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Abstract 

In this thesis we deal with finite fuzzy Markov chains in two ways. 

First, we replace the uncertainty in any transition probability of a crisp 

transition matrix by a fuzzy number. In this case, we were able under 

certain conditions to prove the uniqueness of the limit of 2 × 2 matrix 

powers. Secondly, the transition matrix represents a fuzzy relation on a 

finite state space. Here, we were able to place some conditions on 𝑛 × 𝑛 

fuzzy transition matrices to have the ergodic behavior.  
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 الملخص

أولاً  استبدنىا كم احتمال . في هذي الأطزوحت درسىا سلاسم ماركىف انضبابيت انمىتهيت بطزيقتيه

اوتقاني غيز مؤكد في انمصفىفت الاوتقانيت انلاضبابيت بعدد ضبابي، وفي هذي انحانت أثبتىا تحت 

2شزوط معيىت أن وهايت قىي انمصفىفت انمزبعت مه انحجم  × ثاوياً  انمصفىفت الاوتقانيت .  وحيدة2

تمثم علاقت ضبابيت عهً فضاء مىتهي، حيث أثبتىا ضمه شزوط معيىت أن وهايت قىي انمصفىفت 

𝑛مه انحجم  × 𝑛تكىن مىجىدة وهي عبارة عه مصفىفت جميع صفىفها متماثهت  . 
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Introduction 

Finite Fuzzy Markov chains  and their applications have been widely studied in 

the literature in the last decades [1-3], [6], [8], [9-10], [12], [15-17], [19-22], [24], [27], 

[30]. In [2] and [3], Avrachenkov and Sanchez used the concept of greatest eigen fuzzy 

set, which was first defined in [25] and [26] by Sanchez, to find the stationary solution 

of ergodic fuzzy Markov chains. In [12], Garcia (et al.) have done a simulation study on 

fuzzy Markov chains from which they have shown the non-ergodicity of a wide set of 

fuzzy Markov chains. In [27], Sujatha (et al.) studied the limit behavior of cyclic non-

homogeneous fuzzy Markov chains. Bellman and Zadeh were the first who considered 

stochastic systems in a fuzzy environment [4]. In [15], the fuzzy probabilities determine 

the elements of the transition matrix as fuzzy subsets of  0, 1  where the extension 

principle to find powers of the transition matrix was used.  

Finite fuzzy Markov chains have many advantages over classical Markov chains 

due to its reality. In real situations, finite fuzzy Markov chains solve the vague in 

different ways, but due to lack of information, the state of the process may be not 

completely known.  Also, in many cases the transition probabilities of a transition 

matrix of a Markov chain may be   estimated. In this case, results in “uncertainty” can 

be modeled using fuzzy numbers. In such situations, finite fuzzy Markov chains are 

considered to be very important tools. 

Finite Fuzzy Markov chains have many applications including the analysis of 

internet glance behavior, image segmentation, decision-making, calculating effective 

processor power, multitemporal image analysis, synthetic aperture radar (SAR) images, 
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cascade multitemporal classification, modeling and forecasting credit behavior 

dynamics of credit card users, multispectral image segmentation, describing both 

determined and random behavior of complex dynamic plants, individual demand 

forecasting, and stochastic dynamic programming (SDP) formulations for reservoir 

operation [1], [8], [9-10], [16], [19-22], [24].  

In chapter one of the thesis, we introduce the concept of fuzzy sets, operations 

on fuzzy sets, fuzzy relations, alpha cuts,  convex fuzzy sets, fuzzy numbers and 

operations on them with concentration on triangular and trapezoidal fuzzy numbers. In 

the last section of chapter one, we define a new fuzzy number. 

 

 General review of Markov chains theory, including classification of chains, 

main ergodic theorems are discussed in chapter two. 

 

In chapter three, the restricted fuzzy matrix multiplication is defined and is used 

to find the limit of regular finite transition matrices whose uncertain transition 

probabilities are modeled by fuzzy numbers. Under certain conditions, the uniqueness 

of the limit of powers of 2 × 2 regular fuzzy transition matrices in the case of triangular, 

trapezoidal, and a special fuzzy number is also proved in chapter three. 

 

In chapter four, a comparison through examples between fuzzy and crisp 

Markov chains is introduced. Then, we discuss the ergodicity of finite fuzzy Markov 

chains, and end up with a worth discussion on the ergodic behavior of a particular class 

of finite fuzzy Markov chains. 
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Chapter 1 

Fuzzy Sets and Fuzzy Numbers 

 

This chapter consists of six sections. In sections 1.1-1.5 we give the definitions 

of  fuzzy sets, operations on fuzzy sets, fuzzy relations, alpha cuts, convex fuzzy sets,  

triangular and trapezoidal fuzzy numbers [7], [18], [31], [32]. In Section 1.6 we define a 

new fuzzy number and we study its properties. 

1.1 Fuzzy Sets 

 Fuzzy set theory, dealing precisely with imprecision and ambiguity, was first 

introduced by Lotfi A. Zadeh in his well-known paper entitled "Fuzzy Sets" in 1965 

[31]. In the classical set theory, an element of the universe either belongs or does        

not belong to the set, and this is represented by the characteristic function,                             

𝑓𝐴 𝑥 =  
1      𝑖𝑓 𝑥 ∈ 𝐴
0      𝑖𝑓 𝑥 ∉ 𝐴

 . A fuzzy set is a generalization of a set in the usual sense. It 

allows for each element in the universe of discourse to take a value in the closed interval 

[0,1].  

Definition 1.1.1([7] pages 7 and 8, [31] page 339): If Ω is a nonempty set, then a fuzzy 

subset 𝐴  of Ω is defined by its membership function, written 𝐴  𝑥 , which produces 

values in [0,1] for all 𝑥 in Ω. So, 𝐴  𝑥  is a function that maps Ω into [0,1]. 𝐴  𝑥  is the 

grade of membership of 𝑥 in 𝐴 . We have specified a fuzzy set from a set by placing a 

bar over a letter. The term crisp means not fuzzy, so a crisp set is a set in the usual sense.  
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Notation 1.1.2 ([18] page 9, [32] page 12): If 𝐴  is a fuzzy set, we denote the 

membership function in Ω by 𝑓𝐴  𝑥  or 𝜇𝐴  𝑥 , 𝑥 ∈ Ω. 

Remark 1.1.3 ([31] page 339): The closer the value of  𝐴  𝑥  to unity, the higher the 

grade of membership of 𝑥 in  𝐴 . 

 

Remark 1.1.4 ([18] page 9, [32] pages 12 and 13): If 𝐴  is a fuzzy set in 𝑋, then there 

are different ways of denoting 𝐴  as an example: 

1.  A fuzzy set 𝐴  in 𝑋 may be viewed as a set of ordered pairs 𝐴 =    𝑥, 𝐴  𝑥   𝑥 ∈

𝑋. 

2. A fuzzy set 𝐴  is represented solely by stating its membership function 

3. If 𝑋 is countable then  

𝐴 = 𝜇𝐴  𝑥1 𝑥1 + 𝜇𝐴  𝑥2 𝑥2 + 𝜇𝐴  𝑥3 𝑥3 + ⋯ =  𝜇𝐴  𝑥𝑖 𝑥𝑖 𝑖 ,                        

here " + " denotes the union rather than the arithmetic sum, usually 0 𝑥  terms are not 

taken into account in this representation. Also, if 𝑋 is a continuous set then  

𝐴 = ∫ 𝜇𝐴  𝑥 𝑥 
𝑋

. 

 

Example 1.1.5 ([32] page 12): 𝐴 =“real numbers close to 10”  

𝐴 =   𝑥, 𝜇𝐴  𝑥    𝜇𝐴  𝑥 =  1 +  𝑥 − 10 2 −1, 𝑥 ∈ ℝ  . 
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Example 1.1.6 ([32] page 12): 𝐴 =“real numbers considerably larger than 10”       

𝐴  𝑥 =  
0                                    , 𝑥 ≤ 10
 1 +  𝑥 − 10 −2 −1 , 𝑥 > 10

  

 

Example 1.1.7 ([32] page 13): 𝐴 =“integers close to 10” 

𝐴 = 0.1 7 + 0.5 8 + 0.8 9 + 1 10 + 0.8 11 + 0.5 12 + 0.1 13 . 

 

Example 1.1.8 ([32] page 13): 𝐴 =“real numbers close to 10”, 

𝐴 =  
1

1 +  𝑥 − 10 2
𝑥 

ℝ

 

  

1.2 Operations on Fuzzy Sets and Fuzzy Relations 

In this section, we list several definitions involving fuzzy sets which are obvious 

extensions of the corresponding definitions for sets in their usual sense. 

Definition 1.2.1 ([31] page 340): A fuzzy set is empty if and only if its membership 

function is identically zero on Ω. 

 

Definition 1.2.2 ([31] page 340): Two fuzzy sets 𝐴  and 𝐵  are equal, written 𝐴 = 𝐵 , if 

and only if  𝐴  𝑥 = 𝐵  𝑥  for all 𝑥 in Ω. 
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Definition 1.2.3 ([31] page 340): The complement of a fuzzy set 𝐴  is denoted by 𝐴
𝑐
 and 

is defined by 𝐴
𝑐
 𝑥 = 1 − 𝐴  𝑥  for all 𝑥 in Ω. 

 

Definition 1.2.4 ([31] page 340): 𝐴  is contained in 𝐵  (or, equivalently, 𝐴  is a subset of 

𝐵 , or 𝐴  is smaller than or equal to 𝐵 ) if and only if 𝐴  𝑥 ≤ 𝐵  𝑥  for all 𝑥 in Ω. In 

symbols   A ⊂ B ⟺ 𝐴  𝑥 ≤ 𝐵  𝑥 . 

 

Definition 1.2.5 ([31] page 340): The union of two fuzzy sets 𝐴  and 𝐵  with respective 

membership functions  𝐴  𝑥   and  𝐵  𝑥  is  a fuzzy set  𝐶 ,  written as   𝐶 = 𝐴 ∪ 𝐵 ,    

whose                 

membership function is 𝐶  𝑥 = 𝑚𝑎𝑥 𝐴  𝑥 , 𝐵  𝑥  , for all 𝑥 ∈ Ω. 

 

Definition 1.2.6 ([31] page 341): (Equivalent definition of the union of two fuzzy sets): 

The union of 𝐴  and 𝐵  is the smallest fuzzy set containing both 𝐴  and 𝐵 . More precisely, 

if 𝐷  is any fuzzy set which contains both 𝐴  and 𝐵 , then it also contains 𝐴 ∪ 𝐵 . 

Proof. Let 𝐶 = 𝐴 ∪ 𝐵 , then 𝐶  𝑥 = 𝑚𝑎𝑥 𝐴  𝑥 , 𝐵  𝑥  , so 𝐶  𝑥 ≥ 𝐴  𝑥  and 𝐶  𝑥 ≥

𝐵  𝑥 , i.e. 𝐶  contains both 𝐴  and 𝐵 . Let 𝐷  be any fuzzy set containing both 𝐴  and 𝐵 .   

We show that 𝐶 ⊂ 𝐷 . We have 𝐷  𝑥 ≥ 𝐴  𝑥  and 𝐷  𝑥 ≥ 𝐵  𝑥 . So                         

𝐷  𝑥 ≥ 𝑚𝑎𝑥 𝐴  𝑥 , 𝐵  𝑥  =  𝐶  𝑥 . Then, from the definition 𝐶 ⊂ 𝐷 . 
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Similarly, we give a definition of the intersection of two fuzzy sets in two 

equivalent ways. 

Definition 1.2.7 ([31] page 341): The intersection of two fuzzy sets 𝐴  and 𝐵  with 

respective membership functions 𝐴  𝑥  and 𝐵  𝑥  is a fuzzy set 𝐶 , written as 𝐶 = 𝐴 ∩ 𝐵 , 

whose membership function is 𝐶  𝑥 = 𝑚𝑖𝑛 𝐴  𝑥 , 𝐵  𝑥  , for all 𝑥 ∈ Ω. 

 

Definition 1.2.8 ([31] page 341): (Equivalent definition of the intersection of two fuzzy 

sets): The intersection of 𝐴  and 𝐵  is the largest fuzzy set which is contained in both 𝐴  

and 𝐵  More precisely, if 𝐷  is any fuzzy set which is contained in both 𝐴  and 𝐵 , then 𝐷  

is contained in 𝐴 ∩ 𝐵 . 

 

With the operations of union, intersection, and complementation defined above , it is 

easy to extend many of the basic identities which hold for sets in the usual sense to 

fuzzy sets. 

1.  𝐴 ∪ 𝐵  𝑐 = 𝐴
𝑐
∩ 𝐵

𝑐
.   

2.  𝐴 ∩ 𝐵  𝑐 = 𝐴
𝑐
∪ 𝐵

𝑐
. 

3. 𝐶 ∩  𝐴 ∪ 𝐵  =  𝐶 ∩ 𝐴  ∪  𝐶 ∩ 𝐵  . 

4. 𝐶 ∪  𝐴 ∩ 𝐵  =  𝐶 ∪ 𝐴  ∩  𝐶 ∪ 𝐵  . 

Those and similar identities can readily be established by showing the 

corresponding relations for the membership functions of 𝐴 , 𝐵  and 𝐶  ([31] page 342). 

De Morgan’s laws 

Distributive laws 
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Definition 1.2.9 ([31] page 345): A fuzzy relation in 𝑋 is a fuzzy set 𝐴  in the product 

space 𝑋 × 𝑋. 

 

Definition 1.2.10 ([31] page 346):  An 𝑛 −ary fuzzy relation in  𝑋  is a fuzzy set  𝐴   in 

the product space 𝑋 × 𝑋 × … × 𝑋   (𝑛 −times).  For such relations, the membership 

function is  

of the form 𝑓𝐴   𝑥1, … , 𝑥𝑛 , where 𝑥𝑖 ∈ 𝑋, 𝑖 = 1, … , 𝑛. 

 

Definition 1.2.11 ([31] page 346): The composition of two fuzzy relations 𝐴  and 𝐵  

denoted by 𝐵 ∘ 𝐴  is defined as a fuzzy relation in 𝑋 whose membership function is 

defined by  

𝑓𝐵 ∘𝐴  𝑥, 𝑦 = 𝑠𝑢𝑝𝑣min 𝑓𝐴  𝑥, 𝑣 , 𝑓𝐵 (𝑣, 𝑦) . 

 

1.3 Alpha Cuts and Convexity  

 Definition 1.3.1 ([7] page 10): An 𝛼 −cut of the fuzzy set 𝐴  in 𝑋, written as 𝐴  𝛼  or 𝐴 
𝛼  

is defined as  𝑥 ∈ 𝑋 𝐴 (𝑥) ≥ 𝛼  , for 0 < 𝛼 ≤ 1, where 𝐴 (𝑥) is the membership function 

of the fuzzy set 𝐴 . 

𝐴  0  is defined separately as the closure of the union of all the 𝐴  𝛼 , 0 < 𝛼 ≤ 1 [6]. 
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Remark ([7] page 10) 1.3.2: 𝐴  0  is called the support, and 𝐴  1  is called the core of 

the fuzzy set 𝐴 . 

 

Proposition 1.3.3: If 𝛼 ≥ 𝛼′  then 𝐴  𝛼 ⊆ 𝐴  𝛼′  , for 0 ≤ 𝛼, 𝛼′ ≤ 1. 

Proof.  

𝐴  0 =  𝐴  𝛼 

0<𝛼≤1

             
 

So, 𝐴  𝛼 ⊆ 𝐴  0  for 𝛼 ≥ 0. For, 𝛼 ≥ 𝛼′ > 0, let 𝑥 ∈ 𝐴  𝛼  then 𝐴 (𝑥) ≥ 𝛼. But 𝛼 ≥ 𝛼′ , 

so 𝐴 (𝑥) ≥ 𝛼′ . Hence, 𝑥 ∈ 𝐴  𝛼′  . Therefore, 𝐴  𝛼 ⊆ 𝐴  𝛼′  . 

 

Example 1.3.4: Consider the fuzzy set  

𝐴 = 0.1 7 + 0.5 8 + 0.8 9 + 1 10 + 0.8 11 + 0.5 12 + 0.1 13 . 

Then,  

𝐴  0.1 = 𝐴 
0.1 =  7,8,9,10,11,12,13 , 

𝐴  0.5 = 𝐴 
0.5 =  8,9,10,11,12 , 

𝐴  0.8 = 𝐴 
0.8 =  9,10,11 , 

𝐴  1 = 𝐴 
1 =  10 , 
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𝐴  0 = 𝐴 
0 =  7,8,9,10,11,12,13 . 

 

Definition 1.3.5: A set 𝐴 ⊆ ℝ𝑛  is convex if for each 𝑥1 and 𝑥2 in 𝐴, the linear 

combination 𝜆𝑥1 + (1 − 𝜆)𝑥2 is also in 𝐴 for 0 ≤ 𝜆 ≤ 1. 

 

Definition 1.3.6 ([31] page 347): A fuzzy set 𝐴  in ℝ𝑛  is convex if and only if all 

𝛼 −cuts of 𝐴 , 𝐴  𝛼 , are convex.  

 

Proposition 1.3.7 ([31] page 347): A fuzzy set 𝐴  in ℝ𝑛  is convex if and only if                                  

𝑓𝐴  𝜆𝑥1 + (1 − 𝜆)𝑥2 ≥ 𝑚𝑖𝑛 𝑓𝐴  𝑥1 ,  𝑓𝐴 (𝑥2) , for all 𝑥1 and 𝑥2 in ℝ𝑛  and all 𝜆 in 

[0, 1], where 𝑓𝐴  is the membership function of 𝐴  in ℝ𝑛 . 
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1.4 Fuzzy Numbers 

Definition 1.4.1 ([18] page 130): A fuzzy number 𝐴  is a fuzzy set satisfying the 

following  

conditions: 

1. 𝐴  is a convex fuzzy set. 

2. 𝐴  is a normalized fuzzy set, i.e. ∃𝑥 ∈ ℝ, such that 𝐴  𝑥 = 1. 

3. The membership function 𝐴 (𝑥) is piecewise continuous. 

4. 𝐴 (𝑥)  is defined on the real numbers, i.e. the domain of  𝐴  𝑥  is ℝ and its              

co-domain is [0, 1]. 

The convex condition is that 𝐴  𝛼 = [𝑎1(𝛼), 𝑎2(𝛼)], where 𝑎1(𝛼) and 𝑎2(𝛼) satisfy 

 𝛼′ < 𝛼 ⟹ ( 𝑎1 𝛼′ ≤ 𝑎1 𝛼 , 𝑎2 𝛼′ ≥ 𝑎2 𝛼  ). 

 

Let 𝐴  be a fuzzy set whose membership function given by: 

 

𝐴  𝑥 

 
 
 

 
 

0,             𝑥 ≤ 1
1

2
 𝑥 − 1 ,       1 ≤ 𝑥 ≤ 2

− 
1

2
 𝑥 − 3 ,     2 ≤ 𝑥 ≤ 3

0,             𝑥 ≥ 3
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𝐴  is not a fuzzy number since it is not normalized. 

  

Now we give the definition of the operations of scalar multiplication, addition, 

subtraction, multiplication, and division on fuzzy numbers by applying these operations 

on the 𝛼 −cut intervals. 

Definition 1.4.2 ([7] page 13): For any two fuzzy numbers 𝐴  and 𝐵 , let                      

𝐴 [α]  = [𝑎1 𝛼 , 𝑎2 𝛼 ] and 𝐵  α = [𝑏1 𝛼 , 𝑏2 𝛼 ], 0 ≤ 𝛼 ≤ 1, be the 𝛼 −cuts of 𝐴  and 

𝐵  respectively. Then, 

Figure 1.4.1 

Fuzzy Set 
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1. If 𝛽 ∈ ℝ then 𝛽𝐴  α = [β𝑎1 𝛼 , 𝛽𝑎2 𝛼 ] if 𝛽 > 0 and  

𝛽𝐴  α = [β𝑎2 𝛼 , 𝛽𝑎1 𝛼 ] if 𝛽 < 0.     

2. If 𝐶 = 𝐴 + 𝐵 ,then 

 𝐶  α = 𝐴  α + 𝐵  α = [𝑎1 𝛼 + 𝑏1 𝛼 , 𝑎2 𝛼 + 𝑏2 𝛼 ]    

3. If 𝐶 = 𝐴 − 𝐵 ,then 

𝐶  α = 𝐴  α − 𝐵  α = [𝑎1 𝛼 − 𝑏2 𝛼 , 𝑎2 𝛼 − 𝑏1 𝛼 ]  

4. If 𝐶 = 𝐴 ⋅ 𝐵 , then 

𝐶  α = 𝐴  α ⋅ 𝐵  α = [𝑚 𝛼 , 𝑀 𝛼 ] where 

𝑚 𝛼 = 𝑚𝑖𝑛 𝑎1 𝛼 𝑏1 𝛼 ,  𝑎1 𝛼 𝑏2 𝛼 , 𝑎2 𝛼 𝑏1 𝛼 , 𝑎2 𝛼 𝑏2 𝛼   and 

𝑀 𝛼 = 𝑚𝑎𝑥 𝑎1 𝛼 𝑏1 𝛼 ,  𝑎1 𝛼 𝑏2 𝛼 , 𝑎2 𝛼 𝑏1 𝛼 , 𝑎2 𝛼 𝑏2 𝛼  . 

5. If 𝐶 = 1/𝐴 , then 𝐶  α = [1/𝑎2 𝛼 , 1/ 𝑎1 𝛼 ], provided that 0 ∉ 𝐴  α , ∀α ∈

 0, 1 . 

6. If 𝐶 = 𝐴 /𝐵 , then 𝐶 = 𝐴 ⋅ (1/𝐵 ), provided that 0 ∉ 𝐵  α , ∀α ∈  0, 1 . 

 

Definition 1.4.3: Let 𝐴  be a fuzzy number with 𝐴 [α]  = [𝑎1 𝛼 , 𝑎2 𝛼 ] then we say that 

𝐴 ≥  𝑐 if 𝑎1 0 ≥  𝑐 and 𝐴 ≤  𝑑 if 𝑎2 0 ≤ 𝑑 where 𝑐, 𝑑 ∈ ℝ. 
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1.5 Triangular and Trapezoidal Fuzzy Numbers 

In this section we introduce two fuzzy numbers namely, triangular and 

trapezoidal fuzzy numbers and give their properties. 

Definition 1.5.1 ([18] page 137): A triangular fuzzy number 𝐴  is a fuzzy number 

defined by three real numbers 𝑎1, 𝑎2, and 𝑎3, with 𝑎1 < 𝑎2 < 𝑎3 and denoted by 

𝐴 = (𝑎1/𝑎2/𝑎3) or 𝐴 = (𝑎1, 𝑎2, 𝑎3), where its membership function is given by 

𝐴  𝑥 =

 
 
 

 
 

0,               𝑥 < 𝑎1
𝑥 − 𝑎1

𝑎2 − 𝑎1
,      𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎3 − 𝑥

𝑎3 − 𝑎2
,      𝑎2 ≤ 𝑥 ≤ 𝑎3

0,               𝑥 > 𝑎3

  

 If the sides of the triangular fuzzy number are curves other than straight lines, then we 

call it triangular shaped fuzzy number and is denoted by 𝐴 ≈ (𝑎1/𝑎2/𝑎3) ([7] page 9). 

 

𝐴 (𝑥) 

𝑥 Figure 1.5.1 

Triangular Fuzzy Number (−1/2/3) 
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Example 1.5.2 ([18] pages 137 and 138): Let 𝐴 = (𝑎1/𝑎2/𝑎3) be a triangular fuzzy 

number. If 𝐴 [α]  = [𝑎1 𝛼 , 𝑎3 𝛼 ], then 𝑎1 𝛼  and 𝑎3 𝛼  can be obtained  by solving 

𝑎1 𝛼 − 𝑎1

𝑎2 − 𝑎1
= 𝛼 

and, 

𝑎3 − 𝑎3 𝛼 

𝑎3 − 𝑎2
= 𝛼 

Therefore, 𝐴 [α]  = [ 𝑎2 − 𝑎1 𝛼 + 𝑎1, − 𝑎3 − 𝑎2 𝛼 + 𝑎3]. 

One can see that: 

1. The core of a triangular fuzzy number 𝐴 = (𝑎1/𝑎2/𝑎3) is 𝑎2 and the support is 

𝐴  0 = [𝑎1, 𝑎3] ([7] page 10). 

2. If 𝐴 ≈ (𝑎1/𝑎2/𝑎3) and 𝐴 [α]  = [𝑎1 𝛼 , 𝑎3 𝛼 ], then 𝑎1 𝛼  or 𝑎3 𝛼  are not 

linear  functions in 𝛼.  

 

Example 1.5.3 ([18] page 139): If 𝐴 = (𝑎1/𝑎2/𝑎3)  and 𝐵 = (𝑏1/𝑏2/𝑏3), be two 

triangular fuzzy numbers then, the 𝛼 −cuts of 𝐴  and 𝐵  are: 

𝐴  α =   𝑎2 − 𝑎1 𝛼 + 𝑎1, − 𝑎3 − 𝑎2 𝛼 + 𝑎3 , 

𝐵  α =   𝑏2 − 𝑏1 𝛼 + 𝑏1, − 𝑏3 − 𝑏2 𝛼 + 𝑏3 . 

So by Definition 1.4.2: 

1. 𝐴  α + 𝐵  α =   𝑎2 − 𝑎1 + 𝑏2 − 𝑏1 𝛼 + 𝑎1 + 𝑏1, − 𝑎3 − 𝑎2 + 𝑏3 − 𝑏2 𝛼 + 𝑎3 + 𝑏3   
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2. 𝐴  α − 𝐵  α =   𝑎2 − 𝑎1 + 𝑏3 − 𝑏2 𝛼 + 𝑎1 − 𝑏3, − 𝑎3 − 𝑎2 + 𝑏2 − 𝑏1 𝛼 + 𝑎3 − 𝑏1   

3. 𝐴  α ⋅ 𝐵  α = [𝑚 𝛼 , 𝑀 𝛼 ] where 

𝑚 𝛼 = 𝑚𝑖𝑛 𝑎1 𝛼 𝑏1 𝛼 ,  𝑎1 𝛼 𝑏3 𝛼 , 𝑎3 𝛼 𝑏1 𝛼 , 𝑎3 𝛼 𝑏3 𝛼   

𝑀 𝛼 = 𝑚𝑎𝑥 𝑎1 𝛼 𝑏1 𝛼 ,  𝑎1 𝛼 𝑏3 𝛼 , 𝑎3 𝛼 𝑏1 𝛼 , 𝑎3 𝛼 𝑏3 𝛼   

and, 

𝑎1 𝛼 =  𝑎2 − 𝑎1 𝛼 + 𝑎1, 𝑎3 𝛼 = − 𝑎3 − 𝑎2 𝛼 + 𝑎3, 

 𝑏1 𝛼 =  𝑏2 − 𝑏1 𝛼 + 𝑏1, 𝑏3 𝛼 = − 𝑏3 − 𝑏2 𝛼 + 𝑏3. 

 

We can see from Example 1.5.3 that addition and subtraction of two triangular 

fuzzy numbers is also a triangular fuzzy number. That is, 

𝐴 + 𝐵 = (𝑎1 + 𝑏1/𝑎2 + 𝑏2/𝑎3 + 𝑏3)  

 and 

𝐴 − 𝐵 = (𝑎1 − 𝑏3/𝑎2 − 𝑏2/𝑎3 − 𝑏1).  

While 𝑚 𝛼  and 𝑀 𝛼  as functions of 𝛼 are not linear in 𝛼 so multiplication of two 

triangular fuzzy numbers is a triangular shaped fuzzy number. That is,  

𝐴 ⋅ 𝐵 ≈ (𝑚 0 /𝑎2𝑏2/𝑀 0 ) where 𝑚 0 = 𝑚𝑖𝑛 𝑎1𝑏1,  𝑎1𝑏3, 𝑎3𝑏1, 𝑎3𝑏3 ,            

𝑀 0 = 𝑚𝑎𝑥 𝑎1𝑏1,  𝑎1𝑏3, 𝑎3𝑏1, 𝑎3𝑏3  and 𝑚 1 = 𝑀 1 = 𝑎2𝑏2. 

 

Definition 1.5.4 ([18] page 145): A trapezoidal fuzzy number  𝐴  is a fuzzy number 

defined by four real numbers 𝑎1, 𝑎2, 𝑎3, and 𝑎4, with 𝑎1 < 𝑎2 < 𝑎3 < 𝑎4 and denoted 

by             𝐴 = (𝑎1/𝑎2, 𝑎3/𝑎4) or  𝐴 = (𝑎1, 𝑎2, 𝑎3, 𝑎4), where its membership function 

is given by  
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𝐴  𝑥 =

 
  
 

  
 

0,               𝑥 < 𝑎1
𝑥 − 𝑎1

𝑎2 − 𝑎1
,      𝑎1 ≤ 𝑥 ≤ 𝑎2

1,                  𝑎2 ≤ 𝑥 ≤ 𝑎3
𝑎4 − 𝑥

𝑎4 − 𝑎3
,      𝑎3 ≤ 𝑥 ≤ 𝑎4

0,               𝑥 > 𝑎4

  

If the sides of the trapezoidal fuzzy number are curves other than straight lines we call it 

trapezoidal shaped fuzzy number and is denoted by 𝐴 ≈ (𝑎1, 𝑎2, 𝑎3, 𝑎4) ([7] page 9). 

 

Example 1.5.5 ([18] page 145): Let 𝐴 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) be a trapezoidal fuzzy number. 

If   𝐴 [α]  = [𝑎1 𝛼 , 𝑎4 𝛼 ], then 𝑎1 𝛼  and 𝑎4 𝛼  can be obtained by solving 

Figure 1.5.2 

Trapezoidal Fuzzy Number (0,1,3,4.5) 

𝑥 

𝐴 (𝑥) 
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𝑎1 𝛼 − 𝑎1

𝑎2 − 𝑎1
= 𝛼 

and, 

𝑎4 − 𝑎4 𝛼 

𝑎4 − 𝑎3
= 𝛼 

Therefore, 𝐴 [α]  = [ 𝑎2 − 𝑎1 𝛼 + 𝑎1, − 𝑎4 − 𝑎3 𝛼 + 𝑎4]. 

One can see that: 

1. The core of a trapezoidal fuzzy number 𝐴 = (𝑎1, 𝑎2, 𝑎3, 𝑎4)  is [𝑎2, 𝑎3] and the 

support is 𝐴  0 = [𝑎1, 𝑎4] ([7] page 10). 

2. If 𝐴 ≈ (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝐴 [α]  = [𝑎1 𝛼 , 𝑎4 𝛼 ], then 𝑎1 𝛼  or 𝑎3 𝛼  are not 

linear functions in 𝛼.  

 

Example 1.5.6 ([18] page 146): If 𝐴 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝐵 = (𝑏1, 𝑏2, 𝑏3, 𝑏4) be two 

trapezoidal fuzzy numbers and the 𝛼 −cuts of 𝐴  and 𝐵  are: 

𝐴  α =   𝑎2 − 𝑎1 𝛼 + 𝑎1, − 𝑎4 − 𝑎3 𝛼 + 𝑎4 , 

𝐵  α =   𝑏2 − 𝑏1 𝛼 + 𝑏1, − 𝑏4 − 𝑏3 𝛼 + 𝑏4 . 

Then, 

1. 𝐴  α + 𝐵  α =   𝑎2 − 𝑎1 + 𝑏2 − 𝑏1 𝛼 + 𝑎1 + 𝑏1, − 𝑎4 − 𝑎3 + 𝑏4 − 𝑏3 𝛼 + 𝑎4 +

           𝑏4  
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2. 𝐴  α − 𝐵  α =   𝑎2 − 𝑎1 + 𝑏4 − 𝑏3 𝛼 + 𝑎1 − 𝑏4, − 𝑎4 − 𝑎3 + 𝑏2 − 𝑏1 𝛼 + 𝑎4 −

𝑏1  

3. 𝐴  α ⋅ 𝐵  α = [𝑚 𝛼 , 𝑀 𝛼 ] where 

𝑚 𝛼 = 𝑚𝑖𝑛 𝑎1 𝛼 𝑏1 𝛼 ,  𝑎1 𝛼 𝑏4 𝛼 , 𝑎4 𝛼 𝑏1 𝛼 , 𝑎4 𝛼 𝑏4 𝛼   

𝑀 𝛼 = 𝑚𝑎𝑥 𝑎1 𝛼 𝑏1 𝛼 ,  𝑎1 𝛼 𝑏4 𝛼 , 𝑎4 𝛼 𝑏1 𝛼 , 𝑎4 𝛼 𝑏4 𝛼   

and, 

𝑎1 𝛼 =  𝑎2 − 𝑎1 𝛼 + 𝑎1, 𝑎4 𝛼 = − 𝑎4 − 𝑎3 𝛼 + 𝑎4, 

 𝑏1 𝛼 =  𝑏2 − 𝑏1 𝛼 + 𝑏1, 𝑏4 𝛼 = − 𝑏4 − 𝑏3 𝛼 + 𝑏4. 

It is clear from Example 1.5.6 that addition and subtraction of two trapezoidal fuzzy 

numbers is also a trapezoidal fuzzy number. That is, 

𝐴 + 𝐵 = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3, 𝑎4 + 𝑏4)  

and 

𝐴 − 𝐵 = (𝑎1 − 𝑏4, 𝑎2 − 𝑏3, 𝑎3 − 𝑏2, 𝑎4 − 𝑏1). 

While 𝑚 𝛼  and 𝑀 𝛼  as functions of 𝛼 are not linear so, multiplication of two 

trapezoidal fuzzy numbers is a trapezoidal shaped fuzzy number. That is,       

𝐴 ⋅ 𝐵 ≈ (𝑚 0 , 𝑚 1 , 𝑀 0 , 𝑀 0 ) where  

𝑚 0 = 𝑚𝑖𝑛 𝑎1𝑏1,  𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4 , 𝑀 0 = 𝑚𝑎𝑥 𝑎1𝑏1,  𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4   

𝑚 1 = 𝑚𝑖𝑛 𝑎2𝑏2,  𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3 , 𝑀 1 = 𝑚𝑎𝑥 𝑎2𝑏2,  𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3 . 
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1.6 Special Fuzzy Numbers 

  In this section we define a new fuzzy number and introduce its properties, then we 

give illustrations of other fuzzy numbers that can be easily defined. 

Definition 1.6.1: Consider a fuzzy number that is determined by five real numbers 

𝑎1, 𝑎2, 𝑎3, 𝑎4 and 𝑐 such that 𝑎1 < 𝑎2 < 𝑎3 < 𝑎4 and 0 < 𝑐 < 1, denoted by                  

𝑁 𝑐 =  𝑎1/𝑎2/𝑎3/𝑎4 𝑐  or  𝑎1, 𝑎2, 𝑎3, 𝑎4; 𝑐  whose membership function is given by  

𝑁 𝑐 𝑥 =

 
 
 
 
 

 
 
 
 

0                                                       𝑥 ≤ 𝑎1
𝑐

𝑎2 − 𝑎1

 𝑥 − 𝑎1                                      𝑎1 < 𝑥 < 𝑎2

1 −
1 − 𝑐

 𝑎2 − 𝑎3 2
 2𝑥 − 𝑎2 − 𝑎3 2        𝑎2 ≤ 𝑥 ≤ 𝑎3

−𝑐

𝑎4 − 𝑎3

 𝑥 − 𝑎4                                     𝑎3 < 𝑥 < 𝑎4

0                                                       𝑥 ≥ 𝑎4

  

 

 

𝑐 

(𝑎1 , 0) (𝑎2 , 0) 
 
𝑎2 + 𝑎3

2
, 0  

(𝑎3 , 0) (𝑎4 , 0) 

Figure 1.6.1 

 

𝑥 

𝑁 𝑐 𝑥  
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Remarks 1.6.2:  

1. 𝑁 𝑐 𝑥  is linear on the intervals [𝑎1, 𝑎2] and [𝑎3, 𝑎4]. 

2. 𝑁 𝑐 𝑥  is a parabola on the interval [𝑎2, 𝑎3] whose vertex is  
𝑎2+𝑎3

2
, 1  and focus 

is  
𝑎2+𝑎3

2
, 1 −

 𝑎3−𝑎2 2

16(1−𝑐)
 . 

3. If the graph of 𝑁 𝑐 𝑥  in any of the intervals  𝑎1, 𝑎2 ,  𝑎2, 𝑎3 , or  𝑎3, 𝑎4  is            

not as prescribed above then 𝑁 𝑐  is denoted by 𝑁 𝑐 ≈  𝑎1/𝑎2/𝑎3/𝑎4 𝑐  or                       

𝑁 𝑐 ≈  𝑎1, 𝑎2, 𝑎3, 𝑎4; 𝑐 . 

 

Remark 1.6.3: Let 𝑁 𝑐 =  𝑎1/𝑎2/𝑎3/𝑎4 𝑐 . If 0 ≤ 𝛼 ≤ 𝑐, then  𝛼 =
𝑐

𝑎2−𝑎1
 𝑥 − 𝑎1 , and 

𝛼 =
−𝑐

𝑎4−𝑎3
 𝑥 − 𝑎4  and write 𝑥 in terms of 𝛼  to get  

𝑁 𝑐 𝛼 =  
 𝑎2−𝑎1 

𝑐
𝛼 + 𝑎1,

− 𝑎4−𝑎3 

𝑐
𝛼 + 𝑎4  for 0 ≤ 𝛼 ≤ 𝑐 

and if 𝑐 ≤ 𝛼 ≤ 1, then 𝛼 = 1 −
1−𝑐

 𝑎2−𝑎3 2
 2𝑥 − 𝑎2 − 𝑎3 2 and write 𝑥 in terms of 𝛼 to 

get 

𝑁 𝑐 𝛼 =  
−(𝑎3−𝑎2)

2
 

1−𝛼

1−𝑐
+

𝑎2+𝑎3

2
,

(𝑎3−𝑎2)

2
 

1−𝛼

1−𝑐
+

𝑎2+𝑎3

2
    for 𝑐 ≤ 𝛼 ≤ 1. 

 

Remark 1.6.4: If 𝑁 𝑐 =  𝑎1/𝑎2/𝑎3/𝑎4 𝑐  , and 𝑀 𝑐 =  𝑏1/𝑏2/𝑏3/𝑏4 𝑐  then 

1. 𝑁 𝑐 + 𝑀 𝑐 =  𝑎1 + 𝑏1/𝑎2 + 𝑏2/𝑎3 + 𝑏3/𝑎4 + 𝑏4 𝑐  . 
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2. 𝑁 𝑐 − 𝑀 𝑐 =  𝑎1 − 𝑏4/𝑎2 − 𝑏3/𝑎3 − 𝑏2/𝑎4 − 𝑏1 𝑐  . 

        Here we give an example to illustrate different operations on the fuzzy number that 

are given in Definition 1.1.6. 

Example 1.6.5: Let 𝐴 
0.2 = (1/2/3/4)0.2 find 𝐵 = 𝐴 

0.2 . 𝐴 
0.2 and 𝐶 = 𝐴 

0.2/𝐴 
0.2 . 

𝑎1 = 1, 𝑎2 = 2, 𝑎3 = 3, 𝑎4 = 4 and 𝑐 = 0.2. So the 𝛼 −cuts of 𝐴 
0.2 will be                  

𝐴 
0.2 𝛼 =  5𝛼 + 1, −5𝛼 + 4  for 0 ≤ 𝛼 ≤ 0.2 

and, 

𝐴 
0.2 𝛼 =  

−1

2
 1.25(1 − 𝛼) +

5

2
,

1

2
 1.25(1 − 𝛼) +

5

2
  for 0.2 ≤ 𝛼 ≤ 1 . 

Therefore,  

𝐵  𝛼 =   5𝛼 + 1 2,  −5𝛼 + 4 2  for 0 ≤ 𝛼 ≤ 0.2, 

and, 

𝐵  𝛼 =   
−1

2
 1.25(1 − 𝛼) +

5

2
 

2

,  
1

2
 1.25(1 − 𝛼) +

5

2
 

2

  for 0.2 ≤ 𝛼 ≤ 1. Hence, 

𝐵  0 =  1, 16 , 𝐵  0.2 =  4,9  and 𝐵  1 = 6.25 and so 𝐵 ≈  1/4/9/16 0.2 . 

Also we have, 

𝐶  𝛼 =  
5𝛼+1

−5𝛼+4
 ,

−5𝛼+4

5𝛼+1
  for 0 ≤ 𝛼 ≤ 0.2 

and, 

𝐶  𝛼 =  
−1

2
 1.25(1−𝛼)+

5

2
1

2
 1.25(1−𝛼)+

5

2

 ,
1

2
 1.25(1−𝛼)+

5

2
−1

2
 1.25(1−𝛼)+

5

2

  for 0.2 ≤ 𝛼 ≤ 1 . 
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Hence, 𝐶  0 =  
1

4
, 4 , 𝐶  0.2 =  

2

3
,

3

2
  and 𝐶  1 = 1and so 𝐶 ≈  

1

4
,

2

3
,

3

2
, 4 

0.2
.  

 

Remark 1.6.6: Let 𝑁 0.2 = (1/2/3/4)0.2 and 𝑁 0.4 = (0/1/2/3)0.4, then 𝑁 0.2 + 𝑁 0.4 and 

𝑁 0.2 − 𝑁 0.4 can be computed as follows: 

For 0 ≤ 𝛼 ≤ 0.2, 𝑁 0.2 𝛼 =  5𝛼 + 1, −5𝛼 + 4 . 

For 0.2 ≤ 𝛼 ≤ 1, 𝑁 0.2 𝛼 =  
−1

2
 1.25(1 − 𝛼) +

5

2
,

1

2
 1.25(1 − 𝛼) +

5

2
 . 

For 0 ≤ 𝛼 ≤ 0.4, 𝑁 0.4 𝛼 =  
5

2
𝛼, −

5

2
𝛼 + 3 . 

For 0.4 ≤ 𝛼 ≤ 1, 𝑁 0.4 𝛼 =  
−1

2
 

5

3
(1 − 𝛼) +

3

2
,

1

2
 

5

3
(1 − 𝛼) +

3

2
 . 

 

𝑁 0.2 𝛼 + 𝑁 0.4 𝛼 =  7.5𝛼 + 1, −7.5𝛼 + 7 , for 0 ≤ 𝛼 ≤ 0.2. 

𝑁 0.2 𝛼 + 𝑁 0.4 𝛼 =  
−1

2
 1.25(1 − 𝛼) +

5

2
𝛼 +

5

2
,

1

2
 1.25(1 − 𝛼) −

5

2
𝛼 +

11

2
 ,                

for 0.2 ≤ 𝛼 ≤ 0.4.  

𝑁 0.2 𝛼 + 𝑁 0.4 𝛼 =  

      =  
−1

2
  1.25 1 − 𝛼 +  

5

3
 1 − 𝛼   + 4,

1

2
  1.25 1 − 𝛼 +  

5

3
 1 − 𝛼   + 4 , 

for 0.4 ≤ 𝛼 ≤ 1. 
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Therefore, 𝑁 0.2 + 𝑁 0.4 is not of the same type of the fuzzy number that is given in 

Definition 1.1.6.  

On the other hand, 

𝑁 0.2 𝛼 − 𝑁 0.4 𝛼 =  7.5𝛼 − 2, −7.5𝛼 + 4 , for 0 ≤ 𝛼 ≤ 0.2. 

𝑁 0.2 𝛼 − 𝑁 0.4 𝛼 =  
−1

2
 1.25(1 − 𝛼) +

5

2
𝛼 −

1

2
,

1

2
 1.25(1 − 𝛼) −

5

2
𝛼 +

5

2
 ,                  

for 0.2 ≤ 𝛼 ≤ 0.4.  

𝑁 0.2 𝛼 − 𝑁 0.4 𝛼 =  

   =  
−1

2
  1.25 1 − 𝛼 +  

5

3
 1 − 𝛼   + 1,

1

2
  1.25 1 − 𝛼 +  

5

3
 1 − 𝛼   + 1 , 

for 0.4 ≤ 𝛼 ≤ 1. 

Therefore, 𝑁 0.2 − 𝑁 0.4 is not of the same type of the fuzzy number that given in 

Definition 1.1.6.  

 

      The fuzzy number defined in this section gives a conception of other types of fuzzy 

numbers that could be defined in a similar way. Below we give some of them. 
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𝑁 1 𝑥 =

 
 
 
 
 
 

 
 
 
 
 

0,                                            𝑥 ≤ 𝑎1
𝑐

𝑎2 − 𝑎1

 𝑥 − 𝑎1 ,                𝑎1 ≤ 𝑥 ≤ 𝑎2

1 − 𝑐

𝑎3 − 𝑎2

 𝑥 − 𝑎2 + 𝑐, 𝑎2 ≤ 𝑥 ≤ 𝑎3

1,                                             𝑎3 ≤ 𝑥 ≤ 𝑎4

− 1 − 𝑐 

𝑎5 − 𝑎4

 𝑥 − 𝑎5 + 𝑐,     𝑎4 ≤ 𝑥 ≤ 𝑎5

−𝑐

𝑎6 − 𝑎5

 𝑥 − 𝑎6 ,                𝑎5 ≤ 𝑥 ≤ 𝑎6

0,                                                  𝑥 ≥ 𝑎6

  

                       𝑁 2 𝑥 =

 
 
 
 
 
 
 

 
 
 
 
 
 

0,                                                 𝑥 ≤ 𝑎1
𝑐1

𝑎2−𝑎1
 𝑥 − 𝑎1 ,            𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑐2−𝑐1

𝑎3−𝑎2
 𝑥 − 𝑎2 + 𝑐1,      𝑎2 ≤ 𝑥 ≤ 𝑎3

1−𝑐2

𝑎4−𝑎3
 𝑥 − 𝑎3 + 𝑐2,       𝑎3 ≤ 𝑥 ≤ 𝑎4

− 1−𝑐2 

𝑎5−𝑎4
 𝑥 − 𝑎5 + 𝑐2,   𝑎4 ≤ 𝑥 ≤ 𝑎5

− 𝑐2−𝑐1 

𝑎6−𝑎5
 𝑥 − 𝑎6 + 𝑐1,  𝑎5 ≤ 𝑥 ≤ 𝑎6

−𝑐1

𝑎7−𝑎6
 𝑥 − 𝑎7 ,                   𝑎6 ≤ 𝑥 ≤ 𝑎7

 0,                                                   𝑥 ≥ 𝑎7

  

𝑎2 𝑎3 𝑎4 𝑎5 

𝑐 

𝑎6 𝑎1 𝑥 

Figure 1.6.2 

 

𝑁 1 𝑥  
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𝑁 3 𝑥 =

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

0,                                                     𝑥 ≤ 𝑎1
𝑐1

𝑎2 − 𝑎1

 𝑥 − 𝑎1 ,                    𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑐2 − 𝑐1

𝑎3 − 𝑎2

 𝑥 − 𝑎2 + 𝑐1,          𝑎2 ≤ 𝑥 ≤ 𝑎3

𝑐3 − 𝑐2

𝑎4 − 𝑎3

 𝑥 − 𝑎3 + 𝑐2,          𝑎3 ≤ 𝑥 ≤ 𝑎4

1 − 𝑐3

𝑎5 − 𝑎4

 𝑥 − 𝑎4 + 𝑐3,          𝑎4 ≤ 𝑥 ≤ 𝑎5

− 1 − 𝑐3 

𝑎6 − 𝑎5

 𝑥 − 𝑎6 + 𝑐3,     𝑎5 ≤ 𝑥 ≤ 𝑎6

− 𝑐3 − 𝑐2 

𝑎7 − 𝑎6

 𝑥 − 𝑎7 + 𝑐2,     𝑎6 ≤ 𝑥 ≤ 𝑎7

− 𝑐2 − 𝑐1 

𝑎8 − 𝑎7

 𝑥 − 𝑎8 + 𝑐1,       𝑎7 ≤ 𝑥 ≤ 𝑎8

−𝑐1

𝑎9 − 𝑎8

 𝑥 − 𝑎9 ,                       𝑎8 ≤ 𝑥 ≤ 𝑎9

0,                                                       𝑥 ≥ 𝑎9

  

𝑎7 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎1 

𝑐1 

𝑐2 

Figure 1.6.3 

 

𝑥 

𝑁 2 𝑥  
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𝑁 4 𝑥 =

 
 
 
 
 
 
 

 
 
 
 
 
 

0,                                                  𝑥 ≤ 𝑎1
𝑐1

𝑎2 − 𝑎1

 𝑥 − 𝑎1 ,                            𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑐2 − 𝑐1

𝑎3 − 𝑎2

 𝑥 − 𝑎2 + 𝑐1,                  𝑎2 ≤ 𝑥 ≤ 𝑎3

1 − 4
 1 − 𝑐2 

 𝑎4 − 𝑎3 2
 𝑥 −

𝑎3+𝑎4

2
 

2

,   𝑎3 ≤ 𝑥 ≤ 𝑎4

− 𝑐2 − 𝑐1 

𝑎5 − 𝑎4

 𝑥 − 𝑎5 + 𝑐1,             𝑎4 ≤ 𝑥 ≤ 𝑎5

−𝑐1

𝑎6 − 𝑎5

 𝑥 − 𝑎6 ,                              𝑎5 ≤ 𝑥 ≤ 𝑎6

0,                                                  𝑥 ≥ 𝑎6

  

𝑐1 

𝑐2 

𝑎1 𝑎2 𝑎4 𝑎3 𝑎6 𝑎8 

Figure 1.6.4 

 

𝑎7 𝑎5 𝑥 𝑎9 

𝑐3 

𝑁 3 𝑥  
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𝑁 5 𝑥 =

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0,                                                  𝑥 ≤ 𝑎1
𝑐1

𝑎2−𝑎1
 𝑥 − 𝑎1 ,                               𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑐2−𝑐1

𝑎3−𝑎2
 𝑥 − 𝑎2 + 𝑐1,                      𝑎2 ≤ 𝑥 ≤ 𝑎3

𝑐3−𝑐2

𝑎4−𝑎3
 𝑥 − 𝑎3 + 𝑐2,                     𝑎3 ≤ 𝑥 ≤ 𝑎4

𝑐4−𝑐3

𝑎5−𝑎4
 𝑥 − 𝑎4 + 𝑐3,                       𝑎4 ≤ 𝑥 ≤ 𝑎5

1 − 4
 1−𝑐4 

 𝑎6−𝑎5 2
 𝑥 − 𝑎5+𝑎6

2
 

2
,        𝑎5 ≤ 𝑥 ≤ 𝑎6

− 𝑐4−𝑐3 

𝑎7−𝑎6
 𝑥 − 𝑎7 + 𝑐3,                   𝑎6 ≤ 𝑥 ≤ 𝑎7

− 𝑐3−𝑐2 

𝑎8−𝑎7
 𝑥 − 𝑎8 + 𝑐2,                   𝑎7 ≤ 𝑥 ≤ 𝑎8

− 𝑐2−𝑐1 

𝑎9−𝑎8
 𝑥 − 𝑎9 + 𝑐1,                   𝑎8 ≤ 𝑥 ≤ 𝑎9

−𝑐1

𝑎10−𝑎9
 𝑥 − 𝑎10 ,                               𝑎9 ≤ 𝑥 ≤ 𝑎10

0,                                                           𝑥 ≥ 𝑎10

  

 

𝑎6 𝑎2 𝑎3 𝑎4 𝑎5 𝑎1 

𝑐1 

𝑐2 

Figure 1.6.5 

 

𝑎3 + 𝑎4

2
 

𝑥 

𝑁 4 𝑥  
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𝑎1 𝑎2 𝑎4 𝑎3 𝑎6 𝑎5 𝑎8 𝑎9 𝑎10  

𝑐1 

𝑐2 

𝑐3 

𝑐4 

Figure 1.6.6 

 

𝑎5 + 𝑎6

2
 

𝑎7 

𝑁 5 𝑥  
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Chapter 2 

Finite Markov Chains 

 

This chapter consists of three sections. In section one; we present basic 

definitions of Markov chains. Classifications of states and Markov chains are presented 

in section two. We end up with some examples illustrating the several types of Markov 

chains in section three. [5], [6], [11], [14], [23], [28]. 

2.1 Markov Chains 

Definition 2.1.1 ([5] page 111): Let 𝑆 be a countable set. Suppose that to each 𝑖 and 𝑗 in 

𝑆 there is assigned a nonnegative number 𝑝𝑖𝑗  and that these numbers satisfy the 

constraint 

 𝑝𝑖𝑗

𝑗∈𝑆

= 1,   ∀𝑖, 𝑗 ∈ 𝑆. 

Let 𝑋0, 𝑋1, 𝑋2, … be a sequence of random variables whose ranges contained in 𝑆. This 

sequence is a Markov chain if 

𝑃 𝑋𝑛+1 = 𝑗 𝑋0 = 𝑖0, … , 𝑋𝑛 = 𝑖𝑛   = 𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖𝑛   = 𝑝𝑖𝑛 𝑗  

for every 𝑛 and every sequence 𝑖0, … , 𝑖𝑛  in 𝑆 for which 𝑃 𝑋0 = 𝑖0, … , 𝑋𝑛 = 𝑖𝑛 > 0. 

 

The set 𝑆 is called the state space or phase space of the Markov process, and its 

elements  
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are the states of the process. The probabilities 𝑝𝑖𝑗 = 𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖   are called the 

transition probabilities. The elements 𝑝𝑖𝑗  form the matrix of transition probabilities or 

the transition matrix 𝑃 =  𝑝𝑖𝑗  , so if 𝑆 is a finite state space with cardinality 𝑚 > 1, 

then the transition matrix 𝑃 is an 𝑚 × 𝑚 matrix. Here the transition probabilities                                 

𝑝𝑖𝑗 = 𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖   are assumed to be independent of  𝑛, in this case the chain is 

said to have stationary transition probabilities ([5] pages 111and112, [11] page 374). 

 

Definition 2.1.2 ([5] page 111):  The initial distribution of the chain 𝑎𝑖
(0)

= 𝑃 𝑋0 = 𝑖 , 

where 𝑎𝑖
(0)

≥ 0 and  𝑎𝑖
(0)

= 1𝑖 . 

 

Definition 2.1.3 ([5] page 111): A square matrix 𝑃 with nonnegative elements and unit 

row sums is called a regular stochastic matrix. 

 

Definition 2.1.4 ([5] page 115): Let 𝑃 =  𝑝𝑖𝑗   be the transition matrix of a Markov 

chain  𝑋𝑛 , 𝑛 ≥ 0 , the 𝑛𝑡  power of 𝑃, is 𝑃𝑛 =  𝑝𝑖𝑗
 𝑛 

  where 𝑝𝑖𝑗
 𝑛 

represents the 

probability of a transition from state 𝑖 to state 𝑗 in 𝑛 steps, 𝑝𝑖𝑗
 𝑛 

is called the 𝑛 −step 

transition probability for the Markov chain. 

Since 𝑃 =  𝑝𝑖𝑗   is the transition matrix of a Markov chain then by Definition 2.1.1 we 

have  𝑝𝑖𝑗𝑗∈𝑆 = 1, 𝑖 ∈ 𝑆 and this implies that   𝑝𝑖𝑗
 𝑛 

𝑗∈𝑆 = 1, 𝑖 ∈ 𝑆 . 
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Proposition 2.1.5 ([23] page 73): For all 𝑛 > 1, and 𝑖, 𝑗 in the state space 𝑆,               

𝑝𝑖𝑗
 𝑛 

= 𝑃 𝑋𝑛 = 𝑗 𝑋0 = 𝑖  . 

 

Proposition 2.1.6 ([23] page 75): The unconditional probabilities 𝑃 𝑋𝑛 = 𝑖  are 

computed from  𝑎𝑗
 𝑛 

= 𝑃 𝑋𝑛 = 𝑗 =  𝑎𝑗
(0)

𝑖 𝑝𝑖𝑗
 𝑛 

. In the matrix form, 𝑎𝑛 = 𝑎0𝑃𝑛 . 

 

2.2 Classifications of the States 

If 𝑆 is a finite state space then: 

1. ([28] page 646): A state 𝑗 ∈ 𝑆 is transient if it can reach another state but cannot 

itself be reached back from another state. Mathematically, this happens if 

lim𝑛→∞ 𝑝𝑖𝑗
 𝑛 

= 0, for all 𝑖.    

 

2. ([14] page 811, [11] page 389): A state 𝑗 ∈ 𝑆 is persistent (or recurrent) if, upon 

entering this state, the process definitely will return to this state again. This can happen 

if, and only if the state is not transient.  

3. ([5] page 125): A state 𝑗 ∈ 𝑆 is periodic with period 𝑡 if  𝑝𝑗𝑗
(𝑛)

> 0 implies that 𝑡 

divides 𝑛 and 𝑡 the largest integer with this property. In other words, the period of 𝑗 is 

the greatest common divisor of the set of integers  𝑛: 𝑛 ≥ 1, 𝑝𝑗𝑗
(𝑛)

> 0 . If 𝑡 = 1, then 

the state is aperiodic (or nonperiodic).  
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4. ([5] page 119, [6]): A Markov chain is called irreducible (or regular) if ∃𝑛 ∈ ℕ such 

that 𝑝𝑖𝑗
 𝑛 

> 0, ∀𝑖, 𝑗 ∈ 𝑆, otherwise it is called reducible (or irregular). That is, a Markov 

chain is irreducible if and only if every state can be reached from every other state in a 

finite number of steps. 

5. ([14] page 812): An aperiodic persistent state 𝑗 ∈ 𝑆, is called ergodic. Therefore, a 

Markov chain is ergodic if all its states are ergodic. 

 

6. ([6]): A state 𝑗 ∈ 𝑆 is called absorbing if 𝑝𝑗𝑗 = 1. The Markov chain is called an 

absorbing Markov chain if it has at least one absorbing state and from every non-

absorbing state it is possible to reach some absorbing state in a finite number of steps.  

 

Definition 2.2.1 ([5] pages 124and125): A set of probabilities  𝜋𝑗  , 𝑗 ∈ 𝑆 satisfying 

 𝜋𝑖𝑝𝑖𝑗 = 𝜋𝑗 ,𝑖∈𝑆  is called a stationary distribution. 

 

Remark 2.2.2 ([5] page 125): If  𝜋𝑗  , 𝑗 ∈ 𝑆  is a stationary distribution then              

 𝜋𝑖𝑝𝑖𝑗
 𝑛 

= 𝜋𝑗 ,𝑖∈𝑆  𝑗 ∈ 𝑆, = 0,1,2, … . 

 

Theorem 2.2.3 ([5] page 125): Suppose of an irreducible aperiodic chain that there 

exists a stationary distribution, that is a solution of  𝜋𝑖𝑝𝑖𝑗 = 𝜋𝑗 ,𝑖∈𝑆  𝑗 ∈ 𝑆 satisfying 
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𝜋𝑖 ≥ 0 and  𝜋𝑖 = 1.𝑖  Then the chain is persistent, lim𝑛→∞ 𝑝𝑖𝑗
 𝑛 

= 𝜋𝑗  ∀𝑖, 𝑗 ∈ 𝑆, 𝜋𝑗 > 0, 

and the stationary distribution is unique. 

 If 𝑆 is finite then Theorem 2.2.3 implies that in order to find the limit of 𝑃𝑛  we first 

find the unique left eigenvector 𝜋  of 𝑃 corresponding to eigenvalue 1 (i.e. solving the 

system 𝜋𝑃 = 𝜋) where 𝜋 is a row vector whose components are 𝜋𝑗  with 𝜋𝑗 > 0, and  

 𝜋𝑗 = 1.𝑗  Then, 𝑃𝑛  converges to the matrix Π whose rows are identical and each of 

which is 𝜋 [6]. 

 

Theorem 2.2.4 ([5] page 131): If the state space 𝑆 is finite and the chain is irreducible 

and aperiodic, then there is a stationary distribution  𝜋𝑖 , and  𝑝𝑖𝑗
 𝑛 

− 𝜋𝑗  ≤ 𝐴𝜌𝑛  where  

𝐴 ≥ 0, 0 ≤ 𝜌 < 1. 

 

2.3 Examples of Finite Markov Chains 

Example 2.3.1: Consider a Markov chain whose transition matrix is =  
𝑝11 𝑝12

𝑝21 𝑝22
  , 

𝑝𝑖𝑗 > 0, ∀𝑖, 𝑗 = 1,2. Such a chain is ergodic, to find the unique stationary distribution 

we let 𝜋 =  𝜋1 𝜋2  with 𝜋1, 𝜋2 > 0 and 𝜋1+𝜋2 = 1, then we  solve 𝜋𝑃 = 𝜋 from which 

we have 𝜋1 =
𝑝21

𝑝21 +𝑝12
, 𝜋2 =

𝑝12

𝑝21 +𝑝12
 . 
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Example 2.3.2: Let 𝐴 and 𝐵 be two transition matrices of two Markov chains, where: 

𝐴 =  

1 2 0 0 1 2 

0 1 2 1 2 0
0 1 2 1 2 0

1 2 0 0 1 2 

 , and 𝐵 =  

1 2 1 2 0 0
1 2 1 2 0 0

0 0 1 2 1 2 

0 0 1 2 1 2 

 .                               

Then   𝐴2 = 𝐴, 𝐵2 = 𝐵, and in general 𝐴𝑛 = 𝐴, 𝐵𝑛 = 𝐵, for any 𝑛. So, both 𝐴 and 𝐵 are 

transition matrices of non-ergodic chains ([23] page 81). 

 

Example 2.3.3: Let 𝐴 =  
0 1
𝑝 𝑞

  be a transition matrix of a Markov chain, then              

𝐴2 =  
𝑝 𝑞

𝑝𝑞 𝑝 + 𝑞2 , so 𝐴 is irreducible (regular) and aperiodic. Hence, the Markov 

chain is ergodic. 

 

Example 2.3.4: Let 𝑃 =  
1 2 1 2 0

0 0 1
0 1 0

  be a transition matrix of a Markov chain, then 

in  

𝑃2 we have 𝑝22
 2 

= 𝑝33
 2 

= 1 and in general 𝑝22
 2𝑛 

= 𝑝33
 2𝑛 

= 1 for 𝑛 = 1,2,3, … . So, the 

second and third states are periodic with period 2. Therefore, the Markov chain is not 

ergodic. 
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Example 2.3.5 ([28] page 347): Let 𝑃 =  

0 1 0 0
0 0 1 0
0 0 0.3 0.7
0 0 0.4 0.6

  be a transition matrix of a 

Markov chain then states 1 and 2 are transient because they can not be reentered once 

the system is trapped in states 3 and 4. States 3 and 4 are persistent states since if the 

system starts in either of theses states, and moves from one of these states to the other 

one, it always will return to the original state eventually. 

 

Example 2.3.6 ([28] page 647): Let 𝑃 =  
0.2 0.5 0.3
0 0.5 0.5
0 0 1

   be a transition matrix of a 

Markov chain. Then, states 1 and 2  are transient because they reach state 3 but can 

never be reached back. State 3 is absorbing since 𝑝33 = 1. 

 

Example 2.3.7: If 𝑃 =  
0 0.6 0.4
0 1 0

0.6 0.4 0
   is a transition matrix of a Markov chain then, 

states 1 and 3 are periodic with each of period 2. 

Solution.  

We need to show that 𝑝11
 𝑛 

= 𝑝33
 𝑛 

= 0 for odd values of 𝑛. That is, 𝑝11
 2𝑘−1 

= 𝑝33
 2𝑘−1 

=

0 for 𝑘 ∈ ℕ. We prove this by induction. 

For 𝑘 = 1: 𝑝11
 1 

= 𝑝11 = 0 and 𝑝33
 1 

= 𝑝33 = 0, so it is true for 𝑘 = 1. 
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Suppose that, 𝑝11
 2𝑘−1 

= 𝑝33
 2𝑘−1 

= 0 for some  𝑘 ∈ ℕ, then we show it is true for 𝑘 + 1. 

That is we want to prove that 𝑝11
 2𝑘+1 

= 𝑝33
 2𝑘+1 

= 0. 

𝑝11
 2𝑘+1 

=  𝑝1𝑖
 2𝑘−1 

𝑝𝑖1
 2 

3

𝑖=1

= 𝑝11
 2𝑘−1 

𝑝11
 2 

+ 𝑝12
 2𝑘−1 

𝑝21
 2 

+ 𝑝13
 2𝑘−1 

𝑝31
 2 

, 

 𝑝33
 2𝑘+1 

=  𝑝3𝑖
 2𝑘−1 

𝑝𝑖3
 2 

3

𝑖=1

= 𝑝31
 2𝑘−1 

𝑝13
 2 

+ 𝑝32
 2𝑘−1 

𝑝23
 2 

+ 𝑝33
 2𝑘−1 

𝑝33
 2 

. 

But 𝑃2 =  
0.24 0.76 0

0 1 0
0 0.76 0.24

 , so 𝑝21
 2 

= 𝑝31
 2 

= 0 and 𝑝13
 2 

= 𝑝23
 2 

= 0, together with 

the induction hypothesis we have 𝑝11
 2𝑘+1 

= 𝑝33
 2𝑘+1 

= 0. Therefore, 𝑝11
 𝑛 

= 𝑝33
 𝑛 

= 0 

for odd values of 𝑛. Hence, states 1 and 3 are periodic with each of period 2. 

 

Example 2.3.8:  Let 𝑃 =  

1 0 0

0
1

3

2

3

0
1

2

1

2

   be a transition matrix of a Markov chain. Then, 

the Markov chain corresponding to 𝑃 fails to be absorbing because even though state 1 

is an absorbing state, it is not possible to reach it from the nonabsorbing states 2 and 3. 
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Chapter 3 

 Finite Regular Fuzzy Markov Chains: 

Uncertain Probabilities 

 

This chapter consists of four sections. In Section 3.1 we introduce the restricted 

fuzzy matrix multiplication which will be used intensively throughout this chapter to 

study fuzzy Markov chains [6]. In Section 3.2 we present the Karush-Kuhn-Tucker 

(KKT) Method in optimization problems with inequality constraints [28]. In Section 3.3 

we study explicitly examples on finite regular fuzzy Markov chains [6]. In Section 3.4 

we study deeply the limit of powers of 2 × 2 regular fuzzy transition matrices and we 

give three propositions concerning the uniqueness of this limit.  

3.1 Restricted Fuzzy Matrix Multiplication 

We consider finite Markov chains where there are uncertainties in some/all of the 

transition probabilities. These uncertainties are modeled by fuzzy numbers. Using a 

restricted fuzzy matrix multiplication we investigate the properties of regular fuzzy 

Markov chains and show that the basic properties of regular classical Markov chains 

generalize to them. 

Let 𝑄 = [𝑞𝑖𝑗 ] be a 𝑟 × 𝑟 transition matrix of a Markov chain. If a 𝑞𝑖𝑗 = 0 or 𝑞𝑖𝑗 = 1 

then we assume that there is no uncertainty in this value, otherwise we assume there is 

uncertainty in the transition probability 𝑞𝑖𝑗  i.e. when 0 < 𝑞𝑖𝑗 < 1. In the last case we 

replace each of 𝑞𝑖𝑗  by a fuzzy number 𝑝 𝑖𝑗  where 0 <  𝑝 𝑖𝑗 < 1 also, with the restriction 

that there are 𝑝𝑖𝑗 ∈ 𝑝 𝑖𝑗  1  such that 𝑃 = [𝑝𝑖𝑗 ] is a transition matrix, and we define the 
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fuzzy transition matrix 𝑃 = [𝑝 𝑖𝑗 ], with the understanding that 𝑝 𝑖𝑗 = 0 when 𝑞𝑖𝑗 = 0 and 

𝑝 𝑖𝑗 = 1 when 𝑞𝑖𝑗 = 1. The restriction that there are 𝑝𝑖𝑗 ∈ 𝑝 𝑖𝑗  1  such that 𝑃 = [𝑝𝑖𝑗 ] is a 

transition matrix, guarantees that 𝑝𝑖𝑗 ∈ 𝑝 𝑖𝑗  𝛼  for all  0 ≤ 𝛼 ≤ 1.  Since 𝑝 𝑖𝑗  is a fuzzy 

number, then 𝑝 𝑖𝑗  𝛼  is a closed and bounded interval for all  0 ≤ 𝛼 ≤ 1, so we let 

𝑝 𝑖𝑗  𝛼 =  𝑝𝑖𝑗 1 𝛼 , 𝑝𝑖𝑗 2 𝛼  .  

In order to compute 𝑃
𝑛

 for 𝑛 = 2,3, …, we need the definition of  the restricted fuzzy 

matrix multiplication.  

Let 𝑆 =  𝑥 =  𝑥1, … , 𝑥𝑟  𝑥𝑖 ≥ 0,  𝑥𝑖
𝑟
𝑖=1 = 1  , 

The 𝑖𝑡  domain of 𝛼, denoted by 𝐷𝑜𝑚𝑖 𝛼  is  

𝐷𝑜𝑚𝑖 𝛼 =   𝑝 𝑖𝑗  𝛼 𝑟
𝑗 =1   𝑆 =   𝑝𝑖1, … , 𝑝𝑖𝑟   𝑝𝑖1, … , 𝑝𝑖𝑟 ≥ 0,  𝑝𝑖𝑗 = 1𝑟

𝑗 =1
  , 

for 0 ≤ 𝛼 ≤ 1 and 𝑖 = 1, … , 𝑟. Then  

𝐷𝑜𝑚 𝛼 =  𝐷𝑜𝑚𝑖 𝛼 =   𝑝11 , … , 𝑝𝑟𝑟   𝑝𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 𝑎𝑛𝑑  𝑝𝑖𝑗 = 1,𝑟
𝑗=1 𝑖 =𝑟

𝑖=1

1,…,𝑟 . 

If 𝑀 =   𝑃 = [𝑝𝑖𝑗 ]  𝑝11 , … , 𝑝𝑟𝑟  ∈ 𝐷𝑜𝑚 𝛼  , then, 𝑄 ∈ 𝑀. 

Next, set 𝑃
𝑛

=  𝑝 𝑖𝑗
 𝑛 

  where we will define 𝑝 𝑖𝑗
 𝑛 

 and show that they are fuzzy numbers.    

Let 𝑃 ∈ 𝑀, and consider  𝑃𝑛 =  𝑝𝑖𝑗
 𝑛 

 . We know that 𝑝𝑖𝑗
 𝑛 

= 𝑓𝑖𝑗
 𝑛 

(𝑝11 , … , 𝑝𝑟𝑟 ), for 

some function 𝑓𝑖𝑗
 𝑛 

. That is the elements of 𝑃𝑛  are just some function of the elements of 

𝑃. Now consider 𝑓𝑖𝑗
 𝑛 

 a function of 𝑝 = (𝑝11 , … , 𝑝𝑟𝑟 ) ∈ 𝐷𝑜𝑚 𝛼 . Let Γ𝑖𝑗
 𝑛  𝛼 =
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𝑓𝑖𝑗
 𝑛  𝐷𝑜𝑚 𝛼   be the range of  𝑓𝑖𝑗

 𝑛 
. Since 𝑓𝑖𝑗

 𝑛 
 is continuous and 𝐷𝑜𝑚 𝛼  is connected, 

closed and bounded (compact), which implies that Γ𝑖𝑗
 𝑛  𝛼  is a closed and bounded 

interval for all 𝛼, 𝑖, 𝑗 and 𝑛. We set 𝑝 𝑖𝑗
 𝑛  𝛼 = Γ𝑖𝑗

 𝑛  𝛼 , giving the 𝛼 −cuts of the 𝑝 𝑖𝑗
 𝑛 

 in 

𝑃 𝑛 . Now we show that the resulting 𝑝 𝑖𝑗
 𝑛 

 is a fuzzy number.  First,  Γ𝑖𝑗
 𝑛  𝛼  is closed, 

bounded, interval. Second,  𝐷𝑜𝑚𝑖 1 =   𝑝 𝑖𝑗  1 𝑟
𝑗=1   𝑆 ≠ ∅ as 𝑝 𝑖𝑗  1 ≠ ∅ (this is 

guaranteed by the restriction on 𝑝 𝑖𝑗 ) so 𝐷𝑜𝑚 1 =  𝐷𝑜𝑚𝑖 1 𝑟
𝑖=1 ≠ ∅, and surely 

Γ𝑖𝑗
 𝑛  1 = 𝑓𝑖𝑗

 𝑛  𝐷𝑜𝑚 1  ≠ ∅, this implies that 𝑝 𝑖𝑗
 𝑛 

 is normalized. Therefore, 𝑝 𝑖𝑗
 𝑛 

 is a 

fuzzy number whose 𝛼 −cuts are:  

𝑝 𝑖𝑗
 𝑛  𝛼 =  𝑝𝑖𝑗 1

 𝑛  𝛼 , 𝑝𝑖𝑗 2
 𝑛  𝛼   for all  0 ≤ 𝛼 ≤ 1, 

where  

𝑝𝑖𝑗 1
 𝑛  𝛼 = 𝑚𝑖𝑛 𝑓𝑖𝑗

 𝑛  𝑝  𝑝 ∈ 𝐷𝑜𝑚 𝛼   , 

𝑝𝑖𝑗 2
 𝑛  𝛼 = 𝑚𝑎𝑥 𝑓𝑖𝑗

 𝑛  𝑝  𝑝 ∈ 𝐷𝑜𝑚 𝛼   . 

 

 

 

 

 

 



41 
 

3.2 Optimization Problems with Inequality Constrains 

According to the restricted fuzzy matrix multiplication, we need to maximize and 

minimize 𝑓𝑖𝑗
 𝑛 

 on 𝐷𝑜𝑚 𝛼  to find the endpoints of the 𝛼 −cuts of  𝑝 𝑖𝑗
 𝑛 

. So we specify 

this section to introduce the Karush-Kuhn-Tucker (KKT) Method in optimization. 

 

Definition 3.2.1: Let 𝑓 𝑿  be a function where 𝑿 =  𝑥1, 𝑥2, … , 𝑥𝑛 , then a point            

𝑿0 =  𝑥1
0, 𝑥2

0 , … , 𝑥𝑛
0  is a maximum if 𝑓 𝑿0 + 𝒉 ≤ 𝑓 𝑿0  for all 𝒉 =  1, 2 , … , 𝑛  

where |𝑗 | is sufficiently small for all 𝑗. In a similar manner 𝑿0 is a minimum if                    

𝑓 𝑿0 + 𝒉 ≥ 𝑓 𝑿0 . An extreme point of a function 𝑓 𝑿  defines either a maximum or 

a minimum of the function. 

 

Consider the problem 

Maximize 𝑧 = 𝑓 𝑿  

Subject to  

𝑔 𝑿 ≤ 𝟎 

The inequality constraints may be converted into equations by using nonnegative slack 

variables. Let 𝑆𝑖
2(≥ 0) be the slack quantity added to the 𝑖𝑡  constraint 𝑔𝑖 𝑿 ≤ 0 and 

define  

𝑺 =  𝑆1, 𝑆2, … , 𝑆𝑚 𝑇 , 𝑺2 =  𝑆1
2, 𝑆2

2, … , 𝑆𝑚
2  𝑇 



42 
 

where 𝑚 is the total number of inequality constraints. The Lagrangian function is thus 

given by 

𝐿 𝑿, 𝑺, 𝝀 = 𝑓 𝑿 − 𝝀 𝑔 𝑿 + 𝑺2  

given the constraints  

𝑔 𝑿 ≤ 𝟎 

A necessary condition for optimality is that 𝝀 be nonnegative (nonpositive) for 

maximization (minimization) problems. This result is justified by noting that the vector 

𝝀 measures the rate of variation of 𝑓 with respect to 𝑔- that is, 

𝝀 =
𝜕𝑓

𝜕𝑔
 

 

In the maximization case, as the right-hand side of the constraint 𝑔 𝑿 ≤ 0 increases 

from 0 to the vector 𝜕𝑔, the solution space becomes less constrained and hence 𝑓 

cannot decrease, meaning that 𝝀 ≥ 𝟎. Similarly for minimization, as the right-hand side 

of the constraints increases, 𝑓 cannot increase, which implies that 𝝀 ≤ 𝟎. If the 

constraints are equalities, that is, 𝑔 𝑿 = 0, then 𝝀 becomes unrestricted in sign.  

The restrictions on 𝝀 hold as part of the KKT necessary conditions. The 

remaining conditions will now be developed. 

Taking the partial derivatives of 𝐿 with respect to 𝑿, 𝑺, and 𝝀, we obtain 
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𝜕𝐿

𝜕𝑿
= ∇𝑓 𝑿 − 𝝀∇𝑔 𝑿 = 𝟎 

𝜕𝐿

𝜕𝑆𝑖
= −2𝜆𝑖𝑆𝑖 = 0, 𝑖 = 1,2, … , 𝑚 

𝜕𝐿

𝜕𝝀
= − 𝑔 𝑿 + 𝑺2 = 𝟎 

The second set of equations reveals the following results: 

1. If 𝜆𝑖 ≠ 0, then 𝑆𝑖
2 = 0, which means that the corresponding resource is abundant, 

and, hence, it is consumed completely (equality constraint). 

2. If 𝑆𝑖
2 > 0, then 𝜆𝑖 = 0. This means resource 𝑖 is not scarce and, consequently, it has 

no effect on the value of 𝑓 (i.e., 𝜆𝑖 =
𝜕𝑓𝑖

𝜕𝑔𝑖
 ). 

From the second and third sets of equations, we obtain  

𝜆𝑖𝑔𝑖 𝑿 = 0, 𝑖 = 1,2, … , 𝑚 

This new condition essentially repeats the foregoing argument, because if 𝜆𝑖 > 0,     

𝑔𝑖 𝑿 = 0 or 𝑆𝑖
2 = 0; and if 𝑔𝑖 𝑿 < 0, 𝑆𝑖

2 > 0, and 𝜆𝑖 = 0. 

The KKT necessary conditions for maximization problem are summarized as: 

𝝀 ≥ 𝟎 

∇𝑓 𝑿 − 𝝀∇𝑔 𝑿 = 𝟎 

𝜆𝑖𝑔𝑖 𝑿 = 0, 𝑖 = 1,2, … , 𝑚 

𝑔 𝑿 ≤ 𝟎 
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These conditions apply to the minimization case as well, except that 𝝀 must be 

nonpositive. In both maximization and minimization, the Lagrange multipliers 

corresponding to equality constraints are unrestricted in sign. 

 

 

3.3 Finite Regular Fuzzy Markov Chains 

As presented in Chapter 2, if  𝑃 is a 𝑟 × 𝑟  crisp transition matrix for a regular 

Markov chain then lim𝑛→∞ 𝑃𝑛 = Π where each row in Π is 𝑤 =  𝑤1, … , 𝑤𝑟 ,  𝑤𝑖 > 0 

and  𝑤𝑖
𝑟
𝑖=1 = 1. Here 𝑤 is the solution of 𝑤𝑃 = 𝑤 satisfying 𝑤𝑖 > 0 and  𝑤𝑖

𝑟
𝑖=1 = 1. 

  If  𝑄 =  𝑞𝑖𝑗   is a 𝑟 × 𝑟  crisp transition matrix for a regular Markov chain, then 

consider 𝑃 = [𝑝 𝑖𝑗 ] where 𝑝 𝑖𝑗  gives the uncertainty (if any) in 𝑞𝑖𝑗 . 

 If (𝑝11 , … , 𝑝𝑟𝑟 ) ∈ 𝐷𝑜𝑚 𝛼 , then  𝑃 = [𝑝𝑖𝑗 ] is also transition matrix for a regular 

Markov chain. Let 𝑃
𝑛

→ Π  where each row in Π  is 𝜋 =  𝜋 1, … , 𝜋 𝑟 . Also let  

𝜋 𝑗  𝛼 =  𝜋𝑗1 𝛼 , 𝜋𝑗2 𝛼  , 𝑗 = 1, … , 𝑟. 

We show how to compute the 𝛼 −cuts of  𝜋 𝑗 . 

For each (𝑝11 , … , 𝑝𝑟𝑟 ) ∈ 𝐷𝑜𝑚 𝛼 , set 𝑃 = [𝑝𝑖𝑗 ] and we get 𝑃𝑛 → Π. Let  

Γ 𝛼 =  𝑤 𝑤 𝑎 𝑟𝑜𝑤 𝑖𝑛 Π,  (𝑝11 , … , 𝑝𝑟𝑟 ) ∈ 𝐷𝑜𝑚 𝛼  . Then 

𝜋𝑗1 𝛼 = 𝑚𝑖𝑛 𝑤𝑗  𝑤 ∈ Γ 𝛼       
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𝜋𝑗2 𝛼 = 𝑚𝑎𝑥 𝑤𝑗  𝑤 ∈ Γ 𝛼    

where 𝑤𝑗  is the 𝑗𝑡  component in the vector 𝑤 [6]. 

 

The following example shows how we find the limit of  2 × 2  regular fuzzy Markov 

chains  

using the restricted fuzzy matrix multiplication. 

 

Example 3.3.1([6]): Let 𝑄 =  𝑞𝑖𝑗   be a 2 × 2 transition matrix of a regular Markov 

chain, then consider 𝑃 =  
𝑝 11 𝑝 12

𝑝 21 𝑝 22
   where 𝑝 𝑖𝑗  gives the uncertainty (if any) in 𝑞𝑖𝑗  for 

𝑖, 𝑗 = 1,2  . If (𝑝11 , 𝑝12 , 𝑝21 , 𝑝22) ∈ 𝐷𝑜𝑚 𝛼 , then 𝑃 =  
𝑝11 𝑝12

𝑝21 𝑝22
  is a regular transition 

matrix and so 𝑃𝑛  is convergent. We solve  𝑤1 𝑤2  
𝑝11 𝑝12

𝑝21 𝑝22
 =  𝑤1 𝑤2  where 

𝑤1, 𝑤2 > 0 and              𝑤1 + 𝑤2 = 1. It follows from Example 2.3.1 that 𝑤1 =
𝑝21

𝑝21 +𝑝12
  

and   𝑤2 =
𝑝12

𝑝21 +𝑝12
. Now,  

𝜕𝑤1

𝜕𝑝21
=

𝑝12

 𝑝21 +𝑝12 2 > 0, 
𝜕𝑤1

𝜕𝑝12
=

−𝑝21

 𝑝21 +𝑝12 2 < 0,  
𝜕𝑤2

𝜕𝑝21
=

−𝑝12

 𝑝21 +𝑝12  2 < 0, and                       

𝜕𝑤2

𝜕𝑝12
=

𝑝21

 𝑝21 +𝑝12 2 > 0. 

If 𝑝 21 𝛼 =  𝑝211 𝛼 , 𝑝212 𝛼   and 𝑝 12 𝛼 =  𝑝121 𝛼 , 𝑝122 𝛼  , then 

by restricted matrix multiplication 𝑃
𝑛

→ Π  where each row in Π  is 𝜋 =  𝜋 1, 𝜋 2 , where 
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𝜋 1 𝛼 =  𝜋11 𝛼 , 𝜋12 𝛼   and 𝜋 2 𝛼 =  𝜋21 𝛼 , 𝜋22 𝛼  . 

𝜋11 𝛼 = 𝑚𝑖𝑛  
𝑝21

𝑝21 +𝑝12
 (𝑝11 , 𝑝12 , 𝑝21 , 𝑝22) ∈ 𝐷𝑜𝑚 𝛼   =

𝑝211  𝛼 

𝑝211  𝛼 +𝑝122  𝛼 
  

𝜋12 𝛼 = 𝑚𝑎𝑥  
𝑝21

𝑝21 +𝑝12
 (𝑝11 , 𝑝12 , 𝑝21 , 𝑝22) ∈ 𝐷𝑜𝑚 𝛼   =  

𝑝212  𝛼 

𝑝212  𝛼 +𝑝121  𝛼 
  

𝜋21 𝛼 = 𝑚𝑖𝑛  
𝑝12

𝑝21 +𝑝12
 (𝑝11 , 𝑝12 , 𝑝21 , 𝑝22) ∈ 𝐷𝑜𝑚 𝛼   =  

𝑝121  𝛼 

𝑝121  𝛼 +𝑝212  𝛼 
  

𝜋22 𝛼 = 𝑚𝑎𝑥  
𝑝12

𝑝21 +𝑝12
 (𝑝11 , 𝑝12 , 𝑝21 , 𝑝22) ∈ 𝐷𝑜𝑚 𝛼   =  

𝑝122  𝛼 

𝑝122  𝛼 +𝑝211  𝛼 
  

Therefore,  

𝜋 1 𝛼 

=  
𝑝211 𝛼 

𝑝211 𝛼 + 𝑝122 𝛼 
,

𝑝212 𝛼 

𝑝212 𝛼 + 𝑝121 𝛼 
                                                               3.3.1 

𝜋 2 𝛼 

=  
𝑝121 𝛼 

𝑝121 𝛼 + 𝑝212 𝛼 
,

𝑝122 𝛼 

𝑝122 𝛼 + 𝑝211 𝛼 
                                                                3.3.2 

for all 0 ≤ 𝛼 ≤ 1. 

 

Now, we show how 𝜋11 𝛼  can be derived using KKT conditions: 

We want to minimize   𝑓(𝑝21 , 𝑝12) =
𝑝21

𝑝21 +𝑝12
 subject to 

𝑔1(𝑝21 , 𝑝12) = 𝑝21 − 𝑝212 𝛼 ≤ 0 

𝑔2(𝑝21 , 𝑝12) = 𝑝211 𝛼 − 𝑝21 ≤ 0 
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𝑔3(𝑝21 , 𝑝12) = 𝑝12 − 𝑝122 𝛼 ≤ 0 

𝑔4(𝑝21 , 𝑝12) = 𝑝121 𝛼 − 𝑝12 ≤ 0 

The KKT conditions will be 

𝝀 =  𝜆1, 𝜆2, 𝜆3, 𝜆4 ≤ 𝟎 

∇𝑓 𝑝21 , 𝑝12 − 𝝀∇𝑔 𝑝21 , 𝑝12 = 𝟎 

𝜆𝑖𝑔𝑖 𝑝21 , 𝑝12 = 0, 𝑖 = 1,2,3,4 

𝑔 𝑝21 , 𝑝12 =  

𝑔1(𝑝21 , 𝑝12)
𝑔2(𝑝21 , 𝑝12)
𝑔3(𝑝21 , 𝑝12)
𝑔3(𝑝21 , 𝑝12)

 ≤ 𝟎 

Or, 

𝝀 =  𝜆1, 𝜆2, 𝜆3, 𝜆4 ≤ 𝟎, 

 

 
𝜕𝑓

𝜕𝑝21
,

𝜕𝑓

𝜕𝑝12
 −  𝜆1, 𝜆2, 𝜆3, 𝜆4 

 

 
 
 
 
 
 

𝜕𝑔1

𝑝21

𝜕𝑔1

𝑝12

𝜕𝑔2

𝑝21

𝜕𝑔2

𝑝12

𝜕𝑔3

𝑝21

𝜕𝑔3

𝑝12

𝜕𝑔4

𝑝21

𝜕𝑔4

𝑝12  

 
 
 
 
 
 

= 𝟎, 

⟹
𝜕𝑓

𝜕𝑝21
− 𝜆1 + 𝜆2 = 0 𝑎𝑛𝑑 

𝜕𝑓

𝜕𝑝12
− 𝜆3 + 𝜆4 = 0. 
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𝜆1 𝑝21 − 𝑝212 𝛼  = 0, 

𝜆2 𝑝211 𝛼 − 𝑝21 = 0, 

𝜆3 𝑝12 − 𝑝122 𝛼  = 0, 

𝜆4 𝑝121 𝛼 − 𝑝12 = 0. 

If 𝜆2 = 0 then 
𝜕𝑓

𝜕𝑝21
= 𝜆1 ≤ 0 which is not possible since 

𝜕𝑓

𝜕𝑝21
=

𝑝12

 𝑝21 +𝑝12 2 > 0, so       

𝑝21 = 𝑝211 𝛼 , 𝜆1 = 0, and  𝜆2 = −
𝜕𝑓

𝜕𝑝21
. 

If 𝜆3 = 0 then 
𝜕𝑓

𝜕𝑝12
= −𝜆4 ≥ 0 which is not possible since 

𝜕𝑓

𝜕𝑝12
=

−𝑝21

 𝑝21 +𝑝12  2 < 0, so 

𝑝12 = 𝑝122 𝛼 , 𝜆4 = 0, and 𝜆3 =
𝜕𝑓

𝜕𝑝12
.  

Since all constraints are satisfied we have 𝑚𝑖𝑛 
𝑝21

𝑝21 +𝑝12
=

𝑝211  𝛼 

𝑝211  𝛼 +𝑝122  𝛼 
 where              

𝑝21 ∈  𝑝211 𝛼 , 𝑝212 𝛼   and 𝑝12 ∈  𝑝121 𝛼 , 𝑝122 𝛼  . 

Similarly, 𝜋12 𝛼 , 𝜋21 𝛼 , and 𝜋22 𝛼  are derived using KKT conditions. 

 

 In the next example, we apply relations 3.3.1 and 3.3.2 on triangular fuzzy numbers. 

Example 3.3.2 ([6]): Let 𝑄 =  
0.7 0.3
0.4 0.6

  be a crisp transition matrix. As we mentioned 

above we have uncertainties in all the entries, so we model these uncertainties by fuzzy 

numbers between 0 and 1. So, we may take 𝑝 11 = (0.6/0.7/0.8), 𝑝 12 = (0.2/0.3/0.4),             

𝑝 21 = (0.3/0.4/0.5) and 𝑝 22 = (0.5/0.6/0.7). Hence,                                            
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𝑝 11 𝛼 =  0.6 + 0.1𝛼, 0.8 − 0.1𝛼        

𝑝 12 𝛼 =  0.2 + 0.1𝛼, 0.4 − 0.1𝛼                                                                                 

𝑝 21 𝛼 =  0.3 + 0.1𝛼, 0.5 − 0.1𝛼   

𝑝 22 𝛼 = [0.5 + 0.1𝛼, 0.7 − 0.1𝛼]  

Then 𝑃
𝑛

→ Π  where each row in Π  is 𝜋 =  𝜋 1, 𝜋 2  and it follows from relations 3.3.1 

and 3.3.2 that 

                𝜋 1 𝛼 =  
3

7
+

1

7
𝛼,

5

7
−

1

7
𝛼  and 𝜋 2 𝛼 =  

2

7
+

1

7
𝛼,

4

7
−

1

7
𝛼 , for all 0 ≤ 𝛼 ≤ 1.  

Note that the endpoints of the  𝛼 −cuts are linear functions of 𝛼, and hence we have                                       

𝜋 1 0 =  
3

7
,

5

7
 , 𝜋 1 1 =

4

7
  so 𝜋 1 = (

3

7
/

4

7
/

5

7
) is a triangular fuzzy number.                 

𝜋 2 0 =  
2

7
,

4

7
 , 𝜋 2 1 =

3

7
 so 𝜋 2 = (

2

7
/

3

7
/

4

7
)  is a triangular fuzzy number. 

 

3.4 A Deeper Look on the Limit of Powers of 𝟐 × 𝟐 Regular Fuzzy Transition 

Matrices  

For a crisp transition matrix 𝑄 =  
𝑞11 𝑞12

𝑞21 𝑞22
  with 0 < 𝑞𝑖𝑗 < 1, let 𝑃 =  

𝑝 11 𝑝 12

𝑝 21 𝑝 22
   

be a fuzzy transition matrix where 0 < 𝑝 𝑖𝑗 < 1  representing the uncertainty in the 𝑞𝑖𝑗  . 

Let 𝑝 𝑖𝑗  𝛼 =  𝑝𝑖𝑗 1 𝛼 , 𝑝𝑖𝑗 2 𝛼   for all 0 ≤ 𝛼 ≤ 1. If  𝑝11 , 𝑝12 , 𝑝21 , 𝑝22 ∈ 𝐷𝑜𝑚 𝛼 , 

then 𝑃 =  
𝑝11 𝑝12

𝑝21 𝑝22
  is a regular transition matrix. Let 𝑤 =  𝑤1, 𝑤2  be the steady state 

vector of 𝑃, then we have the following four cases:     
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1. If 𝑤1 =
𝑝21

𝑝21 +𝑝12
   and   𝑤2 =

𝑝12

𝑝21 +𝑝12
, then 

𝜕𝑤1

𝜕𝑝21
=

𝑝12

 𝑝21 +𝑝12 2 > 0,                         

𝜕𝑤1

𝜕𝑝12
=

−𝑝21

 𝑝21 +𝑝12 2
< 0, 

𝜕𝑤2

𝜕𝑝21
=

−𝑝12

   𝑝21 +𝑝12  2
< 0, 

𝜕𝑤2

𝜕𝑝12
=

𝑝21

 𝑝21 +𝑝12  2
> 0.  

It follows by restricted fuzzy matrix multiplication that 𝑃
𝑛

→ Π 1, where each 

row in Π 1 is 𝜋 1 =  𝜋 11 , 𝜋 12  where  

             𝜋 11 𝛼 =  
𝑝211  𝛼 

𝑝211  𝛼 +𝑝122  𝛼 
,

𝑝212  𝛼 

𝑝212  𝛼 +𝑝121  𝛼 
                                                      3.4.1 

             𝜋 12 𝛼 =  
𝑝121  𝛼 

𝑝121  𝛼 +𝑝212  𝛼 
,

𝑝122  𝛼 

𝑝122  𝛼 +𝑝211  𝛼 
                                                      3.4.2 

            for all 0 ≤ 𝛼 ≤ 1. 

2. If 𝑤1 =
1−𝑝22

1−𝑝22 +𝑝12
 and 𝑤2 =

𝑝12

𝑝21 +1−𝑝22
, then 

𝜕𝑤1

𝜕𝑝22
=

−𝑝12

 1−𝑝22 +𝑝12 2 < 0,                   

𝜕𝑤1

𝜕𝑝12
=

−(1−𝑝22 )

 1−𝑝22 +𝑝12  2 < 0, 
𝜕𝑤2

𝜕𝑝22
=

𝑝12

 1−𝑝22 +𝑝12 2 > 0, and 
𝜕𝑤2

𝜕𝑝12
=

1−𝑝22

 1−𝑝22 +𝑝12 2 > 0. 

It follows by restricted fuzzy matrix multiplication that 𝑃
𝑛

→ Π 2, where each 

row in Π 2 is 𝜋 2 =  𝜋 21 , 𝜋 22  where 

            𝜋 21 𝛼 =  
1−𝑝222  𝛼 

1−𝑝222  𝛼 +𝑝122  𝛼 
,

1−𝑝221  𝛼 

1−𝑝221  𝛼 +𝑝121  𝛼 
                                                3.4.3 

            𝜋 22 𝛼 =  
𝑝121  𝛼 

𝑝121  𝛼 +1−𝑝221  𝛼 
,

𝑝122  𝛼 

𝑝122  𝛼 +1−𝑝222  𝛼 
                                                3.4.4      

            for all 0 ≤ 𝛼 ≤ 1. 
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3. If 𝑤1 =
𝑝21

1−𝑝11 +𝑝21
 and 𝑤2 =

1−𝑝11

1−𝑝11 +𝑝21
, then 

𝜕𝑤1

𝜕𝑝21
=

1−𝑝11

 1−𝑝11 +𝑝21 2 > 0,                   

𝜕𝑤1

𝜕𝑝11
=

𝑝21

 1−𝑝11 +𝑝21  2
> 0,  

𝜕𝑤2

𝜕𝑝21
=

−(1−𝑝11 )

 1−𝑝11 +𝑝21 2
< 0, and  

𝜕𝑤2

𝜕𝑝11
=

−𝑝21

 1−𝑝11 +𝑝21 2
< 0. 

It follows by restricted fuzzy matrix multiplication that 𝑃 𝑛 → Π 3, where each 

row in Π 3 is 𝜋 3 =  𝜋 31 , 𝜋 32  where 

            𝜋 31 𝛼 =  
𝑝211  𝛼 

𝑝211  𝛼 +1−𝑝111  𝛼 
,

𝑝212  𝛼 

𝑝212  𝛼 +1−𝑝112  𝛼 
                                                3.4.5 

            𝜋 32 𝛼 =  
1−𝑝112  𝛼 

1−𝑝112  𝛼 +𝑝212  𝛼 
,

1−𝑝111  𝛼 

1−𝑝111  𝛼 +𝑝211  𝛼 
                                                3.4.6 

            for all 0 ≤ 𝛼 ≤ 1. 

4. If 𝑤1 =
1−𝑝22

2−𝑝11 −𝑝22
 and 𝑤2 =

1−𝑝11

2−𝑝11 −𝑝22
, then 

𝜕𝑤1

𝜕𝑝11
=

1−𝑝22

 2−𝑝11−𝑝22 2 > 0,                 

𝜕𝑤1

𝜕𝑝22
=

−(1−𝑝11 )

 2−𝑝11−𝑝22  2 < 0,  
𝜕𝑤2

𝜕𝑝11
=

−(1−𝑝22 )

 2−𝑝11−𝑝22 2 < 0, and  
𝜕𝑤2

𝜕𝑝22
=

1−𝑝11

 2−𝑝11−𝑝22 2 > 0. 

It follows by restricted fuzzy multiplication that 𝑃
𝑛

→ Π 4, where each row in Π 4 

is 𝜋 4 =  𝜋 41 , 𝜋 42  where 

            𝜋 41 𝛼 =  
1−𝑝222  𝛼 

2−𝑝111  𝛼 −𝑝222  𝛼 
,

1−𝑝221  𝛼 

2−𝑝112  𝛼 −𝑝221  𝛼 
                                                3.4.7 

            𝜋 42 𝛼 =  
1−𝑝112  𝛼 

2−𝑝112  𝛼 −𝑝221  𝛼 
,

1−𝑝111  𝛼 

2−𝑝111  𝛼 −𝑝222  𝛼 
                                                3.4.8 

            for all 0 ≤ 𝛼 ≤ 1. 

 

Below we study Π 1, Π 2, Π 3, and Π 4 when the entries are triangular fuzzy 

numbers.  
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Theorem 3.4.1: If 𝑄 =  
𝑞11 𝑞12

𝑞21 𝑞22
  is a crisp transition matrix with 0 < 𝑞𝑖𝑗 < 1, and                    

𝑃 =  
𝑝 11 𝑝 12

𝑝 21 𝑝 22
  is a fuzzy transition matrix, where 𝑝 𝑖𝑗 =  𝑞𝑖𝑗 − 𝛿𝑖𝑗 𝑞𝑖𝑗 𝑞𝑖𝑗 +  𝛿𝑖𝑗

   such 

that 𝛿𝑖𝑗 , 𝛿𝑖𝑗
 > 0 and 0 < 𝑝 𝑖𝑗 < 1, 𝑖, 𝑗 = 1,2. Then for distinct values of  𝛿𝑖𝑗  and  𝛿𝑖𝑗

 , we 

have Π 𝑖 ≠ Π 𝑗  𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,3,4 .  

 

Proof. The fuzzy probability 𝑝 𝑖𝑗  represents the uncertainty in 𝑞𝑖𝑗 . Now                          

𝑝 𝑖𝑗  𝛼 =  𝑝𝑖𝑗 1 𝛼 , 𝑝𝑖𝑗 2 𝛼  =  𝑞𝑖𝑗 − 𝛿𝑖𝑗 + 𝛿𝑖𝑗 𝛼, 𝑞𝑖𝑗 + 𝛿𝑖𝑗 −  𝛿𝑖𝑗 𝛼  . Then according to 

relations 3.4.1 − 3.4.8 we have: 

 

𝜋 11 𝛼 =  
𝑞21 − 𝛿21 + 𝛿21𝛼

𝑞21 + 𝑞12+𝛿12 − 𝛿21  +  𝛿21 − 𝛿12
  𝛼

,
𝑞21 + 𝛿21

 − 𝛿21
 𝛼

𝑞21 + 𝑞12 + 𝛿21
 − 𝛿12  +  𝛿12 − 𝛿21

  𝛼
  

𝜋 11 0 =  
𝑞21 − 𝛿21

𝑞21 + 𝑞12+𝛿12 − 𝛿21  
,

𝑞21 + 𝛿21
 

𝑞21 + 𝑞12 + 𝛿21
 − 𝛿12  

 , 𝜋 11 1 =
𝑞21

𝑞21 + 𝑞12
  

𝜋 12 𝛼 =  
𝑞12 − 𝛿12 + 𝛿12𝛼

𝑞21 + 𝑞12+𝛿21 − 𝛿12  +  𝛿12 − 𝛿21
  𝛼

,
𝑞12 + 𝛿12

 − 𝛿12
 𝛼

𝑞21 + 𝑞12 + 𝛿12
 − 𝛿21  +  𝛿21 − 𝛿12

  𝛼
  

𝜋 12 0 =  
𝑞12 − 𝛿12

𝑞21 + 𝑞12+𝛿21 − 𝛿12  
,

𝑞12 + 𝛿12
 

𝑞21 + 𝑞12 + 𝛿12
 − 𝛿21  

 , 𝜋 12 1 =
𝑞12

𝑞21 + 𝑞12
 

 

𝜋 21 𝛼 =  
𝑞21−𝛿22

 + 𝛿22
 𝛼

𝑞21 + 𝑞12 − 𝛿22
 + 𝛿12

  +  𝛿22
 − 𝛿12

  𝛼
,

𝑞21 + 𝛿22 − 𝛿22𝛼

𝑞21 + 𝑞12 + 𝛿22 − 𝛿12  +  𝛿12 − 𝛿22 𝛼
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𝜋 21 0 =  
𝑞21−𝛿22

 

𝑞21 + 𝑞12 − 𝛿22
 + 𝛿12

  
,

𝑞21 + 𝛿22

𝑞21 + 𝑞12 + 𝛿22 − 𝛿12  
 , 𝜋 21 1 =

𝑞21

𝑞21 + 𝑞12
 

𝜋 22 𝛼 =  
𝑞12 − 𝛿12 + 𝛿12𝛼

𝑞21 + 𝑞12 + 𝛿22 − 𝛿12  +  𝛿12 − 𝛿22 𝛼
,

𝑞12 + 𝛿12
 − 𝛿12

 𝛼

𝑞21 + 𝑞12 + 𝛿12
 − 𝛿22

  +  𝛿22
 − 𝛿12

  𝛼
  

𝜋 22 0 =  
𝑞12 − 𝛿12

𝑞21 + 𝑞12 + 𝛿22 − 𝛿12  
,

𝑞12 + 𝛿12
 

𝑞21 + 𝑞12 + 𝛿12
 − 𝛿22

  
 , 𝜋 22 1 =

𝑞12

𝑞21 + 𝑞12
 

 

𝜋 31 𝛼 =  
𝑞21 − 𝛿21 + 𝛿21𝛼

𝑞21 + 𝑞12 + 𝛿11 − 𝛿21 +  𝛿21 − 𝛿11 𝛼
,

𝑞21 + 𝛿21
 − 𝛿21

 𝛼

𝑞21 + 𝑞12 + 𝛿21
 − 𝛿11

  +  𝛿11
 − 𝛿21

  𝛼
  

𝜋 31 0 =  
𝑞21 − 𝛿21

𝑞21 + 𝑞12 + 𝛿11 − 𝛿21
,

𝑞21 + 𝛿21
 

𝑞21 + 𝑞12 + 𝛿21
 − 𝛿11

  
 , 𝜋 31 1 =

𝑞21

𝑞21 + 𝑞12
 

𝜋 32 𝛼 =  
𝑞12 − 𝛿11

 + 𝛿11
 𝛼

𝑞21 + 𝑞12 + 𝛿21
 − 𝛿11

  +  𝛿11
 − 𝛿21

  𝛼
,

𝑞12 + 𝛿11 − 𝛿11𝛼

𝑞21 + 𝑞12 + 𝛿11 − 𝛿21 +  𝛿21 − 𝛿11 𝛼
  

𝜋 32 0 =  
𝑞12 − 𝛿11

 

𝑞21 + 𝑞12 + 𝛿21
 − 𝛿11

  
,

𝑞12 + 𝛿11

𝑞21 + 𝑞12 + 𝛿11 − 𝛿21
 , 𝜋 32 1 =

𝑞12

𝑞21 + 𝑞12
 

 

𝜋 41 𝛼 =  
𝑞21 − 𝛿22

 + 𝛿22
 𝛼

𝑞21 + 𝑞12 + 𝛿11 − 𝛿22
 +  𝛿22

 − 𝛿11 𝛼
,

𝑞21 + 𝛿22 − 𝛿22𝛼

𝑞21 + 𝑞12 + 𝛿22 − 𝛿11
  +  𝛿11

 − 𝛿22 𝛼
  

𝜋 41 0 =  
𝑞21 − 𝛿22

 

𝑞21 + 𝑞12 + 𝛿11 − 𝛿22
 

,
𝑞21 + 𝛿22

𝑞21 + 𝑞12 + 𝛿22 − 𝛿11
  

 , 𝜋 41 1 =
𝑞21

𝑞21 + 𝑞12
 

𝜋 42 𝛼 =  
𝑞12 − 𝛿11

 + 𝛿11
 𝛼

𝑞21 + 𝑞12 − 𝛿11
 + 𝛿22  +  𝛿11

 − 𝛿22 𝛼
,

𝑞12 + 𝛿11 − 𝛿11𝛼

𝑞21 + 𝑞12 + 𝛿11 − 𝛿22
 +  𝛿22

 − 𝛿11 𝛼
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𝜋 42 0 =  
𝑞12 − 𝛿11

 

𝑞21 + 𝑞12 − 𝛿11
 + 𝛿22  

,
𝑞12 + 𝛿11

𝑞21 + 𝑞12 + 𝛿11 − 𝛿22
 

 , 𝜋 42 1 =
𝑞12

𝑞21 + 𝑞12
 

 

          Therefore, for distinct values of  𝛿𝑖𝑗  and  𝛿𝑖𝑗
 , we get  𝜋 𝑖1 𝛼  are distinct and 

similarly 

for 𝜋 𝑖2 𝛼  where 0 ≤ 𝛼 < 1, 𝑖, 𝑗 = 1,2,3,4, and this implies that Π 𝑖 ≠ Π 𝑗  for                       

𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,3,4 , it is clear that 𝜋 𝑖𝑗 ’s are triangular shaped fuzzy numbers, and this 

completes the proof. 

  Similarly, if triangular fuzzy numbers are replaced by trapezoidal fuzzy 

numbers or any fuzzy number, we get the same conclusion. Moreover, these 

conclusions can be generalized for any 𝑛 × 𝑛 fuzzy transition matrix since for each 

component 𝑤𝑗  of the steady state vector 𝑤, we may replace every 𝑝𝑖𝑘  in 𝑤𝑗  by 1 −

 𝑝𝑖𝑙
𝑛
𝑙=1
𝑙≠𝑘

,  and hence we get distinct limits. 

 Our main purpose is to find minimal conditions that are needed to guarantee the 

uniqueness of the limit of the 2 × 2 regular fuzzy transition matrices. Therefore, we 

have the following three propositions: 

Proposition 3.4.2:Let 𝑄 =  
𝑞11 𝑞12

𝑞21 𝑞22
  be a regular crisp transition matrix with 0 <

𝑞𝑖𝑗 < 1 for 𝑖, 𝑗 = 1,2  . Let 𝑃 =  
𝑝 11 𝑝 12

𝑝 21 𝑝 22
  where  𝑝 𝑖𝑗 = (𝑞𝑖𝑗 − 𝛿𝑖/𝑞𝑖𝑗 /𝑞𝑖𝑗 + 𝛿𝑖)  -

triangular fuzzy numbers- for 𝑖, 𝑗 = 1,2, and 𝛿1, 𝛿2 > 0 such that 0 < 𝑝 𝑖𝑗 < 1 𝑖, 𝑗 = 1,2  



55 
 

. Then by restricted fuzzy matrix multiplication 𝑃
𝑛

 converges to the unique limit Π , 

where each row in Π  is  𝜋 =  𝜋 1, 𝜋 2 ,  with  

𝜋 1 ≈  
𝑞21 − 𝛿2

𝑞21 + 𝑞12+ 𝛿1 − 𝛿2
/

𝑞21

𝑞21 + 𝑞12
/

𝑞21 + 𝛿2

𝑞21 + 𝑞12 + 𝛿2 − 𝛿1
  

𝜋 2 ≈  
𝑞12 − 𝛿1

𝑞21 + 𝑞12 + 𝛿2 − 𝛿1
/

𝑞12

𝑞21 + 𝑞12
/

𝑞12 + 𝛿1

𝑞21 + 𝑞12 + + 𝛿1 − 𝛿2
  

for 𝛿1 ≠ 𝛿2 (both are triangular shaped fuzzy numbers), 

and 

𝜋 1 =  
𝑞21 − 𝛿

𝑞21 + 𝑞12
/

𝑞21

𝑞21 + 𝑞12
/

𝑞21 + 𝛿

𝑞21 + 𝑞12
  

𝜋 2 =  
𝑞12 − 𝛿

𝑞21 + 𝑞12
/

𝑞12

𝑞21 + 𝑞12
/

𝑞12 + 𝛿

𝑞21 + 𝑞12
  

for 𝛿1 = 𝛿2 = 𝛿 (both are triangular fuzzy numbers). 

Proof. The alpha cuts of 𝑝 𝑖𝑗  are 𝑝 𝑖𝑗  𝛼 =  𝑞𝑖𝑗 − 𝛿𝑖 + 𝛿𝑖𝛼, 𝑞𝑖𝑗 + 𝛿𝑖 − 𝛿𝑖𝛼 ,                               

𝑖, 𝑗 = 1,2 for all 0 ≤ 𝛼 ≤ 1. In this case,  𝛿1𝑗 = 𝛿1𝑗
 = 𝛿1, 𝛿2𝑗 = 𝛿2𝑗

 = 𝛿2, for 𝑗 = 1,2, so 

from the previous discussion 𝑃 𝑛  converges to the unique limit Π , where each row in Π  is                

𝜋 =  𝜋 1, 𝜋 2 , with 

 𝜋 1 𝛼 =  
𝑞21−𝛿2+𝛿2𝛼

𝑞21 +𝑞12 + 𝛿1−𝛿2+ 𝛿2−𝛿1 𝛼
,

𝑞21 +𝛿2−𝛿2𝛼

𝑞21 +𝑞12 +𝛿2−𝛿1+ 𝛿1−𝛿2 𝛼
 , for 𝛿1 ≠ 𝛿2 

 So, 𝜋 1 0 =  
𝑞21−𝛿2

𝑞21 +𝑞12 + 𝛿1−𝛿2
,

𝑝21 +𝛿2

𝑞21 +𝑞12 +𝛿2−𝛿1
  and  𝜋 1 1 =

𝑞21

𝑞21 + 𝑞12
 . 

𝜋 2 𝛼 =  
𝑞12−𝛿1+ 𝛿1𝛼

𝑞21 +𝑞12 +𝛿2−𝛿1+ 𝛿1−𝛿2 𝛼
,

𝑞12 + 𝛿1−𝛿1𝛼

𝑞21 + 𝑞12 + 𝛿1−𝛿2+ 𝛿2−𝛿1 𝛼
 , for 𝛿1 ≠ 𝛿2 
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So, 𝜋 2 0 =  
𝑞12−𝛿1

𝑞21 +𝑞12 +𝛿2−𝛿1
,

𝑞12 +𝛿1

𝑞21 +𝑞12 + 𝛿1−𝛿2
   and 𝜋 2 1 =

𝑞12

𝑞21 +𝑞12
 . 

In this case, 𝜋 1 𝛼  and 𝜋 2 𝛼  are not linear functions of 𝛼, so both 𝜋 1 and 𝜋 2 are triangular 

shaped fuzzy numbers with the form given in  the proposition. If 𝛿1 = 𝛿2 = 𝛿, then it is 

clear that 𝜋 1 𝛼  and 𝜋 2 𝛼  are linear functions of 𝛼, so, both 𝜋 1 and 𝜋 2 are triangular fuzzy 

numbers with the form given in  the present proposition, and this completes the proof. 

Proposition 3.4.3:Let 𝑄 =  
𝑞11 𝑞12

𝑞21 𝑞22
  be a regular crisp transition matrix with               

0 < 𝑞𝑖𝑗 < 1 for 𝑖, 𝑗 = 1,2 . Let 𝑃 =  
𝑝 11 𝑝 12

𝑝 21 𝑝 22
 , where 𝑝 𝑖𝑗 = (𝑞𝑖𝑗 − 𝛿𝑖 , 𝑞𝑖𝑗 − 𝛿𝑖

 , 𝑞𝑖𝑗 +

𝛿𝑖
 , 𝑞𝑖𝑗 + 𝛿𝑖) ,  -trapezoidal fuzzy numbers- for 𝑖, 𝑗 = 1,2 and 0 < 𝛿1

 < 𝛿1, 0 < 𝛿2
 < 𝛿2 

such that 0 < 𝑝 𝑖𝑗 < 1 𝑖, 𝑗 = 1,2. Then, by restricted fuzzy matrix multiplication 

𝑃
𝑛

converges to the unique limit Π , where each row in Π  is  𝜋 =  𝜋 1, 𝜋 2 ,  with  

𝜋 1 ≈  
𝑞21−𝛿2

𝑞21 +𝑞12−𝛿2+𝛿1
,

𝑞21−𝛿2
 

𝑞21 +𝑞12 +𝛿1
 −𝛿2

 ,
𝑞21 +𝛿2

 

𝑞21 +𝑞12 +𝛿2
 −𝛿1

 ,
𝑞21 +𝛿2

𝑞21 +𝑞12 +𝛿2−𝛿1
   

𝜋 2 ≈  
𝑞12−𝛿1

𝑞21 +𝑞12 +𝛿2−𝛿1
,

𝑞12−𝛿1
 

𝑞21 +𝑞12−𝛿1
 +𝛿2

 ,
𝑞12 +𝛿1

 

𝑞21 +𝑞12−𝛿2
 +𝛿1

 ,
𝑞12 +𝛿1

𝑞21 +𝑞12−𝛿2+𝛿1
   

for  𝛿2 − 𝛿2
 ≠ 𝛿1 − 𝛿1

 (both are trapezoidal shaped fuzzy numbers), 

and 

𝜋 1 =  
𝑞21−𝛿2

𝑞21 +𝑞12−𝛿2+𝛿1
,

𝑞21−𝛿2
 

𝑞21 +𝑞12−𝛿2+𝛿1
,

𝑞21 +𝛿2
 

𝑞21 +𝑞12 +𝛿2−𝛿1
,

𝑞21 +𝛿2

𝑞21 +𝑞12 +𝛿2−𝛿1
   

𝜋 2 =  
𝑞12−𝛿1

𝑞21 +𝑞12 +𝛿2−𝛿1
,

𝑞12−𝛿1
 

𝑞21 +𝑞12 +𝛿2−𝛿1
,

𝑞12 +𝛿1
 

𝑞21 +𝑞12−𝛿2+𝛿1
,

𝑞12 +𝛿1

𝑞21 +𝑞12−𝛿2+𝛿1
   

for  𝛿2 − 𝛿2
 = 𝛿1 − 𝛿1

 (both are trapezoidal fuzzy numbers). 
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Proof. The alpha cuts of 𝑝 𝑖𝑗  are  𝑝 𝑖𝑗  𝛼 =   𝛿𝑖 − 𝛿𝑖
  𝛼 + 𝑞𝑖𝑗 − 𝛿𝑖 , − 𝛿𝑖 − 𝛿𝑖

  𝛼 + 𝑞𝑖𝑗 + 𝛿𝑖   , 

𝑖, 𝑗 = 1,2, for all 0 ≤ 𝛼 ≤ 1. According to relations 3.4.1 − 3.4.8 we have 𝑃 𝑛  converges to 

the unique limit Π , where each row in Π  is  𝜋 =  𝜋 1, 𝜋 2 , with 

𝜋 1 𝛼 =  
 𝛿2−𝛿2

  𝛼+𝑞21−𝛿2

𝑞21 +𝑞12 + 𝛿2−𝛿2
  𝛼− 𝛿1−𝛿1

  𝛼−𝛿2+𝛿1
,

− 𝛿2−𝛿2
  𝛼+𝑞21 +𝛿2

𝑞21 +𝑞12− 𝛿2−𝛿2
  𝛼+ 𝛿1−𝛿1

  𝛼+𝛿2−𝛿1
 .                     

So, for  𝛿2 − 𝛿2
 ≠ 𝛿1 − 𝛿1

 , 𝜋 1 0 =  
𝑞21−𝛿2

𝑞21 +𝑞12−𝛿2+𝛿1
,

𝑞21 +𝛿2

𝑞21 +𝑞12 +𝛿2−𝛿1
 ,  

and  

𝜋 1 1 =  
𝑞21−𝛿2

 

𝑞21 +𝑞12 +𝛿1
 −𝛿2

 ,
𝑞21 +𝛿2

 

𝑞21 +𝑞12 +𝛿2
 −𝛿1

   .  

Also, 

𝜋 2 𝛼 =  
 𝛿1−𝛿1

  𝛼+𝑞12−𝛿1

𝑞21 +𝑞12− 𝛿2−𝛿2
  𝛼+ 𝛿1−𝛿1

  𝛼+𝛿2−𝛿1
,

− 𝛿1−𝛿1
  𝛼+𝑞12 +𝛿1

𝑞21 +𝑞12 + 𝛿2−𝛿2
  𝛼− 𝛿1−𝛿1

  𝛼−𝛿2+𝛿1
 .  

So, for  𝛿2 − 𝛿2
 ≠ 𝛿1 − 𝛿1

 , 𝜋 2 0 =  
𝑞12−𝛿1

𝑞21 +𝑞12 +𝛿2−𝛿1
,

𝑞12 +𝛿1

𝑞21 +𝑞12−𝛿2+𝛿1
 , 

and  

𝜋 2 1 =  
𝑞21−𝛿1

 

𝑞21 +𝑞12−𝛿1
 +𝛿2

 ,
𝑞21 +𝛿1

 

𝑞21 +𝑞12−𝛿2
 +𝛿1

   .  

In this case, 𝜋 1 𝛼  and 𝜋 2 𝛼  are not linear functions of 𝛼, so, both 𝜋 1 and 𝜋 2 are 

trapezoidal shaped fuzzy numbers with the form given in  the proposition. If 𝛿2 − 𝛿2
 =

𝛿1 − 𝛿1
 , then it is clear that 𝜋 1 𝛼  and 𝜋 2 𝛼  are linear functions of 𝛼, so, both 𝜋 1 and 𝜋 2 

are trapezoidal fuzzy numbers with the form given in  the present proposition, and this 

completes the proof. 
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 The following proposition deals with the fuzzy number that given in Definition 

1.1.6. 

Proposition 3.4.4: Let  𝑄 =  
𝑞11 𝑞12

𝑞21 𝑞22
  be a regular crisp transition matrix with 0 < 𝑞𝑖𝑗 <

1      for 𝑖, 𝑗 = 1,2 .  Let 𝑃 =  
𝑝 11 𝑝 12

𝑝 21 𝑝 22
  where   𝑝 𝑖𝑗 = (𝑞𝑖𝑗 − 𝛿𝑖 , 𝑞𝑖𝑗 − 𝛿𝑖

 , 𝑞𝑖𝑗 + 𝛿𝑖
 , 𝑞𝑖𝑗 +

𝛿𝑖)𝑐 , 0<𝑐<1 and 0<𝛿1<𝛿1, 0<𝛿2<𝛿2 such that 0<𝑝𝑖𝑗<1 for 𝑖,𝑗=1,2. Then, by 

restricted fuzzy matrix multiplication 𝑃
𝑛

 converges to the unique limit Π , where each row 

in Π  is  𝜋 =  𝜋 1, 𝜋 2 ,  with 

𝜋 1 ≈  
𝑞21−𝛿2

𝑞21 +𝑞12−𝛿2+𝛿1
,

𝑞21−𝛿2
 

𝑞21 +𝑞12 +𝛿1
 −𝛿2

 ,
𝑞21 +𝛿2

 

𝑞21 +𝑞12 +𝛿2
 −𝛿1

 ,
𝑞21 +𝛿2

𝑞21 +𝑞12 +𝛿2−𝛿1
 

𝑐
  

𝜋 2 ≈  
𝑞12−𝛿1

𝑞21 +𝑞12 +𝛿2−𝛿1
,

𝑞12−𝛿1
 

𝑞21 +𝑞12−𝛿1
 +𝛿2

 ,
𝑞12 +𝛿1

 

𝑞21 +𝑞12−𝛿2
 +𝛿1

 ,
𝑞12 +𝛿1

𝑞21 +𝑞12−𝛿2+𝛿1
 

𝑐
.  

for 𝛿2 − 𝛿2
 ≠ 𝛿1 − 𝛿1

  or 𝛿2
 ≠ 𝛿1

 , 

and 

𝜋 1 =  
𝑞21−𝛿2

𝑞21 +𝑞12
,

𝑞21−𝛿2
 

𝑞21 +𝑞12
,

𝑞21 +𝛿2
 

𝑞21 +𝑞12
,

𝑞21 +𝛿2

𝑞21 +𝑞12
 

𝑐
  

𝜋 2 =  
𝑞12−𝛿1

𝑞21 +𝑞12
,

𝑞12−𝛿1
 

𝑞21 +𝑞12
,

𝑞12 +𝛿1
 

𝑞21 +𝑞12
,

𝑞12 +𝛿1

𝑞21 +𝑞12
 

𝑐
.  

for 𝛿2 = 𝛿1 and 𝛿2
 = 𝛿1

 . 
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Proof.   𝑝 𝑖𝑗  𝛼 =  
1

𝑐
 𝛿𝑖 − 𝛿𝑖

  𝛼 + 𝑞𝑖𝑗 − 𝛿𝑖 , −
1

𝑐
 𝛿𝑖 − 𝛿𝑖

  𝛼 + 𝑞𝑖𝑗 + 𝛿𝑖     for all  0 ≤ 𝛼 ≤ 𝑐, 

and   𝑝 𝑖𝑗  𝛼 =  −𝛿𝑖
   

1−𝛼

1−𝑐
+ 𝑞𝑖𝑗  , 𝛿𝑖

   
1−𝛼

1−𝑐
+ 𝑞𝑖𝑗     for all 𝑐 ≤ 𝛼 ≤ 1, 𝑖, 𝑗 = 1,2. According to 

relations 3.4.1 − 3.4.8 we have 𝑃 𝑛  converges to the unique limit Π , where each row in Π  is  

𝜋 =  𝜋 1, 𝜋 2 , with 

𝜋 1 𝛼 =  
1

𝑐
 𝛿2−𝛿2

  𝛼+𝑞21−𝛿2

𝑞21 +𝑞12 + 
1

𝑐
 𝛿2−𝛿2

  𝛼  − 
1

𝑐
 𝛿1−𝛿1

  𝛼−𝛿2+𝛿1
,

− 
1

𝑐
 𝛿2−𝛿2

  𝛼+𝑞21 +𝛿2

𝑞21 +𝑞12− 
1

𝑐
 𝛿2−𝛿2

  𝛼  + 
1

𝑐
 𝛿1−𝛿1

  𝛼+𝛿2−𝛿1
 , 

0 ≤ 𝛼 ≤ 𝑐 

𝜋 1 𝛼 =  
−𝛿2

   
1−𝛼

1−𝑐
+𝑞21

𝑞21 +𝑞12  − 𝛿2
   

1−𝛼

1−𝑐
 + 𝛿1

   
1−𝛼

1−𝑐

,
𝛿2    

1−𝛼

1−𝑐
+𝑞21

𝑞21 +𝑞12  + 𝛿2
   

1−𝛼

1−𝑐
 − 𝛿1

   
1−𝛼

1−𝑐

 , for 𝑐 ≤ 𝛼 ≤ 1. 

So, for 𝛿2 − 𝛿2
 ≠ 𝛿1 − 𝛿1

  or 𝛿2
 ≠ 𝛿1

 ,  𝜋 1 0 =  
𝑞21−𝛿2

𝑞21 +𝑞12−𝛿2+𝛿1
,

𝑞21 +𝛿2

𝑞21 +𝑞12 +𝛿2−𝛿1
 , and 

𝜋 1 𝑐 =  
𝑞21−𝛿2

 

𝑞21 +𝑞12 +𝛿1
 −𝛿2

 ,
𝑞21 +𝛿2

 

𝑞21 +𝑞12 +𝛿2
 −𝛿1

  .  

 Also, 

𝜋 2 𝛼 =  
1

𝑐
 𝛿1−𝛿1

  𝛼+𝑞12−𝛿1

𝑞21 +𝑞12− 
1

𝑐
 𝛿2−𝛿2

  𝛼  + 
1

𝑐
 𝛿1−𝛿1

  𝛼+𝛿2−𝛿1
,

− 
1

𝑐
 𝛿1−𝛿1

  𝛼+𝑞12 +𝛿1

𝑞21 +𝑞12 + 
1

𝑐
 𝛿2−𝛿2

  𝛼  − 
1

𝑐
 𝛿1−𝛿1

  𝛼+𝛿2−𝛿1
 ,0 ≤

𝛼 ≤ 𝑐 

𝜋 2 𝛼 =  
−𝛿1

   
1−𝛼

1−𝑐
+𝑞12

𝑞21 +𝑞12 + 𝛿2
   

1−𝛼

1−𝑐
 − 𝛿1

   
1−𝛼

1−𝑐

,
𝛿1    

1−𝛼

1−𝑐
+𝑞12

𝑞21 +𝑞12  − 𝛿2
   

1−𝛼

1−𝑐
 + 𝛿1

   
1−𝛼

1−𝑐

 , for 𝑐 ≤ 𝛼 ≤ 1. 

So, for 𝛿2 − 𝛿2
 ≠ 𝛿1 − 𝛿1

  or 𝛿2
 ≠ 𝛿1

 ,  𝜋 2 0 =  
𝑞12−𝛿1

𝑞21 +𝑞12 +𝛿2−𝛿1
,

𝑞12 +𝛿1

𝑞21 +𝑞12−𝛿2+𝛿1
 , and 
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𝜋 2 𝑐 =  
𝑞12−𝛿1

 

𝑞21 +𝑞12−𝛿1
 +𝛿2

 ,
𝑞12 +𝛿1

 

𝑞21 +𝑞12−𝛿2
 +𝛿1

  .  

Therefore, 𝜋 1 and 𝜋 2 are the fuzzy numbers with the form given in the present proposition. 

Similarly, if 𝛿2 = 𝛿1 and 𝛿2
 = 𝛿1

  we have 

𝜋 1 0 =  
𝑞21−𝛿2

𝑞21 +𝑞12
,

𝑞21 +𝛿2

𝑞21 +𝑞12
  and 𝜋 1 𝑐 =  

𝑞21−𝛿2
 

𝑞21 +𝑞12
,

𝑞21 +𝛿2
 

𝑞21 +𝑞12
 . 

𝜋 2 0 =  
𝑞12−𝛿1

𝑞21 +𝑞12
,

𝑞12 +𝛿1

𝑞21 +𝑞12
  and 𝜋 2 𝑐 =  

𝑞12−𝛿1
 

𝑞21 +𝑝12
,

𝑞12 +𝛿1
 

𝑞21 +𝑝12
 .  

Therefore, 𝜋 1 and 𝜋 2 are the fuzzy numbers with the form given in the present proposition 

and this completes the proof.  
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Chapter 4 

Finite Fuzzy Markov Chains 

 

In Chapter 3, we start with a crisp Markov chain, then the uncertainties in its 

transition matrix are replaced by fuzzy numbers and the powers of the resultant fuzzy 

transition matrix are computed by the restricted fuzzy matrix multiplication.  

Throughout this chapter we study the finite fuzzy Markov chains in a completely 

different way than that presented in Chapter 3. Here the states will be fuzzy sets and the 

fuzzy transition matrix is a fuzzy relation on a finite state space, so the entries are 

numbers between zero and one, and the row sum need not be one. Max-min 

composition is used to find the powers of the fuzzy transition matrices. This chapter 

consists of four sections. In Section 4.1 we give basic definitions concerning finite 

fuzzy Markov chains [2] and [3]. In Section 4.2 we make a comparison between crisp 

and fuzzy Markov chains. In Sections 4.3 and 4.4 we study the ergodicity of a particular 

class of finite fuzzy Markov chains. 

Throughout this chapter we denote the finite state space  1, … , 𝑛  by 𝑆. 

 

4.1 Basic Definitions 

Definition 4.1.1 ([2] and [3]): A (finite) fuzzy set or a fuzzy distribution, on 𝑆, is defined 

by the membership function 𝑥 from 𝑆 into [0,1], represented by a vector                               

𝑥 =  𝑥1, … , 𝑥𝑛 , with  
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𝑥𝑖denoting the image of 𝑖 under 𝑥, i.e. 𝑥 𝑖 , 0 ≤ 𝑥𝑖 ≤ 1, 𝑖 ∈ 𝑆. The set of all fuzzy sets 

on 𝑆 is denoted by ℱ 𝑆 . 

 

Definition 4.1.2 ([2] and [3]): A fuzzy relation 𝑃  is defined as a fuzzy set on the 

Cartesian product 𝑆 × 𝑆. 𝑃  is represented by a matrix  𝑝 𝑖𝑗  , with 𝑝 𝑖𝑗  denoting 𝑃  𝑖, 𝑗 , 

0 ≤ 𝑝 𝑖𝑗 ≤ 1, 𝑖, 𝑗 ∈ 𝑆. 

 

Definition 4.1.3 ([2] and [3]): At each time instant 𝑡, 𝑡 = 0,1, …, the state of the system 

is described by the fuzzy set (or distribution) 𝑥  𝑡 ∈ ℱ 𝑆 . The transition law of the 

fuzzy Markov chain given by the fuzzy relation 𝑃 as follows, at time instant 𝑡, 𝑡 =

1,2, … 

𝑥 𝑗
(𝑡+1)

= 𝑚𝑎𝑥  𝑚𝑖𝑛 𝑥 1
(𝑡)

, 𝑝 1𝑗  , 𝑚𝑖𝑛 𝑥 2
(𝑡)

, 𝑝 2𝑗  , … , 𝑚𝑖𝑛 𝑥 𝑛
(𝑡)

, 𝑝 𝑛𝑗   , 𝑗 ∈ 𝑆. 

We refer to 𝑥  0  as the initial fuzzy set (or the initial distribution). 

It is natural to define the powers of the fuzzy transition matrix. Namely, 

𝑝 𝑖𝑗
 𝑡 = 𝑚𝑎𝑥  𝑚𝑖𝑛 𝑝 𝑖1, 𝑝 1𝑗

 𝑡−1 
 , 𝑚𝑖𝑛 𝑝 𝑖2, 𝑝 2𝑗

 𝑡−1 
 , … , 𝑚𝑖𝑛 𝑝 𝑖𝑛 , 𝑝 𝑛𝑗

 𝑡−1 
  ,        𝑝 𝑖𝑗

 1 
= 𝑝 𝑖𝑗 ,     

𝑝 𝑖𝑗
(0)

= 𝛿𝑖𝑗  . 

where 𝛿𝑖𝑗  is a Kronecker delta.                                         
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Note that the fuzzy state 𝑥 𝑘
(𝑡)

, 𝑘 = 1, … , 𝑛 at time instant 𝑡, 𝑡 = 1,2, … can be calculated 

by the formula  

𝑥 𝑘
(𝑡)

= 𝑚𝑎𝑥  𝑚𝑖𝑛 𝑥 1
(0)

, 𝑝 1𝑘
(𝑡)

 , 𝑚𝑖𝑛 𝑥 2
(0)

, 𝑝 2𝑘
(𝑡)

 , … , 𝑚𝑖𝑛 𝑥 𝑛
(0)

, 𝑝 𝑛𝑘
(𝑡)

                            4.1.1 

Formula 4.1.1 has a similar structure to that given in Proposition 2.1.6, the only 

difference between them is in the employed operations and, of course, the meaning of 

the terms as fuzzy grades, instead of probabilities. Equation 4.1.1 is obtained from that 

given in Proposition 2.1.6, by changing the algebraic summation to the max-operation 

and the algebraic multiplication to the min-operation ([2] and [3]).  

 

Theorem 4.1.4 ([13] and [29]): The powers of the fuzzy transition matrix 𝑃 =  𝑝 𝑖𝑗   

either converge to idempotent 𝑃
𝜏

=  𝑝 𝑖𝑗
(𝜏)

 , where 𝜏 is a finite number, or oscillate with 

a finite period 𝜐 starting from some finite power.  

 

Definition 4.1.5 ([2] and [3]): Let the powers of fuzzy transition matrix converge in 𝜏 

steps to a non periodic solution, then the associated fuzzy Markov chain is called 

nonperiodic (or aperiodic) and 𝑃 ∗ = 𝑃 𝜏  is called a limiting fuzzy transition matrix.  

 

Definition 4.1.6 ([2] and [3]): The fuzzy Markov chain is called ergodic if it is 

aperiodic and the limiting transition matrix has identical rows. 
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 In this chapter we call this matrix: ergodic fuzzy transition matrix. 

 

4.2 Comparison between Crisp and Fuzzy Markov Chains  

Definition 4.2.1: A fuzzy state 𝑗 ∈ 𝑆 is transient if it can reach another state but cannot 

itself be reached back from another state. Mathematically, this happens if 

lim𝑛→∞ 𝑝 𝑖𝑗
 𝑛 

= 0, for all 𝑖.  

 

Definition 4.2.2: A fuzzy state 𝑗 ∈ 𝑆 is persistent (or recurrent) if, upon entering this 

state, the process definitely will return to this state again. This can happen if, and only if 

the state is not transient.  

 

Definition 4.2.3: A fuzzy Markov chain is called irreducible (or regular) if ∃𝑚 ∈ ℕ 

such that 𝑝 𝑖𝑗
 𝑚 

> 0, ∀𝑖, 𝑗 ∈ 𝑆, otherwise it is called reducible (or irregular). 

 

Example 4.2.4: Let 𝑃 =  
0.5 0.7
1 0

  be a fuzzy transition matrix of a fuzzy Markov 

chain.Then, 

𝑃
2

= 𝑃 ∘ 𝑃 =  
𝑚𝑎𝑥 𝑚𝑖𝑛 0.5,0.5 , 𝑚𝑖𝑛 0.7,1  𝑚𝑎𝑥 𝑚𝑖𝑛 0.5,0.7 , 𝑚𝑖𝑛 0.7,0  

𝑚𝑎𝑥 𝑚𝑖𝑛 1,0.5 , 𝑚𝑖𝑛 0,1  𝑚𝑎𝑥 𝑚𝑖𝑛 1,0.7 , 𝑚𝑖𝑛 0,0  
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=  
0.7 0.5
0.5 0.7

 , 𝑃
3

=  
0.5 0.7
0.7 0.5

 , 𝑃
4

=  
0.7 0.5
0.5 0.7

 . Note that 𝑝 11
 𝑛 

= 𝑝 22
 𝑛 

= 0.7 for 𝑛 

even and  𝑝 11
 𝑛 

= 𝑝 22
 𝑛 

= 0.5 for 𝑛 odd. This example shows the definition for a periodic 

state in the classical sense is not applicable in the fuzzy sense; therefore, the periodicity 

is related to the matrix not to the states. Hence, this fuzzy transition matrix corresponds 

to a periodic fuzzy Markov chain with period 2. 

 

 The above example also clarifies why ergodicity was defined for fuzzy transition 

matrices not for fuzzy states. 

Example 4.2.5 ([2] and [3]): Let 𝑃 =  
0.7 0.3
0.4 0.6

  be a fuzzy transition matrix of a fuzzy 

Markov chain, then 𝑃 is a transition matrix of a crisp Markov chain since the row sums 

is 1. It is clear that this transition matrix in the classical sense corresponds to an 

irreducible, aperiodic Markov chain which is certainly ergodic. Moreover, lim𝑛→∞ 𝑃
𝑛

=

 
4 7 3 7 

4 7 3 7 
  and this limiting matrix is independent of 𝑃 . 

In the fuzzy sense we have 𝑃
2

=  
0.7 0.3
0.4 0.6

  and so 𝑃
𝑛

= 𝑃  for = 1,2,3, … . This result 

shows that in general, a fuzzy Markov chain which is irreducible and aperiodic need not 

be ergodic. In fact, this a crucial difference between fuzzy and crisp Markov chains. 

Moreover, the limiting fuzzy transition matrix is definitely depends on 𝑃 . 
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4.3 A Particular Ergodic 𝟐 × 𝟐 and 𝟑 × 𝟑 Fuzzy Transition Matrices  

In this section we consider particular 2 × 2 and 3 × 3 fuzzy transition matrices, 

and we determine conditions that guarantee achievement of ergodicity. But before that 

we give the following example to show that a fuzzy transition matrix whose rows are 

identical is ergodic, which agrees with our intuition. 

Example 4.3.1: Let 𝑃 =  

𝜋 1 𝜋 2 ⋯ 𝜋 𝑛

𝜋 1 𝜋 2 ⋯ 𝜋 𝑛

⋮ ⋮ ⋱ ⋮
𝜋 1 𝜋 2 ⋯ 𝜋 𝑛

  be a fuzzy transition matrix of a fuzzy 

Markov chain. Let 𝜋 ∗ = 𝑚𝑎𝑥 𝜋 1, 𝜋 2, … , 𝜋 𝑛  and 𝜋 ∗ = 𝑚𝑖𝑛 𝜋 1, 𝜋 2, … , 𝜋 𝑛 .Then, in 

𝑃
2

=  𝑝 𝑖𝑗
(2)

 , we have, 𝑝 𝑖𝑗
(2)

=  𝜋 1 𝜋 2 ⋯ 𝜋 𝑛 

 
 
 
 
𝜋 𝑗

𝜋 𝑗

⋮
𝜋 𝑗  

 
 
 
, where 𝑖, 𝑗 = 1,2, … , 𝑛, 

                   = 𝑚𝑎𝑥  𝑚𝑖𝑛 𝜋 1, 𝜋 𝑗  , 𝑚𝑖𝑛 𝜋 2, 𝜋 𝑗  , … , 𝑚𝑖𝑛 𝜋 𝑗 , 𝜋 𝑗  , … , 𝑚𝑖𝑛 𝜋 𝑛 , 𝜋 𝑗   .  

If 𝜋 𝑗 = 𝜋 ∗ or 𝜋 𝑗 = 𝜋 ∗ then it is clear that 𝑝 𝑖𝑗
(2)

= 𝜋 𝑗 . For otherwise, we have  𝜋 𝑗 ≥ 𝜋 𝑗𝑘
 

for 𝑘 = 1,2, … , 𝑙 and  𝜋 𝑗 ≤ 𝜋 𝑗𝑘
 for 𝑘 = 𝑙 + 1, … , 𝑛 where 1 ≤ 𝑙 < 𝑛, also                       

  𝜋 𝑗𝑘
 𝑘 = 1, … , 𝑛 =  𝜋 1, 𝜋 2, … , 𝜋 𝑛 . Now, 𝑚𝑖𝑛 𝜋 𝑗𝑘

, 𝜋 𝑗  = 𝜋 𝑗𝑘
 for 𝑘 = 1,2, … , 𝑙, and 

𝑚𝑖𝑛 𝜋 𝑗𝑘
, 𝜋 𝑗  = 𝜋 𝑗  for 𝑘 = 𝑙 + 1, … , 𝑛. Since, 𝜋 𝑗 ≥ 𝜋 𝑗𝑘

 for 𝑘 = 1,2, … , 𝑙 we have 

𝑝 𝑖𝑗
(2)

= 𝜋 𝑗 . Hence, in all cases 𝑃
2

= 𝑃 , and so 𝑃
𝑚

= 𝑃  for 𝑚 = 1,2,3, … . Therefore,      

𝑃  is ergodic. 

Theorem 4.1.4 does not give us information about fuzzy Markov chains having 

the ergodic behavior. Also, J. C. F. Garcia et al. [12] have done a simulation study on 
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fuzzy Markov chains from which they have shown that most of fuzzy Markov chains 

are not ergodic. Besides, in [2] and [3] Avrachenkov and Sanchez introduced an open 

problem about the general conditions that guarantee the ergodicity of fuzzy Markov 

chains. These results together with Example 4.2.5 motivate us to search much deeper in 

the structure of fuzzy Markov chains which are ergodic. For this purpose we put the 

following assumption on the fuzzy transition matrices to be considered throughout this 

section and the subsequent section. 

Assumption 4.3.2: For 1 ≤ 𝑘 ≤ 𝑛, let 𝑃 =  𝑝 𝑖𝑗   be an 𝑛 × 𝑛 fuzzy transition matrix. 

Suppose that 𝑝 𝑖𝑗 = 0 or 1 for 𝑖 ∈  1, … , 𝑛 −  𝑘 , 𝑗 = 1, … , 𝑛 and in each of these rows 

–all rows except possibly the 𝑘𝑡  one– exactly one entry is 1.  

 

First: We consider 2 × 2 and 3 × 3 fuzzy transition matrices satisfying Assumption 

4.3.2 for 𝑘 = 1.  

For 2 × 2 fuzzy transition matrices we have the following cases with a prescribe 

condition for each case: 

1. 𝑃 =  
𝑝 11 𝑝 12

1 0
  with 0 ≤ 𝑝 11 ≤ 𝑝 12 ≤ 1. 

𝑃
2

=  
𝑝 12 𝑝 11

𝑝 11 𝑝 12
 , 𝑃

3
=  

𝑝 11 𝑝 12

𝑝 12 𝑝 11
 , 𝑃

4
=  

𝑝 12 𝑝 11

𝑝 11 𝑝 12
 . Therefore,                       

𝑃
𝑛

=  
𝑃

2
, 𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛

𝑃
3

, 𝑓𝑜𝑟 𝑛 𝑜𝑑𝑑  

 . 

2. 𝑃 =  
𝑝 11 𝑝 12

1 0
  with 0 ≤ 𝑝 12 ≤ 𝑝 11 ≤ 1. 
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𝑃
2

=  
𝑝 11 𝑝 12

𝑝 11 𝑝 12
 , 𝑃

3
=  

𝑝 11 𝑝 12

𝑝 11 𝑝 12
 . So 𝑃

𝑛
= 𝑃

2
 for = 2,3,4, … . According to 

Theorem 4.1.4, 𝜏 = 2. 

3. 𝑃 =  
𝑝 11 𝑝 12

0 1
  with 0 ≤ 𝑝 11 ≤ 𝑝 12 ≤ 1. 

     𝑃
2

=  
𝑝 11 𝑝 12

0 1
 = 𝑃 , so 𝑃

𝑛
= 𝑃  for = 1,2,3, … . According to Theorem 4.1.4,                   

 𝜏 = 1. 

4. 𝑃 =  
𝑝 11 𝑝 12

0 1
  with 0 ≤ 𝑝 12 ≤ 𝑝 11 ≤ 1. 

      𝑃
2

=  
𝑝 11 𝑝 12

0 1
 = 𝑃 , so 𝑃

𝑛
= 𝑃  for = 1,2,3, … . According to Theorem 4.1.4,     

𝜏 = 1.                                                                   

We conclude that case 2 above is the only ergodic one, from which we have 

𝑝 11 ≥ 𝑝 12 and 𝑝 22 ≠ 1.  

Next we consider the 3 × 3 fuzzy transition matrices but applying the following two 

assumptions: 

1. 𝑝 11 is the maximum entry in the first row. 

2. 𝑝 22 ≠ 1 and 𝑝 33 ≠ 1. 

So we have the following cases with a prescribe condition for each case: 

1. 𝑃 =  
𝑝 11 𝑝 12 𝑝 13

1 0 0
1 0 0

  with 0 ≤ 𝑝 13 ≤ 𝑝 12 ≤ 𝑝 11 ≤ 1. 
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𝑃
2

=  
𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

 , 𝑃
3

=  
𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

 . So 𝑃
𝑛

= 𝑃
2
for = 2,3,4, … . 

According to Theorem 4.1.4, 𝜏 = 2. 

2. 𝑃 =  
𝑝 11 𝑝 12 𝑝 13

1 0 0
1 0 0

  with 0 ≤ 𝑝 12 ≤ 𝑝 13 ≤ 𝑝 11 ≤ 1. 

𝑃
2

=  
𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

 , 𝑃
3

=  
𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

 . So 𝑃
𝑛

= 𝑃
2
 for = 2,3,4, … . 

According to Theorem 4.1.4, 𝜏 = 2. 

3. 𝑃 =  
𝑝 11 𝑝 12 𝑝 13

1 0 0
0 1 0

  with 0 ≤ 𝑝 13 ≤ 𝑝 12 ≤ 𝑝 11 ≤ 1. 

𝑃
2

=  
𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

1 0 0
 , 𝑃

3
=  

𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

 , 𝑃
4

=  
𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

 .  

So 𝑃
𝑛

= 𝑃
3
 for = 3,4,5, … . According to Theorem 4.1.4, 𝜏 = 3. 

4. 𝑃 =  
𝑝 11 𝑝 12 𝑝 13

1 0 0
0 1 0

  with 0 ≤ 𝑝 12 ≤ 𝑝 13 ≤ 𝑝 11 ≤ 1.    

𝑃
2

=  
𝑝 11 𝑝 13 𝑝 13

𝑝 11 𝑝 12 𝑝 13

1 0 0
 , 𝑃

3
=  

𝑝 11 𝑝 13 𝑝 13

𝑝 11 𝑝 13 𝑝 13

𝑝 11 𝑝 12 𝑝 13

 , 𝑃
4

=  
𝑝 11 𝑝 13 𝑝 13

𝑝 11 𝑝 13 𝑝 13

𝑝 11 𝑝 13 𝑝 13

 , 

𝑃
5

=  
𝑝 11 𝑝 13 𝑝 13

𝑝 11 𝑝 13 𝑝 13

𝑝 11 𝑝 13 𝑝 13

 . So 𝑃
𝑛

= 𝑃
4
 for = 4,5,6, … . According to Theorem 

4.1.4, 𝜏 = 4. 

5. 𝑃 =  
𝑝 11 𝑝 12 𝑝 13

0 0 1
1 0 0

  with 0 ≤ 𝑝 13 ≤ 𝑝 12 ≤ 𝑝 11 ≤ 1. 
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𝑃
2

=  

𝑝 11 𝑝 12 𝑝 12

1 0 0
𝑝 11 𝑝 12 𝑝 13

 , 𝑃
3

=  
𝑝 11 𝑝 12 𝑝 12

𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

 , 𝑃
4

=  
𝑝 11 𝑝 12 𝑝 12

𝑝 11 𝑝 12 𝑝 12

𝑝 11 𝑝 12 𝑝 12

 ,                      

𝑃
5

=  
𝑝 11 𝑝 12 𝑝 12

𝑝 11 𝑝 12 𝑝 12

𝑝 11 𝑝 12 𝑝 12

 .  So 𝑃
𝑛

= 𝑃
4
 for = 4,5,6, … . According to Theorem 4.1.4, 

𝜏 = 4. 

6. 𝑃 =  
𝑝 11 𝑝 12 𝑝 13

0 0 1
1 0 0

  with 0 ≤ 𝑝 12 ≤ 𝑝 13 ≤ 𝑝 11 ≤ 1. 

𝑃
2

=  

𝑝 11 𝑝 12 𝑝 13

1 0 0
𝑝 11 𝑝 12 𝑝 13

 , 𝑃
3

=  
𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

 , 𝑃
4

=  
𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

𝑝 11 𝑝 12 𝑝 13

  .                    

So 𝑃
𝑛

= 𝑃
3
 for = 3,4,5, … . According to Theorem 4.1.4, 𝜏 = 3. 

7. 𝑃 =  
𝑝 11 𝑝 12 𝑝 13

0 0 1
0 1 0

  with 0 ≤ 𝑝 13 ≤ 𝑝 12 ≤ 𝑝 11 ≤ 1.  

𝑃
2

=  
𝑝 11 𝑝 12 𝑝 12

0 1 0
0 0 1

 , 𝑃
3

=  
𝑝 11 𝑝 12 𝑝 12

0 0 1
0 1 0

 , 𝑃
4

=  
𝑝 11 𝑝 12 𝑝 12

0 1 0
0 0 1

 . 

Therefore,  𝑃
𝑛

=  
𝑃

2
, 𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛

𝑃
3

, 𝑓𝑜𝑟 𝑛 𝑜𝑑𝑑  

 . 

8. 𝑃 =  
𝑝 11 𝑝 12 𝑝 13

0 0 1
0 1 0

  with 0 ≤ 𝑝 12 ≤ 𝑝 13 ≤ 𝑝 11 ≤ 1. 

𝑃
2

=  
𝑝 11 𝑝 13 𝑝 13

0 1 0
0 0 1

 , 𝑃
3

=  
𝑝 11 𝑝 13 𝑝 13

0 0 1
0 1 0

 , 𝑃
4

=  
𝑝 11 𝑝 13 𝑝 13

0 1 0
0 0 1

  . Therefore, 

𝑃
𝑛

=  
𝑃

2
, 𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛

𝑃
3

, 𝑓𝑜𝑟 𝑛 𝑜𝑑𝑑  

 . 
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It is clear that matrices in cases 1-6 are ergodic, while in cases 7 and 8 they are not. 

 

Second: If we consider 2 × 2 and 3 × 3 fuzzy transition matrices satisfying Assumption 

4.3.2 for 𝑘 = 2, 𝑘 = 3 respectively, then we have the following ergodic cases with a 

prescribe condition for each case: 

1. 𝑃 =  
0 1

𝑝 21 𝑝 22
  with 0 ≤ 𝑝 21 ≤ 𝑝 22 ≤ 1.  

2. 𝑃 =  
0 0 1
0 0 1

𝑝 31 𝑝 32 𝑝 33

  with 0 ≤ 𝑝 31 ≤ 𝑝 32 ≤ 𝑝 33 ≤ 1. 

3. 𝑃 =  
0 0 1
0 0 1

𝑝 31 𝑝 32 𝑝 33

  with 0 ≤ 𝑝 32 ≤ 𝑝 31 ≤ 𝑝 33 ≤ 1. 

4. 𝑃 =  
0 1 0
0 0 1

𝑝 31 𝑝 32 𝑝 33

  with 0 ≤ 𝑝 31 ≤ 𝑝 32 ≤ 𝑝 33 ≤ 1. 

5. 𝑃 =  
0 1 0
0 0 1

𝑝 31 𝑝 32 𝑝 33

  with 0 ≤ 𝑝 32 ≤ 𝑝 31 ≤ 𝑝 33 ≤ 1. 

6. 𝑃 =  
0 0 1
1 0 0

𝑝 31 𝑝 32 𝑝 33

  with 0 ≤ 𝑝 31 ≤ 𝑝 32 ≤ 𝑝 33 ≤ 1. 

7. 𝑃 =  
0 0 1
1 0 0

𝑝 31 𝑝 32 𝑝 33

  with 0 ≤ 𝑝 32 ≤ 𝑝 31 ≤ 𝑝 33 ≤ 1. 

 

We conclude from cases 2-7 above that in addition to Assumption 4.3.2 the 

following conditions are satisfied: 
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1. 𝑝 33  is the maximum among the entries in the last row. 

2. 𝑝 𝑖𝑖 ≠ 1 for 𝑖 = 1,2.  

3. If 𝑝 𝑖𝑗 = 1then 𝑝 𝑗𝑖 = 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2 . 

 

Third: If we consider 3 × 3 fuzzy transition matrices satisfying Assumption 4.3.2 for   

𝑘 = 2, then we have the following ergodic cases with a prescribe condition for each 

case: 

1. 𝑃 =  
0 1 0

𝑝 21 𝑝 22 𝑝 23

0 1 0
  with 0 ≤ 𝑝 21 ≤ 𝑝 23 ≤ 𝑝 22 ≤ 1. 

2. 𝑃 =  
0 1 0

𝑝 21 𝑝 22 𝑝 23

0 1 0
  with 0 ≤ 𝑝 23 ≤ 𝑝 21 ≤ 𝑝 22 ≤ 1. 

3. 𝑃 =  
0 0 1

𝑝 21 𝑝 22 𝑝 23

0 1 0
  with 0 ≤ 𝑝 21 ≤ 𝑝 23 ≤ 𝑝 22 ≤ 1. 

4. 𝑃 =  
0 0 1

𝑝 21 𝑝 22 𝑝 23

0 1 0
  with 0 ≤ 𝑝 23 ≤ 𝑝 21 ≤ 𝑝 22 ≤ 1. 

5. 𝑃 =  
0 1 0

𝑝 21 𝑝 22 𝑝 23

1 0 0
  with 0 ≤ 𝑝 21 ≤ 𝑝 23 ≤ 𝑝 22 ≤ 1. 

6. 𝑃 =  
0 1 0

𝑝 21 𝑝 22 𝑝 23

1 0 0
  with 0 ≤ 𝑝 23 ≤ 𝑝 21 ≤ 𝑝 22 ≤ 1. 

 

We conclude from the above cases that in addition to Assumption 4.3.2 the 

following conditions are satisfied: 
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1. 𝑝 22  is the maximum among the entries in the second row. 

2. 𝑝 𝑖𝑖 ≠ 1 for 𝑖 = 1,3.  

3. If 𝑝 𝑖𝑗 = 1then 𝑝 𝑗𝑖 = 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,3 . 

 

 

4.4 A Particular Class of Ergodic Finite Fuzzy Markov Chains 

 In this section we consider an 𝑛 × 𝑛 fuzzy transition matrix 𝑃 =  𝑝 𝑖𝑗  , 𝑛 ≥ 4 

satisfying Assumption 4.3.2, and determine what conditions needed to guarantee the 

ergodic behavior. But first we need the following lemma which follows directly from 

the definition of the max-min composition of fuzzy matrices.  

 

Lemma 4.4.1: Let  𝑃 =  𝑝 𝑖𝑗   be  an  𝑛 × 𝑛  fuzzy transition matrix. Then, by the max-

min 

composition 𝑒𝑛𝑘 𝑃  is the 𝑘𝑡  row of  𝑃 , where 𝑒𝑛𝑘 =  𝛿𝑗𝑘   is a 1 × 𝑛 matrix, and 𝛿𝑗𝑘  is a 

Kronecker delta, and 𝑗 = 1, … 𝑛, 𝑘 ∈  1, … , 𝑛 . 

 

 Now, we present the main theorem of this chapter. We consider an 𝑛 × 𝑛 fuzzy 

transition matrix 𝑃  and under certain conditions we prove by the max-min composition 

that 𝑃  is ergodic. 
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Theorem 4.4.2: For 𝑛 ≥ 4 let 𝑃 =  𝑝 𝑖𝑗   be an 𝑛 × 𝑛 fuzzy transition matrix, such that 

𝑝 𝑖𝑗 = 0 or 1 for 𝑖 = 2, … 𝑛, 𝑗 = 1, … , 𝑛 and in each row except possibly the first one, 

exactly one entry is 1. If the following conditions hold: 

1. 𝑝 11 is the maximum among the entries in the first row. 

2. 𝑝 𝑖𝑖 ≠ 1 for 𝑖 = 2, … , 𝑛.  

3. If 𝑝 𝑖𝑗 = 1then 𝑝 𝑗𝑖 = 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 2, … , 𝑛 . 

4. 𝑝 𝑖11 = 𝑝 𝑖21 = ⋯ = 𝑝 𝑖𝑘1 = 1 with 𝑘 ∈  𝑛 − 3, 𝑛 − 2, 𝑛 − 1  and 𝑖1, 𝑖2, … , 𝑖𝑘 ∈

 2,3, … , 𝑛 . 

Then, by max-min composition, 𝑃  is ergodic. 

 

Proof. See the Appendix.  

 

In the following, we show by examples that all conditions of Theorem 4.4.2 are sufficient. 

 Examples and Comments 4.4.3: We discuss the conditions of Theorem 4.4.2 

 

1. If 𝑃 =  

𝑝 11 𝑝 12 𝑝 13 𝑝 14

1 0 0 0
1 0 0 0
1 0 0 0

   with 𝑝 12 ≥ 𝑝 11 ≥ 𝑝 13 ≥ 𝑝 14. 

Then by max-min composition we have 
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𝑃
2

=  

𝑝 11 𝑝 12 𝑝 13 𝑝 14

1 0 0 0
1 0 0 0
1 0 0 0

  

𝑝 11 𝑝 12 𝑝 13 𝑝 14

1 0 0 0
1 0 0 0
1 0 0 0

 =  

𝑝 12 𝑝 11 𝑝 13 𝑝 14

𝑝 11 𝑝 12 𝑝 13 𝑝 14

𝑝 11 𝑝 12 𝑝 13 𝑝 14

𝑝 11 𝑝 12 𝑝 13 𝑝 14

 , 

            𝑃
3

=  

𝑝 11 𝑝 12 𝑝 13 𝑝 14

𝑝 12 𝑝 11 𝑝 13 𝑝 14

𝑝 12 𝑝 11 𝑝 13 𝑝 14

𝑝 12 𝑝 11 𝑝 13 𝑝 14

 , 𝑃
4

=  

𝑝 12 𝑝 11 𝑝 13 𝑝 14

𝑝 11 𝑝 12 𝑝 13 𝑝 14

𝑝 11 𝑝 12 𝑝 13 𝑝 14

𝑝 11 𝑝 12 𝑝 13 𝑝 14

 . 

      Therefore, 𝑃
2𝑛

= 𝑃
2
 for 𝑛 = 1,2,3, … and 𝑃

2𝑛+1
= 𝑃

3
 for  𝑛 = 1,2,3, … . Hence, 𝑃  

is not ergodic. Here conditions 2, 3 and 4 are satisfied but condition 1 is not 

satisfied.              

2. If 𝑃 =  

𝑝 11 𝑝 12 𝑝 13 𝑝 14

0 1 0 0
1 0 0 0
1 0 0 0

   with 𝑝 11 ≥ 𝑝 12 ≥ 𝑝 13 ≥ 𝑝 14 , (note 𝑝 22 = 1). 

Then by max-min composition we have  

𝑃
2

=  

𝑝 11 𝑝 12 𝑝 13 𝑝 14

0 1 0 0
𝑝 11 𝑝 12 𝑝 13 𝑝 14

𝑝 11 𝑝 12 𝑝 13 𝑝 14

 , 𝑃
3

=  

𝑝 11 𝑝 12 𝑝 13 𝑝 14

0 1 0 0
𝑝 11 𝑝 12 𝑝 13 𝑝 14

𝑝 11 𝑝 12 𝑝 13 𝑝 14

 , so  

 𝑃
𝑛

= 𝑃
2
 for 𝑛 = 2,3,4, …  . Therefore, 𝑃  is not ergodic. Here conditions 1,3 and 

4 are satisfied but condition 2 is not satisfied. 

3. If 𝑃 =  

𝑝 11 𝑝 12 𝑝 13 𝑝 14

0 0 1 0
0 1 0 0
1 0 0 0

   with 𝑝 11 ≥ 𝑝 12 ≥ 𝑝 13 ≥ 𝑝 14 ,(note that 𝑝 23 =

1and 𝑝 32 = 1). Then by max-min composition we have 

𝑃
2

=  

𝑝 11 𝑝 12 𝑝 12 𝑝 14

0 1 0 0
0 0 1 0

𝑝 11 𝑝 12 𝑝 13 𝑝 14

 , 𝑃
3

=  

𝑝 11 𝑝 12 𝑝 12 𝑝 14

0 0 1 0
0 1 0 0

𝑝 11 𝑝 12 𝑝 12 𝑝 14

 , 
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𝑃
4

=  

𝑝 11 𝑝 12 𝑝 12 𝑝 14

0 1 0 0
0 0 1 0

𝑝 11 𝑝 12 𝑝 12 𝑝 14

 , 𝑃
5

=  

𝑝 11 𝑝 12 𝑝 12 𝑝 14

0 0 1 0
0 1 0 0

𝑝 11 𝑝 12 𝑝 12 𝑝 14

 . 

           So, 𝑃
2𝑛

= 𝑃
4
 for 𝑛 = 2,3,4, … and 𝑃

2𝑛+1
= 𝑃

3
 for = 1,2,3, … . Therefore, 𝑃  is 

not ergodic. Here conditions 1,2 and 4 are satisfied but condition 3 is not 

satisfied. 

4. If 𝑃 =

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0  

 
 
 
 

 with 𝑝 11 ≥ 𝑝 12 ≥ 𝑝 13 ≥ 𝑝 14 ≥ 𝑝 15 ,(note 

𝑝 21 = 1 only). Then by max-min composition we have 

𝑃
2

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 14

𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

0 0 0 0 1
0 0 1 0 0
0 0 0 1 0  

 
 
 
 

, 𝑃
3

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 14

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1  

 
 
 
 

, 

𝑃
4

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

0 0 0 1 0
0 0 0 0 1
0 0 1 0 0  

 
 
 
 

, 𝑃
5

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

0 0 0 0 1
0 0 1 0 0
0 0 0 1 0  

 
 
 
 

, 

𝑃
6

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1  

 
 
 
 

, 𝑃
7

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

0 0 0 1 0
0 0 0 0 1
0 0 1 0 0  

 
 
 
 

, 

𝑃
8

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

0 0 0 0 1
0 0 1 0 0
0 0 0 1 0  

 
 
 
 

, 𝑃
9

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

𝑝 11 𝑝 12 𝑝 13 𝑝 13 𝑝 13

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1  

 
 
 
 

. 
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So, 𝑃
3𝑛+1

= 𝑃
4
, 𝑃

3𝑛+2
= 𝑃

5
, and 𝑃

3𝑛+3
= 𝑃

6
 for 𝑛 = 1,2,3, … . Therefore, 𝑃  is 

not ergodic. Here conditions 1,2 and 3 are satisfied but condition 4 is not 

satisfied. 

5.  If 𝑃 =

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0  

 
 
 
 

 with 𝑝 11 ≥ 𝑝 12 ≥ 𝑝 13 ≥ 𝑝 14 ≥ 𝑝 15 ,(note 

𝑝 21 = 1 only). Then by max-min composition we have 

𝑃
2

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0  

 
 
 
 

, 𝑃
3

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

1 0 0 0 0
0 1 0 0 0  

 
 
 
 

, 

 

𝑃
4

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

1 0 0 0 0  
 
 
 
 

, 𝑃
5

=

 
 
 
 
 
𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15

𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15 
 
 
 
 

, 

𝑃
5

= 𝑃
6
. Hence, 𝑃

𝑚
= 𝑃

5
 for  𝑚 = 5,6,7, … . Therefore, 𝑃  is ergodic.  

We can notice from 5 above that even though condition 4 of Theorem 4.4.2 does not hold 

the result is satisfied. 

  We can notice from the above examples that conditions 1,2, and 3 of Theorem 

4.4.2 can not be reduced, and condition 4 can be modified in a way that guarantees the 

result of Theorem 4.4.2. 
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Corollary 4.4.4: For 𝑛 ≥ 4 let 𝑃 =  𝑝 𝑖𝑗   be an 𝑛 × 𝑛 fuzzy transition matrix, such that  

𝑝 𝑖𝑗 = 0 or 1 for 𝑖 = 1, … 𝑛 − 1, 𝑗 = 1, … , 𝑛 and in each row except possibly the last 

one, exactly one entry is 1. If the following conditions hold:  

1.  𝑝 𝑛𝑛  is the maximum among the entries in the last row. 

2.  𝑝 𝑖𝑖 ≠ 1 for 𝑖 = 1, … , 𝑛 − 1.  

3. If 𝑝 𝑖𝑗 = 1then 𝑝 𝑗𝑖 = 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, … , 𝑛 − 1. 

4. 𝑝 𝑖1𝑛 = 𝑝 𝑖2𝑛 = ⋯ = 𝑝 𝑖𝑘𝑛 = 1 with 𝑘 ∈  𝑛 − 3, 𝑛 − 2, 𝑛 − 1 , 𝑖1, 𝑖2, … , 𝑖𝑘 ∈

 1,2, … , 𝑛 − 1  Then, by max-min composition 𝑃  is ergodic. 

 

Proof. If  𝑘 = 𝑛 − 3 then 𝑝 𝑖1𝑛 = 𝑝 𝑖2𝑛 = ⋯ = 𝑝 𝑖𝑛−3𝑛 = 1, 𝑖1, 𝑖2, … , 𝑖𝑛−3 ∈  1,2, … , 𝑛 −

1, and 𝑝𝑖𝑛−1𝑗1=𝑝𝑖𝑛−2𝑗2=1 for 𝑖𝑛−1,𝑖𝑛−2∈1,2,…,𝑛−1−𝑖1,𝑖2,…,𝑖𝑛−3 for                           

𝑗1, 𝑗2 ∈  1,2, … , 𝑛 − 1 . Either 𝑖𝑛−1 < 𝑖𝑛−2 or 𝑖𝑛−1 > 𝑖𝑛−2 we may assume that 𝑖𝑛−1 <

𝑖𝑛−2. 

Case 1: If 𝑗1 = 𝑗2 then 
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𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 

0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 1
0 ⋯ 1 ⋱ 0 0
0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 1
0 ⋯ 1 ⋯ 0 0
0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 1

𝑝 𝑛1 ⋯ 𝑝 𝑛𝑗1
⋯ 𝑝 𝑛 𝑛−1 𝑝 𝑛𝑛  

 
 
 
 
 
 
 
 
 
 
 

 

               

          Let 𝐸𝑛 =

 
 
 
 
 
 
 

𝑒𝑛𝑛

𝑒𝑛(𝑛−1)

⋮
⋮

𝑒𝑛𝑘

⋮
𝑒𝑛1  

 
 
 
 
 
 

=  𝑒𝑛𝑛
𝑇 𝑒𝑛 𝑛−1 

𝑇 ⋯ 𝑒𝑛𝑘
𝑇 ⋯ 𝑒𝑛2

𝑇 𝑒𝑛1
𝑇  . Then, 

𝐸𝑛  is an 𝑛 × 𝑛 permutation matrix  and 𝐸𝑛𝐸𝑛 = 𝐼𝑛  . Consider 𝑇 = 𝐸𝑛𝑃 𝐸𝑛 . 

𝐸𝑛𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
𝑝 𝑛1 ⋯ 𝑝 𝑛𝑗1

⋯ 𝑝 𝑛 𝑛−1 𝑝 𝑛𝑛

0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 1
0 ⋯ 1 ⋯ 0 0
0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 1
0 ⋯ 1 ⋯ 0 0
0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 1  

 
 
 
 
 
 
 
 
 
 
 

 

                         

 

⟵ 𝑟𝑜𝑤 𝑖𝑛−2  

⟵ 𝑟𝑜𝑤 𝑖𝑛−1  

𝑟𝑜𝑤 𝑛 − 𝑘 + 1 → 

𝑐𝑜𝑙𝑢𝑚𝑛  𝑛 − 𝑘 + 1 

← 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−1 + 1 

 

← 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−2 + 1 
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             𝑇 = 𝐸𝑛𝑃 𝐸𝑛 =  

 
 
 
 
 
 
 
 
 
 
 
 
𝑝 𝑛𝑛 𝑝 𝑛 𝑛−1 ⋯ 𝑝 𝑛𝑗1

⋯ 𝑝 𝑛1

1 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0
0 0 ⋯ 1 ⋯ 0
1 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0
0 0 ⋯ 1 ⋯ 0
1 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 

 

 

Therefore, 𝑇  satisfies the conditions of Theorem 4.4.2 and there is 𝑘 ∈ ℕ such that       

𝑇 𝑚 = 𝑇 𝐾, for = 𝑘, 𝑘 + 1, 𝑘 + 2, … , where the rows are identical in 𝑇 𝐾. Therefore,                  

 𝑇 𝑚 = 𝑇 𝐾 ⟹  𝐸𝑛𝑃 𝐸𝑛 𝑚 = 𝑇 𝐾 

 𝐸𝑛𝑃 𝐸𝑛  𝐸𝑛𝑃 𝐸𝑛 ⋯ ⋯  𝐸𝑛𝑃 𝐸𝑛 = 𝑇 𝐾          

𝐸𝑛𝑃 𝐼𝑛𝑃 ⋯ ⋯ 𝐼𝑛𝑃 𝐸𝑛 = 𝑇 𝐾 ⟹ 𝐸𝑛𝑃 𝑚𝐸𝑛 = 𝑇 𝐾 ⟹ 𝑃 𝑚 = 𝐸𝑛𝑇 𝐾𝐸𝑛  ,   𝑚 = 𝑘, 𝑘 + 1, ⋯ . 

Since 𝐸𝑛  is a permutation matrix we conclude that the rows are identical in 𝐸𝑛𝑇 𝐾𝐸𝑛 . 

Hence, 𝑃  is ergodic. 

 

Case 2 : 𝑗1 ≠ 𝑗2then either 𝑗1 < 𝑗2 or 𝑗1 > 𝑗2 we may assume that 𝑗1 < 𝑗2.  

← 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−1 + 1 

 

← 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−2 + 1 

 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑛 − 𝑗1 + 1 

 

 

                              𝑚 − 𝑡𝑖𝑚𝑒𝑠 
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                   𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 

0 ⋯ 0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 0 1
0 ⋯ 1 ⋯ 0 ⋱ 0 0
0 ⋯ 0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 0 1
0 ⋯ 0 ⋯ 1 ⋯ 0 0
0 ⋯ 0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 0 1

𝑝 𝑛1 ⋯ 𝑝 𝑛𝑗1
⋯ 𝑝 𝑛𝑗2

⋯ 𝑝 𝑛 𝑛−1 𝑝 𝑛𝑛  
 
 
 
 
 
 
 
 
 
 
 

 

We use the same 𝐸𝑛  as in Case 1and consider the composition 𝑇 = 𝐸𝑛𝑃 𝐸𝑛  

                 𝐸𝑛𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
𝑝 𝑛1 ⋯ 𝑝 𝑛𝑗1

⋯ 𝑝 𝑛𝑗2
⋯ 𝑝 𝑛 𝑛−1 𝑝 𝑛𝑛

0 ⋯ 0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 0 1
0 ⋯ 0 ⋯ 1 ⋯ 0 0
0 ⋯ 0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 0 1
0 ⋯ 1 ⋯ 0 ⋯ 0 0
0 ⋯ 0 ⋯ 0 ⋯ 0 1
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 0 1  

 
 
 
 
 
 
 
 
 
 
 

  

 

 

 

 

 

← 𝑟𝑜𝑤  𝑖𝑛−2  

 

← 𝑟𝑜𝑤  𝑖𝑛−1  

 

← 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−1 + 1 

 

← 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−2 + 1 
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            𝑇 = 𝐸𝑛𝑃 𝐸𝑛 =

 
 
 
 
 
 
 
 
 
 
 
 
𝑝 𝑛𝑛 𝑝 𝑛 𝑛−1 ⋯ 𝑝 𝑛𝑗2

⋯ 𝑝 𝑛𝑗1
⋯ 𝑝 𝑛1

1 0 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0 ⋯ 0
0 0 ⋯ 1 ⋯ 0 ⋯ 0
1 0 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0 ⋯ 0
0 0 ⋯ 0 ⋯ 1 ⋯ 0
1 0 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 

 

Therefore 𝑇  satisfies the conditions of Theorem 4.4.2 and as in Case 1 before we 

conclude that 𝑃  is ergodic. 

Similar argument applies for 𝑘 = 𝑛 − 2 and 𝑘 = 𝑛 − 1. 

 

Corollary 4.4.5:  For 𝑛 ≥ 4 let 𝑃 =  𝑝 𝑖𝑗   be an 𝑛 × 𝑛 fuzzy transition matrix such that, 

𝑝 𝑖𝑗 = 0 or 1 for 𝑖 ∈  1, … , 𝑛 −  𝑘 , 𝑗 = 1, … , 𝑛, where 1 < 𝑘 < 𝑛, and in each row 

except possibly the 𝑘𝑡  one, exactly one entry is 1. If the following conditions hold: 

1. 𝑝 𝑘𝑘  is the maximum among the entries in the 𝑘𝑡  row. 

2. 𝑝 𝑖𝑖 ≠ 1 for, 𝑖 ∈  1, … , 𝑛 −  𝑘 .  

3. If 𝑝 𝑖𝑗 = 1then 𝑝 𝑗𝑖 = 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈  1, … , 𝑛 −  𝑘 . 

4.𝑝 𝑖1𝑘 = 𝑝 𝑖2𝑘 = ⋯ = 𝑝 𝑖𝑙𝑘 = 1 where 𝑙 ∈  𝑛 − 3, 𝑛 − 2, 𝑛 − 1  and 𝑖1, 𝑖2, … , 𝑖𝑙 ∈

 1, … , 𝑛 −  𝑘 . 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑛 − 𝑗2 + 1 𝑐𝑜𝑙𝑢𝑚𝑛 𝑛 − 𝑗1 + 1 

← 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−1 + 1 

 

← 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−2 + 1 
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Then, by max-min composition 𝑃  is ergodic. 

 

Proof. If  𝑙 = 𝑛 − 3 then 𝑝 𝑖1𝑘 = 𝑝 𝑖2𝑘 = ⋯ = 𝑝 𝑖𝑛−3𝑘 = 1, 𝑖1, 𝑖2, … , 𝑖𝑛−3 ∈  1, … , 𝑛 −

 𝑘 , and 𝑝 𝑖𝑛−1𝑗1
= 𝑝 𝑖𝑛−2𝑗2

= 1 for 𝑖𝑛−1, 𝑖𝑛−2 ∈  1, … , 𝑛 −  𝑖1, 𝑖2, … , 𝑖𝑛−3, 𝑘  for                   

𝑗1, 𝑗2 ∈  1, … , 𝑛 −  𝑘 . Either 𝑖𝑛−1 < 𝑖𝑛−2 or 𝑖𝑛−1 > 𝑖𝑛−2 we may assume that                 

𝑖𝑛−1 < 𝑖𝑛−2. 

Case 1: If 𝑗1 = 𝑗2 then 

                             𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0

𝑝 𝑘1 ⋯ 𝑝 𝑘 𝑘−1 𝑝 𝑘𝑘 𝑝 𝑘 𝑘+1 ⋯ 𝑝 𝑘𝑗1
⋯ 𝑝 𝑘𝑛

0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let 𝐸𝑛 =  

 
 
 
 
 
 
 
 
 
 
 

𝑒𝑛𝑘

𝑒𝑛2

𝑒𝑛3

⋮
⋮

𝑒𝑛 𝑘−1 

𝑒𝑛1

𝑒𝑛 𝑘+1 

𝑒𝑛 𝑘+2 

⋮
𝑒𝑛𝑛  

 
 
 
 
 
 
 
 
 
 

 

← 𝑟𝑜𝑤  𝑖𝑛−2  

 

← 𝑟𝑜𝑤 𝑖𝑛−1 

 

← 𝑘𝑡𝑟𝑜𝑤 
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             = 𝑒𝑛𝑘
𝑇 𝑒𝑛2

𝑇 𝑒𝑛3
𝑇 ⋯ 𝑒𝑛 𝑘−1 

𝑇 𝑒𝑛1
𝑇 𝑒𝑛 𝑘+1 

𝑇 𝑒𝑛 𝑘+2 
𝑇 ⋯ 𝑒𝑛𝑛

𝑇  , 

then 𝐸𝑛  is an 𝑛 × 𝑛 permutation matrix and 𝐸𝑛𝐸𝑛 = 𝐼𝑛  . Consider the composition           

𝑇 = 𝐸𝑛𝑃 𝐸𝑛 . 

                      𝐸𝑛𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑝 𝑘1 ⋯ 𝑝 𝑘 𝑘−1 𝑝 𝑘𝑘 𝑝 𝑘 𝑘+1 ⋯ 𝑝 𝑘𝑗1

⋯ 𝑝 𝑘𝑛

0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Hence, 𝑇 = 𝐸𝑛𝑃 𝐸𝑛  

              =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑝 𝑘𝑘 𝑝 𝑘2 ⋯ 𝑝 𝑘 𝑘−1 𝑝 𝑘1 𝑝 𝑘 𝑘+1 ⋯ 𝑝 𝑘𝑗1

⋯ 𝑝 𝑘𝑛

1 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
0 0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
1 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
0 0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
1 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑘𝑡𝑐𝑜𝑙𝑢𝑚𝑛 

← 𝑟𝑜𝑤  𝑖𝑛−2  

 

← 𝑟𝑜𝑤  𝑖𝑛−1  

 

← 𝑟𝑜𝑤  𝑖𝑛−2  

 

← 𝑘𝑡  𝑟𝑜𝑤   

 

← 𝑟𝑜𝑤  𝑖𝑛−1  

 

← 𝑘𝑡𝑟𝑜𝑤 
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Therefore 𝑇  satisfies the conditions of Theorem 4.4.2 and as in Case 1 of Corollary 

4.4.4 before we conclude that 𝑃  is ergodic. 

 

Case 2: 𝑗1 ≠ 𝑗2then either 𝑗1 < 𝑗2 or 𝑗1 > 𝑗2 we may assume that 𝑗1 < 𝑗2. 

We use the same 𝐸𝑛  as in Case 1 and consider the composition 𝑇 = 𝐸𝑛𝑃 𝐸𝑛  

     𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 1 ⋯ 0 0 0 ⋯ 0 ⋯ 0
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0

𝑝 𝑘1 ⋯ 𝑝 𝑘𝑗1
⋯ 𝑝 𝑘 𝑘−1 𝑝 𝑘𝑘 𝑝 𝑘 𝑘+1 ⋯ 𝑝 𝑘𝑗2

⋯ 𝑝 𝑘𝑛

0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                             

𝐸𝑛𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑝 𝑘1 ⋯ 𝑝 𝑘𝑗1

⋯ 𝑝 𝑘 𝑘−1 𝑝 𝑘𝑘 𝑝 𝑘 𝑘+1 ⋯ 𝑝 𝑘𝑗2
⋯ 𝑝 𝑘𝑛

0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 1 ⋯ 0 0 0 ⋯ 0 ⋯ 0
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

← 𝑟𝑜𝑤  𝑖𝑛−2  

 

← 𝑟𝑜𝑤  𝑖𝑛−1  

 

← 𝑟𝑜𝑤  𝑖𝑛−2  

 

← 𝑘𝑡  𝑟𝑜𝑤   

 

← 𝑟𝑜𝑤  𝑖𝑛−1  
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Hence, 𝑇 = 𝐸𝑛𝑃 𝐸𝑛  

 

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑝 𝑘𝑘 ⋯ 𝑝 𝑘𝑗1

⋯ 𝑝 𝑘 𝑘−1 𝑝 𝑘1 𝑝 𝑘 𝑘+1 ⋯ 𝑝 𝑘𝑗2
⋯ 𝑝 𝑘𝑛

1 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
0 ⋯ 1 ⋯ 0 0 0 ⋯ 0 ⋯ 0
1 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
0 ⋯ 0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
1 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Therefore 𝑇  satisfies the conditions of Theorem 4.4.2 and as in Case 1 of Corollary 

4.4.4 before we conclude that 𝑃  is ergodic. 

Similar argument applies for 𝑙 = 𝑛 − 2 and 𝑙 = 𝑛 − 1. 

Remark 4.4.6: We prove Corollary 4.4.5 using another permutation matrix 𝐸𝑛  as 

follows: 

If  𝑙 = 𝑛 − 3 then 𝑝 𝑖1𝑘 = 𝑝 𝑖2𝑘 = ⋯ = 𝑝 𝑖𝑛−3𝑘 = 1, 𝑖1, 𝑖2, … , 𝑖𝑛−3 ∈  1, … , 𝑛 −  𝑘 , and 

𝑝 𝑖𝑛−1𝑗1
= 𝑝 𝑖𝑛−2𝑗2

= 1 for 𝑖𝑛−1, 𝑖𝑛−2 ∈  1, … , 𝑛 −  𝑖1, 𝑖2, … , 𝑖𝑛−3, 𝑘  for 𝑗1, 𝑗2 ∈

 1, … , 𝑛 −  𝑘 . Either 𝑖𝑛−1 < 𝑖𝑛−2 or 𝑖𝑛−1 > 𝑖𝑛−2 we may assume that 𝑖𝑛−1 < 𝑖𝑛−2. 

 

 

𝑘𝑡𝑐𝑜𝑙𝑢𝑚𝑛 

← 𝑟𝑜𝑤  𝑖𝑛−2  

 

← 𝑘𝑡  𝑟𝑜𝑤   

 

← 𝑟𝑜𝑤  𝑖𝑛−1  
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Case 1: If 𝑗1 = 𝑗2 then 

                    𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0

𝑝 𝑘1 ⋯ 𝑝 𝑘 𝑘−1 𝑝 𝑘𝑘 𝑝 𝑘 𝑘+1 ⋯ 𝑝 𝑘𝑗1
⋯ 𝑝 𝑘𝑛

0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let 𝐸𝑛 =

 
 
 
 
 
 
 
 
 
 
 

𝑒𝑛𝑘

𝑒𝑛 𝑛−1 

𝑒𝑛 𝑛−2 

⋮
⋮

𝑒𝑛 𝑛−𝑘+2 

𝑒𝑛1

𝑒𝑛 𝑛−𝑘 

⋮
𝑒𝑛2

𝑒𝑛𝑛  
 
 
 
 
 
 
 
 
 
 

  

 

=  𝑒𝑛𝑘
𝑇 𝑒𝑛 𝑛−1 

𝑇 𝑒𝑛 𝑛−2 
𝑇 ⋯ 𝑒𝑛 𝑛−𝑘+2 

𝑇 𝑒𝑛1
𝑇 𝑒𝑛 𝑛−𝑘 

𝑇 ⋯ 𝑒𝑛2
𝑇 𝑒𝑛𝑛

𝑇  . 

Then,  𝐸𝑛  is an 𝑛 × 𝑛 permutation matrix and  𝐸𝑛𝐸𝑛 = 𝐼𝑛  . 

Consider the composition 𝑇 = 𝐸𝑛𝑃 𝐸𝑛 . 

 

← 𝑟𝑜𝑤  𝑖𝑛−2  

 

← 𝑟𝑜𝑤  𝑖𝑛−1  

 

← 𝑘𝑡  𝑟𝑜𝑤   

 

𝑘𝑡𝑐𝑜𝑙𝑢𝑚𝑛 
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  𝐸𝑛𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑝 𝑘1 ⋯ 𝑝 𝑘 𝑘−1 𝑝 𝑘𝑘 𝑝 𝑘 𝑘+1 ⋯ 𝑝 𝑘𝑗1

⋯ 𝑝 𝑘𝑛

0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                  

                                                                                                        

𝑇 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑝 𝑘𝑘 𝑝 𝑘 𝑛−1 ⋯ 𝑝 𝑘𝑗1

⋯ 𝑝 𝑘 𝑛−𝑘+2 𝑝 𝑘1 𝑝 𝑘 𝑛−𝑘 ⋯ 𝑝 𝑘2 𝑝 𝑘𝑛

1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 1 ⋯ 0 0 0 ⋯ 0 0
1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 1 ⋯ 0 0 0 ⋯ 0 0
1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 0  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

1: 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−2 + 1,  

2: 𝑘𝑡  𝑟𝑜𝑤,  

3: 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−1 + 1. 

← 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−1 + 1 

 

← 𝑘𝑡  𝑟𝑜𝑤   

 

← 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−2 + 1 

 

←𝟑 

 

←𝟐 

   

 

←𝟏 

 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑛 − 𝑗1 + 1 𝑘𝑡𝑐𝑜𝑙𝑢𝑚𝑛 
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Therefore, 𝑇  satisfies the conditions of Theorem 4.4.2 and as in Case 1 of Corollary 

4.4.4 before we conclude that 𝑃  is ergodic. 

 

Case 2: 𝑗1 ≠ 𝑗2then either 𝑗1 < 𝑗2 or 𝑗1 > 𝑗2 we may assume that 𝑗1 < 𝑗2. 

We use the same 𝐸𝑛  as in Case 1 and consider the composition 𝑇 = 𝐸𝑛𝑃 𝐸𝑛 . 

     𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 1 ⋯ 0 0 0 ⋯ 0 ⋯ 0
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0

𝑝 𝑘1 ⋯ 𝑝 𝑘𝑗1
⋯ 𝑝 𝑘 𝑘−1 𝑝 𝑘𝑘 𝑝 𝑘 𝑘+1 ⋯ 𝑝 𝑘𝑗2

⋯ 𝑝 𝑘𝑛

0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

 

 

← 𝑟𝑜𝑤  𝑖𝑛−2  

 

← 𝑟𝑜𝑤  𝑖𝑛−1  
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𝐸𝑛𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑝 𝑘1 ⋯ 𝑝 𝑘𝑗1

⋯ 𝑝 𝑘 𝑘−1 𝑝 𝑘𝑘 𝑝 𝑘 𝑘+1 ⋯ 𝑝 𝑘𝑗2
⋯ 𝑝 𝑘𝑛

0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 0 ⋯ 0 0 0 ⋯ 1 ⋯ 0
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
0 ⋯ 1 ⋯ 0 0 0 ⋯ 0 ⋯ 0
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 1 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

 

 

 

 

 

 

 

 

1: 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−2 + 1, 

2: 𝑘𝑡  𝑟𝑜𝑤, 

3: 𝑟𝑜𝑤  𝑛 − 𝑖𝑛−1 + 1. 

←𝟑 

 

←𝟏 

 

←𝟐 
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𝑇 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑝 

𝑘𝑘
𝑝 

𝑘 𝑛−1 ⋯ 𝑝 
𝑘𝑗2

⋯ 𝑝 
𝑘 𝑛−𝑘+2 𝑝 

𝑘1
𝑝 

𝑘 𝑛−𝑘 ⋯ 𝑝 
𝑘𝑗1

⋯ 𝑝 
𝑘2

𝑝 
𝑘𝑛

1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0

0 0 ⋯ 1 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0

1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0

0 0 ⋯ 0 ⋯ 0 0 0 ⋯ 1 ⋯ 0 0

1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

1 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Therefore 𝑇  satisfies the conditions of Theorem 4.4.2 and as in Case 1 of Corollary 

4.4.4 before we conclude that 𝑃  is ergodic.  

Similar argument applies for 𝑙 = 𝑛 − 2 and 𝑙 = 𝑛 − 1. 

 

 

 

 

1: 𝑟𝑜𝑤 𝑛 − 𝑖𝑛−2 + 1, 

2: 𝑘𝑡  𝑟𝑜𝑤, 

3: 𝑟𝑜𝑤 𝑛 − 𝑖𝑛−1 + 1. 

𝑘𝑡𝑐𝑜𝑙𝑢𝑚𝑛 
𝑐𝑜𝑙𝑢𝑚𝑛 𝑛 − 𝑗1 + 1 

 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑛 − 𝑗2 + 1 

 

←𝟏 

 

←𝟐 

 

←𝟑 
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Remark 4.4.7: We use Corollary 4.4.4 to prove Corollary 4.4.5 using either the 

permutation matrix 𝐸𝑛  or 𝑃𝑛 , where, 

𝐸𝑛  given by: 

 𝐸𝑛 =

 
 
 
 
 
 
 
 
 
 
 

𝑒𝑛1

𝑒𝑛2

⋮
⋮

𝑒𝑛 𝑘−1 

𝑒𝑛𝑛

𝑒𝑛 𝑘+1 

⋮
⋮

𝑒𝑛 𝑛−1 

𝑒𝑛𝑘  
 
 
 
 
 
 
 
 
 
 

  

=  𝑒𝑛1
𝑇 𝑒𝑛2

𝑇 ⋯ ⋯ 𝑒𝑛 𝑘−1 
𝑇 𝑒𝑛𝑛

𝑇 𝑒𝑛 𝑘+1 
𝑇 ⋯ ⋯ 𝑒𝑛 𝑛−1 

𝑇 𝑒𝑛𝑘
𝑇  , and 𝐸𝑛𝐸𝑛 =

𝐼𝑛 .  

 

𝑃𝑛  given by: 

𝑃𝑛 =

 
 
 
 
 
 
 
 
 
 
 

𝑒𝑛1

𝑒𝑛 𝑛−1 

𝑒𝑛 𝑛−2 

⋮
⋮

𝑒𝑛 𝑛−𝑘+2 

𝑒𝑛𝑛

𝑒𝑛 𝑛−𝑘 

⋮
𝑒𝑛2

𝑒𝑛𝑘  
 
 
 
 
 
 
 
 
 
 

  

=  𝑒𝑛1
𝑇 𝑒𝑛 𝑛−1 

𝑇 𝑒𝑛 𝑛−2 
𝑇 ⋯ 𝑒𝑛 𝑛−𝑘+2 

𝑇 𝑒𝑛𝑛
𝑇 𝑒𝑛 𝑛−𝑘 

𝑇 ⋯ 𝑒𝑛2
𝑇 𝑒𝑛𝑘

𝑇   and 

← 𝑘𝑡  𝑟𝑜𝑤   

 

𝑘𝑡𝑐𝑜𝑙𝑢𝑚𝑛 

← 𝑘𝑡  𝑟𝑜𝑤   

 

𝑘𝑡𝑐𝑜𝑙𝑢𝑚𝑛 
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 𝑃𝑛𝑃𝑛 = 𝐼𝑛  . 

Similar to the above arguments in corollaries 4.4.4, 4.4.5, and 4.4.6, we consider the 

max-min composition 𝐸𝑛𝑃 𝐸𝑛  or 𝑃𝑛𝑃 𝑃𝑛  in either case the resulting matrix satisfies the 

conditions of Corollary 4.4.4, and as in Case 1 of Corollary 4.4.4 before we conclude 

that 𝑃  is ergodic. 
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Conclusions: 

In this work, we studied finite fuzzy Markov chains concentrating on their 

ergodic behavior. The limit of powers of 2 × 2 regular fuzzy transition matrices was 

studied. The   uniqueness of that limit under certain conditions was proved for a special 

fuzzy number in addition to the triangular and trapezoidal cases. On the other hand, we 

classified the fuzzy states similar to the crisp states and we presented the similarities and 

the differences between them. Then, we studied the ergodicity of a particular  class of 

finite fuzzy Markov chains where exactly one row of the transition matrices consists of 

arbitrary values (between zero and one) while the other rows’ entries are one in one 

place and  zero elsewhere. 

In this work, we studied  fuzzy Markov chains in two ways, one by considering 

the classical (crisp) Markov chains, and replacing the uncertainties in the transition 

matrix by fuzzy numbers, then using the restricted fuzzy matrix multiplication to find 

the powers of the resulted matrix. Another way is by considering the fuzzy transition 

matrix of a fuzzy Markov chain as a fuzzy relation on a finite state space; in this case 

the states are fuzzy sets. In fact, there is a third way to study the fuzzy Markov chains 

using the concept of Possibility Measure  [32], from which the  transition fuzzy 

possibility and  the  transition fuzzy possibility matrix were defined [28]. 

Finally, in this work we studied the finite and stationary (homogeneous) fuzzy 

Markov chains. As a future work, we recommend studying the possibility of 

generalizing the basic properties of classical Markov chains to the infinite fuzzy Markov 

chains and to the non-stationary (non-homogeneous) fuzzy Markov chains. 
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Appendix: 

In this appendix we give the proof of Theorem 4.4.2.  

Proof. If 𝑘 = 𝑛 − 3 then 𝑝 𝑖11 = 𝑝 𝑖21 = ⋯ = 𝑝 𝑖𝑛−31 = 1, 𝑖1, 𝑖2, … , 𝑖𝑛−3 ∈  2,3, … , 𝑛 , and 

𝑝 𝑖𝑛−1𝑗1
= 𝑝 𝑖𝑛−2𝑗2

= 1 for 𝑖𝑛−1, 𝑖𝑛−2 ∈  2,3, … , 𝑛 −  𝑖1, 𝑖2, … , 𝑖𝑛−3  for 𝑗1, 𝑗2 ∈

 2,3, … , 𝑛 .    Either 𝑖𝑛−1 < 𝑖𝑛−2 or 𝑖𝑛−1 > 𝑖𝑛−2 we may assume that 𝑖𝑛−1 < 𝑖𝑛−2.  

Let 𝑅𝑖
 𝑚 

 denote the 𝑖𝑡  row in 𝑃
𝑚

 (the 𝑚𝑡  power of 𝑃 ), then 𝑅𝑖
 𝑚+1 

= 𝑅𝑖
 1 

𝑃
𝑚

 . During 

the proof  𝑅1
 𝑚+1 

  will be computed by 𝑅1
 𝑚+1 

= 𝑅1
 𝑚 

𝑃   and 𝑅𝑖
 𝑚+1 

= 𝑅𝑖
 1 

𝑃
𝑚

 for 

= 2, … , 𝑛 . 

Now we consider two cases: 

Case 1: 𝑗1 = 𝑗2 then 𝑝 𝑖𝑛−1𝑗1
= 𝑝 𝑖𝑛−2𝑗1

= 1 for 𝑖𝑛−1, 𝑖𝑛−2 ∈  2,3, … , 𝑛 −  𝑖1, 𝑖2, … , 𝑖𝑛−3 , 

and 𝑗1 = 𝑖𝑘  for some 𝑘 ∈  1,2, … , 𝑛 − 3  otherwise (i.e. 𝑗1 = 𝑖𝑛−1 or 𝑗1 = 𝑖𝑛−2) we have 

𝑝 𝑗1𝑗1
= 1 which contradicts condition 2. 

𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑛

1 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0
0 0 ⋯ 1 ⋯ 0
1 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0
0 0 ⋯ 1 ⋯ 0
1 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 

 

⟵ 𝑟𝑜𝑤 𝑖𝑛−2 

⟵ 𝑟𝑜𝑤 𝑖𝑛−1  
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Consider, 𝑃
2
 then 𝑅𝑖1

 2 
= 𝑅𝑖2

 2 
= ⋯ = 𝑅𝑖𝑛−3

 2 
= 𝑅1

 1 
, 𝑅𝑖𝑛−1

 2 
= 𝑅𝑖𝑛−2

 2 
= 𝑅𝑗1

 1 
= 𝑅𝑖𝑘

 1 
 by     

Lemma 4.4.1. 𝑅1
 2 

=  𝑝 1𝑗
(2)

 , for 𝑗 ≠ 𝑗1 𝑝 1𝑗
(2)

= 𝑝 1𝑗  and 𝑝 1𝑗1

(2)
= 𝑚𝑎𝑥 𝑝 1𝑗1

, 𝑝 1𝑖𝑛−1
, 𝑝 1𝑖𝑛−2

  by 

condition 1. Therefore, 

                                              𝑃
2

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

(2)
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1
⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑛

1 0 ⋯ 0 ⋯ 0
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑛

1 0 ⋯ 0 ⋯ 0
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑛 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Consider, 𝑃
3
 then 𝑅𝑖1

 3 
= 𝑅𝑖2

 3 
= ⋯ = 𝑅𝑖𝑛−3

 3 
= 𝑅1

 2 
, 𝑅𝑖𝑛−1

 3 
= 𝑅𝑖𝑛−2

 3 
= 𝑅𝑗1

 2 
= 𝑅𝑖𝑘

 2 
=           

𝑅1
 1 

  by Lemma 4.4.1. 𝑅1
 3 

=  𝑝 1𝑗
(3)

 , ∀𝑗 ≠ 𝑗1 𝑝 1𝑗
(3)

= 𝑝 1𝑗 , and 

𝑝 1𝑗1

(3)
= 𝑚𝑎𝑥 𝑝 1𝑗1

, 𝑝 1𝑖𝑛−1
, 𝑝 1𝑖𝑛−2

 = 𝑝 1𝑗1

(2)
 by condition 1. So, 𝑅1

 3 
= 𝑅1

 2 
. If 𝑝 1𝑗1

(2)
= 𝑝 1𝑗1

 

then 𝑅1
 2 

= 𝑅1
 1 

, so in 𝑃
3
 we have 𝑅1

 3 
= 𝑅2

 3 
= ⋯ = 𝑅𝑛

 3 
= 𝑅1

 1 
. It is obvious that 

𝑃
4

= 𝑃
3
. Hence, 𝑃

𝑚
= 𝑃

3
 for  𝑚 = 3,4,5, … . Therefore, 𝑃  is ergodic. If 𝑝 1𝑗1

(2)
= 𝑝 1𝑖𝑛−1

 

then  

⟵ 𝑟𝑜𝑤 𝑖𝑛−2  

⟵ 𝑟𝑜𝑤 𝑖𝑛−1  
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                                             𝑃
3

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1
⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1
⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1
⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑛 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                  

Consider, 𝑃
4
 then  

𝑅𝑖1

 4 
= 𝑅𝑖2

 4 
= ⋯ = 𝑅𝑖𝑛−3

 4 
= 𝑅1

 3 
= 𝑅1

 2 
,𝑅𝑖𝑛−1

 4 
= 𝑅𝑖𝑛−2

 4 
= 𝑅𝑗1

 3 
= 𝑅𝑖𝑘

 3 
= 𝑅1

 2 
 by Lemma 

4.4.1. 𝑅1
 4 

=  𝑝 1𝑗
(4)

 , for 𝑗 ≠ 𝑗1,  𝑝 1𝑗
(4)

= 𝑝 1𝑗 , and  𝑝 1𝑗1

(4)
= 𝑚𝑎𝑥 𝑝 1𝑗1

, 𝑝 1𝑖𝑛−1
, 𝑝 1𝑖𝑛−2

 =

𝑝 1𝑗1

(2)
 = 𝑝 1𝑖𝑛−1

, by condition1. So 𝑅1
 4 

= 𝑅1
 2 

, and so in 𝑃
4
 we have, 𝑅1

 4 
= 𝑅2

 4 
= ⋯ =

𝑅𝑛
 4 

= 𝑅1
 2 

. It is obvious that 𝑃
5

= 𝑃
4
. Hence, 𝑃

𝑚
= 𝑃

4
 for = 4,5,6, … . Therefore, 𝑃  is 

ergodic. Similarly if  𝑝 1𝑗1

(2)
= 𝑝 1𝑖𝑛−2

 then 𝑅1
 4 

= 𝑅2
 4 

= ⋯ = 𝑅𝑛
 4 

= 𝑅1
 2 

. Hence, 𝑃
𝑚

= 𝑃
4
 

for = 4,5,6, … . Therefore, 𝑃  is ergodic. 

 

Case 2: 𝑗1 ≠ 𝑗2 then either 𝑗1 < 𝑗2 or 𝑗1 > 𝑗2 we may assume that 𝑗1 < 𝑗2.  

So 𝑝 𝑖𝑛−1𝑗1
= 𝑝 𝑖𝑛−2𝑗2

= 1 for 𝑖𝑛−1, 𝑖𝑛−2 ∈  2,3, … , 𝑛 −  𝑖1, 𝑖2, … , 𝑖𝑛−3 , and 𝑗1, 𝑗2 =

 2,3, … , 𝑛 .  

Now we have the following subcases: 

⟵ 𝑟𝑜𝑤 𝑖𝑛−1  

⟵ 𝑟𝑜𝑤 𝑖𝑛−2  
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(1) 𝑗1 = 𝑖𝑘 , 𝑗2 = 𝑖𝑚  , where 𝑘, 𝑚 ∈  1,2, … , 𝑛 − 3 . 

(2) 𝑗1 = 𝑖𝑘 , 𝑗2 = 𝑖𝑛−1, where 𝑘 ∈  1,2, … , 𝑛 − 3 . 

(3) 𝑗1 = 𝑖𝑛−2, 𝑗2 = 𝑖𝑘 , where 𝑘 ∈  1,2, … , 𝑛 − 3 . 

Note that the cases 𝑗1 = 𝑖𝑛−1, 𝑗2 = 𝑖𝑛−2 and 𝑗1 = 𝑖𝑛−2, 𝑗2 = 𝑖𝑛−1 are not taken into account 

since they contradict conditions 2 and 3 respectively. Again we keep in mind that 𝑖𝑛−1 <

𝑖𝑛−2, and continue with this assumption throughout the proof. 

We first deal with the subcase (1): 

                                                𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛

1 0 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0 ⋯ 0
0 0 ⋯ 1 ⋯ 0 ⋯ 0
1 0 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0 ⋯ 0
0 0 ⋯ 0 ⋯ 1 ⋯ 0
1 0 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 

                          

Consider, 𝑃
2
 then 𝑅𝑖1

 2 
= 𝑅𝑖2

 2 
= ⋯ = 𝑅𝑖𝑛−3

 2 
= 𝑅1

 1 
, 𝑅𝑖𝑛−1

 2 
= 𝑅𝑗1

 1 
= 𝑅𝑖𝑘

 1 
, and                     

𝑅𝑖𝑛−2

 2 
= 𝑅𝑗2

 1 
= 𝑅𝑖𝑚

 1 
 by Lemma 4.4.1 . 𝑅1

 2 
=  𝑝 1𝑗

(2)
 , for 𝑗 ≠ 𝑗1, 𝑗2, 𝑝 1𝑗

(2)
= 𝑝 1𝑗  and           

𝑝 1𝑗1

(2)
= 𝑚𝑎𝑥 𝑝 1𝑗1

, 𝑝 1𝑖𝑛−1
 , 𝑝 1𝑗2

(2)
= 𝑚𝑎𝑥 𝑝 1𝑗2

, 𝑝 1𝑖𝑛−2
 , by condition 1. 

⟵ 𝑟𝑜𝑤 𝑖𝑛−2  

⟵ 𝑟𝑜𝑤 𝑖𝑛−1  
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                                              𝑃
2

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

(2)
⋯ 𝑝 1𝑗2

(2)
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1
⋯ 𝑝 1𝑗2

⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛

1 0 ⋯ 0 ⋯ 0 ⋯ 0
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛

1 0 ⋯ 0 ⋯ 0 ⋯ 0
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛 

 
 
 
 
 
 
 
 
 
 
 
 
 

  

Consider, 𝑃
3
 then 

𝑅𝑖1

 3 
= 𝑅𝑖2

 3 
= ⋯ = 𝑅𝑖𝑛−3

 3 
= 𝑅1

 2 
, 𝑅𝑖𝑛−1

 3 
= 𝑅𝑗1

 2 
= 𝑅𝑖𝑘

 2 
= 𝑅1

 1 
, 𝑅𝑖𝑛−2

 3 
= 𝑅𝑗2

 2 
= 𝑅𝑖𝑚

 2 
=

𝑅1
 1 

 by Lemma 4.4.1 . 𝑅1
 3 

=  𝑝 1𝑗
(3)

 , for 𝑗 ≠ 𝑗1, 𝑗2, 𝑝 1𝑗
(3)

= 𝑝 1𝑗  and 

𝑝 1𝑗1

(3)
= 𝑚𝑎𝑥 𝑝 1𝑗1

, 𝑝 1𝑖𝑛−1
 = 𝑝 1𝑗1

(2)
, 𝑝 1𝑗2

(3)
= 𝑚𝑎𝑥 𝑝 1𝑗2

, 𝑝 1𝑖𝑛−2
 = 𝑝 1𝑗2

(2)
, by condition 1. So 

𝑅1
 3 

= 𝑅1
 2 

. We have the following subcases: 

i. 𝑝 1𝑗1

(2)
= 𝑝 1𝑗1

 and 𝑝 1𝑗2

(2)
= 𝑝 1𝑗2

. 

ii. 𝑝 1𝑗1

(2)
= 𝑝 1𝑗1

 and 𝑝 1𝑗2

(2)
= 𝑝 1𝑖𝑛−2

. 

iii. 𝑝 1𝑗1

(2)
= 𝑝 1𝑖𝑛−1

and 𝑝 1𝑗2

(2)
= 𝑝 1𝑗2

. 

iv. 𝑝 1𝑗1

 2 
= 𝑝 1𝑖𝑛−1

and 𝑝 1𝑗2

 2 
= 𝑝 1𝑖𝑛−2

. 

For the subcase i, 𝑅1
 3 

= 𝑅2
 3 

= ⋯ = 𝑅𝑛
 3 

= 𝑅1
 1 

and it is obvious that 𝑃
4

= 𝑃
3
. Hence, 

𝑃
𝑚

= 𝑃
3
 for = 3,4,5, … . Therefore, 𝑃  is ergodic. 

⟵ 𝑟𝑜𝑤 𝑖𝑛−2  

⟵ 𝑟𝑜𝑤 𝑖𝑛−1  
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For the subcases ii and iii we need to find 𝑃
4
 from which we have –as previously shown in 

Case 1- 𝑅1
 4 

= 𝑅2
 4 

= ⋯ = 𝑅𝑛
 4 

= 𝑅1
 2 

 and it is obvious that 𝑃
5

= 𝑃
4
. Hence, 𝑃

𝑚
= 𝑃

4
 

for = 4,5,6, … . Therefore, 𝑃  is ergodic.  

For the subcase iv: 

                                  𝑃
3

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑖𝑛−2
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1
⋯ 𝑝 1𝑖𝑛−2

⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑖𝑛−2
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1
⋯ 𝑝 1𝑗2

⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1
⋯ 𝑝 1𝑖𝑛−2

⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑖𝑛−2
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1
⋯ 𝑝 1𝑗2

⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1
⋯ 𝑝 1𝑖𝑛−2

⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑖𝑛−2
⋯ 𝑝 1𝑛 

 
 
 
 
 
 
 
 
 
 
 
 
 

             

Consider 𝑃
4
, then 𝑅𝑖1

 4 
= 𝑅𝑖2

 4 
= ⋯ = 𝑅𝑖𝑛−3

 4 
= 𝑅1

 3 
= 𝑅1

 2 
,  𝑅𝑖𝑛−1

 4 
= 𝑅𝑗1

 3 
= 𝑅𝑖𝑘

 3 
= 𝑅1

 2 
, 

𝑅𝑖𝑛−2

 4 
= 𝑅𝑗2

 3 
= 𝑅𝑖𝑚

 3 
= 𝑅1

 2 
 by Lemma 4.4.1 . 𝑅1

 4 
=  𝑝 1𝑗

(4)
 , for 𝑗 ≠ 𝑗1, 𝑗2, 𝑝 1𝑗

(4)
= 𝑝 1𝑗  and 

𝑝 1𝑗1

(4)
= 𝑚𝑎𝑥 𝑝 1𝑖𝑛−1

, 𝑝 1𝑗1
 = 𝑝 1𝑗1

(2)
= 𝑝 1𝑖𝑛−1

, 𝑝 1𝑗2

(4)
= 𝑚𝑎𝑥 𝑝 1𝑖𝑛−2

, 𝑝 1𝑗2
 = 𝑝 1𝑗1

(2)
= 𝑝 1𝑖𝑛−2

 . In 

𝑃
4
 we have 𝑅1

 4 
= 𝑅2

 4 
= ⋯ = 𝑅𝑛

 4 
= 𝑅1

 2 
 and it is obvious that 𝑃

5
= 𝑃

4
. Hence, 

𝑃
𝑚

= 𝑃
4
 for = 4,5,6, … . Therefore, 𝑃  is ergodic. 

Next, we deal with the subcase (2) in which 𝑗1 = 𝑖𝑘 , 𝑗2 = 𝑖𝑛−1, where 𝑘 ∈  1,2, … , 𝑛 − 3 . 

⟵ 𝑟𝑜𝑤 𝑖𝑛−1  

⟵ 𝑟𝑜𝑤 𝑖𝑛−2  
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                                               𝑃 =

 
 
 
 
 
 
 
 
 
 
 
 
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛

1 0 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0 ⋯ 0
0 0 ⋯ 1 ⋯ 0 ⋯ 0
1 0 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0 ⋯ 0
0 0 ⋯ 0 ⋯ 1 ⋯ 0
1 0 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0 ⋯ 0 ⋯ 0  

 
 
 
 
 
 
 
 
 
 
 

                                        

Consider, 𝑃
2
 then, 

𝑅𝑖1

 2 
= 𝑅𝑖2

 2 
= ⋯ = 𝑅𝑖𝑛−3

 2 
= 𝑅1

 1 
, 𝑅𝑖𝑛−1

 2 
= 𝑅𝑗1

 1 
= 𝑅𝑖𝑘

 1 
,  𝑅𝑖𝑛−2

 2 
= 𝑅𝑗2

 1 
= 𝑅𝑖𝑛−1

 1 
 by Lemma 

4.4.1 . 𝑅1
 2 

=  𝑝 1𝑗
(2)

 , for ≠ 𝑗1, 𝑗2 𝑝 1𝑗
(2)

= 𝑝 1𝑗 , but condition 1 implies that 

𝑝 1𝑗1

(2)
= 𝑚𝑎𝑥 𝑝 1𝑗1

, 𝑝 1𝑖𝑛−1
 = 𝑚𝑎𝑥 𝑝 1𝑗1

, 𝑝 1𝑗2
 , 

𝑝 1𝑗2

(2)
= 𝑚𝑎𝑥 𝑝 1𝑗2

, 𝑝 1𝑖𝑛−2
 = 𝑚𝑎𝑥 𝑝 1𝑖𝑛−1

, 𝑝 1𝑖𝑛−2
 .                                                       

                   

                                          𝑃
2

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

(2)
⋯ 𝑝 1𝑗2

(2)
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1
⋯ 𝑝 1𝑗2

⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛

1 0 ⋯ 0 ⋯ 0 ⋯ 0
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛

0 0 ⋯ 1 ⋯ 0 ⋯ 0
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

⋯ 𝑝 1𝑗2
⋯ 𝑝 1𝑛 

 
 
 
 
 
 
 
 
 
 
 
 
 

       

⟵ 𝑟𝑜𝑤 𝑖𝑛−1  

⟵ 𝑟𝑜𝑤 𝑖𝑛−2  

⟵ 𝑟𝑜𝑤 𝑖𝑛−2  

⟵ 𝑟𝑜𝑤 𝑖𝑛−1  
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Consider, 𝑃
3
 then 𝑅𝑖1

 3 
= 𝑅𝑖2

 3 
= ⋯ = 𝑅𝑖𝑛−3

 3 
= 𝑅1

 2 
, 𝑅𝑖𝑛−1

 3 
= 𝑅𝑗1

 2 
= 𝑅𝑖𝑘

 2 
= 𝑅1

 1 
,          

𝑅𝑖𝑛−2

 3 
= 𝑅𝑗2

 2 
= 𝑅𝑖𝑛−1

 2 
= 𝑅𝑗1

 1 
= 𝑅𝑖𝑘

 1 
by Lemma 4.4.1 . 𝑅1

 3 
=  𝑝 1𝑗

(3)
 , for 𝑗 ≠ 𝑗1, 𝑗2 𝑝 1𝑗

(3)
=

𝑝 1𝑗  and 𝑝 1𝑗1

(3)
= 𝑚𝑎𝑥 𝑝 1𝑗1

, 𝑝 1𝑖𝑛−1
 = 𝑝 1𝑗1

(2)
,  𝑝 1𝑗2

(3)
= 𝑚𝑎𝑥 𝑝 1𝑖𝑛−2

, 𝑝 1𝑗2
 = 𝑝 1𝑗2

(2)
. So, 𝑅1

 3 
=

𝑅12. 

                                       𝑃
3

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

(2)
⋯ 𝑝 1𝑗2

(2)
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

(2)
⋯ 𝑝 1𝑗2

(2)
⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

(2)
⋯ 𝑝 1𝑗2

(2)
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1
⋯ 𝑝 1𝑗2

⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

(2)
⋯ 𝑝 1𝑗2

(2)
⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

(2)
⋯ 𝑝 1𝑗2

(2)
⋯ 𝑝 1𝑛

1 0 ⋯ 0 ⋯ 0 ⋯ 0

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

(2)
⋯ 𝑝 1𝑗2

(2)
⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1

(2)
⋯ 𝑝 1𝑗2

(2)
⋯ 𝑝 1𝑛 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                           

Consider, 𝑃
4
 then 𝑅𝑖1

 4 
= 𝑅𝑖2

 4 
= ⋯ = 𝑅𝑖𝑛−3

 4 
= 𝑅1

 3 
= 𝑅1

 2 
, 𝑅𝑖𝑛−1

 4 
= 𝑅𝑗1

 3 
= 𝑅𝑖𝑘

 3 
= 𝑅1

 2 
, 

𝑅𝑖𝑛−2

 4 
= 𝑅𝑗2

 3 
= 𝑅𝑖𝑛−1

 3 
= 𝑅𝑗1

 2 
= 𝑅𝑖𝑘

 2 
= 𝑅1

 1 
 by Lemma 4.4.1 . 𝑅1

 4 
=  𝑝 1𝑗

(4)
 , for 𝑗 ≠ 𝑗1, 𝑗2              

𝑝 1𝑗
(4)

= 𝑝 1𝑗  and 𝑝 1𝑗1

(4)
= 𝑚𝑎𝑥 𝑝 1𝑗1

, 𝑝 1𝑖𝑛−1
 = 𝑝 1𝑗1

(2)
, 𝑝 1𝑗2

(4)
= 𝑚𝑎𝑥 𝑝 1𝑗2

, 𝑝 1𝑖𝑛−2
 = 𝑝 1𝑗2

(2)
, by  

condition 1. 

So, 𝑅1
 4 

= 𝑅1
 2 

. As before, we have the following subcases: 

i. 𝑝 1𝑗1

(2)
= 𝑝 1𝑗1

 and 𝑝 1𝑗2

(2)
= 𝑝 1𝑗2

. 

ii. 𝑝 1𝑗1

(2)
= 𝑝 1𝑗1

 and 𝑝 1𝑗2

(2)
= 𝑝 1𝑖𝑛−2

. 

⟵ 𝑟𝑜𝑤 𝑖𝑛−2  

⟵ 𝑟𝑜𝑤 𝑖𝑛−1  
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iii. 𝑝 1𝑗1

(2)
= 𝑝 1𝑖𝑛−1

and 𝑝 1𝑗2

(2)
= 𝑝 1𝑗2

. 

iv. 𝑝 1𝑗1

(2)
= 𝑝 1𝑖𝑛−1

and 𝑝 1𝑗2

(2)
= 𝑝 1𝑖𝑛−2

. 

For the subcase i, 𝑅1
 4 

= 𝑅2
 4 

= ⋯ = 𝑅𝑛
 4 

= 𝑅1
 1 

and it is obvious that 𝑃
5

= 𝑃
4
. Hence, 

𝑃
𝑚

= 𝑃
4
 for  𝑚 = 4,5,6, … . Therefore, 𝑃  is ergodic. 

For the subcases ii and iii we need to find 𝑃 5 from which we have  𝑅1
 5 

= 𝑅2
 5 

= ⋯ =

𝑅𝑛
 5 

= 𝑅1
 4 

= 𝑅1
 2 

 and it is obvious that 𝑃
6

= 𝑃
5
. Hence, 𝑃

𝑚
= 𝑃

5
 for = 5,6,7, … . 

Therefore, 𝑃  is ergodic.  

For the subcase iv: 

                                     𝑃
4

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑖𝑛−2
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1
⋯ 𝑝 1𝑖𝑛−2

⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑖𝑛−2
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1
⋯ 𝑝 1𝑖𝑛−2

⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1
⋯ 𝑝 1𝑖𝑛−2

⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑖𝑛−2
⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑗1
⋯ 𝑝 1𝑗2

⋯ 𝑝 1𝑛

𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1
⋯ 𝑝 1𝑖𝑛−2

⋯ 𝑝 1𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑝 11 𝑝 12 ⋯ 𝑝 1𝑖𝑛−1

⋯ 𝑝 1𝑖𝑛−2
⋯ 𝑝 1𝑛 

 
 
 
 
 
 
 
 
 
 
 
 
 

                     

Consider, 𝑃
5
 then 𝑅𝑖1

 5 
= 𝑅𝑖2

 5 
= ⋯ = 𝑅𝑖𝑛−3

 5 
= 𝑅1

 4 
= 𝑅1

 2 
, 𝑅𝑖𝑛−1

 5 
= 𝑅𝑗1

 4 
= 𝑅𝑖𝑘

 4 
= 𝑅1

 2 
, 

𝑅𝑖𝑛−2

 5 
= 𝑅𝑗2

 4 
= 𝑅𝑖𝑛−1

 4 
= 𝑅𝑗1

 3 
= 𝑅𝑖𝑘

 3 
= 𝑅1

 2 
 by Lemma 4.4.1 . 𝑅1

 5 
=  𝑝 1𝑗

(5)
 , for 𝑗 ≠ 𝑗1, 𝑗2   

𝑝 1𝑗
(5)

= 𝑝 1𝑗  and  𝑝 1𝑗1

(5)
= 𝑚𝑎𝑥 𝑝 1𝑗1

, 𝑝 1𝑖𝑛−1
 = 𝑝 1𝑗1

(2)
= 𝑝 1𝑖𝑛−1

, 𝑝 1𝑗2

(5)
= 𝑚𝑎𝑥 𝑝 1𝑗2

, 𝑝 1𝑖𝑛−2
 =

𝑝 1𝑗2

(2)
= 𝑝 1𝑖𝑛−2

. 

⟵ 𝑟𝑜𝑤 𝑖𝑛−2  

⟵ 𝑟𝑜𝑤 𝑖𝑛−1  
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So, 𝑅1
 5 

= 𝑅1
 2 

. In 𝑃
5
, 𝑅1

 5 
= 𝑅2

 5 
= ⋯ = 𝑅𝑛

 5 
= 𝑅1

 3 
= 𝑅1

 2 
 and it is obvious that 

𝑃
6

= 𝑃
5
. 

Hence,  𝑃
𝑚

= 𝑃
5
 for  𝑚 = 5,6,7, … . Therefore, 𝑃  is ergodic. 

For the subcase (3) in which we have 𝑗1 = 𝑖𝑛−2, 𝑗2 = 𝑖𝑘 , where 𝑘 ∈  1,2, … , 𝑛 − 3 , we 

deal with it similar to the subcase (2) before. 

We have proved the result when 𝑘 = 𝑛 − 3 so 𝑝 𝑖11 = 𝑝 𝑖21 = ⋯ = 𝑝 𝑖𝑛−31 = 1, 

𝑖1, 𝑖2, … , 𝑖𝑛−3 ∈  2,3, … , 𝑛 , and 𝑝 𝑖𝑛−1𝑗1
= 𝑝 𝑖𝑛−2𝑗2

= 1 for 𝑖𝑛−1, 𝑖𝑛−2 ∈  2,3, … , 𝑛 −

 𝑖1, 𝑖2, … , 𝑖𝑛−3 ,        𝑗1, 𝑗2 ∈  2,3, … , 𝑛 . 

Similarly we can prove the theorem when 𝑘 = 𝑛 − 2 so 𝑝 𝑖11 = 𝑝 𝑖21 = ⋯ = 𝑝 𝑖𝑛−21 = 1, 

𝑖1, 𝑖2, … , 𝑖𝑛−2 ∈  2,3, … , 𝑛 , and 𝑝 𝑖𝑛−1𝑗1
= 1 for 𝑖𝑛−1 ∈  2,3, … , 𝑛 −  𝑖1, 𝑖2, … , 𝑖𝑛−2 ,          

𝑗1 ∈  2,3, … , 𝑛 . 

Finally, for the case 𝑘 = 𝑛 − 1, we have 𝑝 21 = 𝑝 31 = ⋯ = 𝑝 𝑛1 = 1 and by considering 𝑃
2
 

we get 𝑅1
 2 

= 𝑅2
 2 

= ⋯ = 𝑅𝑛
 2 

= 𝑅1
 1 

. It is obvious that 𝑃
𝑚

= 𝑃
2
 for  𝑚 = 2,3,4, … . 

Therefore, 𝑃  is ergodic, and this completes the proof. 

 

 

 

 


