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Abstract

In this thesis we deal with finite fuzzy Markov chains in two ways.
First, we replace the uncertainty in any transition probability of a crisp
transition matrix by a fuzzy number. In this case, we were able under
certain conditions to prove the uniqueness of the limit of 2 X 2 matrix
powers. Secondly, the transition matrix represents a fuzzy relation on a
finite state space. Here, we were able to place some conditionson n X n

fuzzy transition matrices to have the ergodic behavior.
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Introduction

Finite Fuzzy Markov chains and their applications have been widely studied in
the literature in the last decades [1-3], [6], [8], [9-10], [12], [15-17], [19-22], [24], [27],
[30]. In [2] and [3], Avrachenkov and Sanchez used the concept of greatest eigen fuzzy
set, which was first defined in [25] and [26] by Sanchez, to find the stationary solution
of ergodic fuzzy Markov chains. In [12], Garcia (et al.) have done a simulation study on
fuzzy Markov chains from which they have shown the non-ergodicity of a wide set of
fuzzy Markov chains. In [27], Sujatha (et al.) studied the limit behavior of cyclic non-
homogeneous fuzzy Markov chains. Bellman and Zadeh were the first who considered
stochastic systems in a fuzzy environment [4]. In [15], the fuzzy probabilities determine
the elements of the transition matrix as fuzzy subsets of [0,1] where the extension

principle to find powers of the transition matrix was used.

Finite fuzzy Markov chains have many advantages over classical Markov chains
due to its reality. In real situations, finite fuzzy Markov chains solve the vague in
different ways, but due to lack of information, the state of the process may be not
completely known. Also, in many cases the transition probabilities of a transition
matrix of a Markov chain may be estimated. In this case, results in “uncertainty” can
be modeled using fuzzy numbers. In such situations, finite fuzzy Markov chains are

considered to be very important tools.

Finite Fuzzy Markov chains have many applications including the analysis of
internet glance behavior, image segmentation, decision-making, calculating effective

processor power, multitemporal image analysis, synthetic aperture radar (SAR) images,
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cascade multitemporal classification, modeling and forecasting credit behavior
dynamics of credit card users, multispectral image segmentation, describing both
determined and random behavior of complex dynamic plants, individual demand
forecasting, and stochastic dynamic programming (SDP) formulations for reservoir

operation [1], [8], [9-10], [16], [19-22], [24].

In chapter one of the thesis, we introduce the concept of fuzzy sets, operations
on fuzzy sets, fuzzy relations, alpha cuts, convex fuzzy sets, fuzzy numbers and
operations on them with concentration on triangular and trapezoidal fuzzy numbers. In

the last section of chapter one, we define a new fuzzy number.

General review of Markov chains theory, including classification of chains,

main ergodic theorems are discussed in chapter two.

In chapter three, the restricted fuzzy matrix multiplication is defined and is used
to find the limit of regular finite transition matrices whose uncertain transition
probabilities are modeled by fuzzy numbers. Under certain conditions, the uniqueness
of the limit of powers of 2 x 2 regular fuzzy transition matrices in the case of triangular,

trapezoidal, and a special fuzzy number is also proved in chapter three.

In chapter four, a comparison through examples between fuzzy and crisp
Markov chains is introduced. Then, we discuss the ergodicity of finite fuzzy Markov
chains, and end up with a worth discussion on the ergodic behavior of a particular class

of finite fuzzy Markov chains.
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Chapter 1

Fuzzy Sets and Fuzzy Numbers

This chapter consists of six sections. In sections 1.1-1.5 we give the definitions
of fuzzy sets, operations on fuzzy sets, fuzzy relations, alpha cuts, convex fuzzy sets,
triangular and trapezoidal fuzzy numbers [7], [18], [31], [32]. In Section 1.6 we define a

new fuzzy number and we study its properties.
1.1 Fuzzy Sets

Fuzzy set theory, dealing precisely with imprecision and ambiguity, was first
introduced by Lotfi A. Zadeh in his well-known paper entitled "Fuzzy Sets" in 1965
[31]. In the classical set theory, an element of the universe either belongs or does
not belong to the set, and this is represented by the characteristic function,

1 ifxeA . . .
falx) = {O ifxgA A fuzzy set is a generalization of a set in the usual sense. It

allows for each element in the universe of discourse to take a value in the closed interval

[0,1].

Definition 1.1.1([7] pages 7 and 8, [31] page 339): If Q is a nonempty set, then a fuzzy
subset A of Q is defined by its membership function, written A(x), which produces
values in [0,1] for all x in Q. So, A(x) is a function that maps Q into [0,1]. A(x) is the
grade of membership of x in A. We have specified a fuzzy set from a set by placing a

bar over a letter. The term crisp means not fuzzy, so a crisp set is a set in the usual sense.
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Notation 1.1.2 ([18] page 9, [32] page 12): If A is a fuzzy set, we denote the

membership function in Q by fz(x) or uz(x), x € Q.

Remark 1.1.3 ([31] page 339): The closer the value of A(x) to unity, the higher the

grade of membership of x in A.

Remark 1.1.4 ([18] page 9, [32] pages 12 and 13): If A is a fuzzy set in X, then there

are different ways of denoting A as an example:

1. A fuzzy set 4 in X may be viewed as a set of ordered pairs 4 = {(x, A(x))|x €
X

2. Afuzzy set A is represented solely by stating its membership function

3. If X is countable then

A= pz(x)/xy + pa(x) /% + ua(x3)/x3 + - = X pna(e)/x;,

here " + " denotes the union rather than the arithmetic sum, usually 0/x terms are not

taken into account in this representation. Also, if X is a continuous set then

A= [ pz(x)/x.

Example 1.1.5 ([32] page 12): A =“real numbers close to 10”

A={(xpua())lua) = (1 + (x—10)*)7",x € R}.
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Example 1.1.6 ([32] page 12): A =“real numbers considerably larger than 10”

_ 0 ,x <10
A(x) = {(1 +(x =101, x > 10

Example 1.1.7 ([32] page 13): A =“integers close to 10”

A=01/7+05/8+0.8/9+1/10 + 0.8/11 + 0.5/12 + 0.1/13.

Example 1.1.8 ([32] page 13): A =“real numbers close to 10”,

) 1
A:f1+(x—10)2/x

R

1.2 Operations on Fuzzy Sets and Fuzzy Relations

In this section, we list several definitions involving fuzzy sets which are obvious

extensions of the corresponding definitions for sets in their usual sense.

Definition 1.2.1 ([31] page 340): A fuzzy set is empty if and only if its membership

function is identically zero on Q.

Definition 1.2.2 ([31] page 340): Two fuzzy sets A and B are equal, written A = B, if

and only if A(x) = B(x) forall x in Q.
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Definition 1.2.3 ([31] page 340): The complement of a fuzzy set A is denoted by A and

is defined by 4 (x) = 1 — A(x) for all x in Q.

Definition 1.2.4 ([31] page 340): A is contained in B (or, equivalently, A is a subset of
B, or A is smaller than or equal to B) if and only if A(x) < B(x) for all x in Q. In

symbols A c B e A(x) < B(x).

Definition 1.2.5 ([31] page 340): The union of two fuzzy sets A and B with respective
membership functions A(x) and B(x) is a fuzzy set C, writtenas C =AU B,

whose

membership function is C(x) = max{A(x), B(x)}, forall x € Q.

Definition 1.2.6 ([31] page 341): (Equivalent definition of the union of two fuzzy sets):
The union of 4 and B is the smallest fuzzy set containing both A and B. More precisely,

if D is any fuzzy set which contains both A and B, then it also contains A U B.

Proof. Let C = AU B, then C(x) = max{A(x),B(x)}, so C(x) = A(x) and C(x) >
B(x), i.e. C contains both 4 and B. Let D be any fuzzy set containing both A and B.
We show that CcD. We have D(x)=>A4(x) and D(x)=B(x). So

D(x) = max{A(x),B(x)} = C(x). Then, from the definition C c D.
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Similarly, we give a definition of the intersection of two fuzzy sets in two

equivalent ways.

Definition 1.2.7 ([31] page 341): The intersection of two fuzzy sets A and B with
respective membership functions A(x) and B(x) is a fuzzy set C, writtenas C = AN B,

whose membership function is C(x) = min{A(x), B(x)}, for all x € Q.

Definition 1.2.8 ([31] page 341): (Equivalent definition of the intersection of two fuzzy
sets): The intersection of A and B is the largest fuzzy set which is contained in both A
and B More precisely, if D is any fuzzy set which is contained in both A and B, then D

is contained in A N B.

With the operations of union, intersection, and complementation defined above , it is
easy to extend many of the basic identities which hold for sets in the usual sense to
fuzzy sets.

— — —C —C
1. (AUB*=A4 nB .

De Morgan’s laws

— — —C —C
2. (AnB)=A UB .
3. CN(AUB)=(CnA)uU(CnNnB).

S L L Distributive laws

4, CUANB)=(CUA)Nn(CUB).
Those and similar identities can readily be established by showing the

corresponding relations for the membership functions of 4, B and C ([31] page 342).



Definition 1.2.9 ([31] page 345): A fuzzy relation in X is a fuzzy set A in the product

space X X X.

Definition 1.2.10 ([31] page 346): An n —ary fuzzy relation in X is a fuzzy set A in
the product space X X X X ...x X (n —times). For such relations, the membership

function is

of the form f7 (x4, ..., x,), Where x; € X,i =1, ..., n.

Definition 1.2.11 ([31] page 346): The composition of two fuzzy relations A and B
denoted by B o A is defined as a fuzzy relation in X whose membership function is

defined by

frea(x,y) = sup,min{fz(x,v), f5 (v, y)}.

1.3 Alpha Cuts and Convexity

Definition 1.3.1 ([7] page 10): An a —cut of the fuzzy set A in X, written as A[a] or 4,
is defined as {x € X|A(x) = a3}, for 0 < a < 1, where A(x) is the membership function

of the fuzzy set A.

A[0] is defined separately as the closure of the union of all the A[a], 0 < a < 1 [6].



Remark ([7] page 10) 1.3.2: A[0] is called the support, and A[1] is called the core of

the fuzzy set A.

Proposition 1.3.3: If a > a' then A[a] € A[a’], for 0 < a,a’ < 1.

Proof.

So, Ala] € A[0] for @ = 0. For, @« > a > 0, let x € A[a] then A(x) > a. Buta >« ,

so A(x) = a'. Hence, x € A[a']. Therefore, A[a] € Ala'].

Example 1.3.4: Consider the fuzzy set
A=01/7+05/8+08/9+1/10+ 0.8/11 + 0.5/12 + 0.1/13.
Then,
Al0.1] = 4y, = {7,8,9,10,11,12,13},
A[0.5] = 45 = {8,9,10,11,12},
A[0.8] = 4y5 = {9,10,11},

Al1] = 4, = {10},
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A[0] = 4, = {7,8,9,10,11,12,13}.

Definition 1.3.5: A set A € R" is convex if for each x; and x, in A, the linear

combination Ax; + (1 —A)x, isalsoinAfor0 <1< 1.

Definition 1.3.6 ([31] page 347): A fuzzy set A in R™ is convex if and only if all

a —cuts of A, A[«], are convex.

Proposition 1.3.7 ([31] page 347): A fuzzy set A in R" is convex if and only if
falAxy + (1 — Dxz] = min{fz(x1), fa(xy)}, for all x; and x, in R™ and all A in

[0, 1], where £ is the membership function of 4 in R".
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1.4 Fuzzy Numbers

Definition 1.4.1 ([18] page 130): A fuzzy number A is a fuzzy set satisfying the

following
conditions:

1. Aisaconvex fuzzy set.

2. Aisanormalized fuzzy set, i.e. 3x € R, such that A(x) = 1.

3. The membership function A(x) is piecewise continuous.

4. A(x) is defined on the real numbers, i.e. the domain of A(x) is R and its

co-domain is [0, 1].
The convex condition is that A[a] = [a;(a), ay(a)], where a; («) and a,(a) satisfy

(¢ <a) = (a1(a) < a;(a), a,(a) 2 ay(a) ).

Let A be a fuzzy set whose membership function given by:

x—=1), 1<x<2

A(x)1?
—(x—3), 2<x<3
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A(x)

Figure 1.4.1

Fuzzy Set

A is not a fuzzy number since it is not normalized.

Now we give the definition of the operations of scalar multiplication, addition,
subtraction, multiplication, and division on fuzzy numbers by applying these operations

on the ¢ —cut intervals.

Definition 1.4.2 ([7] page 13): For any two fuzzy numbers A and B, let
Ala] = [a1(@),ay(a)] and Bla] = [by(a), by(a)], 0 < a < 1, be the a —cuts of A and

B respectively. Then,
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1. If pBeR then  BAla] = [Bay(a),Bay(@)] if B>0 and
pAlal = [Baz(a), fay ()] if B < 0.
2. If C = A+ B then
Cla] = Ala] + Bla] = [a;(a) + by (@), az(a) + by(a)]
3. IfC = A—Bthen
Cla] = Alo] — Blo] = [a1(@) — bz(a), az(a) — by ()]
4. 1fC =A- B, then
Clo] = Ala] - Bla] = [m(a), M(a)] where
m(a) = min{a,(a)b;(a), ai(a)by(a), a(@)bi (), a;(a)b,(a)} and
M(a) = max{a; ()b, (), a;(a)b;(a), az(@)by(a), az(a)b,(a)}.
5. If C=1/A, then Cla] = [1/a,(a), 1/ a;(a)], provided that 0 & A[a],Va €
[0, 1].

6. IfC=A/B,thenC = A (1/B), provided that 0 ¢ B[a], Va € [0, 1].

Definition 1.4.3: Let A be a fuzzy number with A[a] = [a;(a), a;(a)] then we say that

A> cifa;(0) > cand A < dif a,(0) < d where c,d € R.
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1.5 Triangular and Trapezoidal Fuzzy Numbers

In this section we introduce two fuzzy numbers namely, triangular and

trapezoidal fuzzy numbers and give their properties.

Definition 1.5.1 ([18] page 137): A triangular fuzzy number A is a fuzzy number
defined by three real numbers a;,a,, and a3, with a; < a, < az and denoted by

A= (a;/ay/a3) or A= (aj,ay as), where its membership function is given by

r 0, x<a
X —aq
, @1 <x=<a
T a; —aq
A(x) = as — x
, Ay <x<as
asz — a;
\ 0, X > as

If the sides of the triangular fuzzy number are curves other than straight lines, then we

call it triangular shaped fuzzy number and is denoted by A ~ (a,/a,/as) ([7] page 9).

A(x)

] Il

Figure 1.5.

1
2
1

Triangular Fuzzy Number (—1/2/3)
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Example 1.5.2 ([18] pages 137 and 138): Let A = (a,/a;/as) be a triangular fuzzy
number. If A[a] = [a;(a),as(a)], then a;(a) and as(a) can be obtained by solving

ai(a) —ay .
a; —ay

and,

asz — az(a)
—_— =
as — a

Therefore, A[a] = [(a; — ay)a + a1, —(az — ay)a + as].
One can see that:

1. The core of a triangular fuzzy number A = (a, /a,/as) is a, and the support is

A[0] = [a4, a3] ([7] page 10).
2. If A=~ (a,/ay/a3) and A[a] = [a;(a),az(a)], then a;(a) or as(a) are not

linear functions in a.

Example 1.5.3 ([18] page 139): If A = (a;/a,/a3) and B = (by/b,/bs3), be two

triangular fuzzy numbers then, the @ —cuts of A and B are:
Ala] = [(a; — ay)a + ay, —(as — ax)a + as],
Bla] = [(b; — by)a + by, — (b3 — by)a + bs].
So by Definition 1.4.2;

1. A[a] + E[a] = [(az — aq + bz - bl)a + aq + bl,_(ag — ap + b3 - bz)a + as + b3]
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2. Alo] — Bla] = [(a; — a1 + b3 — by))a + a; — b3, —(az — a; + b, — by)a + az — by]
3. Alo] - Blo] = [m(a), M(a)] where
m(a) = min{a; ()b, (a), a;(a)bs(a), az(a@)b;(a), az(a)bz(a)}
M(a) = max{a,(a)b;(a), a;(a)bs(a), az(a)b;(a), az(a)bz(a)}
and,
a,(a) = (a; —ap)a+ay,a3(a) = —(az — ax)a + az,

bi(a) = (b, — by)a + by, b3(a) = —(b3 — by)a + bs.

We can see from Example 1.5.3 that addition and subtraction of two triangular
fuzzy numbers is also a triangular fuzzy number. That is,
A+ B = (a; +by/a, +by/az + b3)
and
A—B = (ay — bs/a; — by/az — by).
While m(a) and M(a) as functions of a are not linear in @ so multiplication of two
triangular fuzzy numbers is a triangular shaped fuzzy number. That is,
A-B =~ (m(0)/a;b,/M(0)) where m(0) = min{a,b,, a,bs,asb;, asbs},

M(O) = ma.X'{albl, a1b3,a3b1,a3b3} and m(l) = M(l) = azbz.

Definition 1.5.4 ([18] page 145): A trapezoidal fuzzy number A is a fuzzy number
defined by four real numbers a4, a,, az, and a4, with a; < a, < a3 < a4 and denoted
by A = (ay/ay,a3/as) or A = (ay,a,,as,as), where its membership function

IS given by
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r 0, x<a
X — aq
, G =x=<ap
a; —q
Alx) =11, a; <x < a;
A — X
, A3 <X =< ay
a4 —as
.\ 0, X > ay

If the sides of the trapezoidal fuzzy number are curves other than straight lines we call it

trapezoidal shaped fuzzy number and is denoted by A =~ (a4, a,, as, as) ([7] page 9).

A(x)
1 -
|
X
08k E i
|
]
|
06 | _
,
1
.
04} ! -
]
]
1
1
02k E -
1
1
1
i] 1 ll | | 1
0 05 1 15 2 25 X 5
Figure 1.5.2

Trapezoidal Fuzzy Number (0,1,3,4.5)

Example 1.5.5 ([18] page 145): Let A = (ay, a,, as, a,) be a trapezoidal fuzzy number.

If A[a] = [ay(a),as(a)], then a; (a) and a,(a) can be obtained by solving
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ai(a) —ay _
a; —ay

and,

as — as(a)
_—
as —as

Therefore, A[a] = [(ay — a)a + a;, —(a4 — ag)a + a,).
One can see that:

1. The core of a trapezoidal fuzzy number A = (a4, a,, as,a,) is [ay, as] and the
support is A[0] = [ay, a4] ([7] page 10).
2. If A= (ay,ay a3, a4) and Ala] = [a;(@),as(a)], then a; (@) or as(a) are not

linear functions in .

Example 1.5.6 ([18] page 146): If A = (ay,a;, as,a,) and B = (by, by, b3, by) be two

trapezoidal fuzzy numbers and the a —cuts of A and B are:
Ala] = [(az — ay)a + ay, —(as — az)a + a4],
Bla] = [(b; — by)a + by, —(by — b3)a + by].
Then,

1. A[(X] + E[a] = [(az —aq + bz - bl)a + a + bl,_(a4, —das + b4, — b3)(l + ay +

z
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2. A[(X] - E[(l] = [(az — aq + b4, - bg)a + a, — b4,—(a4 — das + bz - bl)a + Ay —

b1

3. A[a] - Blo] = [m(a), M(a)] where

m(a) = min{a;(@)by (), a1(@)bs(a), as(a)b;(a), as(a)by(a)}
M(a) = max{a;(@)by (@), a1(@)bs(@), as(a)b; (), as(a)bys(a)}
and,
ai(a) = (az —apa + a;, au(a) = —(ay — az)a + ay,
by (a) = (b — by)a + by, by(a) = —(by — b3)a + by,
It is clear from Example 1.5.6 that addition and subtraction of two trapezoidal fuzzy

numbers is also a trapezoidal fuzzy number. That is,

A+ B = (ay +by,a;, +by,as + bs,as + by)
and

A—B = (ay — by, a, — b3, az — by, a4 — by).

While m(a) and M(a) as functions of a are not linear so, multiplication of two

trapezoidal fuzzy numbers is a trapezoidal shaped fuzzy number. That is,

A-B ~ (m(0),m(1),M(0),M(0)) where

m(0) = min{a, by, a;by, asby, asbys}, M(0) = max{a,; by, arby, asby, asby}

m(1) = min{a,b,, ay bz, azb,, azbz}, M(1) = max{a,b,, a,bs, azb,, azbs}.
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1.6 Special Fuzzy Numbers

In this section we define a new fuzzy number and introduce its properties, then we

give illustrations of other fuzzy numbers that can be easily defined.

Definition 1.6.1: Consider a fuzzy number that is determined by five real numbers
ai,az,az,a, and c such that a; <a;<az<a, and 0<c <1, denoted by

N, = (ay/ay/as/as). or (ay,a,, as, as; c) whose membership function is given by

( 0 x<a

(x—ay) a; <x<a,
a; — g
NG)={1-——° (2 )2 <x<
X) = ———— S 4X —a; —as a; S X = Az
¢ (a; — az)?
—c
X—a az<x<a

a4__a3( 4) 3 4

\ 0 XZa4

N, (x)

0 . 5 | 3 : '
(a,0) (a,,0) (a;+asz (a3, 0) (a4,0)
1 2 ( > ,O) 3 4

Figure 1.6.1

X
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Remarks 1.6.2:

1. N.(x) is linear on the intervals [a;, a,] and [as, a,].

az+as

2. N,(x) is a parabola on the interval [a,, a;] whose vertex is ( , 1) and focus

- (a2taz . (az—ap)?
IS( 2 1 16(1—c))'

3. If the graph of N.(x) in any of the intervals [ay,a;], [a,,as], or [as,a4] is
not as prescribed above then N, is denoted by N, =~ (a,/a,/as/as), or

Nc ~ (ay,az,a3,04;C).

c

Remark 1.6.3: Let N, = (ay/ay/as/as).. f 0 < a <c, then a = (x —ay), and

a—aix

—C

- (x — a4) and write x in terms of a to get
3

a =
as—

N, [a] = [(az:—al)a+a1, Md+a4] for0<a<c

1—c

a7 (2 — az — a3)* and write x in terms of a to

andifc<a<1l thena=1-

get

Vi _ |z(az—az) |1-a |, aptaz (az—az) (l-a | aj+as
Nc[a]—[ > ’1_C+ T /1_C+ . lforcSaSl.

Remark 1.6.4: If NC = (a1/a2/a3/a4)c , and MC = (bl/bz/bg/b4)c then

1. Nc +MC = (a1 +b1/a2 +b2/a3 +b3/a4 +b4-)C .
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2. Nc - Mc = (a; — by/a; — bs/az —by/a, — by), .

Here we give an example to illustrate different operations on the fuzzy number that

are given in Definition 1.1.6.
Example 165 Let AO.Z = (1/2/3/4‘)02 f|nd E == AO.Z .Ao_z and E == AO.Z/AO.Z .

a; =1,a, = 2,a;3 = 3,a4 = 4 and c = 0.2. So the a —cuts of 4, , will be

Agola] = [5a+1,—5a+4]for0 < a <0.2

and,
Aozlal = [7125A - @) +3, 512501 — @) + 2| for02 <@ < 1.
Therefore,
Bla] = [(5a + 1)?, (=5a + 4)?] for0 < a < 0.2,
and,

_ _ 2 2
Bla] = [(71 125(0-w+3) (341250 - ) +3) ] for 0.2<a <1. Hence,

B[0] = [1,16], B[0.2] = [4,9] and B[1] = 6.25 and s0 B ~ (1/4/9/16),. .

Also we have,
Cla] = [f;"a++14 ,‘Si“:l“] for0 < a < 0.2
and,
cla) - [0 P o0z < a< 1.
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Hence, C[0] = [%,4],6_[0.2] = E%] and C[1] = 1land so C =~ (

)

N
w N
N | w
S
N——
o

)

Remark 166 Let No_z = (1/2/3/4‘)02 and NOA— = (0/1/2/3)04, then NO.Z + NOA and

Ny > — Ny 4 can be computed as follows:

For0 < a <0.2,Ny,[a] = [5a +1,—5a + 4].
Y [—1 5 1 5
For 02 < a <1, Noplal = [2/T250 — ) +3, 51251 — @) +3|.

For0 < a < 0.4, Ny,[a] = -ga,—ga + 3].

For0.4 < a <1, Noula] = | /2(1—a)+§,§ /2(1—a)+§l.

Ny,la] + Ny4la] = [7.5a +1,—-7.5a + 7], for0 < a < 0.2.

= = -1 5 5 1 5 11
Noola] + Nyola] = [7,/1.25(1 @ +ia+:, 31250 —a) —2a+ 7],
for 0.2 < a < 0.4.

No2lal + Noala] =

=l‘71< 1.25(1 — o) + /2(1—a))+4, %( 125(1 — a) + /3(1—0{)>+4l,

for04<a<1.
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Therefore, N, + Ny, is not of the same type of the fuzzy number that is given in

Definition 1.1.6.

On the other hand,

No_z [a] - N0_4[a] = [75a - 2, —7.5a + 4‘], for0 <a <0.2.

— — -1 5 1 1 5 5
Nozlal = Noale] = [2/1250 - @) +2a -2, 312501 —a) —2a +3]
for0.2 <a <0.4.

No.z [a] — N0.4[Of] =

=[‘71( 1.25(1 —a) + E(l—a)>+1, %( 1.25(1 — a) + /2(1—a)>+1l,

for04<a<1.

Therefore, Ny, — Ny, is not of the same type of the fuzzy number that given in

Definition 1.1.6.

The fuzzy number defined in this section gives a conception of other types of fuzzy

numbers that could be defined in a similar way. Below we give some of them.
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Chapter 2

Finite Markov Chains

This chapter consists of three sections. In section one; we present basic
definitions of Markov chains. Classifications of states and Markov chains are presented
in section two. We end up with some examples illustrating the several types of Markov

chains in section three. [5], [6], [11], [14], [23], [28].
2.1 Markov Chains

Definition 2.1.1 ([5] page 111): Let S be a countable set. Suppose that to each i and j in
S there is assigned a nonnegative number p; and that these numbers satisfy the

constraint

jes

Let X,, X1, X5, ... be a sequence of random variables whose ranges contained in S. This

sequence is a Markov chain if
P[Xn+1 = leO = iO' "-'Xn = in] = P[Xn+1 :jlxn = in] = pinj

for every n and every sequence iy, ..., i, in S for which P[X, = iy, ..., X, = i,] > 0.

The set S is called the state space or phase space of the Markov process, and its

elements
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are the states of the process. The probabilities p;; = P[X, .1 = j|X,, = i] are called the
transition probabilities. The elements p;; form the matrix of transition probabilities or
the transition matrix P = [p;;], so if S is a finite state space with cardinality m > 1,
then the transition matrix P is an m X m matrix. Here the transition probabilities
p;j = P[X,41 = jlX,, = i] are assumed to be independent of n, in this case the chain is

said to have stationary transition probabilities ([5] pages 111and112, [11] page 374).

Definition 2.1.2 ([5] page 111): The initial distribution of the chain a” = P[X, = i,

where al.(O) > 0and Y al.(o) =1

Definition 2.1.3 ([5] page 111): A square matrix P with nonnegative elements and unit

row sums is called a regular stochastic matrix.

Definition 2.1.4 ([5] page 115): Let P = [pl-j] be the transition matrix of a Markov

chain {X,,n > 0}, the n** power of P, is P" = [pl.(].”)] where pl.(].”)represents the

)

probability of a transition from state i to state j in n steps, pij 1S called the n —step

transition probability for the Markov chain.

Since P = [py;] is the transition matrix of a Markov chain then by Definition 2.1.1 we

have Y;esp;; = 1,1 € S and this implies that Zjespi(j") =1i€S.
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Proposition 2.1.5 ([23] page 73): For all n>1, and i,jin the state space S,

i = P[X, = jIX, = i].

Proposition 2.1.6 ([23] page 75): The unconditional probabilities P[X, = i] are

computed from aj(”) =P[X, =/l =3 aj(o) pi(j"). In the matrix form, a® = a®P".

2.2 Classifications of the States
If S is a finite state space then:

1. ([28] page 646): A state j € S is transient if it can reach another state but cannot

itself be reached back from another state. Mathematically, this happens if

lim,, ., pi(].”) = 0, for all i.

2. ([14] page 811, [11] page 389): A state j € S is persistent (or recurrent) if, upon
entering this state, the process definitely will return to this state again. This can happen

if, and only if the state is not transient.

3. ([5] page 125): A state j € S is periodic with period ¢ if pj(j”) > 0 implies that t
divides n and t the largest integer with this property. In other words, the period of j is
the greatest common divisor of the set of integers {n: n= 1,pj(j”) > 0}. If t =1, then

the state is aperiodic (or nonperiodic).
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4. ([5] page 119, [6]): A Markov chain is called irreducible (or regular) if 3n € N such
that pi(].") > 0, Vi,j € S, otherwise it is called reducible (or irregular). That is, a Markov

chain is irreducible if and only if every state can be reached from every other state in a

finite number of steps.

5. ([14] page 812): An aperiodic persistent state j € S, is called ergodic. Therefore, a

Markov chain is ergodic if all its states are ergodic.

6. ([6]): A state j € S is called absorbing if p;; = 1. The Markov chain is called an
absorbing Markov chain if it has at least one absorbing state and from every non-

absorbing state it is possible to reach some absorbing state in a finite number of steps.

Definition 2.2.1 ([5] pages 124and125): A set of probabilities (m;),j € S satisfying

Yies Tip;; = m;, is called a stationary distribution.

Remark 2.2.2 ([5] page 125): If (m;),j €S is a stationary distribution then

Yies T[ipi(jn) =m,j€S,=012...

Theorem 2.2.3 ([5] page 125): Suppose of an irreducible aperiodic chain that there

exists a stationary distribution, that is a solution of Y,;csm;p;; = m;, j € S satisfying
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m; = 0 and Y,; m; = 1. Then the chain is persistent, lim,,_,, pl.(j”) =m Vi,j €S, m >0,

and the stationary distribution is unique.

If S is finite then Theorem 2.2.3 implies that in order to find the limit of P™ we first
find the unique left eigenvector = of P corresponding to eigenvalue 1 (i.e. solving the
system P = ) where 7 is a row vector whose components are 7; with m; > 0, and
Y;m = 1. Then, P" converges to the matrix IT whose rows are identical and each of

which is r [6].

Theorem 2.2.4 ([5] page 131): If the state space S is finite and the chain is irreducible

)

and aperiodic, then there is a stationary distribution (r;), and |pl-j - 7r]-| < Ap™ where

A=20 0<p<l1

2.3 Examples of Finite Markov Chains

P11 Plz]

Example 2.3.1: Consider a Markov chain whose transition matrix is = Dot Do

p; > 0,Vi,j =1,2. Such a chain is ergodic, to find the unique stationary distribution

we let T = [y m,] with Ty, m, > 0 and 7y +m, = 1, then we solve mP = m from which

wehave m; = 22— g, = P12
P21tP12 pP21tP12
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Example 2.3.2: Let A and B be two transition matrices of two Markov chains, where:

/2 0 0 1/2 1/2 1/2 0 0
Lo 172 172 o |12 172 0 o
A=10o 12 12 o | and B=10 0 172 172
/2 0 0 1/2 o 0 1/2 1/2

Then A% = A,B? = B, and in general A™ = A, B™ = B, for any n. So, both A and B are

transition matrices of non-ergodic chains ([23] page 81).

Example 2.3.3: Let A= [g 611] be a transition matrix of a Markov chain, then

A% = [ppq p fqz], so A is irreducible (regular) and aperiodic. Hence, the Markov

chain is ergodic.

1/2 1/2 0
Example 2.3.4: LetP =| 0 0 1| be atransition matrix of a Markov chain, then
0 1 0

in

P? we have p{¥ = pg) = 1 and in general p$¥™ = p§§n> =1forn=1,23,...So, the

second and third states are periodic with period 2. Therefore, the Markov chain is not

ergodic.



0 0
1 0
0.3 0.7
04 0.6

Example 2.3.5 ([28] page 347): Let P = be a transition matrix of a

o O O O
S O O

Markov chain then states 1 and 2 are transient because they can not be reentered once
the system is trapped in states 3 and 4. States 3 and 4 are persistent states since if the
system starts in either of theses states, and moves from one of these states to the other

one, it always will return to the original state eventually.

02 05 03
Example 2.3.6 ([28] page 647): Let P=| 0 0.5 0.5] be a transition matrix of a
0 0 1

Markov chain. Then, states 1 and 2 are transient because they reach state 3 but can

never be reached back. State 3 is absorbing since p33 = 1.

0 06 04
Example 2.3.7: If P = [ 0 1 0 ] is a transition matrix of a Markov chain then,
06 04 O

states 1 and 3 are periodic with each of period 2.

Solution.
) (n) (2k-1) _ _(2k-1) _

We need to show that p,;;” = p35° = 0 for odd values of n. That is, p;] = D33

0 for k € N. We prove this by induction.

Fork =1:p = p,; = 0and p{Y) = ps3 = 0, so it is true for k = 1.
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k-1) _ _(2k-1)
— 33

Suppose that, p;] = 0 for some k € N, then we show it is true for k + 1.

That is we want to prove that p{2**) = p&k+D — o,

Qk+1) _ Qk-1)_(2) _ _@k=1)_@2) , . @k-1)_(2) , . (2k=1)_(2)
11 = 1i Pii" = P11 P11 T P12 P21 P13 P31
i=1
3
2k+1) _ Qk-1).2) _ _@k-1)_(2) , k-1 2) , . (2k=1)_(2)
P33 _ZPSi Piz" =DP31 P13 tP3 Pz tP33 P33
im1

2 2

2 2
50 pi&) = p (2) (2)

024 076 0
= 0 and p;5° = p,5 = 0, together with

But P2 =[ 0 1 0
0 076 0.24

(n) n) _

Qk+1) _ (k+1) _ =
3 = 0. Therefore, p;;” = p33” =

the induction hypothesis we have p,] =p

for odd values of n. Hence, states 1 and 3 are periodic with each of period 2.

1 0 O
1 2
Example 2.3.8: Let P = 03 3| be a transition matrix of a Markov chain. Then,
1 1
O _ -
2 2

the Markov chain corresponding to P fails to be absorbing because even though state 1

is an absorbing state, it is not possible to reach it from the nonabsorbing states 2 and 3.
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Chapter 3
Finite Regular Fuzzy Markov Chains:

Uncertain Probabilities

This chapter consists of four sections. In Section 3.1 we introduce the restricted
fuzzy matrix multiplication which will be used intensively throughout this chapter to
study fuzzy Markov chains [6]. In Section 3.2 we present the Karush-Kuhn-Tucker
(KKT) Method in optimization problems with inequality constraints [28]. In Section 3.3
we study explicitly examples on finite regular fuzzy Markov chains [6]. In Section 3.4
we study deeply the limit of powers of 2 x 2 regular fuzzy transition matrices and we

give three propositions concerning the uniqueness of this limit.
3.1 Restricted Fuzzy Matrix Multiplication

We consider finite Markov chains where there are uncertainties in some/all of the
transition probabilities. These uncertainties are modeled by fuzzy numbers. Using a
restricted fuzzy matrix multiplication we investigate the properties of regular fuzzy
Markov chains and show that the basic properties of regular classical Markov chains

generalize to them.

Let Q = [q;;] be a r X r transition matrix of a Markov chain. Ifag;; =0orgq; =1
then we assume that there is no uncertainty in this value, otherwise we assume there is
uncertainty in the transition probability g;; i.e. when 0 < g;; < 1. In the last case we
replace each of g;; by a fuzzy number p;; where 0 < p;; < 1 also, with the restriction

that there are p;; € p;; [1] such that P = [p;;] is a transition matrix, and we define the
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fuzzy transition matrix P = [p;;], with the understanding that p;; = 0 when g;; = 0 and
p;; = 1 when g;; = 1. The restriction that there are p;; € p;;[1] such that P = [p;;] is a
transition matrix, guarantees that p;; € p;;[a] for all 0 < a < 1. Since p;; is a fuzzy

number, then p;;[a] is a closed and bounded interval for all 0 <a <1, so we let

pijlal = [pij1(@), pyj2 (@)].

In order to compute P forn= 2,3, ..., we need the definition of the restricted fuzzy

matrix multiplication.
LetS ={x = (xq, ..., x)|x; =2 0,271 x; = 1},
The i*"* domain of @, denoted by Dom; [a] is
Dom;[a] = (l_[]r-=1 Dij [a]) NS ={(Pi1, - D) |Pit, o Pir =0, Yi=1Dyj = 1},

for0<a<1landi=1,..,r. Then

Dom[a] = [Tj=y Dom;[a] = {(P11, -, Prr)|Pyj 2 O,Vi,jand ¥j_py = 1,i =

1..,7.
IfM={P= [pij]|(p11, ., Drr) € Dom[al}, then, Q € M.

Next, set P = [ﬁi(j")] where we will define 131,(],") and show that they are fuzzy numbers.

Let P € M, and consider P" = [pl.(j")]. We know that pl.(].”) = fl.](”)(pn,...,prr), for

some function fl.]("). That is the elements of P™ are just some function of the elements of

P. Now consider fi}”) a function of p = (p11,...,pr) € Dom[a]. Let Fiﬁ.”)[a] =
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fi}")(Dom[a]) be the range of fi}"). Since fi}") is continuous and Dom[«] is connected,

closed and bounded (compact), which implies that Fig.”)[a] is a closed and bounded

interval for all @, i,j and n. We set ﬁi(j") [a] = Fig.”)[a], giving the a —cuts of the ﬁi(j”) in
P™. Now we show that the resulting ﬁi(j“) is a fuzzy number. First, Fig.”)[a] is closed,
bounded, interval. Second, Dom;[1] = (ij:l Dij [1]) NS+ @ as p;[1] # @ (this is
guaranteed by the restriction on p;;) so Dom[1] = [[;_; Dom;[1] # @, and surely

Fig.”)[l] = fl.](”) (Dom[1]) # @, this implies that ﬁi(j") is normalized. Therefore, ﬁi(].") is a

fuzzy number whose a —cuts are:

P lal = [pi (@), piR @) forall 0<a <1,
where

pi(]."l) (a) = min{fi}n)(p)lp € Dom[a]},

pl.(].”z) () = max{fi}")(p)lp € Dom[a]}.
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3.2 Optimization Problems with Inequality Constrains

According to the restricted fuzzy matrix multiplication, we need to maximize and
minimize fi}n) on Dom[a] to find the endpoints of the a —cuts of ﬁl.(j”). So we specify

this section to introduce the Karush-Kuhn-Tucker (KKT) Method in optimization.

Definition 3.2.1: Let f(X) be a function where X = (x4, x3,...,x,), then a point
Xo = (x2,x2,...,x9) is a maximum if f(X, +h) < f(X,) for all h = (hy, hy, ..., h,)
where |h;| is sufficiently small for all j. In a similar manner X, is a minimum if
f(Xo + h) = f(X,). An extreme point of a function f(X) defines either a maximum or

a minimum of the function.

Consider the problem
Maximize z = f(X)
Subject to
gXx)<o

The inequality constraints may be converted into equations by using nonnegative slack
variables. Let S?(= 0) be the slack quantity added to the i** constraint g;(X) < 0 and

define

S =10(5,S5....5S,)7,8% = (§%,52,..,52)7
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where m is the total number of inequality constraints. The Lagrangian function is thus

given by
L(X,$, ) = f(X) — 2[g(X) + 57]
given the constraints
gXxX)<o

A necessary condition for optimality is that A be nonnegative (nonpositive) for
maximization (minimization) problems. This result is justified by noting that the vector
A measures the rate of variation of f with respect to g- that is,

_of

A=
ag

In the maximization case, as the right-hand side of the constraint g(X) < 0 increases
from O to the vector dg, the solution space becomes less constrained and hence f
cannot decrease, meaning that 2 > 0. Similarly for minimization, as the right-hand side
of the constraints increases, f cannot increase, which implies that 4 < 0. If the

constraints are equalities, that is, g(X) = 0, then 4 becomes unrestricted in sign.

The restrictions on 4 hold as part of the KKT necessary conditions. The

remaining conditions will now be developed.

Taking the partial derivatives of L with respect to X, S, and 4, we obtain
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oL
aL— 248, =0,i=1,2
aSi_ i = Ul =14 ..M

oL X)+5)=0
- WX+ =

The second set of equations reveals the following results:
1. If A; # 0, then S;% = 0, which means that the corresponding resource is abundant,
and, hence, it is consumed completely (equality constraint).

2. If S;> > 0, then A; = 0. This means resource i is not scarce and, consequently, it has

no effect on the value of f (i.e., 4; = ?).

From the second and third sets of equations, we obtain
Algl(X) =0,i=12,..,m

This new condition essentially repeats the foregoing argument, because if A; > 0,

g9:(X) =0o0rS;? =0;and if g;(X) <0,5,* > 0,and A; = 0.
The KKT necessary conditions for maximization problem are summarized as:
A=0
Vf(X)—AVg(X) =0
149:(X)=0,i=12,..,m

gXxX)<o
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These conditions apply to the minimization case as well, except that 4 must be
nonpositive. In both maximization and minimization, the Lagrange multipliers

corresponding to equality constraints are unrestricted in sign.

3.3 Finite Regular Fuzzy Markov Chains

As presented in Chapter 2, if P is a r X r crisp transition matrix for a regular
Markov chain then lim,,_,,, P™ = IT where each row in IT is w = (wy, ...,w,.), w; >0

and Yi_; w; = 1. Here w is the solution of wP = w satisfyingw; > 0and };/_; w; = 1.

If Q= [qi]-] isar xr crisp transition matrix for a regular Markov chain, then

consider P = [p;; ] where p;; gives the uncertainty (if any) in q;; .

If (p11,....p) € Dom[a], then P =[p;] is also transition matrix for a regular

Markov chain. Let P — T1 where each row in Tl is 7 = (7y, ..., 7). Also let
i [a] = [7'5'1(“),7'5'2(“)111' =1..,r

We show how to compute the a —cuts of 7;.

For each (pi1, ..., pyr) € Dom|a], set P = [p;;] and we get P™ — II. Let

I'(a) = {wlwarow inIl,(p11, ..., Prr) € Dom[a]}. Then

(@) = min{wj lw e F(a)}
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T, () = max{wj lw € I‘(a)}

where w; is the jt" component in the vector w [6].

The following example shows how we find the limit of 2 x 2 regular fuzzy Markov

chains

using the restricted fuzzy matrix multiplication.

Example 3.3.1([6]): Let Q = [qi]-] be a 2 x 2 transition matrix of a regular Markov

chain, then consider P = g” 5_12] where p;; gives the uncertainty (if any) in g;; for
21 22

P11 P12

P21 pzz] is a regular transition

,j =12 . If (p11,P12,P21,022) € Dom[a], then P = [

matrix and so P™ is convergent. We solve [w; w;] gi 5;2] = [w; w,] where
wy, w, > 0 and w; + w, = 1. It follows from Example 2.3.1 that w; = pszplz
and w, = —22— Now,

p21tpP12
dwi _ p owi _  —pa Owa _ __“P12 0, and

ap21 (Pa1+p12)? ap12 (p21+p12)? dp21 (p21+p12)?

owy _ P21
op12 (pa1+p12)?

If pp1[a] = [p211 (@), p212(@)] and Pz [a] = [p121 (@), p122 (a)], then

by restricted matrix multiplication P" - T where each row in T is 7 = (71, 75), where
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T [a] = [my1 (@), 12 (@)] and 75 [a] = [y, (@), ma (a)].

, (a)
my1(a) = min {pzfi;u |(P11, P12, P21, P22) € Dom[a]} = m
_ P21 _ p212 (a)
mip(a) = max {p21+p12 | (P11, P12, P21, P22) € Dom[a]} o v——
s P12 _ p121(a)
o1 (@) = min {p21+p12 |(P11, P12, P21, P22) € Dom[a]} s vE——
_ P12 _ p122 (@)
Ty, (@) = max {p21+p12 |(P11, P12, P21, P22) € Dom[a]} = p1ms (@tpo @
Therefore,
T [a]
_ [ p211 (@) p212 (@) 331
P211 (@) + p122 (@) 212 (@) + p121 (@)
T la]
_ [ P121 () P122 () l 332
P121 (@) + p212 (@) P12z (@) + P11 (@) o

forall0 < a < 1.

Now, we show how 7, (@) can be derived using KKT conditions:

We want to minimize f(p,1,p12) =

P2L_ qybject to
p21tP12

91(P21,P12) = P21 — P212(@) <0

92(P21,P12) = P211(@) — P21 <0
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93(P21,P12) = P12 — P1z2(a@) <0

94(021,012) = P121(@) —p12 <0

The KKT conditions will be

A= (11,12,13,14) < 0

Vf(p21,P12) — AVg(p21,012) =0

2:9i(P21,012) = 0,i = 1,2,3,4

91(P21,P12)
92(D21,P12)

’ = <0
921, Pr2) 93(P21,P12)
93(D21,P12)
Or,
A= (11'12'13'/14) < 0'
991 991
P21 P12
0g: g
of af) P21 P12
y S~ | T /1 ,ﬂ- ,ﬂ. ,ﬂ. 0,
(Gor ) ~ G 2 20) b on,
P21 P12
09: 094
P21 P12
of
—/11+12=0and —/13+/14:O

0p21 ap12
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/11(2921 — D212 (“)) =0,
A2(p211(a) —p21) =0,
A3 (P12 — D122 (a)) =0,

A4(p121 (@) — p12) = 0.

of PRI ; ; of P12
If A, =0 then — = A, < 0 which is not possible since = >0, so
2 op21 1= P ap21 (p21+p12)?
of
P21 = P11 (@), A4 = 0,and A, = BT
21
of ik ; ; of —P21
If = hen = —7A, >0 which is n ible sin =
A3 =0 the s A =0 ch is not possible since Irs — Grtns) <0, so
of
P12 = P122(@), A4, = 0,and A3 = PO
12

P21 _ p211 (@)
p21+p12 p211(@)+piz2(a)

Since all constraints are satisfied we have min where

P21 € [P211 (@), p212(@)] and py; € [p121 (@), P12z (a)].

Similarly, my, (a), 1 (@), and m,, () are derived using KKT conditions.

In the next example, we apply relations 3.3.1 and 3.3.2 on triangular fuzzy numbers.

0.7 0.3

Example 3.3.2 ([6]): Let Q = [0 4 06

] be a crisp transition matrix. As we mentioned

above we have uncertainties in all the entries, so we model these uncertainties by fuzzy
numbers between 0 and 1. So, we may take p;; = (0.6/0.7/0.8), p1, = (0.2/0.3/0.4),

P21 = (0.3/0.4/0.5) and p,, = (0.5/0.6/0.7). Hence,
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ﬁll [a] = [06 + 0.1(1, 0.8 — Ola]
p12la] =10.2 + 0.1, 0.4 — 0.1«]
P21lal = [0.3 4+ 0.1a,0.5 — 0.1]

pazla]l = [0.5+ 0.1@,0.7 — 0.1q]

Then P — 1 where each row in T is 7 = (7t1,7,) and it follows from relations 3.3.1

and 3.3.2 that

ﬁl[a]=[§+%a a]andnz [ +1 a ]foraIIO<a<1

Note that the endpoints of the a —cuts are linear functions of a, and hence we have
,[0] = E;] , T [1] = % S0 T = (%/%/;) is a triangular fuzzy number.

,[0] = [%;] ,To[1] = %so T, = (§/§/§) is a triangular fuzzy number.

3.4 A Deeper Look on the Limit of Powers of 2 x 2 Regular Fuzzy Transition

Matrices

911 912

For a crisp transition matrix Q = ot

] with 0 < g;; <1, let P = [p11 pu]

P21 D22

be a fuzzy transition matrix where 0 < p;; < 1 representing the uncertainty in the g;; .
Let 7y [al = [pi1(), pij2(@)] for all 0 <a < 1. If (p11,P12,P21,P22) € Dom[al,

then P = [Pn Plz]

is a regular transition matrix. Let w = (wy, w,) be the steady state

vector of P, then we have the following four cases:
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ow
If w, =22 and wy, =—22 1 th L=_Pz__ 5,
p21+P12 p21+P12 op21  (p21tp12)
w1 — __TPu ow; — —P12 ow; — P21 0
op1z (P21+p12)? " 0p21 (P21+p12)? "dp12 (p21+p12)?

It follows by restricted fuzzy matrix multiplication that P - I, where each

row in I, is T, = (4, T;,) Where

p211 (@) p212 (@)
) 3.4.1
p211 (@) +p122 (@) " p212 (@)+p121 (@)

my1la] = [

p121 (@) P122 (@) 3.4.2

miolal = [P121 (@) +p212 (@) p122 (@)+p211 (@)

forall0 < a < 1.

1- ow —
If wy=—2L2— and w,=—L2— then L=_"P2__ —,
1-p22+p12 p21+1-p22 0p22 (1-p22+p12)
ow —-(1- ow ow 1—
1_ (1-p22) . , 2 _ P12 _> 0, and 2 _ D22 _ 0
op1z2  (1—pa2+p12) Op22  (I1-p22+p12) op1z (I1-p22tp12)

It follows by restricted fuzzy matrix multiplication that P > IT,, where each

row in I, is T, = (iTy, Ty, ) Where

1—p222 (@) 1-po21 (@) 343

iy la] = [1—p222 (@)+p122 (@)’ 1-p221 (@) +p121 (@)

pi21 (@) p122 (@)
, 3.4.4
p121 (@)+1-p221 (@) " p122 (@)+1—p222 (@)

iy la] = [

forall0 < a < 1.
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P21 1-p11 owy 1-p11
3. f wy=————— and w,=——— then = 0
L 1 pi4pn 27T 1pi ap21 (1—p11+p21)? '
w1 P21 ow; —(1-p11) ow; —P21
= >0 = < 0,and = 0
Op11 (1-p11+p21)? " opy1 (1-p114p21)? ' op11 (A-p11+p21)?

It follows by restricted fuzzy matrix multiplication that P* — II5, where each

row in I3 is T3 = (3, T3, ) Where

p211 (@) p212 () 3.4.5

msila] = [qu (@)+1-p111 (@)’ p212 (@ +1-p112 (@)

1-p112 (@) 1-pq11 (a)
1-p112 (@)+p212 (@) " 1-p111 (@) +p211 (@) 3.4.6

i3, [a] = [

forall0 < a < 1.

owy 1-p22

1— 1—
4. 1f wi=—22_ and w,=—PL_  then = - >0,
2-p11-p22 2-p11-p22 op11 (2-p11—p22)
ow —-(1- ow —-(1- ow 1—
1_ (1-p11) _ , 2 _ (1-p22) _< 0, and 2 _ P11 _ 0
op22  (2—p11-p22) op11 2-p11-pr22) Op22  (2-p11-p22)

It follows by restricted fuzzy multiplication that P - M,, where each row in I,

is Ty = (7'_[41, 7'_[42) where

1-p222 (@) 1-p221 (a)
, 3.4.7
2—p111 (@)—p222(a) " 2—p112 (@)—p221 (@)

My a] = [

1-p112 (@) 1-p111 (@)
, 3.4.8
2—p112 (@)—p221 (@) " 2—p111 (@)—p222 (@)

My la] = [

forall0<a < 1.

Below we study II;,1I,,1I5, and II, when the entries are triangular fuzzy

numbers.
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911 4912

Theorem 3.4.1: If Q = [q21 Gy

] is a crisp transition matrix with 0 <gq;; <1, and

P= [g“ 5_12] is a fuzzy transition matrix, where p;; = (q; — 8, /q;; /qy + 83 ) such
21 22

that 6;,6; > 0and 0 < p;; <1, i,j = 1,2. Then for distinct values of &;; and &;;, we

have I; # IT; i # j,i,j = 1,2,3,4 .

Proof. The fuzzy probability p;; represents the uncertainty in g;. Now
ﬁij [0(] = [pl-jl(a),pijz(a)] = [ql] - 611 + 611 a, ql} + 61']"— 6”’(1] Then according to

relations 3.4.1 — 3.4.8 we have:

_ _ q21 — 621 + 621 21 + 621 — 621
my1la] = 7 g ) g g
q21 + q12+612 — 621 + (521 - 512)“ 421 + Q12 + 621 — 612 + (512 — 521)“
_ q21 — 021 G21 + 631 _ q21
11 [0] = I - , ; l,nn[l] =—
qz21 + q12+812 — 621 Q21 + Q12 + 821 — 612 21 + q12
_ _ G2 — 612 + 62 Gz + 815 — S
myla] = Z - ) z >
q21 + q12+621 — 612 + (512 - 521)“ 421 + Q12 + 612 — 61 + (521 — 512)“
_ q12 — 612 G2 + 612 _ 12
m12[0] = [ - , = l,mz[l] =—
q21 + q12+621 — 612 Q21 + Q12 + 612 — 621 21 + q12
q21—82; + 6xa g1 + 65y —

Ty la] = l > - - —
2 Q21+ Gz — 622 + 613 + (822 — 612)@ Q21 + Gz + 822 — 812 + (812 — x2)@
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_ _ 21622 q21 + 622 _ _ 92
m,1[0] = z —, Ty [1] = ——
Go1 + iz — 622 + 812 21+ quz2 + 622 — 12 21 + 912
7 la] = l q12 — 612 + 612 qi2 + 812 — 82
2 Q21 + Qa2 + 822 — 812 + (812 — 622)@ @y + qup + 815 — 63y + (5;2 - 512)6!
_ q12 — 012 q12 + 612 _ q12
ﬂzz[0]=[ ) - - l,ﬂzz[1]=—
q21 + Q12 + 822 — 812 qy1 + q13 + 615 — 65 21 T 912
o [a] = [ q21 — 621 + 61 g2 + 021 — 6y l
3 Q21+ iz + 811 — 821 + (621 — 811)a@ g1 + @i + 891 — 811 + (611 — 621)a
_ 421 — 621 g2 + 621 _ q21
”31[0]=[ , — l,n31[1]=—
q21 + q12 + 611 — 621 qu1 + g2 + 821 — 611 21 + q12
_ qiz — 611 + 8 q12 + 611 — 611
T3 lal = z > G v ,
Q21+ Q12 + 621 — 611 + (811 — 821)a Q21 + G1z + 811 — 821 + (621 — S11)a
_ q12 — 611 qi2 + 611 _ qi2
”32[0]=l —, l,n32[1]=—
g1 + 12 + 621 — 611 921 + Q12 + 611 — 821 21+ q12
_ _ a1 — 022 + 620 q21 + 622 — 6z
Ty [a] = z z ) G G
q21 + Q12 + 811 — 822 + (522 - 511)05 421 + G2 + 622 — 611 + (511 — 522)“
_ 421 — 02 421 + 622 _ q21
T4t [0] = l ) — |, Mg [1] =—
421 + Q12 + 611 — 822 Qo1 + q12 + 622 — 611 21 + q12

_ _ Gz — 611 + 611 q12 + 611 — @
My la] =

LZZ1 +qi2 — 611 + 62y + (511 - 522)61,6121 +qi2 + 611 — 63y + (5;2 - 511)“
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q12 — 611 q12 + 611 _ _ qu
> ) —|, T2 [1] = ——
q21 + q12 — 611 + 622 o1 + qi2 + 611 — 62 21 + q12

42[0] =

s

Therefore, for distinct values of &;; and 6;;, we get ;[a] are distinct and

similarly

for T[a] where 0<a <1, i,j=1234, and this implies that II; # II, for
[ #j,i,j =1,23,4, itis clear that 7;; ’s are triangular shaped fuzzy numbers, and this

completes the proof.

Similarly, if triangular fuzzy numbers are replaced by trapezoidal fuzzy
numbers or any fuzzy number, we get the same conclusion. Moreover, these
conclusions can be generalized for any n X n fuzzy transition matrix since for each

component w; of the steady state vector w, we may replace every p; in w; by 1—

Y11 pu, and hence we get distinct limits.
Ik

Our main purpose is to find minimal conditions that are needed to guarantee the
uniqueness of the limit of the 2 x 2 regular fuzzy transition matrices. Therefore, we

have the following three propositions:

q11 4912

Proposition 3.4.2:Let Q = [q21 422

] be a regular crisp transition matrix with 0 <

P11 P12

--<1for','=1,2.LetP=[_ ~
yj b P21 D22

] where p; = (q;; —6;/qij/q;; +6;) -

triangular fuzzy numbers- for i,j = 1,2, and §;,6, > O suchthat 0 <p;; <14i,j=1,2



55
. Then by restricted fuzzy matrix multiplication P converges to the unique limit TI,

where each row in T is 7 = (77, 7,), With

_ ( q21 = 6, 921 Q21 + &, )
! 21+ qi12t 81— 682" 421+ q12” qo1 + qu2 + 62— 64

_ ~< q12 — 01 / qd12 / Q12 + 64 )
21 t 12+ 8, — 81" g1+ q12” q21 + q12 ++ 61— 6,

for 8; # &, (both are triangular shaped fuzzy numbers),

and

_ :(QZ1—5 a1 6121+5>
Q21 Y 912 921 Y 912 921 T q12

(%2‘5 di12 Q12+5>
21 t 912 921 + 912 921 T q12

for 6, = 6, = & (both are triangular fuzzy numbers).

Proof. The alpha cuts of ﬁl] are ﬁl] [a] = [ql] - 6i + (Sl‘a, ql] + 6i - 6ia],
i,j =12forall 0 <a <1 Inthiscase, &; =8); = 81,8, =8y =8, forj =1,2, 50
from the previous discussion P converges to the unique limit IT, where each row in IT is

T = (ﬁ'l,ﬁ'z), with

— q21—62+62a q21+82—67a ]
T4 | =[ ,ford; # 6
11a] q21+q12+81—62+(82—81)a’ q21+q12+62—861+(81—62)a 1 2
So, 77, [0] = [ q21—0> p2116> ]and 7 [1] = q21
1 q21+q12+81-62 " q21+q12+62—61 1 q21+q12
— q12—61+ 61 qi12+61-61a ]
T [a =[ for6; = &
2la] 421+q12+62—61+(81-62)a’ q21+ g2+ 61—62+(52—61)al’ 1 2
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— q12—61 q12+61 — q12
So, T,[0] = [ ]andn 1] = .
’ 2[ ] q21+q912+62—61" q21+q12+ 61-62 2[ ] q21+q12

In this case, ;[a] and 7, [a] are not linear functions of a, so both 7T; and 7, are triangular
shaped fuzzy numbers with the form given in the proposition. If §; = §, = §, then it is
clear that 77; [a] and 77, [a] are linear functions of a, so, both 77; and 7, are triangular fuzzy

numbers with the form given in the present proposition, and this completes the proof.

qi11 412

Proposition 3.4.3:Let Q = [q21 q22

] be a regular crisp transition matrix with

1211 2212

0<gq; <1forij=12.Let P=
% b P21 P22

], where ;= (g — 6, qy — 81,9y +
8i,q; +6;), -trapezoidal fuzzy numbers- for i,j = 1,2 and 0 < &; < &;, 0 < &, < &,
such that 0 <p; <1 i,j=12. Then, by restricted fuzzy matrix multiplication

5nconverges to the unique limit 1, where each row in [T is 7 = (7, 7,), With

. ( q21—962 q21—62 q21+62 q21+62 )
421+912—62+61 " q21+q12+61-62 " q21+q12+62—-61" q21+q12+62—61

T ( q12—01 q12—01 q12+61 q12+81 )
q21+q12+62—61" q21+q12—61+82 " q21+q12—062+61 q21+q12—62+61

for 8, — 8, # &; — &, (both are trapezoidal shaped fuzzy numbers),
and

7= ( q21—6> q21—07 21487 q21+6> )
1 q21+q12—62+61 " q21+q12—62+61 " q21+q12+62—81" q21+q12+62—61

7= ( q12—61 q12—061 q12+61 q12+81 )
2 q21+912+62—61" q21+q12+82—61" q21+q12—62+81 " q21+q12—62+61

for &, — 8, = &; — 6, (both are trapezoidal fuzzy numbers).
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Proof. The alpha cuts of ﬁl] are ﬁl] [af] = [(81 - 81')(1 + ql] - 61'1 _(61 - Si)a + ql] + 6i ],

i,j = 1,2, forall 0 < a < 1. According to relations 3.4.1 — 3.4.8 we have P™ converges to

the unique limit IT, where each row in I is @ = (7, T,), With

#[a] = (62—62)a+q21—5; —(82=62)a+q21+6;
1 a21+q12+(82—62)a—(61-061)a—82+61" qz1+q12—(62—082)a+(61—61)a+6,—61]
SO, fOI’ 62 - 6{2 * 61 - Sl! T_[l [0] = [ QZ1—52 , q21+52 :|’
q21+q12—62+61 " q21+q12+62—81
and
_ -5 +6
7_[1[1:[ 921 =62 _ q21+62 ]
q21+q912+61—62 " q21+q12+62—61
Also,
7 [0(] _ (61—671)a+q12—61 —(61—671)a+q12+61 ]
2 q21+q12—(62—62)a+(81-61)a+82—61" q21+q12+(62—62)a—(61-61)a—62+61 ]
So, for 8, — 8, # 8, — 61, T,[0] = [ 201 diztés ]
q21+q12+62—61" q21+q12—82+81
and

— q21—61 421461
mll] = [ =2 vl
q21+q12—61+62 " q21+q12—082+01

In this case, 7;[a] and 7,[a] are not linear functions of «, so, both 77; and 7, are

trapezoidal shaped fuzzy numbers with the form given in the proposition. If 6, — &, =

8, — &1, then it is clear that 77, [@] and 7, [a] are linear functions of «, so, both 77; and 7,

are trapezoidal fuzzy numbers with the form given in the present proposition, and this

completes the proof.
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The following proposition deals with the fuzzy number that given in Definition

1.1.6.

q11 412

01 CIzz] be a regular crisp transition matrix with 0 < q;; <

Proposition 3.4.4: Let Q = [

. = _ [P11 D12 _ ; <
1 for L] = 1,2 Let P = [521 }522] where pl] = (qu - 61', ql} - 61" ql] + 61‘, ql] +
ol)c , 0<c<1 and 0<dJ1<d1, 0<d2<J2 such that O<pi/<1 for ;=12 Then, by
restricted fuzzy matrix multiplication P converges to the unique limit I1, where each row

inMlis & = (7;,7,), with

7 ~( 42162 42182 21452 q21+82 )
. q21+q12—62+681" q21+q12+61-82 " q21+q12+62—81" q21+q12+62-81/

7 ~( q12—61 q12—51 q12+51 q12+61 )
2 q21+q12+62=81" q21+q12—81+82 " q21+q12—62+81” q21+q12—62+81/

for 8, — 8, # 8, — 8, Or 8, # &1,

and
7 =(‘I21_52 42162 q21+3; QZ1+52)
a21+q12 " q21+912" 921+q12 " q21+q12/
7 =(Q12—51 q12—61  q12+81 Q12+51)
a21+q12 " q21+4912" q21+q12 " q21+q12/

for §, = §; and 6, = 6.
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Proof. ﬁl} [af] = [% (81 - Sl‘)a + CIl] - 81',—%(61' - 81')(1 + ql] + 61] for all 0 <a<c,

and p;la] = l—&- /E + q; ,6; /E+ qij l forallc < a <1,i,j=1,2. According to
relations 3.4.1 — 3.4.8 we have P™ converges to the unique limit IT, where each row in IT is

7 = (7, 7), With

1 » 1 .
_ ~(62-82)a+q21-5; —(62-62)a+qz1+62
mila] = T : T : ) T ; T ; '
a21+q12+-(82-62)a —(81-61)a—62+61 " q21+q12— (6282 )a +(81-61)a+62—-61
0<ac<c
g 1—a - 1-a
=63 +q21 &2 +q21
_ N -
i [a] = lc —, Cl —| forc<a<1
s —a 7 —-a : —a < —a
q21+q12 =02 7o +01 [T d21+412 +62 = -6 i
So, for 8, — 8, # 8, — 8, or 6, # 8;, 7,[0] = [ 2170  _ dz1+8 ] and
q21+q12—62+61 " q21+q12+82—01
_ -5 +6
7T1[C]=[ 921702 ’ 421162 ]
q21+q12+t61—62 q21+tq12+62—61
Also,
1 g 1 .
_ ;(51—51)614‘%2—51 —;(51—51)0!4"112"'51
= <
T, [a] T 2 T 2 , T ; T ; U =
421 +CI12—;(52—52)0! +;(51—51)06+52—51 QZ1+Q12+;(52—52)0£ —;(51—61)a+52—81
a<c
: 1-a - 1-a
=61 +q12 81 +q12
_ N 1-
T, [a] = — —, - —| forc<a<1.
‘ -a ¢ —a : —-a | <« —a
q21+q12+ 82 |7 01 |7, 21412 — 62 = +81 i
So, for 8, — 8, # 8, — 8, or &, # &1, 7,[0] = [ 92701 d12%8s ] and
q21+q12+62—61 " q21+q12—62+01
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_ -6 +6
Tl'z[C _ [ Q12701 ’ q2+61 ]
q21+q12—61+62 " q21+q12—62+61

Therefore, 7, and 7, are the fuzzy numbers with the form given in the present proposition.

Similarly, if §, = §; and §, = 6; we have

_ ) +6 _ -6 46
7_[1[()]=[(121 2,q21 Z]andnl[c]= [QZl z,CI21 2].
q21+q912 9211912 q21+q12  q21tq12

Sl

q12—01  qu2+61 — q12—61  q12+61
(0] = [t 2P | ang 7, [] = [ .
q21tq12  q21+4q12 q21tP12 q21tP12

Therefore, T, and 7, are the fuzzy numbers with the form given in the present proposition

and this completes the proof.
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Chapter 4
Finite Fuzzy Markov Chains

In Chapter 3, we start with a crisp Markov chain, then the uncertainties in its
transition matrix are replaced by fuzzy numbers and the powers of the resultant fuzzy

transition matrix are computed by the restricted fuzzy matrix multiplication.

Throughout this chapter we study the finite fuzzy Markov chains in a completely
different way than that presented in Chapter 3. Here the states will be fuzzy sets and the
fuzzy transition matrix is a fuzzy relation on a finite state space, so the entries are
numbers between zero and one, and the row sum need not be one. Max-min
composition is used to find the powers of the fuzzy transition matrices. This chapter
consists of four sections. In Section 4.1 we give basic definitions concerning finite
fuzzy Markov chains [2] and [3]. In Section 4.2 we make a comparison between crisp
and fuzzy Markov chains. In Sections 4.3 and 4.4 we study the ergodicity of a particular

class of finite fuzzy Markov chains.

Throughout this chapter we denote the finite state space {1, ...,n} by S.

4.1 Basic Definitions

Definition 4.1.1 ([2] and [3]): A (finite) fuzzy set or a fuzzy distribution, on S, is defined
by the membership function x from S into [0,1], represented by a vector

x = (xq, ..., x,), With
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x;denoting the image of i under x, i.e. x(i), 0 < x; < 1,i € S. The set of all fuzzy sets

on S is denoted by F(S).

Definition 4.1.2 ([2] and [3]): A fuzzy relation P is defined as a fuzzy set on the
Cartesian product S x S. P is represented by a matrix [p;;], with p;; denoting P(i, ),

0<p,; <1, ijES.

Definition 4.1.3 ([2] and [3]): At each time instant ¢, t = 0,1, ..., the state of the system
is described by the fuzzy set (or distribution) ¥® € F(S). The transition law of the
fuzzy Markov chain given by the fuzzy relation P as follows, at time instant ¢, t =
1,2, ..

9?].(t+1) = max {min{fgt),ﬁlj }, min{a’cgt),ﬁzj }, ...,min{f,(lt),ﬁnj }}, Jj ES.

We refer to ¥(*) as the initial fuzzy set (or the initial distribution).
It is natural to define the powers of the fuzzy transition matrix. Namely,

— . — _(t—1 . — —(t—1 . — —(t—1 —(1 _
pi(].t)zmax{mm{pil,pﬁ )},mm{piz,pg )},...,mm{pin,pflj )}} pi(j):pij,

(0
pi(j):5ij-

where &;; is a Kronecker delta.
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Note that the fuzzy state D_C,Et), k=1,..,nattimeinstant t, t = 1,2, ... can be calculated

by the formula
A0 = maminl s, a5} - minfs® )}

Formula 4.1.1 has a similar structure to that given in Proposition 2.1.6, the only
difference between them is in the employed operations and, of course, the meaning of
the terms as fuzzy grades, instead of probabilities. Equation 4.1.1 is obtained from that
given in Proposition 2.1.6, by changing the algebraic summation to the max-operation

and the algebraic multiplication to the min-operation ([2] and [3]).

Theorem 4.1.4 ([13] and [29]): The powers of the fuzzy transition matrix P = [ﬁij]
either converge to idempotent P = [ﬁi(jf)], where 7 is a finite number, or oscillate with

a finite period v starting from some finite power.

Definition 4.1.5 ([2] and [3]): Let the powers of fuzzy transition matrix converge in t
steps to a non periodic solution, then the associated fuzzy Markov chain is called

nonperiodic (or aperiodic) and P* = P7 is called a limiting fuzzy transition matrix.

Definition 4.1.6 ([2] and [3]): The fuzzy Markov chain is called ergodic if it is

aperiodic and the limiting transition matrix has identical rows.
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In this chapter we call this matrix: ergodic fuzzy transition matrix.

4.2 Comparison between Crisp and Fuzzy Markov Chains

Definition 4.2.1: A fuzzy state j € S is transient if it can reach another state but cannot
itself be reached back from another state. Mathematically, this happens if

lim,, ., ﬁi(j") = 0, for all i.

Definition 4.2.2: A fuzzy state j € S is persistent (or recurrent) if, upon entering this
state, the process definitely will return to this state again. This can happen if, and only if

the state is not transient.

Definition 4.2.3: A fuzzy Markov chain is called irreducible (or regular) if 3m € N

such that ﬁi(]”) > 0, Vi,j € S, otherwise it is called reducible (or irregular).

Example 4.2.4: Let P = [Ois 0(')7] be a fuzzy transition matrix of a fuzzy Markov

chain.Then,

ﬁz _Fopo [max{min{O.S,O.S},min{0.7,1}} max{min{0.5,0.7}, min{0.7,0}}
B B max{min{l,O.S},min{O,l}} max{min{1,0.7}, min{0,0}}
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_[07 0] 5P _[05 07) p*_[07 05

_(n) _ =(n) _
~los 0.7 07 os’? Tlos 0_7]' Note that py;” = pp;” = 0.7 for n

even and ﬁl(’ll) = ﬁgg) = 0.5 for n odd. This example shows the definition for a periodic

state in the classical sense is not applicable in the fuzzy sense; therefore, the periodicity
is related to the matrix not to the states. Hence, this fuzzy transition matrix corresponds

to a periodic fuzzy Markov chain with period 2.

The above example also clarifies why ergodicity was defined for fuzzy transition

matrices not for fuzzy states.

0.7 0.3

Example 4.2.5 ([2] and [3]): Let P = [0 4 06

] be a fuzzy transition matrix of a fuzzy

Markov chain, then P is a transition matrix of a crisp Markov chain since the row sums

is 1. It is clear that this transition matrix in the classical sense corresponds to an

—n

irreducible, aperiodic Markov chain which is certainly ergodic. Moreover, lim,,_,., P =

[4/7 3/7

4)7 3/7 and this limiting matrix is independent of P.

0.7 0.3

—2
In the fuzzy sense we have P = [0_4 0.6

] andso P = P for = 1,2,3, ... . This result

shows that in general, a fuzzy Markov chain which is irreducible and aperiodic need not
be ergodic. In fact, this a crucial difference between fuzzy and crisp Markov chains.

Moreover, the limiting fuzzy transition matrix is definitely depends on P.
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4.3 A Particular Ergodic 2 x 2 and 3 x 3 Fuzzy Transition Matrices

In this section we consider particular 2 x 2 and 3 x 3 fuzzy transition matrices,
and we determine conditions that guarantee achievement of ergodicity. But before that
we give the following example to show that a fuzzy transition matrix whose rows are
identical is ergodic, which agrees with our intuition.

Ty Ty e W,

ﬁ'l 77[2 oes n'n

Example 4.3.1: Let P = be a fuzzy transition matrix of a fuzzy

7'[1 7'[2 e nn

Markov chain. Let 7* = max{m,, Ty, ..., T,} and 7, = min{wy, T,, ..., T, }.Then, in

r S

—————]
S ——

—2 _
P = I:ﬁl(JZ):ly we have, 51(12) = [7‘[1 Ty o T[n]

[

,wherei,j =1,2,..,n,

= max {min{ﬁl, TT; }, min{ﬁz, TI; }, . min{ﬁj, TI; }, . min{ﬁn, TT; }}

= 7, then it is clear that ﬁi(jz) = ;. For otherwise, we have 7; > T,

fr, =n*orm

<
<

for k=12,..,1 and T ST, for k=1+1,..,n where 1<I<mn, also

{®, |k=1,..,n} = {7, T, .., ). Now, min{z,, 7} =7, for k=12,..,1, and

min{7;, T} = for k=1+1,..,n. Since, T, >, for k=12,..,l we have

5%
ij

-2 _ — _
;. Hence, in all cases P = P, and so Pm =P for m = 1,2,3, ... . Therefore,

P is ergodic.

Theorem 4.1.4 does not give us information about fuzzy Markov chains having

the ergodic behavior. Also, J. C. F. Garcia et al. [12] have done a simulation study on
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fuzzy Markov chains from which they have shown that most of fuzzy Markov chains
are not ergodic. Besides, in [2] and [3] Avrachenkov and Sanchez introduced an open
problem about the general conditions that guarantee the ergodicity of fuzzy Markov
chains. These results together with Example 4.2.5 motivate us to search much deeper in
the structure of fuzzy Markov chains which are ergodic. For this purpose we put the
following assumption on the fuzzy transition matrices to be considered throughout this

section and the subsequent section.

Assumption 4.3.2: For 1<k <n, let P = [ﬁi]-] be an n X n fuzzy transition matrix.
Suppose that p;; = 0 or 1 fori € {1,...,n} — {k}, j = 1, ...,n and in each of these rows

—all rows except possibly the k" one— exactly one entry is 1.

First: We consider 2 x 2 and 3 x 3 fuzzy transition matrices satisfying Assumption

432fork =1.

For 2 x 2 fuzzy transition matrices we have the following cases with a prescribe

condition for each case:

1. P= [pil p(l)z] With 0 < fy; < ppp < 1.
P = [P ?11],?3 — [Pu ’212],54 = [P lz“].Therefore,
P11 P12 P12 P11 P11 P12

—2
—n {P ,for neven

P =_4 .
P ,fornodd

2. P= [pil péz] With 0 < Py, < Py < 1.
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—2 D D —3 7 7) — —2

p- = |Pu 2312],P = |Pu 2312].80 P' =P for=234,...According to
P11 P12 P11 P12

Theorem 4.1.4, T = 2.

3. P= [pél piz] With 0 < py; < pip < 1.
—2 D. D — — —
P = [pél piz] =P,s0 P =P for =1,2,3,... . According to Theorem 4.1.4,
=1
4 P = [pél piz] with 0 < }512 < }511 <1

—2 D D. — — —
P = [pél piz] =P, soP =P for=1,2,3,.... According to Theorem 4.1.4,
T=1.

We conclude that case 2 above is the only ergodic one, from which we have

P11 = P12 and py, # 1.

Next we consider the 3 x 3 fuzzy transition matrices but applying the following two
assumptions:

1. pyq is the maximum entry in the first row.

2. Py # 1land p33 # 1.

So we have the following cases with a prescribe condition for each case:

_ [P11 P12 D13
1. P=|1 0 0 WlthOSp_lg Sﬁlz Sﬁllgl
1 0 0
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_, [P P12 P13] _; [Pu Pz P13 w2
P = 311 ?12 2313 P = 2311 2312 1313 .SoP =P for= 2,34, ...
P11 P12 P13 P11 P12 P13

According to Theorem 4.1.4, T = 2.

P11 P12 2513]
2. P=1]1 0 0 WlthOSﬁlz Sﬁlg Sﬁllgl
1 0 0
_, [P Pz P3] _; [Pu1 Pz P13 w2
P =|pu Pz Pi3|,P =|Pu1 P12 2513]-501’ =P for=2,34,...
P11 Pz P13 P11 Pz P13

According to Theorem 4.1.4, T = 2.

I | 20 2V 1513]
3. P=1]1 0 0 WlthOSﬁ13 Sﬁlz Sﬁllgl
0 1 0
_, [P Pz P13] _3 [Puu P12 P13] _, [Pun D1z P13
P =|pu D1z DPus|,P =[P P12 1513],1’ =[I311 D12 1513]-
1 0 O P11 Pz P13 P11 Pz P13

—n =3
SoP =P for= 3,4,5, ... . According to Theorem 4.1.4, T = 3.

_ [P P12 P13
4. P=(1 0 O |with0<p;, <pi3<p =1L
0 1 0

o [P11 P13 Pi3] _;
= |p11 P12z Pi3|,.P =
[ 1 0 0 |

P11 P13 P13 P11 P13 D13

P11 P13z Pi3] _, [Pu Pz Pi3
7 ) P = )
P11 Pz P13 P11 P13 P13

[P Pz P13l _, _,
=|P11 D13 Di3|-SoP =P for=4,5,6,...According to Theorem
P11 P13 P13l

414, 7 =4.

P11 P12 P3|
0 0 1 |with0 < }313 < ﬁlZ < ]511 <1.
1 0 0

5. P =
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_, [P Pz P12] _,
=1 o o7 =
P11 P12 P13l

P11 P12z P3|, P = (P11 P12z P12

P11 D12 2512] 4 [?511 D12 1312]
P11 Pz P13 P11 Pz P12

. [Pi1 Pz P12 w4
=|P11 D12 Di2|- SOP =P for=4,5,6,....According to Theorem 4.1.4,

P11 P12 P12l
T=4,
_ [P11 P12 P13
6. P=|0 0 1 WlthOSﬁlz Sﬁlg Sﬁllgl
1 0 0
_, [P Pz P13] 5 [Pu Pz P3] _, [Pu P12 P13
P =1 0 O0]|,P =|P11 P12z DP13|,P =|P11 D12 DPi3|.
P11 P12 P13 P11 Pz P13 P11 P12 D13

—n =3
SoP =P for= 3,4,5, ... . According to Theorem 4.1.4, T = 3.

_ [P11 P12 1513]
7. P=10 0 1 WithOSﬁlg <Pz <p1 =1
0 1 0
o [P Pz Pi2] 5 [Pu1 P12 1512] 4 rn P12 1512]
P =10 1 of,P =10 0 1,P =0 1 0
0 0 1 0 1 0 0 0 1

—2
= P
Therefore, P = { -for n even

—3 .
P ,fornodd
_ [P11 P12 D13
8. P=10 0 1 |withO<p, <p;3<pny=1L
0 1 0

—3
P =

0 1 0
0 0 1

0 0 1
0 1 0

o [P11 P13z P13
P

P11 P13 P3| _, [Pu1 P13z P13
,P 0 1 0 | . Therefore,
0 0 1

—2
ﬁn {P ,for neven

53,for n odd .
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It is clear that matrices in cases 1-6 are ergodic, while in cases 7 and 8 they are not.

Second: If we consider 2 x 2 and 3 x 3 fuzzy transition matrices satisfying Assumption
4.3.2 for k = 2,k = 3 respectively, then we have the following ergodic cases with a

prescribe condition for each case:

1. P= _0 _1 with 0 < P21 S pypp < 1.
P21 P22
0 0 17
2. P: 0 0 1 WIthOSﬁgl Sﬁ32 Sﬁ33§1
P31 P32 P33
0 0 1
3. P=|0 0 1 WithOSﬁngﬁglﬁﬁggﬁl.
P31 P32 P33
0 1 0
4. P=[0 0 1 |witho<py <psy <pas <1.
P31 P32 P33
0 1 0
5. P=[0 0 1 |witho<py, <py <pas <1.
P31 P32 P33
0 0 1
6. P=|1 0 0 WithOSﬁglﬁﬁgzgﬁggﬁl.
P31 P32 P33
0 0 1
7. ﬁ= 1 0 0 WIthOSp_gz Sﬁglgﬁgggl.
P31 P32 P33

We conclude from cases 2-7 above that in addition to Assumption 4.3.2 the

following conditions are satisfied:
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1. ps33 is the maximum among the entries in the last row.

3. Ifﬁl} = 1thenﬁji = OfOI’i :/:], l,] = 1,2

Third: If we consider 3 x 3 fuzzy transition matrices satisfying Assumption 4.3.2 for

k = 2, then we have the following ergodic cases with a prescribe condition for each

Ccase.
CJ0 1 07
1. P=|Py1 Dz D23|WithO <Py <SPz <ppp < 1.
) 1 0
CJ0 1 07
2. P=|py1 Dz D23|WithO <py3 <pyy <Py < 1.
L 0 1 0 |
0 0 1]
3. P: ﬁ21 ﬁzz ﬁ23 WlthOSﬁ21 Sﬁz3£ﬁ22£1.
] 1 0 |
0 0 1]
4. P: ﬁ21 ﬁzz ﬁ23 WlthOSﬁ23 SﬁZ]_ Sﬁzzﬁl
] 1 0 |
[0 1 0]
5. P=|py1 D2z D23|WithO <Py <Py <ppp < 1.
L 1 0 0 |
[0 1 0]
6. P=|py1 D2z D23|WithO <py3 <Py <Py < 1.
L 1 0 0 |

We conclude from the above cases that in addition to Assumption 4.3.2 the

following conditions are satisfied:
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1. p,, is the maximum among the entries in the second row.

3. Ifﬁl] = 1then ﬁ]l = OfOI’i i], l,]: 1,3

4.4 A Particular Class of Ergodic Finite Fuzzy Markov Chains

In this section we consider an n x n fuzzy transition matrix P = [p;], n > 4
satisfying Assumption 4.3.2, and determine what conditions needed to guarantee the
ergodic behavior. But first we need the following lemma which follows directly from

the definition of the max-min composition of fuzzy matrices.

Lemma 4.4.1: Let P = [p;;] be an nxn fuzzy transition matrix. Then, by the max-

min

composition e, P is the k** row of P, where e, = [&; ] isa 1 x n matrix, and &, is a

Kronecker delta, and j = 1, ...n, k € {1, ...,n}.

Now, we present the main theorem of this chapter. We consider an n X n fuzzy
transition matrix P and under certain conditions we prove by the max-min composition

that P is ergodic.
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Theorem 4.4.2: For n > 4 let P = [p;;| be an n x n fuzzy transition matrix, such that
pj =0or1fori=2,..n j=1,..,nand in each row except possibly the first one,

exactly one entry is 1. If the following conditions hold:
1. py1 is the maximum among the entries in the first row.
2.p; #1fori=2,..,n.

3.1fp; = 1thenp; =0fori#j,i,j=2,..,n.

4‘.}51'11 = ﬁizl == ﬁikl =1 with k e {Tl - 3,7’1 - 2,Tl - 1} and il,iz, ...,ik €

{2,3,...,n}.

Then, by max-min composition, P is ergodic.
Proof. See the Appendix.

In the following, we show by examples that all conditions of Theorem 4.4.2 are sufficient.

Examples and Comments 4.4.3: We discuss the conditions of Theorem 4.4.2

D11 P12 P13 Dis
= 1 0 0 0 S _ _ _
1. IfP= 1 0 0 0 with P12 = P11 = P13 = P1s-
1 0 0 0

Then by max-min composition we have



P11 D12 P13 D[P P12 P13 Dus Piz2 Pu P13 Pis
ﬁzz 1 0 0 0 1 0 0 0 P11 Piz P13 Pus
1 0 0 0 1 0 0 0 P11 P12 D13 Dial
1 0 0 0 1 0 0 0 P12 P13 DPis
P11 P12 P13 Pua P12 P11 P13 Pua
53 _ [Pz P11 P13 Pus ﬁ‘*: P11 Pz P13 ?14.
P12 P11 P13 Pual’ P11 P12 P13 DPis
P12 P11 P13 Pua P11 P12z P13 Pua

—2n —2 —2n+1 —3 _
Therefore, P =P forn=1,23,...and P =P for n=1,23,.... Hence, P

is not ergodic. Here conditions 2, 3 and 4 are satisfied but condition 1 is not

satisfied.
D11 P12 P13 Dis
= 0 1 0 0 S _ _ _ _
2. Ifp= 1 0o 0 o With py; = P12 = P13 = D1 » (NOtE Py = 1).
1 0 0 0

Then by max-min composition we have

P11 P12z P13 Dia P11 P12 P13 Dia
—2 0 1 0 0] =3 0 1 0 0
P =]_ _ _ _ |I,P =]- _ _ _ [, so0
P11 P12 P13 Dia P11 P12 P13 Dia
P11 P12 P13 DPisa P11 P12 P13 DPia

—2 —
P =P forn=2,3,4,.. .Therefore, P is not ergodic. Here conditions 1,3 and
4 are satisfied but condition 2 is not satisfied.

1 P12 P13 DPisa

3. IfP= with pyy = Py = P13 = P14 (note that py3 =

7

0 0 1 0
0 1 0 0
1 0 0 0

land p3, = 1). Then by max-min composition we have

P11 P12 P12 DPia P11 P12 P12 DPisa
s2_[0 1 0 ofl_|0o 0 1 0
0 0 1 oY 10 1 0 (I ¢

P11 P12 P13 DPia P11 P12 P12 DPia
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—4

P11

P12

P12

P12

P12

76

D14

—5

)

P1a

P11
0
0

P11

P12

P12

P12

P12

P14

P14

—2n —4 —2n+1 =3 — .
So,P =P forn=234,..and P =P for=1,2,3,.... Therefore, P is

not ergodic. Here conditions 1,2 and 4 are satisfied but condition 3 is not

satisfied.

{
4. Ifp=|
|

==

[\S]

coc oo

—_o o os

cor o

oOR oo

S —|

1 = 1 only). Then by max-min composition we have

P11
o P
P =0
0
L 0

P11
_4  |P11
P =10
0
L 0

P11
_e |P11
P =10
0
L 0

P11
_g |Pu
P =10
0
L 0

P12
P12
0
0
0

P12
P12
0
0
0

P12
P12
0
0
0

P12
P12
0
0
0

P13
P13
0
1
0

P13
P13
0
0
1

P13
P13
1
0
0

P13
P13
0
1
0

P13
P1a
0
0
1

P13
P13
1
0
0

P13
P13
0
1
0

P13
P13
0
0
1

P14
P1s
1
0

0 |

P13
P13
0
1

0 |

P13]
P13
0
0

1

P13]
P13
1
0

04

P11
P11
0
0
L 0

P11
P11
0
0
L 0

P11
P11
0
0

L0

P11
P11
0
0

L0

P12
P12
0
0
0

P12
P12
0
0
0

P12
P12
0
0
0

P12
P12
0
0
0

P13
P13
1
0
0

P13
P13
0
1
0

P13
P13
0
0
1

P13
P13
1
0
0

P13
P13
0
1
0

P13
P13
0
0
1

P13
P13
1
0
0

P13
P13
0
1
0

with p11 = P12 = P13 = P14 = Pis ,(note

P13
P1a
0
0

1 |

P13
P13
1
0

0 |

P13
P13
0
1

0 |

P13
P13
0
0

1 |
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—4 —3n+2 —5 —3n+

—3n+1
" dP

3 —6 —
So, P =P, P =P ,an =P forn=1,23,...Therefore, P is
not ergodic. Here conditions 1,2 and 3 are satisfied but condition 4 is not

satisfied.

[N

5]
|

|

p>1 = 1 only). Then by max-min composition we have

With p11 = P12 = P13 = P14 = P1s ,(note

|
5. IfP=
|

co o RS
cor o~
orR oo
_, o oo
cocoos

[P11 P12 P13 P14 Pis] [P11 Pz P13 P4 Pis]
o P11 P12 P13z P Pis| _; |P1n Pz P13 Pia Pis|
p :i 1 0 0 o0 O |:P :iﬁn P12z P13 Pua Dis |
l 0 1 0 0 0 J l 1 0 0 0 0 J

0 0 1 0 0 0 1 0 0 0
[2211 2212 2213 1214 2215 1 [1?1 1 Pz P13 P DPis ]

4 |P11 P12 P13 Pu Pis| _s |P11 Piz P13 P4 Pis
P =|p11 P12z P13 DPus Dis|,P =|Pu1 P12 P13 DPus Pis)
P11 P12z P13 Pus Dis P11 P12z P13 Pus Dis

1 0 0 0 0 P11 P12 P13 P Pis

—6 — —5 —
P = P . Hence, P =P for m= 5,6,7, .... Therefore, P is ergodic.

We can notice from 5 above that even though condition 4 of Theorem 4.4.2 does not hold

the result is satisfied.

We can notice from the above examples that conditions 1,2, and 3 of Theorem
4.4.2 can not be reduced, and condition 4 can be modified in a way that guarantees the

result of Theorem 4.4.2.
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Corollary 4.4.4: For n > 4 let P = [p;;| be an n x n fuzzy transition matrix, such that
pj=0or1fori=1,..n—1,j=1,..,n and in each row except possibly the last

one, exactly one entry is 1. If the following conditions hold:
1. p,, isthe maximum among the entries in the last row.

2. py #1fori=1,..,n—1.

3.1fp; = 1thenp; =0fori#j,i,j=1,..,n—1

4. ﬁiln =ﬁi2n ="‘=ﬁl’kn = 1W|th kE{Tl—3,n—2,n—1},i1,i2,...,ik €

{1,2, ...,n — 1} Then, by max-min composition P is ergodic.

Proof. If k =n— 3 then ﬁiln = ﬁizn = e = ﬁin_3n = 1, il,iz, ...,in_g € {1,2, e, —
1, and pin—1/1=pin—2/2=1 for in—1,in—2€12,..,n—1-i102,..,in—3 for
j1,J2 € {1,2,...,n — 1}. Either i,y <i,_, oOr i,,_q > i,,_, we may assume that i,_; <

ln—2.

Case 1: If j; = j, then



en(n—l)

LetE, =

rown—k+1-1 ey

€n1

el

O O e

O O e

_ﬁn 1
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0

ﬁnjl

T T
[enn €n(n-1)

0

ﬁn(n—l)

column n—k+1

T
€nk

1

ﬁnn -

—TOW i,_4

— TOW i,,_5

enz €n1). Then,

E, is ann x n permutation matrix and E,E, = I, . Consider T = E, PE,,.

]|

[Pn1

0

O O e

pnh

0

U

p_n(n—l)

0

Pnn

1

—rown-—i, ,+1

—rown-—i, ;+1
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columnn—j; +1

Pnn ﬁn(n—l) ﬁnjl t Pny]

1 0 0 e 0

1 0 0 0

0 0 1 0 [crown—i, ,+1
T=EPE,=| 1 O 0 0

1 0 0 0

0 0 1 0 lrown—i, ;+1

1 0 0 0

1 0 0 0

Therefore, T satisfies the conditions of Theorem 4.4.2 and there is k € N such that
T™ =TK for =k,k+ 1,k + 2, ... , where the rows are identical in TX. Therefore,

T =TK = (E,PE,)" =TX

(EnPEn)(Eann) """ (EnPEn) = ’I_;K

———

L m — times _ _ _ _
E,PI,P----- I,PE, =T = E,P"E, =TK = P™ =E,TXE,, m=k,k+1,--

Since E,, is a permutation matrix we conclude that the rows are identical in E,TXE,,.

Hence, P is ergodic.

Case 2 : j; # jpthen either j; < j, or j; > j, we may assume that j; < j,.



ol
I

0

_ﬁn 1

0

ﬁnjl

0
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ﬁnjz

0

ﬁn(n—l)

1

ﬁnn -

—Tow i,_q

—ToW i,_,

We use the same E,, as in Case land consider the composition T = E,, PE,,

el

Pnj,
0

Pnj,
0

[E

ﬁn(n—l)

0

ﬁnn i
1

S R S

—rown-—i, ,+1

—rown-—i,_1+1
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columnn —j, +1 columnn—j; +1

J J

[Pnn ﬁn(n—l) vt Pnj, v ﬁnjl * DPa1]
1 0 e 0 - 0 -0
1 0 e 0 - 0 -0
0 0 1 0 e 0 |lerown-—i, ,+1
1 0 0 0 0
0 0 0 1 0 lcrown—i,_;+1
1 0 0 0 0
1 0 0 0 0

Therefore T satisfies the conditions of Theorem 4.4.2 and as in Case 1 before we

conclude that P is ergodic.

Similar argument appliesfork =n—2andk =n — 1.

Corollary 4.45: Forn>4letP = [ﬁij] be an n x n fuzzy transition matrix such that,
p;j =0or1forie{l,..,n}—{k},j=1,..,n, where 1<k <mn, and in each row

except possibly the k%" one, exactly one entry is 1. If the following conditions hold:
1. P is the maximum among the entries in the k" row.

2.p; # 1for,i € {1,...,n} — {k}.

3.1fp; = 1thenp;; = 0fori #j,i,j € {1,..,n} — {k}.

4Dik = Pigk = =Dy =1 where l€{n—-3,n—-2,n-1} and iyiy .., €

,..,n}— {k}.
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Then, by max-min composition P is ergodic.

Proof. If [ =n—3 then Py = Di,k = =Di, ok = 1, i1, 00 i3 €{1,...,n} —
{k}, and ﬁin—ljl = ﬁin—zjz =1 for in—ll in_z € {1, ,TL} - {ilﬁ iz, ey in_3, k} for
ji1.j2 € {1,..,n} —{k}. Either i,_4 <i,_, Or i,_4>i,_, We may assume that

in—l < in—2'

Case 1: If j; = j, then

0 0 1 0 0 0
0 0 1 0 0 0
o - 0 0 0 1 o 0 |erowi, 4
0o - 0 1 0 e 0 -0
) 0o - 0 1 0 e 0 -0
P=pk1 ** DPrk-1) Pkk Prk+1) *° DPkj; " DPrn
0 - 0 1 0 e 0 0
0 0 1 0 0 0
0 0 0 0 1 0 |<row in_z
0o - 0 1 0 e 0 -0
0 0 1 0 0 0
r Enk
€n2

LetE, = [énk-1)

€n1 |« kthrow
€n(k+1)
€n(k+2)
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kthcolumn

\2

T T T T
€nk—1) ©n1 Cnk+1) Cn(k+2)

eT’Il-'TL]a

then E,, is an n X n permutation matrix and E,E, = I, . Consider the composition

T = E,PE,.

Hence, T = E, PE,,

Dk Pi2
1 0
1 0
0 0
1 0
{1 o
1 0
0 0
1 0
L1 0

OO O e

Pk(k-1)

0

0

0

0

0

0

0

0

0
Prk-1) Dk1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Pik  Pk(k+1)
1 0
1 0
0 0
1 0
1 0
1 0
0 0
1 0
1 0
Pk (k+1)

0
0
0
0
0
0
0
0
0

Pkjs
0

—_

Pkj,
0

[N

o o

0 |«row i,_4

0 |« k"row

0 lerow i,

—TOoW I,_4

« kth row

—Tow i, _,
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Therefore T satisfies the conditions of Theorem 4.4.2 and as in Case 1 of Corollary

4.4.4 before we conclude that P is ergodic.

Case 2: j; # jthen either j; < j, or j; > j, we may assume that j; < js.

We use the same E,, as in Case 1 and consider the composition T = E, PE,,

F 0 e O e 0 1 0 S T
o - 0 0 1 0 0 0
T T 0 0 0 el 0 e 0 [erow iy
0 -« 0 0 1 0 e 0 -0
0 -« 0 0 1 0 e 0 -0
P =|pr1 Pkj, *** Prk-1) DPkk DPr@k+1) ° Pkj, *° DPrn
0 - 0 - 0 1 0 e 0 -0
0 0 0 1 0 0 0
0 0 0 0 0 1 0 lerow iy,_,
0 0 0 1 0 0 0
Lo . 0 - 0 1 0 S | NI |

Pr1 " Prj; " PrGe-1) Pkk  Prk+1) vt Prj, "t Prn]
0 -« 0 - 0 1 0 e 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0 |«row i,_4
0 -« 0 - 0 1 0 e 0 -0

E.P = () 0 () 1 () () () — k" row
0 0 0 1 0 0 0
0 0 0 0 0 1 0 lerow iy
0 0 0 1 0 0 0
0 0 0 1 0 0 0
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Hence, T = E, PE,

kthcolumn
[Pkk *** Pkj; " Pktk-1) Pk1 Pkk+1) " Pkj, °° Pkn]
1 e 0 - 0 0 0 e 0 -0
1 - 0 - 0 0 0 0 0
0 -« 1 . 0 0 0 e 0 e 0 |eTOow iy
1 e 0 - 0 0 0 e 0 -0
11 .. o0 .. 0 0 0 e 0 e 0 |& Kk row
1 0 0 0 0 0 0
0 0 0 0 0 1 0 lerowi,_,
1 0 0 0 0 0 0
1 0 0 0 0 0 0

Therefore T satisfies the conditions of Theorem 4.4.2 and as in Case 1 of Corollary

4.4.4 before we conclude that P is ergodic.
Similar argument appliesforl=n—-2andl =n — 1.

Remark 4.4.6: We prove Corollary 4.4.5 using another permutation matrix E, as

follows:

If | =n-— 3 then ﬁilk = ﬁizk = e = ﬁin_3k =1, il,iz, ...,in_3 € {1, ,Tl} - {k}, and

ﬁin—ljl = ﬁin—zjz =1 for in—l’ in_z € {1, ,n} - {ill iz, . in_3, k} for jl,jz €

{1, ...,n} — {k}. Either i,,_; < i,_5 Ori,,_1 > i,,_, We may assume that i,,_; < i,,_.
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Case 1: If j; = j, then

0 0 1 0 0
0 0 1 0 0
o - 0 0 0 1
o - 0 1 0 0
o - 0 1 0 0

P=|pk1 ** DPrk-1 DPkk Prk+1) = Prjy
o - 0 1 0 0
o - 0 0 0 1
o - 0 1 0 0
0 0 1 0 0

€nk
€h(n-1)

€n(n-2)

Let E,, = |en(n—-k+2)

€n1 « k" row
€n(n—k)
€n2
€nn
kthcolumn
_ [T T T T T T
_[enk €h(n-1) Cn(mn-2) Chin—k+2) ©n1 C€nm-k)

Then, E, isan n X n permutation matrix and E,E, = I, .

Consider the composition T = E,, PE,,.

Pin

o O

—TOoW i1

—TOoW I, _,

T
enn |-
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[Pr1 ° Prtk-1) Prk  Prkk+1) - Prjy 0 Pra)
0 0 1 0 0 0
0 0 0 0 1 0 [~rown—i, ,+1
0 0 1 0 0 0
Enﬁ N : : : : :
O 0 1 0 0 O <—kthTOW
0 0 1 0 0 0
0 0 0 0 1 0 lerown—i,_;+1
0 0 1 0 0 0
0 0 1 0 0 0
columnn—j; +1 kthcolumn
N2 N%
Prk Prk(n—1) *° Prjy " Pr(m—k+2) Pk1 Prtn—k) ° Pk2  Pkn)
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 [<?!
1 0 0 0 0 0 0 0
T = : 5
1 0 0 0 0 0 0 0 |<
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 o[
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

Lirow n—i, , +1,
2: k" row,

3irow n—1i,_1+ 1.
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Therefore, T satisfies the conditions of Theorem 4.4.2 and as in Case 1 of Corollary

4.4.4 before we conclude that P is ergodic.

Case 2: j; # jpthen either j; < j, or j; > j, we may assume that j; < js.

We use the same E,, as in Case 1 and consider the composition T = E, PE,,.

o T T 0 1 0 S T
o - 0 0 1 0 0 0
0 « 1 =« 0 0 0 o+ 0 - 0 |erowi,,
0 -« 0 0 1 0 e 0 -0
0 -« 0 0 1 0 e 0 -0

P = |pk1 Prj,  Prtk-1) Prk  Prk(k+)  Pkj, 0 Prn
0 -« 0 - 0 1 0 e 0 -0
0 0 0 1 0 0 0
0 e O ces O 0 O ces 1 e O “— row in—2
0 -« 0 0 1 0 e 0 -0
0 0 0 1 0 0 0



[Dr1

Pkj,

0

(e}

Pk (k-1)
0

90

Pk
1

(e}

O = e

Pk (k+1)
0

Pkj,
0

Uy

ﬁkn i

Lirown—i, ,+1,
2: k" row,

irow n—i,_+1




columnn—j, +1

\2
[Pk Prtn-1) ™ Py,
1 0 0
1 0 0
0 0 1
1 0 0
7o : :
1 0 0
1 0 0
0 0 0
1 0 0
-1 0 0

91

kthcolumn
i} v
Prtn—k+2) Pr1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

columnn—j; +1

}_?k(n—k)
0

(e}

\2

Pij,

0

o

Piz
0

o

ﬁkn_
0

o

Therefore T satisfies the conditions of Theorem 4.4.2 and as in Case 1 of Corollary

4.4.4 before we conclude that P is ergodic.

Similar argument appliesforl=n—2andl =n — 1.

Lirown—i, ,+1,

2: kth row,

irown—i, 1 +1.




92
Remark 4.4.7: We use Corollary 4.4.4 to prove Corollary 4.4.5 using either the

permutation matrix E,, or B,, where,

E,, given by:

€n(k-1)
En = €nn < kt" row
€n(k+1)

€n(n-1)
€nr

kthcolumn

N

_ T T T T T T T _
_[enl €2 "t Epk-1) Cnn Cnk+1) T T En(n-1) enk]a and E,E, =

I,

P, given by:

€nn « kth row

enk | kthcolumn

T T T T T T T T
_[enl en(n—l) en(n—Z) en(n—k+2) €nn en(n—k) "t €n2 enk] and
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Similar to the above arguments in corollaries 4.4.4, 4.4.5, and 4.4.6, we consider the
max-min composition E, PE, or P,PP, in either case the resulting matrix satisfies the

conditions of Corollary 4.4.4, and as in Case 1 of Corollary 4.4.4 before we conclude

that P is ergodic.
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Conclusions:

In this work, we studied finite fuzzy Markov chains concentrating on their
ergodic behavior. The limit of powers of 2 x 2 regular fuzzy transition matrices was
studied. The uniqueness of that limit under certain conditions was proved for a special
fuzzy number in addition to the triangular and trapezoidal cases. On the other hand, we
classified the fuzzy states similar to the crisp states and we presented the similarities and
the differences between them. Then, we studied the ergodicity of a particular class of
finite fuzzy Markov chains where exactly one row of the transition matrices consists of
arbitrary values (between zero and one) while the other rows’ entries are one in one

place and zero elsewhere.

In this work, we studied fuzzy Markov chains in two ways, one by considering
the classical (crisp) Markov chains, and replacing the uncertainties in the transition
matrix by fuzzy numbers, then using the restricted fuzzy matrix multiplication to find
the powers of the resulted matrix. Another way is by considering the fuzzy transition
matrix of a fuzzy Markov chain as a fuzzy relation on a finite state space; in this case
the states are fuzzy sets. In fact, there is a third way to study the fuzzy Markov chains
using the concept of Possibility Measure [32], from which the transition fuzzy

possibility and the transition fuzzy possibility matrix were defined [28].

Finally, in this work we studied the finite and stationary (homogeneous) fuzzy
Markov chains. As a future work, we recommend studying the possibility of
generalizing the basic properties of classical Markov chains to the infinite fuzzy Markov

chains and to the non-stationary (non-homogeneous) fuzzy Markov chains.
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Appendix:
In this appendix we give the proof of Theorem 4.4.2.

Proof. If k =n—3thenp; 1 = p;,1 = =pP;, 1 = 1, 14,12, ..., I3 € {2,3,...,n}, and

ﬁin—ljl = ﬁin—zjz =1 for in—l’ in_z € {2,3, ...,n} - {ilﬂ iz, . in_g} for jlljZ €

{2,3,...,n}. Eitheri,_; <i,_,o0ri,_;>i,_,wemayassumethati,_; <i,_,.

Let R™ denote the ith row in P (the m‘" power of P), then R™ ™ = RWP™ _ During

the proof R will be computed by R™™ = R™pF and R = RVYP" for

Now we consider two cases:

Case 1: jl :jz then ﬁin—ljl = ﬁin—Zjl =1 for in—l'in—Z € {2,3, ...,n} - {il,iz, ...,in_3},
and j; = i;, for some k € {1,2,...,n — 3} otherwise (i.e. j; = i,,_1 Or j; = i,,_») We have
= 1 which contradicts condition 2.

Pjij

P11 P12 Pi; 0 Pin]

1 0 - 0 - 0

1 0 0 0

0 O 1 O —row in—l
5.1 o 0 0

1 0 0 0

0 0 1 0| «rowi,

1 0 0 0

1 0 0 0
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. —2
Consider, P~ then R =R® =..=R?® =R, R® =R® =RP =R" by

_(2 C L =) _ = _(2 _ _
Lemma 4.4.1. R%Z) = [pij)], forj # j; pij) = py; and pfji = max{pljl,plin_l,plin_z} by

condition 1. Therefore,

I, T 1CO N S,
P11 P12 Pij, P1in
Pui1 Pz vt Py, " Pin
Pui1 Pz vt Py, " Pin
1 0 0 0 |[«—rowi,_4
p- =P Pz = Py, v Pin
P11 Pz - Py, P
1 0 vee 0 ves 0 j«—rowi,_,
P11 Pz - Py, " P
(P11 P12t Piy,  Pind
_ —3
Consider, P~ then R =R =..=R® =r®, RY =rP =pr?=R? =
1 3 _3 o _3) _ -
R§ ) by Lemma 44.1. R£ ) = [pfj)], Vi # 1 pfj) =Py and

_(3 _ _ _(2 - 3 2 _(2 _
psz = max{pljl,plin_l.plin_z} = pl(jz by condition 1. So, R£ ) = R§ ) f pfjf = P1j,

=3 o
then R = R™ so in P~ we have R® =R = ... = R® = RW_ It is obvious that

-3 —_ —3 —
P = P . Hence, P =P for m= 3,4,5, ... . Therefore, P is ergodic. If ﬁgf = P1i,_,

then
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P11 P12z Piip,  Pin]
P11 Pz - P,y " Pin
Pui1 Pz P,y " Pin
P11 Pz 0 Py Pin|e—rowi,,
5 _ 15'11 25?2 ﬁu'n_l 15%11
Pui1 Pz P,y " Pin
P11 Pzt Piy v Pin|e—rowi,_,
P11 P12 > Pi,,  Pin
P11 P12 " Pii,., - Pinl
—
Consider, P then
@ _ p@ _ _p@ _pB _p@ p@ _p@ _ pB _ pB _ p@
R,~=R, =-=R " =R~"=R"R " =R~ =R"=R =R by Lemma

4 _(4 . . _(4 _ _(4 _ - _
441. RV = [pf,-)], for j#ji, Py =Py, and Bl =max{py,, Pri,_,»Pri,_,} =
—4
ﬁl(,zz = P1;,_,» DY conditionl. So Rf” = R§2), and so in P we have, R§4) = Rg‘” ==
-5 —4 — —4 —
R,(f) = sz). It is obvious that P = P . Hence, P =P for = 4,5,6, ... . Therefore, P is

—m —4

ergodic. Similarly if ﬁl(]zf = P1;,_, then Rf” = R§4) == R,(f) = Rf). Hence, P =P

for = 4,5,6, ... . Therefore, P is ergodic.

Case 2: j; # j, then either j; < j, or j; > j, we may assume that j; < j,.

So ﬁin—ljl = ﬁin—zjz =1 for in—li in_z € {2,3, ,n} - {ill iz, ey in_3}, and jl,jz =

{2,3,...,n}.

Now we have the following subcases:
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(1) j1 = ik, j2 = iy , Where k,m € {1,2,...,n — 3}.
(2) j1 = iy, j2 = ip—1, Where k € {1,2,...,n — 3}.

(3) j1 = in_2,jo = iy, Where k € {1,2,...,n — 3}.

Note that the cases j; = i,,_1,j2 = i,—p and j; = i,,_,,j, = i,,_1 are not taken into account
since they contradict conditions 2 and 3 respectively. Again we keep in mind that i,,_; <

i,,_», and continue with this assumption throughout the proof.

We first deal with the subcase (1):

P11 Pz 0 Py, vt P, 0 P

1 0 « 0 -« 0 - 0
1 0 0 0 0
0 0 1 0 0 [—rowiy

5|1 0 0 0 0
1 0 0 0 0
0 0 0 1 0 [e—rowi,,
1 0 0 0 0
1 0 0 0 0

—2
Consider, P then Rl.(lz) = Rl.(f) == Rl.(nZL = Rfl), Rl.(nzzl = Rj(ll) = Ri(kl), and

@ _ p»_ p@® @ _ |3 o =(2) _ =
R, =R.,” =R by Lemma 4.4.1 . R, —[plj ] for j +# ji,j2, P:;” = D and

ln-2 im

_(2 _ _ _(2 _ _ ..
psz = max{PUl,Pun_l}, psz = max{pljz,plin_z}, by condition 1.
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- _ _(2 _(2 _ _
P11 P12 v PLB Li * Pin
Pu1 Pz 0 Py, 0 P, P
Pu1 Pz 0 Py, 0 P, P
1 0 cee 0 cee 0 cee 0 (—rowin_l
ﬁz _ P11 P12 - Py v Py, 0 P
P11 Pz Py, 0 P, v P
1 0 = 0 = 0 -« 0 |—rowi_,
P11 Pz - Py, o P, v P
(P11 P12 Py, v Py, - Pind
=3
Consider, P then
B _pB _ ... _pB _ p® 3 _ p@ _ p@ _ p 3 _ p@ _ p@ _
Ril - Riz - - Rin—3 =Ry, Rin—l - le - Rik =Ry, Rin—z - Rjz - Rim -
1 3 _(3 L, _3) _ -
Rf ) by Lemma 441 . R§ ) = [pL.) ,  for j#juj, pl(j) =p;; and
—(3) ~(2) -3 —(2)

Pij, = max{ﬁljl,ﬁlin_l} =Dijp Pij, = max{ﬁljz,ﬁlin_z} = Dijy» by condition 1. So

Rf) = sz). We have the following subcases:

. @) _ - @) _ -
Lo Py, =Py, and pyy, =P,

.. 2 _ _(2 _
ii. p{jz = P1j, and psz = P1i,_,-

—(2 — _(2 —
iii. pl(jf = p1,_,and psz) = P1j,-
. (2 _ _(2 —
\% pl(,-f = P1i,_,and pf,-; = Pliy_y
. L. . —4 —3
For the subcase i, R™® = R®) = ... = R® = RMand it is obvious that P = P". Hence,

—3 —
P =P for=34,5,... Therefore, P is ergodic.
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. " : : ,
For the subcases ii and iii we need to find P from which we have —as previously shown in

.. . —5 —4 — —4
Case 1- R = R{¥ = ... = R™® = R and it is obvious that P = P_. Hence, P = P
for = 4,5,6, ... . Therefore, P is ergodic.
For the subcase iv:
P11 P12z " Piipy, 7 Plip, 0 Pin]
P11 P12 - Pi,, ° Pii,, ° DPin
P11 P12 - Pi,, ° Pii,, ° DPin
Pi1 P12 - Py, vt D1, v Pin|e—rowi,
B _ Pu1 Pz Pripy, v Pli,, U Pin
P11 P12 - Pi,, ° Pii,, ° DPin
Pi1 P12 - Py, 0 D1, v Pin|e—rowi,,
Pi1 Pz Piipy, v Pli,, 7 Pin
P11 P12z Pripy, 0 Plip, " Dinl
—4
Consider P , then R = R = ... = R® =R® = p®, r® =Rg® =p® = p®,
1 2 In-3 ln—1 J1 19%

_(4 . .o _(4 _
RW = R].(;) = Ri(,i) = R%Z) by Lemma 4.4.1 . Rf” = [pfj)], for j # ji,J2, pl(].) = py; and

in—2
_(4 _ _ _(2 - _(4 _ _ _(2 _
p{]f = max{plin_li pljl} = p§]3 = plin_l’ p§]; = max{plin_z' pljz} = pi]i = plin_z . In

—5 4
P we have RYD = R§4) == R,(f) = R%Z) and it is obvious that P = P . Hence,

—4 —
P =P for=4,56,... Therefore, P is ergodic.

Next, we deal with the subcase (2) in which j; = iy, j, = i,—1, Where k € {1,2,...,n — 3}.
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P11 P12z 0 Py, v Py, 0 P
1 0 « 0 -« 0 - 0
1 0 0 0 0
0 0 1 0 0 |—rowi,_4
5_|1 0 0 0 0
1 0 0 0 0
0 0 0 1 0 l—rowi,_,
1 0 0 0 0
1 0 0 0 0
) —2
Consider, P then,
@) _ p@ _ —_p@ _p p@ _ p10 _ p® @ _ p@1 _ @
R =R =-=R" =R "R =R "=R~ R’ =R~"=R " bylemma

44.1. sz) = [ﬁg)] for # ji,j» ﬁg) = Py, but condition 1 implies that
~(2)

By, = max{py,, Pri,_, } = max{pyj,, byj, ),

ﬁszz = max{ﬁl]z’ﬁlin_z} = max{ﬁlin_ll ﬁlin_z}-

~(2) ~(2)

D11 D12 by, " Py, P1n |
P11 Pz - Py, 0 P, 0 P
P11 P12 0 Py, o Py, P
1 0 0 0 0 |—rowi,4

P —|Pu1 Pz v Py, v Py, v Pin
P11 Pz Py, ot P, P
0 0 1 0 0 —TOW I,_;
P11 Pz Py, 0 P, P

P11 P12z Py, P, Pl
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N —3
Consider, P~ then Ri(f) = RS) =...=R® =pW RO - Rj(f) = Ri(kz) =RrW,

ln-3 ln—-1

3 _ p@ _ p@ _ p@) _ p@ 3 _ [3 N (C)
R =R =R =R ~=R; by Lemma 4.4.1 . R;™ = [plj ] for j # ji, ) Py =

in-2 ln—1

_ _(3 _ _(2) (3 _ _ (2 3
py; and Pfjf = max{py;,, b1y, ,} = Pijfv PL-Z) = max{py;,_, b1j,} = PL?- So, R =
R12.
- _ _ (2 _(2 _ -
P11 P12 PL-B L; t Pin
72D DO | (G )
P11 P12 Py, 1 P1in
_. _. _22 _12 _.
Pu1 P12z PL-B PL-; t Pin
P11 Pz vt Py, vt Py, 0 Pin|e—rowi,
=3 Ngi By o D o B L5
p =P11 P12 P1j, P1j, Pin
_ _ (2 2 _.
P11 P12 PL-B L; t Pin
1 0 0 0 0 |—rowi,_,
2P T | R (€O R
P11 P12 P1j, 1), Pin
_ _ _(2 2 _
(P11 P12 PL-B PL-; " Pind
_ —4
Consider, P then R =R = . = R® =R® =Rr® R® =p® =Rp® =R?,

@ _ 53 _ p3) _ p@ _ p@ _ p® @ _ [-@® L
RY =RP =R =RP =RP =R by Lemma 441 . R = [5], for j # ju. )y

in—2 ln—-1
_(4 _ _(4 _ _(2) _(4 _ _2
Pl(j) = Dyj and Pl(ji = max{PUl'Pun_l} = Pfji, PL-Z = max{pljyplin_z} = PL-; by

condition 1.

So, R§4) = RF). As before, we have the following subcases:
: —_(2 _ _(2 _

I Pl(ji = Py, and PL-Z = DPij,-

.. 2 _ _(2 _
ii. pfji = P1j, and psz = Pii,_,-
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—(2 _ _(2 —
ii. psz = pll-n_land psz = P1j,-

. —(2 — _(2 _
Iv. p;jz = P1i,_,and Psz) = P1iy_p-

. L —5 4
For the subcase i, R™ = R{" = ... = R™® = RMand it is obvious that P” = P . Hence,

—4 —
P =P for m=45,6,.... Therefore, P is ergodic.

For the subcases ii and iii we need to find P° from which we have R® =RY = ... =

—6 —5 — —5
R,(ls) = Rf” = R%Z) and it is obvious that P =P . Hence, P =P for =567, ... .

Therefore, P is ergodic.

For the subcase iv:

P11 P12 Pii,., 0 Pii,, 0 Pin)
P11 Pz - Pi,; ° Pii,, ° Pin
P11 Pz - Pi,; ° Pii,, ° Pin
P11 Piz " Piiysy " Plin, 7 Pinle—rowi, ,

54 _|P11 Pz " Pii,y " DPii,, 7 Pin
P11 Pz - Pi,; ° Pii,, ° Pin
P11 Pz 0 Py, vt Py, 0 Plalf—rowi,_,
P11 Pz - Pi,; ° Pii,, ° Pin
P11 Pz Pri,y, 0 Plip, - Pind

—s5
Consider, P then R =R = =R® =R{"=R{?, R® =Rr" =R =R{,

R® =RW = p®
J2 ln—

ln-2

5 (5 L.
- Rj(f) = Ri(,?) =R® by Lemma 4.4.1 . R® = [pf)], for j # ji, jo

1 J

_(5 _ _(5 _ _(2 _ _(5 _
Pf,-) =p,; and psz = max{pljlfplin_l} = Psz = Diiy_y» Psz = max{Puz,Plin_z} =

—(2 _
pfjg = P1iy—-



108

—5 A .
so, RY =¥, In P, R® =R = ... = R® = R® = R® and it is obvious that

—5 _
Hence, P =P for m =5,6,7,.... Therefore, P is ergodic.

For the subcase (3) in which we have j; = i,,_5,j, = i}, Where k € {1,2,...,n — 3}, we

deal with it similar to the subcase (2) before.

We have proved the result when k=n-3 so p;,1 =0i,1=""=D; ,1 =1,
i1,i2, wslp_3 €{2,3,..,n}, and p; ;, =P;, ,;, =1 for i,_q,i,, €{23,..,n}—
{iy, iy, s in_3}, Jj1.j2 € {2,3, ...,n}.

Similarly we can prove the theorem when k =n —2 s0 p;;1 = Pi,1 = = Pi,_,1 = 1,

il' iz, . in_z € {2,3, ...,n}, and ﬁin—ljl =1 for in—l € {2,3, ...,n} — {ill iz, . in_z},

ji €{23,...,n}

—2
Finally, for the case k = n — 1, we have py; = p3; = - = P,y = 1 and by considering P

— —2
we get sz) = R§2) == R,(lz) = RP). It is obvious that P =P for m =2,34,...

Therefore, P is ergodic, and this completes the proof.



