 in Xδ.

A subset A of X is called order closed (o-closed) if for any net (aα) in A such that

aα
o−→x it follows that x ∈ A. An order closed ideal is a band. For x0 ∈ X the

principal band generated by x0 is the smallest band that includes x0. We denote this

band by Bx0 and it is described as Bx0 := {x ∈ X : |x| ∧ n|x0| ↑ |x|}. A band B in

a vector lattice X is said to be a projection band if X = B ⊕Bd. If B is a projection

band, then each x ∈ X can be written uniquely as x = x1 + x2 where x1 ∈ B and

x2 ∈ Bd. The projection PB : X → X defined by PB(x) := x1 is called the band

projection corresponding to the band projection B. If P is a band projection then it is

a lattice homomorphism and 0 ≤ P ≤ I; i.e., 0 ≤ Px ≤ x for all x ∈ X+. So band

projections are order continuous.

A vector lattice X equipped with a norm ‖·‖ is said to be a normed lattice if |x| ≤ |y|
in X implies ‖x‖ ≤ ‖y‖. If a normed lattice is norm complete, then it is called a

Banach lattice. A normed lattice (X, ‖·‖) is called order continuous if a net xα ↓ 0 in

X implies ‖xα‖ ↓ 0 or equivalently xα
o−→ 0 inX implies ‖xα‖ → 0. A normed lattice

(X, ‖·‖) is called σ-order continuous if a sequence xn ↓ 0 in X implies ‖xn‖ ↓ 0 or

equivalently xn
o−→ 0 in X implies ‖xn‖ → 0. Every order continuous normed lattice

is σ-order continuous. A normed lattice (X, ‖·‖) is called a KB-space if for 0 ≤ xα ↑
and supα‖xα‖ <∞ we get that the net (xα) is norm convergent.

Let X be a vector lattice. A vector 0 < e ∈ X is called a weak unit if Be = X , where

Be denotes the band generated by e.
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Equivalently, e is a weak unit iff from |x| ∧ e = 0 it follows that x = 0. A vector

0 < e ∈ X is said to be a strong unit if Ie = X , where Ie denotes the ideal generated

by e. That is, e is a strong unit iff for each x ∈ X there is λ > 0 such that |x| ≤ λe.

Now assume that X is a normed lattice. Then a vector 0 < e ∈ X is called a quasi-

interior point if Ie = X , where Ie denotes the ideal generated by e. It can be shown

that e is a quasi-interior point iff for every x ∈ X+ we have ‖x− x∧ ne‖ as n→∞.

Clearly, strong unit⇒ quasi-interior point⇒weak unit. If a normed lattice is σ-order

continuous then each weak unit is a quasi-interior point.

An element a > 0 in a vector latticeX is called an atom whenever for every x ∈ [0, a]

there is some real λ ≥ 0 such that x = λa. It is known that Ba the band generated

by a is a projection band and Ba = Ia = span{a}, where Ia is the ideal generated

by a. A vector lattice X is called atomic if the band generated by its atoms is X . For

any x > 0 there is an atom a such that a ≤ x. For any atom a, let Pa be the band

projection corresponding to Ba. Then Pa(x) = fa(x)a where fa is the biorthogonal

functional corresponding to a. Since band projections are lattice homomorphisms and

are order continuous, then so fa for any atom a.

Example 1.

• Let c0 := {x = (xn)n∈N : lim
n→∞

xn = 0}, ‖x‖∞ := sup
n∈N
|xn|.

• Let c denote the space of all convergent sequences with the∞-norm.

• For each 1 ≤ p < ∞, let `p := {x = (xn)n∈N :
∞∑
n=1

|xn|p < ∞}; ‖x‖p :=

(
∞∑
n=1

|xn|p)1/p.

• Let `∞ := {x = (xn)n∈N : sup
n∈N
|xn| < ∞} ; i.e., the space of all bounded

sequences, ‖x‖∞ := sup
n∈N
|xn|.

All the above spaces are Banach lattices under the coordinatewise ordering. That is,

given two sequences x = (xn) and y = (yn). Then x ≤ y iff xn ≤ yn for all n ∈ N.
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CHAPTER 3

UNBOUNDED CONVERGENCES

In this chapter, we recall definitions and some properties of unbounded order conver-

gence, unbounded norm convergence, and unbounded absolute weak convergence.

Also, we employ unbounded order convergence to obtain two versions of Brezis-Lieb

lemma in vector lattices.

3.1 Unbounded order convergence in vector lattices

Unbounded order convergence was originally defined by H. Nakano in [34] under

the name of “individual convergence”. Independently R. DeMarr introduced the no-

tion “unbounded order convergence” in [10]. Later the relation between weak and

unbounded order convergence was examined by A. W. Wickstead [38]. After that

two nice characterizations of uo-convergence in order complete vector lattices were

obtained by S. Kaplan [27]. Recently many researchers investigated uo-convergence

and its applications; [22, 19, 21, 23, 13, 30, 20].

Definition 1. Let X be a vector lattice. A net (xα) in X is said to be unbounded

order convergent to a vector x if for any u ∈ X+, |xα − x| ∧ u
o−→ 0. In this case, we

say the net (xα) uo-converges to x, and write xα
uo−→x.

Clearly, order convergence implies uo-convergence. The converse need not be true.

Example 2. Consider the sequence (en) of standard unit vectors in c0. Let u =

(u1, u2, . . .) in (c0)+. Then there is n0 ∈ N such that un < 1 for any n ≥ n0. Let

yn :=
∞∑
k=n

uk then yn ↓ 0 in c0.
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For each n ≥ n0, we have en ∧ u ≤ yn. Hence, en
uo−→ 0. The sequence (en) is not

order bounded in c0, and so en 6
o−→ 0 in c0.

For order bounded nets uo-convergence and o-convergence coincide. In [27] S. Ka-

plan showed that for order complete vector lattices uo-convergence can be checked at

a weak unit. Later this result was generalized by N. Gao et al. in [21].

Proposition 1. [21, Corollary 3.5] Let X be a vector lattice with a weak unit e. Then

for any net (xα) in X , xα
uo−→ 0 iff |xα| ∧ e

o−→ 0.

Clearly not every vector lattice has a weak unit, but instead each vector lattice has a

complete disjoint system {eγ}γ∈Γ ⊆ X+, that is (i) eγ ∧ eγ′ = 0 for γ 6= γ′; and (ii)

if x ∧ eγ = 0 for all γ ∈ Γ, then x = 0. As a generalization of Proposition 1 above,

we will show that uo-convergence can be evaluated at elements of a complete disjoint

system.

Proposition 2. Let {eγ}γ∈Γ be a complete disjoint system in a vector latticeX . Then,

xα
uo−→ 0 in X iff |xα| ∧ eγ

o−→ 0 in X for any γ ∈ Γ.

Proof. The forward implication is trivial. For the converse implication let Xδ be the

order completion of X , and assume that |xα| ∧ eγ
o−→ 0 in X for any γ ∈ Γ. Then by

Lemma 1 |xα| ∧ eγ
o−→ 0 in Xδ for any γ ∈ Γ. Let u ∈ X+, and γ ∈ Γ then(

inf
α

sup
β≥α

(|xβ| ∧ u)
)
∧ eγ =

(
inf
α

sup
β≥α

(|xβ| ∧ eγ)
)
∧ u = 0 ∧ u = 0.

in Xδ. So,
(

infα supβ≥α(|xβ| ∧ u)
)
∧ eγ = 0 for each γ ∈ Γ. Since {eγ}γ∈Γ is

a complete disjoint system in X then it can be easily seen that it forms a complete

disjoint system inXδ as well. So infα supβ≥α(|xβ|∧u) = 0 inXδ. Hence, |xα|∧u
o−→

0 in Xδ. By applying Lemma 1 again we get |xα| ∧ u
o−→ 0 in X .

A sublattice Y of a vector lattice X is called regular if for any subset A of .Y if

inf A exists in Y then inf A exists in X and the two infimums are equal. We recall a

characterization of regular sublattices via order convergence.

Lemma 2. [2, Theorem 1.20] For a sublattice Y of a vector lattice X the following

statements are equivalent.
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1. Y is regular.

2. If (yα) in Y and yα ↓ 0 in Y , then yα ↓ 0 in X .

3. If (yα) in Y and yα
o−→ y in Y , then yα

o−→ y in X .

Remark 1.

1. Every ideal is regular. Indeed, let I be an ideal in a vector latttice X , and (yα)

be a net in I such that yα ↓ 0 in I . We show yα ↓ 0 in X . Note first that yα ↓
in X . If x ∈ X such that 0 ≤ x ≤ yα for any α, then x ∈ I because I is ideal,

and so x = 0. Thus yα ↓ 0 in X .

2. Theorem 1.23 in [2] assures that every order dense sublattice is regular.

3. Any vector lattice X is regular in its order completion Xδ.

4. If Y is a regular sublattice of a vector lattice X , then order convergence in X

need not imply order convergence in Y . For example, c0 is an ideal of `∞, and

so c0 is regular, yet en
o−→ 0 in `∞ but not in c0.

Recently, an interesting characterization of regular sublattices in terms of uo-convergence

was established in [21].

Theorem 1. [21, Theorem 3.2] Let Y be a sublattice of a vector lattice X . The

following statements are equivalent.

1. Y is regular.

2. For any net (yα) in Y , yα
uo−→ 0 in Y iff yα

uo−→ 0 in X .

Given a measure space (Ω,Σ, µ), we write L0(µ) for the vector lattice of real-valued

measurable functions on Ω modulo almost everywhere (a.e.). For f, g ∈ L0(µ),

f ≤ g means f(t) ≤ g(t) for a.e. t ∈ Ω.

Proposition 3. [21, Proposition 3.1] For a sequence (fn) in L0(µ), the following are

equivalent:

1. (fn) is uo-convergent;
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2. (fn) is uo-Cauchy;

3. (fn) converges a.e.;

4. (fn) is order convergent;

5. (fn) is order Cauchy.

In this case, (fn) is order bounded and the limits in 1, 3 and 4 are the same.

Let (Ω,Σ, µ) be a measure space. Then for each 0 < p ≤ ∞, Lp(µ) is an ideal in

L0(µ), and so it is regular in L0(µ). Hence combining Theorem 1 and Proposition

3 implies that fn
uo−→ 0 in Lp(µ) iff fn → 0 a.e., for any sequence (fn) in Lp(µ).

Therefore uo-convergence is a generalization of a.e.-convergence. It is known that

a.e.-convergence is not topological in general, i.e., there may not be a topology such

that convergence with respect to this topology is the same as a.e.-convergence; see

for example [35].

In what follows we show uo-convergence in atomic vector lattices is “coordinatewise”

but first we characterize order convergence in atomic order complete vector lattices.

We begin with the following technical lemma.

Lemma 3. Let X and Y be vector lattices. If T : X → Y is an order continu-

ous lattice homomorphism and A a subset of X such that supA exists in X , then

T (supA) = supT (A).

Proof. Note that {a1 ∨ · · · ∨ an : n ∈ N, a1, . . . , an ∈ A} ↑ supA. So T
(
{a1 ∨ · · · ∨

an : n ∈ N, a1, . . . , an ∈ A}
)
↑ T (supA). Furthermore, T

(
{a1 ∨ · · · ∨ an : n ∈

N, a1, . . . , an ∈ A}
)

= {T (a1 ∨ · · · ∨ an) : n ∈ N, a1, . . . , an ∈ A} = {Ta1 ∨ · · · ∨
Tan : n ∈ N, a1, . . . , an ∈ A} ↑ supT (A). Hence T (supA) = supT (A).

Lemma 4. If X is an atomic order complete vector lattice and (xα) is an order

bounded net such that fa(xα)→ 0 for any atom a, then xα
o−→ 0.

Proof. Suppose the contrary, then infα supβ≥α|xβ| > 0, so there is an atom a such

that a ≤ infα supβ≥α|xβ|. Hence a ≤ supβ≥α|xβ| for any α.
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Let fa be the biorthogonal functional corresponding to a, then it follows from Lemma

3 that 1 = fa(a) ≤ fa
(

supβ≥α|xβ|
)

= supβ≥α|fa(xβ)| for each α. Thus

lim supα|fa(xα)| ≥ 1 which is a contradiction.

Corollary 1. If X is an atomic vector lattice and (xα) is an order bounded net such

that fa(xα)→ 0 for any atom a, then xα
o−→ 0.

Proof. If a ∈ X is an atom then a is an atom in Xδ and since X is atomic, the order

completion Xδ is again atomic; see, e.g., [32, Exercise 37.23]. Thus (xα) is an order

bounded net such that fa(xα)→ 0 for any atom a, then it follows from Lemma 4 that

xα
o−→ 0 in Xδ. Now Lemma 1 implies that xα

o−→ 0 in X .

Next we characterize uo-convergence in atomic vector lattices.

Proposition 4. Let X be an atomic vector lattice. For any atom a, let fa be the

biorthogonal functional of a. Then, xα
uo−→ 0 in X iff fa(xα) → 0 for any atom

a ∈ X .

Proof. The “only if” part. Let (xα) be a net in X such that xα
uo−→ 0. Let a ∈ X be an

atom. Then |xα| ∧ a
o−→ 0 in X . Since fa is order continuous lattice homomorphism,

then |fa(xα)| ∧ 1→ 0 in R. Hence, fa(xα)→ 0.

The “if” part. Assume there is a net (xα) in X such that fa(xα) → 0 for any atom

a ∈ X . Given u ∈ X+ then we have fa(|xα| ∧ u) → 0 for each atom a ∈ X . Since

the net (|xα| ∧ u) is order bounded, then it follows from Corollary 1 that xα ∧ u
o−→ 0.

Hence, xα
uo−→ 0.

We end up this section by a list of results that will be generalized in Chapters 5 and 6.

Remark 2.

1. For a sequence (xn) in a vector lattice X , if xn
uo−→ 0, then infk|xnk | = 0 for

any increasing sequence (nk) of natural numbers.
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2. Let X be an order continuous Banach lattice. Assume xα
uo−→x. Then ‖x‖ ≤

lim infα‖xα‖; see [22, Lemma 3.6].

3. Let X be a normed lattice. Suppose (xα) is a uo-Cauchy net and xα
‖·‖−→ x.

Then xα
uo−→x; see [22, Remark 4.1(2)].

4. Let X be an order continuous Banach lattice. Assume (xα) is almost order

bounded and xα
uo−→x. Then xα

‖·‖−→x; see [22, Proposition 3.7].

5. In an order continuous Banach lattice, each almost order bounded uo-Cauchy

net converges uo- and in norm to the same limit; see [22, Proposition 4.2].

6. LetX be an order continous Banach lattice and (xn) a norm bounded sequence.

If xn
uo−→ 0, then there is a subsequence (xnk) and a disjoint sequence (dk) in X

such that xnk − dk
‖·‖−→ 0; see [21, Lemma 6.7].

7. Let B be a projection band and P the corresponding band projection. If

xα
uo−→x in X then Pxα

uo−→Px in both X and B; see [22, Lemma 3.3].

3.2 An application of uo-convergence

In this section we first recall the Brezis-Lieb lemma and since almost everywhere con-

vergence of sequences in Lp spaces is equivalent to uo-convergence, then we provide

two variants of the Brezis-Lieb lemma in vector lattices.

3.2.1 The Brezis-Lieb lemma

The Brezis-Lieb lemma [6, Theorem 2] has numerous applications mainly in calculus

of variations (see for example [7, 31]). We begin with its statement. Let j : C →
C be a continuous function with j(0) = 0. In addition, let j satisfy the following

hypothesis: for every sufficiently small ε > 0, there exist two continuous, nonnegative

functions ϕε and ψε such that

|j(a+ b)− j(a)| ≤ εϕε(a) + ψε(b) (3.1)

for all a, b ∈ C. The following result has been stated and proved by H. Brezis and E.

Lieb in [6].
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Theorem 2. (Brezis-Lieb lemma, [6, Theorem 2]). Let (Ω,Σ, µ) be a measure space.

Let the mapping j satisfy the above hypothesis, and let fn = f + gn be a sequence of

measurable functions from Ω to C such that:

1. gn
a.e.−−→ 0 ;

2. j ◦ f ∈ L1(µ);

3.
∫
ϕε ◦ gndµ ≤ C <∞ for some C independent of ε and n;

4.
∫
ψε ◦ fdµ <∞ for all ε > 0.

Then, as n→∞, ∫
|j(f + gn)− j(gn)− j(f)|dµ→ 0 . (3.2)

Here we reproduce its proof from [6, Theorem 2] with some additional remarks.

Proof. Fix ε > 0 and let

Wε,n =
[
|j ◦ fn − j ◦ gn − j ◦ f | − εϕε ◦ gn

]+
.

As n→∞, Wε,n
a.e.−−→ 0. On the other hand,

|j ◦ fn − j ◦ gn − j ◦ f | ≤ |j ◦ fn − j ◦ gn|+ |j ◦ f | ≤ εϕε ◦ gn + ψε ◦ f + |j ◦ f |.

Therefore 0 ≤ Wε,n ≤ ψε ◦ f + |j ◦ f | ∈ L1(µ). By dominated convergence theorem,

lim
n→∞

∫
Wε,ndµ = 0. (3.3)

However,

|j ◦ fn − j ◦ gn − j ◦ f | ≤ Wε,n + εϕε ◦ gn (3.4)

and thus

In :=

∫
|j ◦ fn − j ◦ gn − j ◦ f |dµ ≤

∫ (
Wε,n + εϕε ◦ gn

)
dµ.

Consequently, lim sup In ≤ εC. Now let ε→ 0.
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Remark 3. (i) The conditions (3.3) and (3.4) mean that the sequence |j ◦ fn− j ◦ gn|
eventually lies in the set [−|j ◦ f |, |j ◦ f |] + 3εC

2
BL1 , where BL1 is the closed unit

ball of L1(µ). In other words, the sequence |j ◦ fn− j ◦ gn| is almost order bounded.

Recall that a subset A in a normed lattice (X, ‖·‖) is said to be almost order bounded

if for any ε > 0, there is uε ∈ X+ such that A ⊆ [−uε, uε] + εBX , where BX is the

closed unit ball of X .

(ii) The superposition operator Jj : L0(µ) → L0(µ), Jj(f) := j ◦ f induced by the

mapping j in the proof above can be replaced by a mapping J : L0(µ) → L0(µ)

satisfying some reasonably mild conditions for keeping the statement of the Brezis-

Lieb lemma.

(iii) Theorem 2 is equivalent to its partial case when the C-valued functions are re-

placed by R-valued ones.

The next lemma will be used to prove the coming theorem and a version of Brezis-

Lieb lemma for arbitrary strictly positive linear functionals.

Lemma 5. ([22, Proposition 3.7]). Let X be an order continuous Banach lattice.

Assume (xα) is almost order bounded and xα
uo−→x. Then xα

‖·‖−→x.

The following result is motivated by the proof of [6, Theorem 2].

Theorem 3. (Brezis-Lieb lemma for mappings on L0). Let (Ω,Σ, µ) be a measure

space, fn = f + gn be a sequence in L0(µ) such that gn
a.e.−−→ 0, and J : L0(µ) →

L0(µ) be a mapping satisfying J(0) = 0, that preserves almost everywhere conver-

gence and such that the sequence J(fn) − J(gn) is almost order bounded. Then, as

n→∞, ∫
|J(f + gn)−

(
J(gn) + J(f)

)
|dµ→ 0 . (3.5)

Proof. Again, as in the proof of the Brezis-Lieb lemma above, denote In :=
∫
|J(f+

gn)−
(
J(f) + J(gn)

)
|. By the conditions, the sequence

J(f + gn)−
(
J(f) + J(gn)

)
=
(
J(fn)− J(gn)

)
− J(f)

a.e.-converges to 0 and is almost order bounded. Therefore by Lemma 5, lim
n→∞

In =

0.
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Recall that a collection (fα) ⊆ L1(µ) is said to be uniformly integrable or equi-

integrable if for each ε > 0 there is δ > 0 such that
∫
E
|fα|dµ < ε for all α whenever

µ(E) < δ. Since almost order boundedness and uniform integrability are equivalent

in finite measure spaces, the following corollary is immediate.

Corollary 2.
(
Brezis-Lieb lemma for uniform integrable sequence J(fn) − J(gn)

)
.

Let (Ω,Σ, µ) be a finite measure space, fn = f + gn be a sequence in L0(µ) such

that gn
a.e.−−→ 0, and J : L0(µ) → L0(µ) be a mapping satisfying J(0) = 0, that

preserves almost everywhere convergence and such that the sequence J(fn)− J(gn)

is uniformly integrable. Then

lim
n→∞

∫
|J(f + gn)−

(
J(gn) + J(f)

)
|dµ = 0 .

3.2.2 Two variants of the Brezis-Lieb lemma in vector lattices

In this subsection we give two variants of the Brezis-Lieb lemma in the vector lat-

tice setting by replacing a.e.-convergence by uo-convergence, integral functionals by

strictly positive functionals and the continuity of the scalar function j (in Theorem 2)

by the so called σ-unbounded order continuity of the mapping J : X → Y between

vector lattices X and Y .

Recall that in Lp spaces (1 ≤ p ≤ ∞), uo-convergence of sequences is the same

as the almost everywhere convergence (see; e.g., [21, Remark 3.4]). Therefore, in

order to obtain versions of Brezis-Lieb lemma in vector lattices, we replace almost

everywhere convergence by uo-convergence.

Definition 2. A mapping f : X → Y between vector lattices is said to be σ-

unbounded order continuous (in short, σuo-continuous) if xn
uo−→ x in X implies

f(xn)
uo−→ f(x) in Y .

Clearly the above definition is parallel to the well-known notion of σ-order continuous

mappings between vector lattices.

Let Y be a vector lattice and l be a strictly positive linear functional on Y . Define the

following norm on Y :

‖y‖l := l(|y|). (3.6)
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Then the ‖·‖l-completion (Yl, ‖·‖l) of (Y, ‖·‖l) is an AL-space, and so it is order

continuous Banach lattice. The following result is a measure-free version of Theorem

3.

Proposition 5. (A Brezis-Lieb lemma for strictly positive linear functionals). Let X

be a vector lattice and Yl be the AL-space constructed above. Let J : X → Yl be

σuo-continuous with J(0) = 0, and (xn) be a sequence in X such that:

1. xn
uo−→ x in X;

2. the sequence (J(xn)− J(xn − x))n∈N is almost order bounded in Yl

Then

lim
n→∞
‖J(xn)− J(xn − x)− J(x)‖l = 0. (3.7)

Proof. Since xn
uo−→ x and J is σuo-continuous, then J(xn)

uo−→ J(x) and J(xn −
x)

uo−→ J(0) = 0. Thus J(xn) − J(xn − x)
uo−→ J(x). It follows from Lemma 5 that

lim
n→∞
‖J(xn)− J(xn − x)− J(x)‖l = 0.

The next result is another measure-free version of Theorem 3.

Proposition 6. (A Brezis-Lieb lemma for σuo-continuous linear functionals). Let

X, Y be vector lattices and l be a σuo-continuous functional on Y . Assume further

J : X → Y is a σuo-continuous mapping with J(0) = 0 and (xn) is a sequence in

X such that xn
uo−→ x. Then

lim
n→∞

l(J(xn)− J(xn − x)− J(x)) = 0 . (3.8)

Proof. Since xn
uo−→ x and J is σuo-continuous, then J(xn)

uo−→ J(x) and J(xn −
x)

uo−→ J(0) = 0. Thus
(
J(xn)− J(xn − x)− J(x)

) uo−→ 0. But l is σuo-continuous,

so l
(
J(xn) − J(xn − x) − J(x)

) uo−→ 0. Since in R the uo-convergence, the o-

convergence, and the standard convergence are all equivalent, then lim
n→∞

l
(
J(xn) −

J(xn − x)− J(x)
)

= 0.

We emphasize that in opposite to Proposition 6, in Proposition 5 we do not suppose

the functional l to be σuo-continuous.

20



3.3 Unbounded norm and unbounded absolute weak convergences

Unbounded norm convergence was first known as d-convergence and it was defined

in [36]. The relation between unbounded norm convergence with other types of con-

vergences was studied in [11].

Definition 3. [11] Let X be a normed lattice. Then a net (xα) in X is said to be

unbounded norm convergent to a vector x if
∥∥|xα − x| ∧ u∥∥→ 0 for every u ∈ X+.

In this case, we say (xα) un-converges to x and write xα
un−→x.

Clearly, norm convergence implies un-convergence. The converse need not be true.

Example 3. Consider the sequence (en) of standard unit vectors in c0. Let u =

(u1, u2, . . .) be an element in (c0)+. Let 0 < ε < 1 then there is nε ∈ N such that

un < ε for all n ≥ nε. Thus for n ≥ nε, ‖nen ∧ u‖∞ = un < ε. Hence nen
un−→ 0.

The sequence (nen) is not norm bounded, and so it can not be norm convergent.

For order bounded nets, un-convergence and norm convergence coincide. If the norm

of a Banach lattice is order continuous then uo-convergence implies un-convergence.

We have seen in Proposition 1 Section 3.1, that it is enough to evaluate uo-convergence

at a weak unit. Similarly, it suffices to evaluate un-convergence at a quasi-interior

point.

Proposition 7. [11, Lemma 2.11] Let X be a normed lattice with a quasi-interior

point e. Then for any net (xα) in X , xα
un−→ 0 iff

∥∥|xα| ∧ e∥∥→ 0.

The following result shows that un-convergence is an abstraction of convergence in

measure.

Proposition 8. [11, Corollary 4.2] Let (fn) be a sequence inLp(µ) where 1 ≤ p <∞
and µ is a finite measure. Then fn

un−→ 0 iff fn
µ−→ 0.

Let Y be a sublattice of a Banach lattice X . Clearly, if (yα) is a net in Y and yα
un−→ 0

in X , then yα
un−→ 0 in Y . The converse need not be true.

Example 4. Let (en) be the sequence of standard unit vectors in c0. Then en
un−→ 0 in

c0, but this does not hold in `∞. Indeed, let u = (1, 1, 1, . . .) then en ∧ u = en and

‖en‖∞ = 1 6→ 0.
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We see from Example 4 that generally un-convergence does not pass from a regular

sublattice to the whole space unlike the uo-convergence; see Theorem 1. Neverthe-

less, un-convergence can be lifted from particular sublattices to the whole space.

Theorem 4. [25, Theorem 4.3] Let Y be a sublattice of a normed lattice X and (yα)

a net in Y such that yα
un−→ 0 in Y . The following statements hold.

1. If Y is majorizing in X , then yα
un−→ 0 in X .

2. If Y is norm dense in X , then yα
un−→ 0 in X .

3. Y is a projection band in X , then yα
un−→ 0 in X .

Since every Archimedean vector lattice X is majorizing in its order completion Xδ,

we have the following result.

Corollary 3. [25, Corollary 4.4] If X is a normed lattice and xα
un−→x in X , then

xα
un−→x in the order completion Xδ of X .

Corollary 4. [25, Corollary 4.5] If X is a KB-space and xα
un−→ 0 in X , then xα

un−→ 0

in X∗∗.

Example 4 shows that the assumption that X is a KB-space cannot be removed.

Corollary 5. [25, Corollary 4.6] Let Y be a sublattice of an order continuous Banach

lattice X . If yα
un−→ 0 in Y then yα

un−→ 0 in X .

Next we consider unbounded absolute weak convergence which was defined and stud-

ied in [40].

Definition 4. Let X be a Banach lattice. A net (xα) in X is said to be unbounded

absolute weakly convergent to a vector x if for any u ∈ X+, |xα − x| ∧ u
w−→ 0. In

this case we say the net (xα) uaw-converges to x, and write xα
uaw−−→x.

Let X be a Banach lattice. If xα
|σ|(X,X∗)−−−−−→ 0, then xα

uaw−−→ 0, where |σ|(X,X∗)
denotes the absolute weak topology on X . It was pointed out in [40, Example 3] that

the converse need not be true. For order bounded nets uaw-convergence and absolute

weak convergence are equivalent.
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As in the case of un-convergence the following result illustrates that uaw-convergence

can only be evaluated at a quasi-interior point.

Proposition 9. [40, Lemma 6] Let X be a Banach lattice with a quasi-interior point

e. Then for any net (xα) in X , xα
uaw−−→ 0 iff |xα| ∧ e

w−→ 0.

The following result of O. Zabeti will be extended in Chapter 5.

Proposition 10. [40, Proposition 15] Suppose X is an order continuous Banach

lattice and I is an ideal of X . For a net (xα) ⊆ I , if xα
uaw−−→ 0 in I then xα

uaw−−→ 0 in

X .

Similar to the situation in Corollary 5 uaw-convergence on atomic order continuous

Banach lattices can transfer from a sublattice to the whole space.

Proposition 11. [40, Proposition 16] Suppose X is an order continuous Banach

lattice and Y is a sublattice of X . If yα
uaw−−→ 0 in Y then yα

uaw−−→ 0 in X .

Next result shows that uo-, un- and uaw-convergences all agree on order continuous

Banach lattices.

Proposition 12. [40, Corollary 14] Suppose X is an order continuous Banach lat-

tice. Then uo-convergence un-convergence and uaw-convergence are agree iff X is

atomic.

Thus if X is an atomic order continuous Banach lattice, (xα) is a net in X and fa

is the biorthogonal functional corresponding to an atom a ∈ X . Then xα
uo−→ 0 iff

xα
un−→ 0 iff xα

uaw−−→ 0 iff fa(xα)→ 0 for any atom a ∈ X .

It should be noticed that both un-convergence and uaw-convergence are induced

by toplolgies known as un-topology and uaw-topology respectively. So unlike uo-

convergence the un-convergence and the uaw-convergence are both topological. The

un-topology and uaw-topology were ivestigated in [24, 25, 40].

We end up this section by a list of results that will be generalized in Chapters 5 and 6.

23



Remark 4.

1. If (xα) is an increasing net in a normed lattice X and xα
un−→x then xα ↑ x and

xα
‖·‖−→ x; see [25, Lemma 1.2 (ii)].

2. Let X be a normed lattice. If xα
un−→x, then ‖x‖ ≤ lim infα‖xα‖; see [11,

Lemma 2.8].

3. Let X be a normed lattice. If xα
un−→x and (xα) almost order bounded, then

xα
‖·‖−→ x; see [11, Lemma 2.9].

4. Let X be a Banach lattice. Assume xα
un−→ 0. Then there is an increasing se-

quence (αk) of indices and a disjoint sequence (dk) satisfying xαk − dk
‖·‖−→ 0;

see [11, Theorem 3.2].

5. Let (xα) be a net in an order continuous Banach lattice X such that xα
un−→ 0.

Then there exists an increasing sequence of indices (αk) such that xαk
un−→ 0;

see [11, Corollary 3.5].

6. Let (xn) be a sequence in a Banach lattice X . If xn
un−→ 0 then there is a subse-

quence (xnk) such that xnk
uo−→ 0 as k →∞; see [11, Proposition 4.1].

7. A sequence in an order continuous Banach lattice X is un-null iff every subse-

quence has a further subsequence which is uo-null; see [11, Theorem 4.4].

8. Suppose that X is atomic and order continuous, and (xn) is an order bounded

sequence in X . If xn
‖·‖−→ 0 then xn

o−→ 0; see [11, Lemma 5.1].
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CHAPTER 4

P -NOTIONS IN LATTICE-NORMED VECTOR LATTICES

Within this chapter, we review lattice-normed spaces and some related properties.

Also, we provide few more notions and study their general properties. Many of these

notions will be used in the subsequent chapters.

4.1 Lattice-normed vector lattices

Right through this section we recall primary concepts related to lattice-normed vector

lattice.

Definition 5. [28, 2.1.1, p. 45] Let X be a vector space and E a vector lattice. A

mapping p : X → E+ is called lattice norm if it satisfies the following conditions:

1. p(x) = 0⇔ x = 0;

2. p(λx) = |λ|p(x) for all λ ∈ R and x ∈ X;

3. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X .

The triple (X, p,E) is called lattice-normed space and it is abbreviated as LNS.

Let (X, p,E) be an LNS and Y be a vector subspace of X . Then Y is understood to

be the LNS (Y, p, E).

Given an LNS (X, p,E). The lattice norm p is called decomposable if, for all x ∈ X
and e1, e2 ∈ E+, from p(x) = e1 + e2 it follows that there exist x1, x2 ∈ X such
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that x = x1 + x2 and p(xk) = ek for k = 1, 2. A lattice-normed space with a

decomposable lattice norm is referred as decomposable lattice-normed space.

It should be noticed that theory of LNSs is well-developed under the decomposability

condition; see, e.g., [28, 29, 8, 12]. Throughout this thesis we do not assume LNSs to

be decomposable.

Definition 6. Let (X, p,E) be an LNS. If X is a vector lattice and the lattice norm

p is monotone ( i.e., |x| ≤ |y| ⇒ p(x) ≤ p(y) ), then the triple (X, p,E) is called

lattice-normed vector lattice, abbreviated as LNVL.

Let (X, p,E) be an LNVL and Y be a sublattice of X . Then Y is understood to be

the LNVL (Y, p, E).

While dealing with LNVLs we keep in mind all the time the following two examples.

Example 5. Any vector lattice X is the lattice-normed vector lattice (X, |·|, X),

where |x| denotes the absolute value of x.

Example 6. Any normed lattice (X, ‖·‖) is the lattice-normed vector lattice (X, ‖·‖,R).

Definition 7. A net (xα) in an LNS (X, p,E) is p-convergent to x ∈ X if p(xα−x)
o−→

0 in E. In this case, we write xα
p−→ x.

The p-convergence is also known as bo-convergence; see, e.g., [28, 2.1.5, p. 48]. The

lattice operations in an LNVL X are p-continuous in the following sense.

Lemma 6. Let (xα)α∈A and (yβ)β∈B be two nets in an LNVL (X, p,E). If xα
p−→ x

and yβ
p−→ y, then (xα ∨ yβ)(α,β)∈A×B

p−→ x ∨ y. In particular, xα
p−→ x implies that

x−α
p−→ x−.

Proof. There exist two nets (zγ)γ∈Γ and (wλ)λ∈Λ in E satisfying zγ ↓ 0 and wλ ↓ 0,

and for all (γ, λ) ∈ Γ × Λ there are αγ ∈ A and βλ ∈ B such that p(xα − x) ≤
zγ and p(yβ − y) ≤ wλ for all (α, β) ≥ (αγ, βλ). It follows from the inequality

|a ∨ b− a ∨ c| ≤ |b− c| that

p(xα ∨ yβ − x ∨ y) = p(|xα ∨ yβ − xα ∨ y + xα ∨ y − x ∨ y|)

≤ p(|xα ∨ yβ − xα ∨ y|) + p(|xα ∨ y − x ∨ y|)

≤ p(|yβ − y|) + p(|xα − x|) ≤ wλ + zγ
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for all α ≥ αγ and β ≥ βλ. Since (wλ + zγ) ↓ 0, then p(xα ∨ yβ − x ∨ y)
o−→ 0.

Let (X, p,E) be an LNS and A be a subset of X . Then A is called p-closed in X if,

for any net (xα) in A that is p-convergent to x ∈ X , we have x ∈ A. The following

well-known property is a direct consequence of Lemma 6.

Assertion 1. The positive cone X+ in any LNVL X is p-closed.

Assertion 1 implies the following well-known fact.

Proposition 13. Any monotone p-convergent net in an LNVL o-converges to its p-

limit.

Proof. It is enough to show that if (X, p,E) 3 xα ↑ and xα
p−→ x, then xα ↑ x. Fix

arbitrary α. Then xβ−xα ∈ X+ for β ≥ α. By Assertion 1, xβ−xα
p−→ x−xα ∈ X+.

Therefore x ≥ xα. Since α is arbitrary, then x is an upper bound of xα. If y ≥ xα for

all α, then, again by Assertion 1, y− xα
p−→ y− x ∈ X+, or y ≥ x. Thus xα ↑ x.

Definition 8. [28, 2.1.2, p. 46] Given an LNS (X, p,E).

1. Two vectors x and y in X are called p-disjoint, abbreviated as x⊥py, if p(x) ⊥
p(y).

2. A subset B of X is called p-band if

B = M⊥p = {x ∈ X : (∀m ∈M) x⊥pm}

for some nonempty M ⊆ X .

Lemma 7. Let (X, p,E) be an LNVL.

1. If x, y ∈ X and x⊥py, then x ⊥ y; i.e., p-disjointness implies disjointness.

2. If B ⊆ X is p-band, then B is an ideal of X .

Proof.

1. Assume x⊥py and 0 ≤ z ≤ |x|∧|y|. Then p(z) ≤ p(|x|∧|y|) ≤ p(x)∧p(y) = 0

and hence z = 0. Thus x ⊥ y.
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2. Let y ∈ B and x ∈ X such that |x| ≤ |y|. Since B is p-band then there is a

subset M of X such that for any b ∈ B, we have b⊥pm for all m ∈ M . So,

p(x) ∧ p(m) ≤ p(y) ∧ p(m) = 0 for every m ∈ M . Thus, x ∈ M⊥p = B, and

so B is ideal.

The following example shows that there may be many bands which are not p-bands.

Example 7. Consider the LNVL (R2, ‖·‖,R). Then {0}, x-axis, y-axis and R2 are all

bands in R2, while only {0} and R2 are p-bands.

Next we provide an example of a p-band that is not a band.

Example 8. Consider the LNVL (c, p, c) with

p(x) := |x|+ ( lim
n→∞
|xn|) · 1 (x = (xn) ∈ c),

where 1 denotes the sequence identically equals to 1. Take M = {e1}. We claim the

p-band M⊥p = {x ∈ c0 : x1 = 0} is not a band. Indeed, the sequence (yn) given by

yn =
n+1∑
k=2

ek is in M⊥p and it is order convergent to (0, 1, 1, 1, . . .) /∈M⊥p .

Remark 5.

1. Every band is p-closed. Indeed, given a band B in an LNVL (X, p,E). If

B 3 xα
p−→ x, then, by Lemma 6, |xα| ∧ |y|

p−→ |x| ∧ |y| for any y ∈ Bd. Since

|xα| ∧ |y| = 0 for all α, then |x| ∧ |y| = 0, and so x ∈ Bdd = B.

2. Every p-band is p-closed. Indeed, let B = M⊥p for some nonempty M ⊆ X ,

and B 3 xα
p−→ x0 ∈ X . Take any m ∈M . It follows from

p(x0) ∧ p(m) ≤ (p(x0 − xα) + p(xα)) ∧ p(m) ≤

p(x0 − xα) ∧ p(m) + p(xα) ∧ p(m) = p(x0 − xα) ∧ p(m)
o−→ 0,

that p(x0) ∧ p(m) = 0. Since m ∈M is arbitrary, then x0 ∈ B.
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4.2 Several basic p-notions in LNVLs

Notions and results of this section are direct analogies of well-known facts of the

theory of normed lattices.

Definition 9. Let X = (X, p,E) be an LNS.

1. A net (xα)α∈A in X is said to be p-Cauchy if the net (xα − xα′)(α,α′)∈A×A p-

converges to 0.

2. X is called p-complete if every p-Cauchy net in X is p-convergent.

3. X is called sequentially p-complete if every p-Cauchy sequence in X is p-

convergent.

4. A subset Y ofX is said to be p-bounded if there exists e ∈ E such that p(y) ≤ e

for all y ∈ Y .

A p-Cauchy net, p-completeness, and p-boundedness in LNSs are also known as a

bo-fundamental net, bo-completeness, and norm-boundedness respectively (see, e.g.,

[28, 2.1.5, p.48]). We continue with more notions.

Definition 10. Let X = (X, p,E) be an LNVL.

1. X is called op-continuous if xα
o−→ 0 implies that p(xα)

o−→ 0.

2. X is called a p-KB-space if every p-bounded increasing net inX+ is p-convergent.

3. The lattice norm p is said to be additive on X+ if p(x + y) = p(x) + p(y) for

all x, y ∈ X+.

Remark 6.

1. Clearly, any LNVL (X, |·|, X) is op-continuous.

2. In Definition 10.2 we do not require p-completeness of X .

3. It is easy to see that a p-KB-space (X, ‖·‖,R) is always p-complete (see, e.g.

[39, Exercise 95.4]). Therefore the notion of p-KB-space coincides with the

notion of KB-space.
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4. Clearly, an LNVL X = (X, |·|, X) is a p-KB-space iff X is order complete.

5. Notice that, for a p-KB-spaceX = (X, p,E) the vector lattice p(X)dd need not

to be order complete. To see this, take a KB-space (X, ‖·‖) and E = C[0, 1].

Then the LNVL (X, p,E) with p(x) := ‖x‖ · 1[0,1] is clearly a p-KB-space, yet

p(X)dd = E is not order complete.

6. Recently in [5, Definition 2] the authors introduced notions in lattice-normed

ordered vector spaces (LNOVSs) which are similar to the notions given in Def-

initions 9 and 10.

We call a vector lattice countably atomic if it is atomic and it has a countable com-

plete disjoint system of atoms. When the norming lattice is countably atomic then

sequentially p-complete LNVLs can be characterized as follows.

Theorem 5. Let (X, p,E) be an LNVL such that E is countably atomic. Fix a max-

imal disjoint system of atoms A = {a1, a2, a3, . . .} ⊆ E. Then X is sequentially

p-complete iff for every sequence (xn) in X such that the sequence rn =
n∑
k=1

p(xk) is

order bounded and for any ai ∈ A if the sequence sn :=
n∑
k=1

fai(p(xk)) is convergent

then the sequence tn =
n∑
k=1

xk is p-convergent; here fai denotes the biorthogonal

functional of the atom ai.

Proof. (=⇒) Assume (xn) is a sequence inX such that the sequence rn =
∑n

k=1 p(xk)

is order bounded. Let ai ∈ A and suppose the sequence sn :=
∑n

k=1 fai(p(xk)) is

convergent. We claim that the sequence tn =
∑n

k=1 xk is p-Cauchy. Indeed, for each

n ≥ m,

fai(p(tn − tm)) = fai(p(
n∑
k=1

xk −
m∑
k=1

xk))

= fai(p(
n∑

k=m+1

xk))

≤
n∑

k=m+1

fai(p(xk))

=
n∑
k=1

fai(p(xk))−
m∑
k=1

fai(p(xk)))

= sn − sm
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Since (sn) is convergent then it is Cauchy. Then it follows from Corollary 1 in Section

3.1, that the sequence
(
p(tn − tm)

)
(n,m)∈N×N is order null in E, and so (tn) is p-

Cauchy. Since X is sequentially p-complete, then we get (tn) is p-convergent.

(⇐=) Suppose (xn) is a p-Cauchy sequence in X . Then for any k ∈ N there is

nk ∈ N such that fa1(p(xn−xm)) < 2−k for all n,m ≥ nk. We can select nk’s so that

n1 < n2 < n3 < ... . Thus (xnk) is a subsequence of xn. Let y1 := xn1 and for k ≥ 2

let yk := xnk − xnk−1
. Clearly,

k∑
l=1

yl = xnk and fa1(p(yk)) = fa1(p(xnk − xnk−1
)) <

2−k+1. Hence
∞∑
k=1

fa1(p(yk)) ≤ fa1(p(y1)) +
∞∑
k=1

2−k+1 = fa1(p(y1)) + 1 <∞. Simi-

larly, we can find a further subsequence (xnkj ) of (xnk) such that
∞∑
j=1

fa2(p(ykj)) <∞

where (ykj) is the subsequence of (yk) corresponding to (xnkj ).

Therefore by a standard diagonal argument we can find a subsequence (xnk) of (xn)

such that for any i ∈ N,
∞∑
k=1

fai(p(yk)) < ∞ where y1 := xn1 and for k ≥ 2 let

yk := xnk − xnk−1
. By the hypothesis it follows that xnk =

k∑
i=1

yi is p-convergent.

Since xn is p-Cauchy then it can be readily shown that (xn) p-converges to the same

p-limit of (xnk).

Lemma 8. For an LNVL (X, p,E), the following statements are equivalent.

1. X is op-continuous;

2. xα ↓ 0 in X implies p(xα) ↓ 0.

Proof. The implication 1=⇒2 is trivial.

2=⇒1. Let xα
o−→ 0, then there exists a net zβ ↓ 0 in X such that, for any β there

exists αβ so that |xα| ≤ zβ for all α ≥ αβ . Hence p(xα) ≤ p(zβ) for all α ≥ αβ . By

condition 2. we have p(zβ) ↓ 0. Therefore p(xα)
o−→ 0 or xα

p−→ 0.

It follows from Lemma 8 that the op-continuity in LNVLs is equivalent to the order

continuity of the lattice norm in the sense of [28, 2.1.4, p.48]. In the case of a p-

complete LNVL, we have a further equivalent condition for op-continuity.
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Theorem 6. For a p-complete LNVL (X, p,E), the following statements are equiva-

lent.

1. X is op-continuous;

2. if 0 ≤ xα ↑≤ x holds in X, then (xα) is a p-Cauchy net;

3. xα ↓ 0 in X implies p(xα) ↓ 0.

Proof. 1=⇒2. Let 0 ≤ xα ↑≤ x in X. By [3, Lemma 12.8], there exists a net (yβ) in

X such that (yβ−xα)α,β ↓ 0. So p(yβ−xα)
o−→ 0, and hence the net (xα) is p-Cauchy.

2=⇒3. Assume that xα ↓ 0 in X . Fix arbitrary α0, then, for α ≥ α0, xα ≤ xα0 , and

so 0 ≤ (xα0 − xα)α≥α0 ↑≤ xα0 . By condition 2 the net (xα0 − xα)α≥α0 is p-Cauchy,

i.e. p(xα′ − xα)
o−→ 0 as α0 ≤ α, α

′ → ∞. Since X is p-complete, then there is

x ∈ X satisfying p(xα − x)
o−→ 0 as α0 ≤ α → ∞. By Proposition 13, xα ↓ x and

hence x = 0. As a result, xα
p−→ 0 and the monotonicity of p implies p(xα) ↓ 0.

3=⇒1. It is just the implication 2=⇒1 of Lemma 8.

Corollary 6. Let (X, p,E) be an op-continuous and p-complete LNVL, then X is

order complete.

Proof. Assume 0 ≤ xα ↑≤ u, then by Theorem 6.2, (xα) is a p-Cauchy net and since

X is p-complete, then there is x such that xα
p−→ x. It follows from Proposition 13

that xα ↑ x, and so X is order complete.

Corollary 7. Any p-KB-space is op-continuous.

Proof. Let xα ↓ 0. Take any α0 and let yα := xα0 − xα for α ≥ α0. Clearly,

0 ≤ yα ↑≤ xα0 . Hence p(yα) ↑≤ p(xα0) for α ≥ α0. Since X is a p-KB-space,

there exists y ∈ X such that p(yα − y)
o−→ 0. Since yα ↑ and yα

p−→ y, Proposition 13

ensures that

y = sup
α≥α0

yα = sup
α≥α0

(xα0 − xα) = xα0 ,

and hence yα = xα0 − xα
p−→ xα0 or xα

p−→ 0. Again by Proposition 13 we get

p(xα) ↓ 0. So by Lemma 8, X is op-continuous.
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Proposition 14. Any p-KB-space is order complete.

Proof. Let X be a p-KB-space and 0 ≤ xα ↑≤ z ∈ X . Then p(xα) ≤ p(z). Hence

the net (xα) is p-bounded and therefore xα
p−→ x for some x ∈ X . By Proposition 13,

xα ↑ x.

Next we get the sequential p-completeness of a p-KB-space under the assumption that

the norming lattice is countably atomic.

Theorem 7. Let (X, p,E) be a p-KB-space. If E is countably atomic, then X is

sequentially p-complete.

Proof. Let (xn) be a sequence in X such that the sequence rn =
∑n

k=1 p(xk) is order

bounded. Fix a countable maximal disjoint system of atoms A = {a1, a2, a3, ...} ⊆
E. Assume for any i ∈ N the sequence sn :=

∑n
k=1 fai(p(xk)) is convergent. Put

yn := x+
1 + ...+x+

n , then 0 ≤ yn ↑ and by the assumption it is p-bounded. Since X is

p-KB-space, then there is y ∈ X such that yn
p−→ y. Similarly, if zn := x−1 + ...+ x−n ,

then there is z ∈ X such that zn
p−→ z. Therefore the sequence tn =

∑n
k=1 xk is

p-convergent to y − z. Hence X is sequentially p-complete by Theorem 5.

Proposition 15. Let (X, p,E) be a p-KB-space, and Y ⊆ X be an order closed

sublattice. Then (Y, p, E) is also a p-KB-space.

Proof. Let Y+ 3 yα ↑ and p(yα) ≤ e ∈ E+ for all α. Since X is a p-KB-space, there

exists x ∈ X+ such that yα
p−→ x. By Proposition 13, we have yα ↑ x, and so x ∈ Y ,

because Y is order closed. Thus (Y, p, E) is a p-KB-space.

It is clear from the proof of Proposition 15, that every p-closed sublattice Y of a

p-KB-space X is also a p-KB-space.

Proposition 16. Let X = (X, p,E) be a p-complete LNVL, E be atomic, and p be

additive on X+. Then X is a p-KB-space.

Proof. Let a net (xα) inX+ be increasing and p-bounded by e ∈ E+. If the net (xα) is

not p-Cauchy, then by Corollary 1 there is an atom a ∈ E such that fa(p(xα−xα′)) 6→
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0, where fa is the biorthogonal functional of a. Then there exists ε > 0 and a strictly

increasing sequence (αn) of indices such that

fa(p(xαn − xαn−1)) ≥ ε > 0 (∀n ∈ N).

Thus

nε ≤
n+1∑
k=2

fa(p(xαk − xαk−1
))

= fa

( n+1∑
k=2

p(xαk − xαk−1

)
= fa

(
p
( n+1∑
k=2

xαk − xαk−1

))
= fa(p(xαn+1 − xα1)) ≤ 2fa(e).

Thus nε ≤ 2fa(e) for all n ∈ N, and hence ε ≤ 0; a contradiction. So, the net

(xα) is p-Cauchy and since X is p-complete, then it is p-convergent. Therefore X is

p-KB-space.

The next example shows that p-completeness in Proposition 16 can not be removed.

Example 9. For the LNVL (c0, |·|, `∞) the norming lattice `∞ is atomic and its lattice

norm is additive on (c0)+. We claim that (c0, |·|, `∞) is not p-complete. Indeed,

consider the sequence xn =
∑n

i=1 ei, where en’s are the standard unit vectors of c0.

For each n ∈ N put yn =
∑∞

i=n ei, then yn ↓ 0 in `∞. If n0 ∈ N, then for all

n > m ≥ n0, |xn − xm| =
∑n

i=m+1 ei ≤ yn0 . Thus (xn) is p-Cauchy. Clearly,

(xn) is not p-convergent. Moreover, note that 0 ≤ xn ↑ and (xn) is p-bounded by

1 = (1, 1, . . .) ∈ `∞. Since (xn) is not p-convergent then (c0, |·|, `∞) is not a p-KB-

space.

Example 10. Let X = (X, ‖·‖) be a normed lattice. Consider the closed unit ball

BX∗ of the dual Banach lattice X∗. Let E be the vector lattice of all bounded real-

valued functions on BX∗ . Define an E-valued norm p on X by

p(x)[f ] := |f |(|x|) (f ∈ BX∗)

for any x ∈ X .

(i) p is a lattice norm.
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Proof. Assume x = 0. Then p(0)[f ] = 0 for any f ∈ BX∗ . So, p(0) = 0. If

p(x) = 0, then p(x)[f ] = |f |(|x|) = 0 for all f ∈ BX∗ . Hence Hahn-Banach

theorem implies that x = 0.

Let λ ∈ R and x ∈ X . Then for f ∈ BX∗ , p(λx)[f ] = |f |(|λx|) = |λ||f |(|x|) =

|λ|p(x)[f ]. Thus p(λx) = |λ|p(x).

If x, y ∈ X , then

p(x + y)[f ] = |f |(|x + y|) ≤ |f |(|x|) + |f |(|y|) = p(x)[f ] + p(y)[f ] =(
p(x)+p(y)

)
[f ] for each f ∈ BX∗ . It follows that p(x+y) ≤ p(x)+p(y).

(ii) The triple (X, p,E) is an LNVL.

Proof. From (i) it remains to show that the lattice norm p is monotone. Sup-

pose |x| ≤ |y|. Let f ∈ BX∗ , then p(x)[f ] = |f |(|x|) ≤ |f |(|y|) = p(y)[f ].

Thus p(x) ≤ p(y).

(iii) If X is an order continuous Banach lattice, then (X, p,E) is op-continuous.

Proof. Assume xα ↓ 0, we show p(xα) ↓ 0. We claim that p(xα) ↓ 0 iff

p(xα)[f ] ↓ 0 for all f ∈ BX∗ .

For the necessity, let p(xα) ↓ 0 and f ∈ BX∗ . Trivially, |f |(xα) is decreasing.

If there exists zf ∈ R such that 0 ≤ zf ≤ |f |(xα) for all α, then

0 ≤ zf ≤ |f |(xα) ≤ ‖f‖‖xα‖ ↓ 0.

Hence zf = 0 and p(xα)[f ] = |f |(xα) ↓ 0.

For the sufficiency, let p(xα)[f ] ↓ 0 for every f ∈ BX∗ . Since p is monotone

and xα ↓, then p(xα) ↓. If 0 ≤ ϕ ≤ p(xα) for all α, then

0 ≤ ϕ(f) ≤ p(xα)[f ] = |f |(xα) (∀f ∈ BX∗).

So by the assumption, we get ϕ(f) = 0 for all f ∈ BX∗ , and hence ϕ = 0.

Therefore p(xα) ↓ 0.

(iv) If X is a KB-space, then (X, p,E) is a p-KB-space.
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Proof. Suppose that 0 ≤ xα ↑ and p(xα) ≤ ϕ ∈ E. As

‖xα‖ = sup
f∈BX∗

|f(xα)|

≤ sup
f∈BX∗

|f |(xα)

= sup
f∈BX∗

p(xα)[f ]

≤ ϕ[f ]

≤ ‖ϕ‖∞ <∞ (∀α),

and sinceX is a KB-space, we get ‖xα−x‖ → 0 for some x ∈ X+. So, for any

f ∈ BX∗ , we have |f |(|xα−x|)→ 0 or p(xα−x)[f ]→ 0. Thus p(xα−x)
o−→ 0

in E and hence xα
p−→ x.

Let Ω be a non-empty subset, then RΩ denotes the vector space of all real-valued

functions on Ω which is also a vector lattice under the pointwise ordering: f ≤ g in

RΩ iff f(t) ≤ g(t) for all t ∈ Ω.

Example 11. Let X be a vector lattice, X# be the algebraic dual of X , and Y be

a sublattice of X# such that 〈X, Y 〉 is a dual system. Define p : X → RY by

p(x)[y] := |y|(|x|). Then (X, p,RY ) is an LNVL.

Recall that a vector lattice X is called perfect if the natural embedding x → x̂ given

by

x̂(f) := f(x), f ∈ X∼n

from X into (X∼n )∼n is one-to-one and onto, where X∼n denotes the order continuous

dual of X [3, p. 63]. If X is a perfect vector lattice, then X∼n separates the points of

X [3, Theorem 1.71(1)].

Proposition 17. Let X be a perfect vector lattice, Y = X∼n and p : X → RY be

defined as p(x)[f ] := |f |(|x|), where f ∈ Y . Then the LNVL (X, p,RY ) is a p-KB-

space.

Proof. Assume 0 ≤ xα ↑ in X and p(xα) ≤ ϕ ∈ RY . Then, for all f ∈ Y , we

have p(xα)[f ] ≤ ϕ(f) or |f |(xα) ≤ ϕ(f). So, for all f ∈ Y , sup
α
|f |(xα) < ∞, and

hence, by [3, Theorem 1.71(2)], there is x ∈ X with xα ↑ x. An argument similar to

Example 10 (iii) above shows that X is op-continuous. Therefore xα
p−→ x.
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4.3 p-Fatou space, p-density and p-units

In the present section, we continue introducing basic notions in LNVLs.

Definition 11. An LNVL (X, p,E) is called p-Fatou space if 0 ≤ xα ↑ x inX implies

p(xα) ↑ p(x).

Note that an LNVL (X, p,E) is a p-Fatou space iff p is order semicontinuous [28,

2.1.4, p.48]. Clearly any op-continuous LNVL (X, p,E) is a p-Fatou space. The

LNVL (c, p, c) in Example 8 is not a p-Fatou space. Indeed, let yn :=
∑n

k=1 ek. Then

0 ≤ yn ↑ 1 but p(yn) = yn ↑ 1 6= p(1) = (2, 2, 2, . . .).

Next we will show the p-Fatou property ensures that each p-band is a band.

Proposition 18. Let B be a p-band in a p-Fatou space (X, p,E). Then B is a band

in X .

Proof. Let B = M⊥p = {x ∈ X : (∀m ∈ M) p(x)⊥p(m)} for some nonempty

M ⊆ X . Since by Lemma 7.2 B is an ideal in X then to show that B is a band it is

enough to prove that if B+ 3 bα ↑ x ∈ X , then x ∈ B. As X is a p-Fatou space, then

p(bα) ↑ p(x). By order continuity of lattice operations in E, we obtain that

0 = p(bα) ∧ p(m)
o−→ p(x) ∧ p(m) (∀m ∈M).

Therefore p(x) ∧ p(m) = 0 for all m ∈M , and hence x ∈ B.

Now we give the following definition of a p-dense subset in an LNS, which is moti-

vated by the notion of a dense subset of a normed space.

Definition 12. Given an LNS (X, p,E) and A ⊆ X . A subset B of A is said to be

p-dense in A if for any a ∈ A and for any 0 6= u ∈ p(X) there is b ∈ B such that

p(a− b) ≤ u.

Remark 7.

1. If (X, ‖·‖) is a normed lattice, p = ‖·‖ and E = R, then clearly a subset Y of

X is p-dense iff Y is norm dense.
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2. Consider the LNVL (X, p,E) with p = |·|, E = X , and let Y be a sublattice

X . If Y is p-dense in X , then Y is order dense. Indeed, let 0 6= x ∈ X+, then

there is y ∈ Y such that |y − 1
2
x| ≤ 1

3
x which implies 0 < 1

6
x ≤ y ≤ 5

6
x, and

so 0 < y ≤ x.

3. c is order dense in `∞. Note that c is a norm closed subspace of `∞, and so it is

not p-dense in the LNVL (`∞, ‖·‖∞,R). Also, it is not p-dense in (`∞, |·|, `∞).

Indeed, let u = (1, 0, 1, 0, . . .) and x = (1,−1, 1,−1, . . .). Then there is no y

in c such that |y − x| ≤ u.

The following notion is motivated by the notion of a weak order unit in a vector

lattice X = (X, |·|, X) and by the notion of a quasi-interior point in a normed lattice

X = (X, ‖·‖,R).

Definition 13. Let (X, p,E) be an LNVL. A vector e ∈ X is called a p-unit if for any

x ∈ X+ we have p(x− x ∧ ne) o−→ 0.

Remark 8. Let X = (X, p,E) be an LNVL.

1. If X 6= {0}, then for any p-unit e in X it holds that e > 0. Indeed, let e be a

p-unit in X 6= {0}. Trivially e 6= 0. Suppose e− > 0. Then, for x := e−, we

obtain that

p(x− x ∧ ne) = p(e− − (e− ∧ n(e+ − e−))) =

p(e− − (e− ∧ n(−e−))) = p(e− − (−ne−)) = p((n+ 1)e−) =

(n+ 1)p(e−) 6 o−→ 0

as n → ∞. This is impossible because e is a p-unit. Therefore, e− = 0 and

e > 0.

2. Let e ∈ X be a p-unit. Given 0 < λ ∈ R+ and z ∈ X+. Observe that, for

x ∈ X+, p(x−nλe∧x) = λp(x
λ
−ne∧ x

λ
) and p(x−n(e+z)∧x) ≤ p(x−x∧ne),

from which it follows easily that λe and e+ z are p-units.

3. If e ∈ X is a strong unit, then e is a p-unit. Indeed, let x ∈ X+, then there is

k ∈ N such that x ≤ ke, so x− x ∧ ne = 0 for any n ≥ k.
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4. If e ∈ X is a p-unit, then e is a weak unit. Assume x ∧ e = 0, then x ∧ ne = 0

for any n ∈ N. Since e is a p-unit, then p(x) = 0 and hence x = 0.

5. If X is op-continuous, then clearly every weak unit of X is a p-unit.

6. In X = (X, |·|, X), the lattice norm p(x) = |x| is always order continuous.

Therefore the notions of p-unit and of weak unit coincide in X .

7. If X = (X, ‖·‖) is a normed lattice, p = ‖·‖, E = R, and e ∈ X , then e is a

p-unit iff e is a quasi-interior point of X .

In the proof of the following proposition, we use the same technique as in the proof

of [1, Lemma 4.15].

Proposition 19. Let (X, p,E) be an LNVL, e ∈ X+, and Ie be the ideal generated by

e in X . If Ie is p-dense in X , then e is a p-unit.

Proof. Let 0 6= u ∈ p(X). Let x ∈ X+, then there exists y ∈ Ie such that p(x− y) ≤
u. Since |y+∧x−x| ≤ |y+−x| = |y+−x+| ≤ |y−x|, then by replacing y by y+∧x,

we may assume without loss of generality that there is y ∈ Ie such that 0 ≤ y ≤ x

and p(x− y) ≤ u. Thus, for any m ∈ N, there is ym ∈ Ie such that 0 ≤ ym ≤ x and

p(x− ym) ≤ 1

m
u.

Since ym ∈ Ie, then there exists k = k(m) ∈ N such that 0 ≤ ym ≤ ke, and so

0 ≤ ym ≤ ke ∧ x.

For n ≥ k, x−x∧ne ≤ x−x∧ke ≤ x−ym, and so p(x−x∧ne) ≤ p(x−ym) ≤ 1
m
u.

Hence, p(x− x ∧ ne) o−→ 0. Thus, e is a p-unit.
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CHAPTER 5

UNBOUNDED P -CONVERGENCE

Throughout this chapter, we introduce the unbounded p-convergence (up-convergence)

in lattice normed vector lattices (LNVLs) and investigate several properties of it. A

variant of unbounded p-convergence will be introduced as well. Finally, we give the

notion of up-regular sublattices and we relate this notion with a vector lattice and its

order completion.

5.1 Unbounded p-convergence

The unbounded p-convergence (up-convergence) in LNVLs generalizes the uo-conver-

gence in vector lattices (see Definition 1), the un-convergence (see Definition 3) and

the uaw-convergence (see Definition 4) in Banach lattices.

5.1.1 Main definition and its motivation

Let (X, p,E) be an LNVL. The following definition is motivated by its special case

when it is reduced to the un-convergence for a normed lattice (X, p,E) = (X, ‖·‖,R)

= (X, ‖·‖).

Definition 14. A net (xα) ⊆ X is said to be unbounded p-convergent to x ∈ X

(shortly, xα up-converges to x or xα
up−→ x), if

p(|xα − x| ∧ u)
o−→ 0 (∀u ∈ X+).

It is immediate to see that up-convergence coincides with un-convergence in the case
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when p is the norm in a normed lattice, and with uo-convergence in the case when

X = E and p(x) = |x|. It is clear that xα
p−→ x implies xα

up−→ x, and for order

bounded nets up-convergence and p-convergence agree. It should be also clear that

if an LNVL X is op-continuous, then uo-convergence in X implies up-convergence.

The uaw-convergence is also a particular case of up-convergence as it follows from

the next example.

Example 12. As in Example 11 of Section 4.2, let X be a vector lattice, X# be the

algebraic dual of X , and Y be a sublattice of X# such that 〈X, Y 〉 is a dual system.

Define p : X → RY by p(x)[y] := |y|(|x|). Then xα
up−→ 0 in X iff for every u ∈ X+,

|xα| ∧ u
|σ|(X,Y )−−−−−→ 0.

Proof. xα
up−→ 0 in X iff for all u ∈ X+, p(|xα| ∧u)

o−→ 0 in RY iff for every u ∈ X+,

p(|xα|∧u)[y]→ 0 for all y ∈ Y iff for every u ∈ X+, |y|(|xα|∧u)→ 0 for all y ∈ Y
iff for every u ∈ X+, |xα| ∧ u

|σ|(X,Y )−−−−−→ 0.

In particular, if X is a Banach lattice, Y = X∗, the topological dual of X , E = RY

and p : X → E as defined above then xα
up−→ 0 in X iff xα

uaw−−→ 0.

5.1.2 Basic results on up-convergence

We begin with the next list of properties of up-convergence which follows directly

from Lemma 6 in Section 4.1.

Lemma 9. Let xα
up−→ x and yα

up−→ y in an LNVL (X, p,E). Then

1. axα + byα
up−→ ax+ by for any a, b ∈ R, in particular, if xα = yα, then x = y;

2. xαβ
up−→ x for any subnet (xαβ) of (xα);

3. |xα|
up−→ |x|;

4. if xα ≥ yα for all α, then x ≥ y.

Lemma 10. Let (xα) be a monotone net in an LNVL (X, p,E) such that xα
up−→ x,

then xα
o−→ x.
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Proof. The proof of Proposition 13 applies here as well.

The following result is a p-version of Remark 4.1 in Section 3.3.

Theorem 8. Let (xα) be a monotone net in an LNVL (X, p,E) which up-converges

to x. Then xα
p−→ x.

Proof. Without loss of generality we may assume that 0 ≤ xα ↑ . From Lemma 10

it follows that 0 ≤ xα ↑ x for some x ∈ X+. So 0 ≤ x− xα ≤ x for all α. Since, for

each u ∈ X+, we know that

p((x− xα) ∧ u)
o−→ 0.

In particular, for u = x, we obtain that

p(x− xα) = p((xα − x) ∧ x)
o−→ 0.

The following result is a generalization of Remark 2.1 in Section 3.1.

Lemma 11. Assume xα
up−→ 0 in an LNVL (X, p,E). Then infβ|yβ| = 0 for any

subnet (yβ) of the net (xα).

Proof. Let (yβ) be a subnet of (xα). Clearly, yβ
up−→ 0. If 0 ≤ z ≤ |yβ| for all β, then

p(z) = p(z ∧ | yβ|)
o−→ 0, and so z = 0. Hence infβ|yβ| = 0.

The following two results are analogies of Remark 4.2 (Section 3.3) and of Remark

2.2 (Section 3.1) respectively, but first we recall a technical inequality that will be used

in the next lemma and in Proposition 21. Let X be a vector lattice and a, b, c ∈ X+,

then |a ∧ c − b ∧ c| ≤ |a − b| ∧ c. Indeed, we know from Birkhoff’s inequality that

|a ∧ c − b ∧ c| ≤ |a − b| (see, e.g., [3, Theorem 1.9.(2)]). Also, we have a ∧ c ≤
c ⇒ a ∧ c − b ∧ c ≤ c − b ∧ c ≤ c. So a ∧ c − b ∧ c ≤ c and similarly we have

b∧ c− a∧ c ≤ c. Hence we get |a∧ c− b∧ c| ≤ c. Combining the former inequality

with Birkhoff’s inequality we obtain the required inequality.
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Lemma 12. Let (X, p,E) be an LNVL. Assume that E is order complete and xα
up−→

x, then p(|x| − |x| ∧ |xα|)
o−→ 0 and p(x) = lim infα p(|x| ∧ |xα|). Moreover, if (xα)

is p-bounded, then p(x) ≤ lim infα p(xα).

Proof. Note that

|x| − |x| ∧ |xα| =
∣∣|xα| ∧ |x| − |x| ∧ |x|∣∣ ≤ ∣∣|xα| − |x|∣∣ ∧ |x| ≤ |xα − x| ∧ |x|.

Since xα
up−→ x, we get p(|x| − |x| ∧ |xα|)

o−→ 0. Thus

p(x) = p(|x|) ≤ p(|x| − |x| ∧ |xα|) + p(|x| ∧ |xα|).

So p(x) ≤ lim infα p(|x| ∧ |xα|). Hence p(x) = lim infα p(|x| ∧ |xα|).

Lemma 13. Let (X, p,E) be an op-continuous LNVL. Assume that E is order com-

plete and xα
uo−→ x, then p(|x| − |x| ∧ |xα|)

o−→ 0 and p(x) = lim infα p(|x| ∧ |xα|).

Moreover, if (xα) is p-bounded, then p(x) ≤ lim infα p(xα).

We finish this subsection with the following technical lemma which generalizes Re-

mark 2.3 in Section 3.1.

Lemma 14. Given an LNVL (X, p,E). If xα
p−→ x and (xα) is an o-Cauchy net, then

xα
o−→ x. Moreover, if xα

p−→ x and (xα) is uo-Cauchy, then xα
uo−→ x.

Proof. Since (xα) is order Cauchy, then xα − xβ
o−→ 0, where the order limit is taken

over α and β. So there exists zγ ↓ 0 such that, for every γ, there is αγ satisfying

|xα − xβ| ≤ zγ, ∀α, β ≥ αγ. (5.1)

By taking p-limit over β in (5.1) and applying Lemma 6 in Section 4.1, we get |xα −
x| ≤ zγ for all α ≥ αγ . Thus xα

o−→ x.

For the uo-convergence, the similar argument is used, so the proof is omitted.

5.1.3 up-Convergence and p-units

We have seen in Chapter 3 that uo-convergence can be only evaluated at a weak unit

(see Proposition 1, Section 3.1) whereas both un-convergence and uaw-convergence
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can only be checked at a quasi-interior point (see respectively, Proposition 7 and

Proposition 9, Section 3.3). In what follows we show that up-convergence can be

evaluated at a p-unit, but first we recall useful characterizations of order convergence.

For any order bounded net (xα) in an order complete vector lattice X , xα
o−→ x iff

lim sup
α
|xα − x| = infα supβ≥α|xβ − x| = 0; see for example [21, Remark 2.2].

Moreover, for each net (xα) in a vector lattice X , xα
o−→ 0 in X iff xα

o−→ 0 in Xδ (the

order completion of X); see, Lemma 1 in Chapter 2.

Theorem 9. Let (X, p,E) be an LNVL and e ∈ X+ be a p-unit. Then xα
up−→ 0 iff

p(|xα| ∧ e)
o−→ 0 in E.

Proof. The “only if” part is trivial. For the “if” part, let u ∈ X+, then

|xα| ∧ u ≤ |xα| ∧ (u− u ∧ ne) + |xα| ∧ (u ∧ ne) ≤ (u− u ∧ ne) + n(|xα| ∧ e),

and so

p(|xα| ∧ u) ≤ p(u− u ∧ ne) + np(|xα| ∧ e)

holds in Eδ for any α and any n ∈ N. Hence

lim sup
α

p(|xα| ∧ u) ≤ p(u− u ∧ ne) + n lim sup
α

p(|xα| ∧ e)

holds in Eδ for all n ∈ N. Since p(|xα| ∧ e)
o−→ 0 in E, then p(|xα| ∧ e)

o−→ 0 in Eδ,

and so lim sup
α

p(|xα| ∧ e) = 0 in Eδ. Thus

lim sup
α

p(|xα| ∧ u) ≤ p(u− u ∧ ne)

holds in Eδ for all n ∈ N. Since e is a p-unit, we have that lim sup
α

p(|xα| ∧ u) = 0

in Eδ or p(|xα| ∧ u)
o−→ 0 in Eδ. It follows from Lemma 1 that p(|xα| ∧ u)

o−→ 0 in E

and hence xα
up−→ 0.

5.1.4 up-Convergence and sublattices

Given an LNVL (X, p,E), a sublattice Y of X , and a net (yα) ⊆ Y . Then yα
up−→ 0

in Y has the meaning that

p(|yα| ∧ u)
o−→ 0 (∀u ∈ Y+).
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The following lemma is a p-version of Remark 2.7, Section 3.1.

Lemma 15. Let (X, p,E) be an LNVL, B be a projection band of X , and PB be the

corresponding band projection. If xα
up−→ x in X , then PB(xα)

up−→ PB(x) in both X

and B.

Proof. It is known that PB is a lattice homomorphism and 0 ≤ PB ≤ I . Since

|PB(xα) − PB(x)| = PB|xα − x| ≤ |xα − x|, then it follows easily that PB(xα)
up−→

PB(x) in both X and B.

A subset A of a vector lattice X is said to be uo-closed in X , if for any net (xα) ⊆ A

and x ∈ X with xα
uo−→x in X , one has x ∈ A.

Proposition 20. [21, Proposition 3.15] Let X be a vector lattice and Y a sublattice

of X . Then Y is uo-closed in X if and only if it is o-closed in X .

Let (X, p,E) be an LNVL and A be a subset of X . Then A is called up-closed in X

if, for any net (xα) in A that is up-convergent to x ∈ X , we have x ∈ A. Clearly,

every band is up-closed. We present a p-version of Proposition 20 with a similar

proof.

Proposition 21. LetX = (X, p,E) be an LNVL and Y be a sublattice ofX . Suppose

that either X is op-continuous or Y is a p-KB-space in its own right. Then Y is up-

closed in X iff it is p-closed in X .

Proof. Only the sufficiency requires a proof. Let Y be p-closed in X and (yα) be a

net in Y with yα
up−→ x ∈ X . Without loss of generality, we may assume (yα) ⊆ Y+

because the lattice operations in X are p-continuous. Note that, for every z ∈ X+,

|yα ∧ z − x ∧ z| ≤ |yα − x| ∧ z. So p(yα ∧ z − x ∧ z) ≤ p(|yα − x| ∧ z)
o−→ 0. In

particular, Y 3 yα ∧ y
p−→ x ∧ y in X for any y ∈ Y+. Since Y is p-closed, x ∧ y ∈ Y

for any y ∈ Y+. Since for any 0 ≤ z ∈ Y d and for any α, we have yα ∧ z = 0, then

|x ∧ z| = |yα ∧ z − x ∧ z| ≤ |yα − x| ∧ z
p−→ 0.
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Therefore x∧ z = 0, and hence x ∈ Y dd. Since Y dd is the band generated by Y in X ,

there is a net (zβ)β∈B in the ideal IY generated by Y such that 0 ≤ zβ ↑ x in X . Take

for every β an element wβ ∈ Y with zβ ≤ wβ . Then x ≥ wβ ∧ x ≥ zβ ∧ x = zβ ↑ x
in X , and so wβ ∧ x

o−→ x in X .

Case 1: IfX is op-continuous, then wβ∧x
p−→ x. Since wβ∧x ∈ Y and Y is p-closed,

we get x ∈ Y .

Case 2: Suppose Y is a p-KB-space in its own right. Let ∆ be the collection of

all finite subsets of the index set B. For each δ = {β1, . . . , βn} ∈ ∆ let yδ :=

(wβ1 ∨ . . . ∨ wβn) ∧ x. Clearly, yδ ∈ Y , 0 ≤ yδ ↑, and the net (yδ) is p-bounded in

Y . Since Y is a p-KB-space, then there is y0 ∈ Y such that yδ
p−→ y0 in Y and trivially

in X . Since (yδ) is monotone then it follows from Proposition 13 of Section 4.1 that

yδ ↑ y0 in X . Also, we have yδ
o−→x in X . Thus, x = y0 ∈ Y .

5.1.5 p-Almost order bounded sets

Recall again that a subset A in a normed lattice (X, ‖·‖) is said to be almost order

bounded if for any ε > 0, there is uε ∈ X+ such that
∥∥(|a|−uε)+

∥∥ =
∥∥|a|−uε∧|a|∥∥ ≤

ε for any a ∈ A. Similarly we have:

Definition 15. Given an LNVL (X, p,E). A subset A of X is called a p-almost

order bounded if, for any w ∈ E+, there is xw ∈ X+ such that p
(
(|a| − xw)+

)
=

p
(
|a| − xw ∧ |a|

)
≤ w for any a ∈ A.

It is clear that p-almost order boundedness notion in LNVLs is a generalization of

almost order boundedness in normed lattices. In the LNVL (X, |·|, X), a subset of X

is p-almost order bounded, iff it is order bounded in X .

The following result is a p-version of Remark 4.3, Section 3.3 and it is also similar to

Remark 2.4, Section 3.1.

Proposition 22. If (X, p,E) is an LNVL, (xα) is p-almost order bounded, and xα
up−→

x, then xα
p−→ x.

Proof. Assume (xα) is p-almost order bounded. Let w ∈ E+. Then there exists
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xw ∈ X+ satisfying

p(|xα| − |xα| ∧ xw) = p((|xα| − xw)+) ≤ w

for all α. Let zw := xw + |x|. Then

p(|xα − x| − |xα − x| ∧ zw) = p((|xα − x| − zw)+) ≤ p((|xα| − xw)+) ≤ w.

Hence, the net (|xα−x|) is also p-almost order bounded. But xα
up−→ x, so lim sup

α
p(|xα−

x| ∧ zw) = 0 in Eδ. Thus, for each α,

p(xα−x) = p(|xα−x|) ≤ p(|xα−x|−|xα−x|∧zw)+p(|xα−x|∧zw) ≤ w+p(|xα−x|∧zw)

Hence

lim sup
α

p(xα − x) ≤ w + lim sup
α

p(|xα − x| ∧ zw) ≤ w

holds in Eδ. But w ∈ E+ is arbitrary, so lim sup
α

p(xα − x) = 0 in Eδ. Therefore

p(xα − x)
o−→ 0 in Eδ, and so in E (see Lemma 1).

The following proposition is a p-version of Remark 2.5, Section 3.1.

Proposition 23. Given an op-continuous and p-complete LNVLX = (X, p,E). Then

every p-almost order bounded uo-Cauchy net is uo- and p-convergent to the same

limit.

Proof. Let (xα) be a p-almost order bounded uo-Cauchy net. Then the net (xα−xα′)
is p-almost order bounded and is uo-converges to 0. Since X is op-continuous, then

xα − xα′
up−→ 0 and, by Proposition 22, we get xα − xα′

p−→ 0. Thus (xα) is p-Cauchy,

and so is p-convergent. By Lemma 14 in Subsection 5.1.2 we get that (xα) is also

uo-convergent to its p-limit.

5.1.6 rup-Convergence

In this subsection, we introduce the notions of rup-convergence and of an rp-unit.

Recall that a net (xα)α∈A in a vector lattice X is relatively uniform convergent (or

ru-convergent, for short) to x ∈ X if there is y ∈ X+, such that, for any ε > 0, there

exists α0 ∈ A satisfying |xα − x| ≤ εy for any α ≥ α0, [32, Theorem 16.2]. In this

case we write xα
ru−→ x.
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Definition 16. Let (X, p,E) be an LNVL. A net (xα) ⊆ X is said to be relatively

unbounded p-convergent (rup-convergent) to x ∈ X if

p(|xα − x| ∧ u)
ru−→ 0 (∀u ∈ X+).

In this case we write xα
rup−−→ x.

Definition 17. Given an LNVL (X, p,E). A vector e ∈ X is called an rp-unit if, for

any x ∈ X+, we have p(x− x ∧ ne) ru−→ 0.

Obviously, every rp-unit is a p-unit. So, by Remark 8.1, Section 4.3, if e ∈ X 6= {0}
is an rp-unit then e > 0. But not every p-unit is an rp-unit.

Example 13. Let’s take X = (Cb(R), |·|, Cb(R)). Consider e = e(t) = e−|t|. If

f ∈ Cb(R) such that f ∧ e = 0 in Cb(R), then f = 0. Hence e is a weak unit for

Cb(R) or a p-unit for X = (Cb(R), |·|, Cb(R)). However, e is not an rp-unit. Indeed,

if 1 is the constant function on R, then 1− 1∧ ne ru−→ 0 in Cb(R) iff 1− 1∧ ne→ 0

uniformly in Cb(R). But ‖1−1∧ne‖∞ = 1 for all n ∈ N. So ‖1−1∧ne‖∞ 6→ 0 as

n→∞. Thus the sequence (1 ∧ ne)n∈N does not converge uniformly to 1 on Cb(R).

We have seen in Theorem 9, Subsection 5.1.3 that it is enough to check up-convergence

at a p-unit. A similar relation is included in the following result in the case of rup-

convergence and rp-unit.

Proposition 24. Let (X, p,E) be an LNVL with an rp-unit e. Then xα
rup−−→ 0 iff

p(|xα| ∧ e)
ru−→ 0.

Proof. The “only if” part is trivial. For the “if” part let u ∈ X+, then

|xα| ∧ u ≤ |xα| ∧ (u− u ∧ ne) + |xα| ∧ (u ∧ ne) ≤ (u− u ∧ ne) + n(|xα| ∧ e),

and so

p(|xα| ∧ u) ≤ p(u− u ∧ ne) + np(|xα| ∧ e) (5.2)

holds for any α and any n ∈ N.

Given ε > 0. Since e is an rp-unit, then there is y ∈ E+ and n0 ∈ N such that

p(u− u ∧ n0e) ≤
ε

2
y.
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It follows from p(|xα| ∧ e)
ru−→ 0 that there exists z ∈ E+ and α0 such that

p(|xα| ∧ e) ≤
ε

2n0

z

for any α ≥ α0. Take w := y + z, then from (5.2) we get

p(|xα| ∧ u) ≤ εw

for any α ≥ α0. Therefore p(|xα| ∧ u)
ru−→ 0.

Clearly, rup-convergence implies up-convergence, but the converse need not be true.

Example 14. Consider the LNVL (`∞, |·|, `∞) and the sequence (xn) in `∞, given by

xn =
∞∑
i=n

ei, where ei’s are the standard unit vectors in `∞.

• Clearly, xn
uo−→ 0 in `∞, and so xn

up−→ 0 in (`∞, |·|, `∞).

• We show (xn) is not rup-Cauchy sequence in (`∞, |·|, `∞), and so it is not rup-

convergent.

• Since 1 is a strong unit in `∞, then it is enough to show that |xn − xm| =

|xn − xm| ∧ 1 6
ru−→ 0 as n,m→∞.

• Obviously that for all n 6= m, |xn − xm| 6≤ 1
2
1.

• If |xn − xm|
ru−→ 0, then there exists 0 ≤ u ∈ `∞ such that for all ε > 0 there is

nε ∈ N satisfying |xn − xm| ≤ εu for each m > n ≥ nε.

• Since 1 is a strong unit in `∞, then there is λ > 0 such that u ≤ λ1.

• Take ε0 = 1
2λ

> 0, then there is n0 ∈ N such that for every m > n ≥ n0,

|xn − xm| ≤ ε0u ≤ ε0λ1 = 1
2
1; a contradiction.

• Therefore the sequence (xn) can not be rup-convergent.

5.2 up-Regular sublattices

The up-convergence passes obviously to any sublattice of X . As it was remarked

in [11, p.3], in opposite to uo-convergence (see Theorem 1, Section 3.1), the un-

convergence does not pass even from regular sublattices. These two facts motivate

the following notion in LNVLs.
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Definition 18. Let (X, p,E) be an LNVL and Y be a sublattice of X . Then Y is

called up-regular if, for any net (yα) in Y , yα
up−→ 0 in Y implies yα

up−→ 0 in X .

Equivalently, Y is up-regular in X when yα
up−→ 0 in Y iff yα

up−→ 0 in X for any net

(yα) in Y .

It is clear that if Y is a regular sublattice of a vector lattice X , then Y is up-regular

in the LNVL (X, |·|, X); see Theorem 1, Section 3.1. The converse does not hold in

general.

Example 15. Let X = B([0, 1]) be the space of all real-valued bounded functions

on [0, 1] and Y = C[0, 1]. First of all X under the pointwise ordering (i.e., f ≤ g

in X iff f(t) ≤ g(t) for all t ∈ [0, 1]) is a vector lattice and if we equip X with the

∞-norm, then it becomes a Banach lattice.

We claim that the sublattice Y = (Y, |·|, Y ) is a up-regular sublattice of X =

(X, |·|, X). Let (fα) be a net in Y such that fα
up−→ 0 in Y . That is |fα| ∧ g

o−→ 0

in X for any g ∈ Y+. In particular, we have |fα| ∧ 1
o−→ 0 in X , where 1 denotes

the constant function one. Since 1 is a strong unit in X , then it is a p-unit for the

LNVL (X, |·|, X). It follows from Theorem 9 in Subsection 5.1.3 that fα
up−→ 0 in X .

However, the sublattice Y is not regular in X . Indeed, for each n ∈ N let fn be a

continous function on [0, 1] defined as:

• fn is zero on the intervals [0, 1
2
− 1

n+2
] and [1

2
+ 1

n+2
, 1],

• fn(1
2
) = 1,

• fn is linear on the intervals [1
2
− 1

n+2
, 1

2
] and [1

2
, 1

2
+ 1

n+2
].

Then fn ↓ 0 in C[0, 1] but fn ↓ χ 1
2

in B([0, 1]). So by Lemma 2, Section 3.1 we have

that Y is not regular in X .

Consider the sublattice c0 of `∞. Then (c0, ‖·‖∞,R) is not up-regular in the LNVL

(`∞, ‖·‖∞,R). Indeed, (en) is un-convergent in c0 but not in `∞. However, (c0, |·|, `∞)

is up-regular in the LNVL (`∞, |·|, `∞).
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5.2.1 Several basic results

We begin with the following result which is a p-version of Theorem 4, Section 3.3.

Theorem 10. Let Y be a sublattice of an LNVL X = (X, p,E).

1. If Y is majorizing in X , then Y is up-regular.

2. If Y is p-dense in X , then Y is up-regular.

3. If Y is a projection band in X , then Y is up-regular.

Proof. Let (yα) ⊆ Y and assume that yα
up−→ 0 in Y . Let 0 6= x ∈ X+.

1. If Y is majorizing in X , then there is y ∈ Y such that x ≤ y. It follows from

0 ≤ |yα| ∧ x ≤ |yα| ∧ y
p−→ 0,

that yα
up−→ 0 in X .

2. If Y is p-dense inX , then for 0 6= u ∈ p(X) there is y ∈ Y such that p(x−y) ≤
u. Since

|yα| ∧ x ≤ |yα| ∧ |x− y|+ |yα| ∧ |y|,

then

p(|yα| ∧ x) ≤ p(|yα| ∧ |x− y|) + p(|yα| ∧ |y|) ≤ u+ p(|yα| ∧ |y|).

But 0 6= u ∈ p(X) is arbitrary and |yα| ∧ |y|
p−→ 0, then |yα| ∧ x

p−→ 0. Hence

yα
up−→ 0 in X .

3. Suppose that Y is a projection band in X , then X = Y ⊕Y d. Thus x = x1 +x2

with x1 ∈ Y+ and x1 ∈ Y d
+. Since |yα| ∧ x2 = 0, we have

p(|yα| ∧ x) = p(|yα| ∧ (x1 + x2)) = p(|yα| ∧ x1)
o−→ 0.

Hence yα
up−→ 0 in X .
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The following result deals with a particular case of Example 11, Section 4.2 and is

motivated by Proposition 10, Section 3.3.

Theorem 11. Let X be a vector lattice and Y = X∼n be the order continuous dual.

Assume X∼n separates the points of X . Define p : X → RY by p(x)[y] = |y|(|x|).

Then any ideal of X is up-regular in (X, p,RY ).

Proof. Let I be an ideal of X and (xα) be a net in I such that xα
up−→ 0 in I . We

show xα
up−→ 0 in X . By Example 12 in Subsection 5.1.1, this is equivalent to show

|xα| ∧ u
|σ|(X,Y )−−−−−→ 0 for any u ∈ X+. First note that if v ∈ Id, then |xα| ∧ |v| = 0, and

so, for any w ∈ (I⊕ Id)+, we have |xα| ∧w
|σ|(X,Y )−−−−−→ 0. Note also that I⊕ Id is order

dense (see, e.g., [3, Theorem 1.36.(2)]). Let u ∈ X+ and y ∈ Y , then there is a net

(wβ) in (I ⊕ Id)+ such that wβ ↑ u, and so |y|(wβ ∧ u) ↑ |y|(u). Given ε > 0. There

is β0 such that

|y|(u)− |y|(wβ0 ∧ u) <
ε

2
.

Also, there is α0 such that

|y|(|xα| ∧ wβ0) <
ε

2

for all α ≥ α0. Taking into account the Birkhoff’s inequality |a∧ c− b∧ c| ≤ |a− b|
(see, e.g., [3, Theorem 1.9.(2)]), we have for any α ≥ α0,

|y|(|xα| ∧ u) = |y|(|xα| ∧ u)− |y|(|xα| ∧ u ∧ wβ0) + |y|(|xα| ∧ u ∧ wβ0)

≤ |y|(u)− |y|(wβ0 ∧ u) + |y|(|xα| ∧ wβ0) < ε.

Since u ∈ X+ and y ∈ Y are arbitrary, we get |xα| ∧ u
|σ|(X,Y )−−−−−→ 0 for any u ∈ X+,

and this completes the proof.

Next we give an extension of Proposition 11, Section 3.3.

Corollary 8. Let X be a vector lattice and Y = X∼n . Assume that X∼n separates the

points of X . Define p : X → RY by p(x)[y] = |y|(|x|). Then any sublattice of X is

up-regular in the LNVL (X, p,RY ).

Proof. Let X0 be a sublattice of X and (xα) be a net in X0 such that xα
up−→ 0 in X0.

Let IX0 be the ideal generated by X0 in X . Then X0 is majorizing in IX0 and, by

Theorem 10.1, we get xα
up−→ 0 in IX0 . Theorem 11 implies that xα

up−→ 0 in X .
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5.2.2 Order completion

In this subsection we discuss the interactions ofup-regularity between the vector lat-

tice and its order completion.

Proposition 25. Let (Xδ, p, E) be an LNVL, where Xδ is the order completion of

X . For any sublattice Y of X , if Y δ is up-regular in Xδ, then Y is up-regular in

X = (X, p|X , E).

Proof. Take a net (yα) ⊆ Y such that yα
up−→ 0 in Y . Then p(|yα| ∧ u)

o−→ 0 for all

u ∈ Y+. Let 0 ≤ w ∈ Y δ and, since Y is majorizing in Y δ, there exists y ∈ Y such

that 0 ≤ w ≤ y. Therefore we obtain yα
up−→ 0 in Y δ. Since Y δ is up-regular in Xδ,

the net (yα) is up-convergent to 0 in Xδ, and so in X .

Proposition 26. Let (Xδ, p, E) be an LNVL. For any sublattice Y ⊆ X , if Y is

up-regular in X , then Y is up-regular in Xδ.

Proof. Suppose Y is up-regular in X . Since X majorizes Xδ then it follows from

Theorem 10.1 in Subsection 5.2.1 that X is up-regular in Xδ. Hence, Y is up-regular

in Xδ.

Theorem 12. Let (X, p,E) be an LNVL. Define pδL : Xδ → Eδ and pδU : Xδ → Eδ

as follows: pδL(z) = sup
0≤x≤|z|

p(x) and pδU(z) = inf
|z|≤x

p(x) for all z ∈ Xδ (clearly, both

pδU and pδL are extensions of p). Then:

1. pδL is a monotone Eδ-valued norm;

2. pδU is a monotone Eδ-valued seminorm;

3. if X is op-continuous, then pδU is p-continuous (i.e., zγ ↓ 0 in Xδ implies

pδU(zγ) ↓ 0 in Eδ);

4. if X is op-continuous, then pδU = pδL.

Proof.
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1. Let 0 6= z ∈ Xδ. Since X is order dense in Xδ, there is x ∈ X such that

0 < x ≤ |z|, and so pδL(z) ≥ p(x) > 0.

Let 0 6= λ ∈ R and z ∈ Xδ, then

pδL(λz) = sup
0≤x≤|λz|

p(x) = sup
0≤ 1
|λ|x≤|z|

p(x) = |λ| sup
0≤ 1
|λ|x≤|z|

p(|λ|−1x) = |λ|pδL(z).

Let z, w ∈ Xδ, we show pδL(z+w) ≤ pδL(z)+pδL(w). Suppose 0 ≤ x ≤ |z+w|,
then 0 ≤ x ≤ |z| + |w|. By the Riesz decomposition property, there exist

x1, x2 ∈ X such that 0 ≤ x1 ≤ |z|, 0 ≤ x2 ≤ |w|, and x = x1 + x2. So

p(x) = p(x1 + x2) ≤ p(x1) + p(x2) ≤ pδL(z) + pδL(w).

Thus pδL(z + w) = sup
0≤x≤|z+w|

p(x) ≤ pδL(z) + pδL(w).

Now, we prove the monotonicity of the lattice norm pδL. If |z|≤|w| then for any

x ∈ X with 0 ≤ x ≤ |z|, we get 0 ≤ x ≤ |w|. So sup
0≤x≤|z|

p(x) ≤ sup
0≤x≤|w|

p(x)

or pδL(z) ≤ pδL(w).

2. Let 0 6= λ ∈ R and z ∈ Xδ, then

pδU(λz) = inf
|λz|≤x

p(x) = inf
|z|≤ 1

|λ|x
p(x) = |λ| inf

|z|≤ 1
|λ|x

p(|λ|−1x) = |λ|pδU(z).

Next we show that pδU satisfies the triangle inequality. Let z, w ∈ Xδ and

x1, x2 ∈ X be such that |z| ≤ x1 and |w| ≤ x2, then |z + w| ≤ |z| + |w| ≤
x1 + x2. So

pδU(z + w) = inf
|z+w|≤x

p(x) ≤ p(x1 + x2) ≤ p(x1) + p(x2).

Thus pδU(z + w) − p(x1) ≤ p(x2) for any x2 ∈ X with |w| ≤ x2. Hence

pδU(z + w) − p(x1) ≤ pδU(w) or pδU(z + w) − pδU(w) ≤ p(x1), which holds

for all x1 ∈ X with |z| ≤ x1. Therefore pδU(z + w) − pδU(w) ≤ pδU(z) or

pδU(z + w) ≤ pδU(w) + pδU(z).

Finally we check that pδU is monotone. If |z| ≤ |w|, then for any x ∈ X with

0 < |w| ≤ x, we have |z| ≤ x. So inf
|w|≤x

p(x) ≥ inf
|z|≤x

p(x) or pδU(z) ≤ pδU(w).

3. Assume zγ ↓ 0 in Xδ. Let A = {a ∈ X : zγ ≤ a for some γ}. Then inf A = 0.

Indeed, if 0 ≤ x ≤ a for all a ∈ A, then 0 ≤ x ≤ Aγ for all γ, where
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Aγ = {a ∈ X : zγ ≤ a}. So, by [21, Lemma 2.7], we have x ≤ zγ . Thus

x = 0.

Clearly, A dominates the net (zγ). We claim that A is directed downward. Let

a1, a2 ∈ A then there are γ1 and γ2 such that zγ1 ≤ a1 and zγ2 ≤ a2. So there

is γ3 with γ3 ≥ γ1 and γ3 ≥ γ2. Hence zγ3 ≤ zγ1 and zγ3 ≤ zγ2 . From which it

follows that zγ3 ≤ zγ1∧zγ2 ≤ a1∧a2, and so a1∧a2 ∈ A with a1∧a2 ≤ a1 and

a1 ∧ a2 ≤ a2. Therefore A ↓ 0. Since X is op-continuous, then p(A) ↓ 0 and,

by the definition of pδU , we get that p(A) dominates the net (pδUzγ). Therefore

pδUzγ ↓ 0.

4. Let z ∈ Xδ, then |z| = sup{x ∈ X : 0 ≤ x ≤ |z|}. By item 3 above, we have

pδU is p-continuous. Thus,

pδU(z) = pδU(|z|) = sup{pδU(x) : x ∈ X, 0 ≤ x ≤ |z|}

= sup{p(x) : x ∈ X, 0 ≤ x ≤ |z|} = pδL(z).

Proposition 27. Let (X, p,E) be an LNVL. Then, for every net (xα) in X ,

xα
up−→ 0 in (X, p,E) iff xα

up−→ 0 in (Xδ, pδ, Eδ),

where pδ = pδL.

Proof. (⇒). Assume xα
up−→ 0 in (X, p,E). Then p(|xα| ∧ x)

o−→ 0 in E for all

x ∈ X+, and so p(|xα| ∧ x)
o−→ 0 in Eδ for all x ∈ X+, by Lemma 1, Chapter 2.

Hence

pδ(|xα| ∧ x)
o−→ 0 (5.3)

in Eδ for all x ∈ X+. Let u ∈ Xδ
+, then there exists xu ∈ X+ such that u ≤ xu, as

X majorizes Xδ. From (5.3) it follows that pδ(|xα| ∧ u)
o−→ 0 in Eδ. Since u ∈ Xδ

+ is

arbitrary, then xα
up−→ 0 in (Xδ, pδ, Eδ).

(⇐). Suppose (xα) in X such that xα
up−→ 0 in (Xδ, pδ, Eδ). Then for all u ∈ Xδ

+,

pδ(|xα| ∧u)
o−→ 0 in Eδ. In particular, for all x ∈ X+, p(|xα| ∧x) = pδ(|xα| ∧x)

o−→ 0

in Eδ. Again, by lemma 1 in Chapter 2, we get p(|xα| ∧ x)
o−→ 0 in E for all x ∈ X+.

Hence xα
up−→ 0 in (X, p,E).
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CHAPTER 6

MIXED NORMED SPACES

Mixed norms provide an efficient tool to study several classes of operators; see for

example [28, Chapter 7]. In this short chapter, we exploit mixed-normed spaces to

generalize many results mentioned in Remark 2, Section 3.1 and Remark 4, Section

3.3.

6.1 Mixed norms

In this section, we study LNVLs with mixed lattice norms. Let (X, p,E) be an LNS

and (E, ‖·‖E) be a normed lattice. The mixed norm on X is defined by

p-‖x‖E = ‖p(x)‖E (∀x ∈ X).

In this case, the normed space (X, p-‖·‖E) is called a mixed-normed space (see for

example [28, 7.1.1, p.292])

The next proposition shows relations of LNVLs with their corresponding mixed-

normed spaces.

Proposition 28. Let (X, p,E) be an LNVL, (E, ‖·‖E) be a Banach lattice, and (X, p-‖·‖E)

be the mixed-normed space. The following statements hold:

1. if (X, p,E) is op-continuous and E is order continuous, then (X, p-‖·‖E) is

order continuous normed lattice;

2. if a subset Y of X is p-bounded (respectively, p-dense) in (X, p,E), then Y is

norm bounded (respectively, norm dense) in (X, p-‖·‖E);
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3. if e ∈ X is a p-unit and E is σ-order continuous, then e is a quasi-interior

point of (X, p-‖·‖E);

4. if (X, p,E) is a p-Fatou space and E is order continuous, then p-‖·‖E is a

Fatou norm, [39, p.387];

5. if Y is a p-almost order bounded subset of X , then Y is almost order bounded

in (X, p-‖·‖E).

Proof.

1. Assume xα ↓ 0 inX . Then p(xα) ↓ 0 inE. Since (E, ‖·‖E) is order continuous,

we get ‖p(xα)‖E ↓ 0 or p-‖xα‖E ↓ 0.

2. Let Y be a p-bounded subset of X . There is e ∈ E+ so that p(y) ≤ e for all

y ∈ Y . So, ‖p(y)‖E ≤ ‖e‖E <∞ for all y ∈ Y or sup
y∈Y

p-‖y‖E <∞. Hence Y

is norm bounded in (X, p-‖·‖E).

Now suppose Y is p-dense. Given ε > 0. Let x ∈ X . There is 0 6= u ∈ p(X)

such that ‖u‖E = ε. Thus, there exists a vector y ∈ Y such that p(x− y) ≤ u.

So ‖p(x− y)‖E ≤ ‖u‖E or p-‖x− y‖E ≤ ε.

3. Let x ∈ X+. Since e is a p-unit, then it follows that p(x− x∧ ne) o−→ 0 in E as

n→∞. The σ-order continuity of E implies that ‖p(x− x ∧ ne)‖E → 0, and

so p-‖x− x ∧ ne‖E → 0. Thus e is a quasi-interior point of (X, p-‖·‖E).

4. Suppose 0 ≤ xα ↑ x in X . Since (X, p,E) is a p-Fatou space then p(xα) ↑
p(x). Now the order continuity of E assures that ‖p(xα)‖E ↑ ‖p(x)‖E , and so

p-‖xα‖E ↑ p-‖x‖E .

5. Given ε > 0. There is w ∈ E+ with ‖w‖E = ε. Since Y is a p-almost order

bounded subset of X then there exists x0 ∈ X+ such that p(|y| − |y| ∧ x0) ≤ w

for all y ∈ Y . From which it follows that p-
∥∥|y| − |y| ∧ x0

∥∥
E
≤ ‖w‖E = ε.

Hence Y is almost order bounded in (X, p-‖·‖E).

Theorem 13. Let (X, p,E) and (E,m, F ) be two p-KB-spaces. Then the LNVL

(X,m ◦ p, F ) is also a p-KB-space.
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Proof. Let 0 ≤ xα ↑ and m
(
p(xα)

)
≤ g ∈ F . Since 0 ≤ p(xα) ↑ and p-bounded

in (E,m, F ) which is a p-KB-space, then there exists y ∈ E such that m
(
p(xα) −

y)
) o−→ 0 in F . Hence p(xα) ↑ y. Thus the net (xα) is increasing and p-bounded.

Since (X, p,E) is a p-KB-space, then there exists x ∈ X such that p(xα− x)
o−→ 0 in

E. From Corollary 7, Section 4.2 we know that any p-KB-space is op-continuous. In

particular, (E,m, F ) is op-continuous, and so m
(
p(xα − x)

) o−→ 0; i.e., m ◦ p(xα −
x)

o−→ 0. Thus, (X,m ◦ p, F ) is a p-KB-space.

Corollary 9. Let (X, p,E) be a p-KB-space and (E, ‖·‖E) be a KB-space. Then

(X, p-‖·‖E) is a KB-space.

The following well-known technical lemma is a particular case of Lemma 14, Sub-

section 5.1.2.

Lemma 16. Given a Banach lattice (X, ‖·‖). If xα
‖·‖−→ x and (xα) is order Cauchy,

then xα
o−→ x.

Recall that a Banach lattice is called un-complete if every un-Cauchy net is un-

convergent, [25, p. 270].

Theorem 14. Let (X, p,E) be an LNVL and (E, ‖·‖E) be an order continuous Ba-

nach lattice. If (X, p-‖·‖E) is a un-complete Banach lattice, then X is up-complete.

Proof. Let (xα) be a up-Cauchy net inX . So, for every u ∈ X+, p(|xα−xβ|∧u)
o−→ 0.

Since E is order continuous, then for every u ∈ X+, ‖p(|xα − xβ| ∧ u)‖E → 0 or

p-
∥∥|xα − xβ| ∧ u∥∥E → 0 for each u ∈ X+; i.e., (xα) is un-Cauchy in (X, p-‖·‖E).

Since (X, p-‖·‖E) is un-complete, then there exists x ∈ X such that xα
un−→ x in

(X, p-‖·‖E). That is, for any u ∈ X+, ‖p(|xα − x| ∧ u)‖E → 0. Next we show the

net (p(|xα − x| ∧ u)) is order Cauchy in E. Indeed,

∣∣p(|xα−x|∧u)−p(|xβ−x|∧u)
∣∣ ≤ p(

∣∣|xα−x|∧u−|xβ−x|∧u∣∣) ≤ p(|xα−xβ|∧u)
o−→ 0.

Now, Lemma 16 above, implies that p(|xα − x| ∧ u)
o−→ 0.
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6.2 up-Null nets and up-null sequences in mixed-normed spaces

The following theorem is a p-version of Remark 4.4, Section 3.3 and a generalization

of Remark 2.6 in Section 3.1 as we take (X, p,E) = (X, ‖·‖,R).

Theorem 15. LetX = (X, p,E) be an op-continuous and p-complete LNVL, (E, ‖·‖E)

an order continuous Banach lattice, and X 3 xα
up−→ 0. Then there exists an

increasing sequence (αk) of indices and a disjoint sequence (dk) in X such that

(xαk − dk)
p−→ 0 as k →∞.

Proof. Consider the mixed norm p-‖x‖E = ‖p(x)‖E . Since p(|xα| ∧ u)
o−→ 0 for all

u ∈ X+ and (E, ‖·‖E) is order continuous, then p-‖|xα| ∧ u‖E = ‖p(|xα| ∧ u)‖E →
0 that means xα

un−→ 0 in (X, p-‖·‖E). By Remark 4.4, Section 3.3, there exists

an increasing sequence (αn) of indices and a disjoint sequence (dn) in X such that

p-‖xαn − dn‖E → 0. It follows from [28, 7.1.3 (1), p. 294] that (X, p-‖·‖E) is a

Banach lattice. So, by [37, Theorem VII.2.1] there is a further subsequence (αnk)

such that |xαnk − dnk |
o−→ 0 in X . By op-continuity of X , we get p(xαnk − dnk)

o−→
0.

The next corollary is a p-version of Remark 4.5, Section 3.3.

Corollary 10. Let (X, p,E) be an op-continuous and p-complete LNVL, E be an

order continuous Banach lattice, and X 3 xα
up−→ 0. Then there is an increasing

sequence (αk) of indices such that xαk
up−→ 0.

Proof. Let (αk) and (dk) be as in Theorem 15 above. Since the sequence (dk) is

disjoint, then dk
uo−→ 0 by [21, Corollary 3.6]. As X is op-continuous, then dk

up−→ 0.

Since

p(|xαk − dk| ∧ u) ≤ p(xαk − dk)
o−→ 0 (∀u ∈ X+),

then xαk − dk
up−→ 0. Since dk

up−→ 0, then xαk
up−→ 0.

Next proposition extends Remark 4.6 in Section 3.3 to LNVLs.

Proposition 29. Let (X, p,E) be a p-complete LNVL, (E, ‖·‖E) be an order contin-

uous Banach lattice, and X 3 xn
up−→ 0. Then there exist a subsequence (xnk) of (xn)

such that xnk
uo−→ 0 as k →∞.
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Proof. Suppose xn
up−→ 0, then for all u ∈ X+ p(|xn| ∧ u)

o−→ 0, and so ‖p(|xn| ∧
u)‖E → 0 as E is order continuous. Thus |xn| ∧ u

p-‖·‖E−−−→ 0; i.e., xn
un−→ 0

in (X, p-‖·‖E). It follows from [28, 7.1.2, p. 293] that the mixed-normed space

(X, p-‖·‖E) is a Banach lattice, and so by Remark 4.6 in Section 3.3 there is a subse-

quence (xnk) of (xn) such that xnk
uo−→ 0 as k →∞.

Next result is a p-version of Remark 4.7, Section 3.3.

Proposition 30. Let X = (X, p,E) be an op-continuous and p-complete LNVL such

that (E, ‖·‖E) is an order continuous atomic Banach lattice. Then a sequence in X is

up-null iff every subsequence has a further subsequence which uo-converges to zero.

Proof. The forward implication follows from Proposition 29. Conversely, let (xn) be

a sequence in X , and assume that xn 6
up−→ 0. Then, by Corollary 1 in Section 3.1,

there is an atom a ∈ E+, u ∈ X+, ε0 > 0 and a subsequence (xnk) of (xn) satisfying

fa
(
p(|xnk | ∧ u)

)
≥ ε0 for all k, where fa denotes the biorthogonal functional corre-

sponding to a. By the hypothesis, there exists a further subsequence (xnkj ) of (xnk)

which uo-converges to zero. By the op-continuity of X , we get p(|xnkj | ∧ u)
o−→ 0,

and so fa
(
p(|xnkj | ∧ u)

)
→ 0, which is a contradiction.

Our last result is a p-version of Remark 4.8, Section 3.3.

Proposition 31. Let (X, p,E) be an op-continuous p-complete LNVL and (E, ‖·‖E)

be an order continuous Banach lattice. If X is atomic and (xn) is an order bounded

sequence such that xn
p−→ 0 in X , then xn

o−→ 0.

Proof. The mixed-normed space (X, p-‖·‖E) is an atomic order continuous Banach

lattice such that xn
p-‖·‖E−−−→ 0, and so xn

o−→ 0 by Remark 4.8, Section 3.3.
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