
Evaluation of WIEN2K Performance on MPICH2 vs. MPICH1

Hadi Khalilieh and Nidal Kafri

Department of Computer Science, Al-Quds University, Jerusalem, Palestine

hkhalilia1@science.alquds.edu, nkafri@science.alquds.edu

Rezek Mohammad

Palestinian Technical University/Khadoorie, Middle East Technical University/physics department

esteteh@hotmail.com

ABSTRACT

The emerging multi-core computer architecture

attracts the researchers to utilize this architecture

as an adequate and inexpensive solution to achieve

high performance computation for many problems.

Where, the multi-core architecture enables us to

implement shared memory and/or message passing

parallel processing paradigms. Therefore, we need

appropriate standard software libraries in order to

utilize the resources efficiently for a given

computational problem.

In this work we evaluate the performance of two

versions of the well known massage passing

interface (MPI) library: MPICH1 vs. MPICH2. In

our experiments we used two benchmarks. The

first one is the WIEN2K application which is based

on Density Function Theory, and the second is a

Matrix multiplication. The results show that we

achieve better performance when MPICH2 is used

than MPICH1.

 KEYWORDS

Parallel Processing, Message Passing Interface

MPI, MPICH1, MPICH2, performance, multi-core

systems, WIEN2K.

1. INTRODUCTION

In order to achieve high performance

computing i.e., reducing computing elapsed

time, parallel processing is widely used in

scientific computing, engineering, multimedia

application, industry, computer systems,

statistical applications, and simulation. One of

the important applications that need to speed

up computation is WIEN2K application which

is base on Density Functional theory.

Usually parallel processing can be

implemented on shared memory computer

systems or distributed memory systems using

message passing paradigms. A hybrid

approach using both paradigms also can be

implemented. Parallel processing was usually

carried out on expensive supercomputers and

mainframes. After that, the emerging high

performance computer network and protocols

attracted the researcher to use the distributed

memory parallel processing on clusters of on

shelf computers and Grid computing.

In the past decade, the development of multi-

core systems shifted the interest of many

researchers towered parallel computing on

such multi-core systems. Thus, we can achieve

relatively cheap high performance using

message passing, share memory, or hybrid

techniques on single or a cluster of multi-core

computers[2][3]. In order to facilitate

realization of parallel programming on

different platforms, there are several

supporting libraries. For example, we can use

PVM, JPVM and MPI for message passing on

distributed memory. Also Posix and OpenMP

are used for multithreading on shared memory

[3]. It should be noted that these libraries

ISBN:978-0-9891305-6-1 ©2014 SDIWC 112

mailto:hkhalilia1@science.alquds.edu
mailto:nkafri@science.alquds.edu
mailto:esteteh@hotmail.com

provide us with well defined standard interface

to achieve portability and flexibility of usage.

However, the developers of these libraries

intend to improve the implementation to cope

with the emerging platforms to increase the

utilization efficiency. In this work we focus

on evaluating the performance of different

versions of MPI library namely MPICH1 and

MPICH2. Since WIEN2K is currently using

MPICH1.

The WIEN2K can simulate physical and

chemical systems supposed to form a new

material, this is very necessary to the

laboratory person, who can produce the

desired material such as drug and medicine

[8]. The WIEN2K applied a parallel method to

solve quantum mechanics equations based

Density Functional Theory (DFT) to find the

cohesive energy of any material.

In this work we evaluated the performance of

MPICH1 and MPICH2 by running WIEN2K

that originally uses MPICH1 and the new

implementation of WIEN2K on MPICH2 as

benchmark. Moreover, we implemented a

matrix multiplication on both MPICH1 and

MPICH2.

This paper is organized as follows: Section 2

reviews the main difference between MPICH1

and MPICH2. In section 3, literature review

and background are introduced. Next section

(4) discusses the experiment and the results.

Finally, a conclusion and future work are

provided in section 5.

2. PRELIMINARIES

Multi-core systems and clusters become an

interesting and affordable platform for running

parallel processing to achieve a high

performance computing for many applications

and experiments. For instance: internet

service, database, scientific computing and

simulation. This is due to their scalability

performance/cost ratio [1].

On the other hand, there are many Libraries to

support the shared and distributed memory.

The message passing interface (MPI) is a set

of API functions that enable programmers to

write parallel programs based on message

passing paradigm. One of the well known

APIs MPICH1 which established based on

MPI standard that founded in April 29-30,

1992 work shop in Williamsburg Virginia [4].

This library API supports FORTRAN and C

programming languages. It has been issued

with several modifications and extensions to

support dynamic processes, one-sided

communication, parallel I/O, etc [13][14].

MPICH2 standard is intended for use by all

those who want to write portable message-

passing programs in Fortran 77, FORTRAN

95, C and C++ [5]. The improvement of

MPICH2 focused on many issues and

functionalities such as dynamic processes,

one-sided communication, parallel I/O, etc

[13][14]. Of course, a number of changes

about how you run them, dynamic spawning

tasks and the nature of communication will be

different. By new added features in MPICH2,

we will get it more robust, efficient, and

convenient to use [4]. Consequently, we will

focus on the improvements in MPICH2 that

we believe they have an impact on the

performance:

1. MPICH1 focused mainly on point-to-point

communications But MPICH2 included a

number of collective communication

routines and was thread-safe [4].

2. MPICH2 supports dynamic spawning of

tasks. It provides primitives to spawn

processes during the execution and to

enable them to communicate together [11].

3. MPICH2 supports One-sided

Communication. It provides three

communication calls: MPI_PUT (remote

write), MPI_GET (remote read) and

MPI_ACCUMULATE (remote update).

These operations are non-blocking [12]

[14].

ISBN:978-0-9891305-6-1 ©2014 SDIWC 113

4. MPICH2 used generalized requests that

aren’t used by MPICH1. These requests

allow users to create new non-blocking

operations with an interface [14].

5. In MPICH2, significant optimizations

required for efficiency (e.g., asynchronous

I/O, grouping, collective buffering, and

disk-directed I/O) are achieved by the

parallel I/O system [14].

6. MPICH-1 defined collective

communication for intra-communicators

and two routines for creating new

intercommunicators. But MPICH-2

introduces extensions of many of the

MPICH-1 collective routines to

intercommunicators, additional routines for

creating intercommunicators, and two new

collective routines: a generalized all-to-all

and an exclusive scan [14].

7. MPICH2 supports MPI THREAD

MULTIPLE by using a simple

communication device, known as “ch3

device” (the third version of the “channel”

interface) but MPICH1 doesn’t support

MPI THREAD MULTIPLE [5].

8. MPICH1 doesn’t concern with

communication rather than process

management. But MPICH2 concerns with

communication rather than process

management. However, MPICH2 provides

a separation of process management and

communication. The default runtime

environment consists of a set of daemons,

called mpd’s, that establish communication

among the machines to be used before

application process startup, thus providing

a clearer picture of what is wrong when

communication cannot be established and

providing a fast and scalable startup

mechanism when parallel jobs are started.

But MPICH1 doesn’t separate them and

mpd’s are built in [15].

9. MPICH1 required access to command line

arguments in all application programs

before startup; including FORTRAN ones,

so MPICH1’s configure devoted some

effort to finding the libraries such as

libraries that contained the right versions

of iargc and getarg. But MPICH2 does not

require access to command line arguments

of applications before startup and MPICH2

does nothing special for configuration. If

you need them in your applications, you

will have to ensure that they are available

in the environment you are using [15].

Various operating systems including Linux,

Solaris, and Windows can be used for

managing computer resources such as

memory, I/O and CPU [6].

3. LITERATURE REVIEW AND

BACKGROUND

Materials are build from atoms, atoms

composed of a heavy positively charged

nucleus and lighter particles called electrons.

These particles interact with each other and

also with their neighbors in the next atoms. In

order to study the stability, structural,

thermodynamic, mechanical, transport

properties and electronic properties of these

materials we have to solve many body second

order deferential equation called equation of

state, this equation obeys the laws of quantum

mechanisms.

The equation of state composed of the kinetic

energy operators for both the nucleus and

electrons, potential energy resulted from

interaction between electrons them self,

nuclei’s them self and nuclei’s and electrons;

these operators are measured by solving many-

body Hamiltonian for the system, which is

illustrated in equation (1) [7][10]

This equation can be solved numerically after

transforming it to a one body problem after

some approximations, this method called

Density Functional Theory (DFT) [8][9].

ISBN:978-0-9891305-6-1 ©2014 SDIWC 114

𝐻Ψ = 𝐸 Ψ

Ĥ = −
ℎ2

2

𝛻2

𝑅

𝑀𝑖
𝑖

 −
ℎ2

2

𝛻2

𝑟

𝑚𝑒
𝑖

–
1

4𝜋𝜖0

𝑒2𝑍𝑖

│
𝑅

𝑖
−

𝑟

𝑗
│

𝑖 ,𝑗

 −

1

8𝜋𝜖0

𝑒2

│
𝑟

𝑖
−

𝑟

𝑗
│

𝑖≠𝑗

 +
1

8𝜋𝜖0

𝑒2𝑍𝑖𝑍𝑗

│
𝑅

𝑖
−

𝑅

𝑗
│

 (1)

𝑖≠𝑗

In Our work here the Program packages like

WIEN2K[7], using Full potential –Linear

Augmented Plane Wave And Local Orbital’s

(FP-LAPW+Lo) technique is used, in such

studies we have two main factors controlling

the calculation, these two factors are vice

versa, the first factor is the time of calculation

and the second is the sample actuality, the

sample actuality means here the number of

atoms constituting the sample, the bigger the

number is the more actual case we have, and

more complexity, this will cost a lot of

calculation time. WIEN2K package composed

of five modules, each module solve one of the

equations from (2) to (5) sequentially:

 The first module is called LAPW0, in this

process the 𝑉𝑥𝑐 is calculated in the crystal

from the initial density 𝑃0 using poisons

equation:

 ∇2𝑉𝑥𝑐 = ρ(r) (2)

 The second and third module is called

LAPW1, LAPW2 which are responsible

for building and solving the Schrӧdinger

equations (3) and (4), (setting up H and S

matrix), and solves the generalized Eigen

value problem for special point in the

crystal. The number of these points is

proportional to the reality of the study. The

high number gives more accurate results

and costs a lot of computational time, so

Balanced is essential.

 𝐻𝑘𝑠Ψ = E Ψ (3)

 (-∇2 +𝑉𝑥𝑐) Ψ = E Ψ (4)

∇2 : is the second derivative with respect to

space coordinates.

𝑉𝑥𝑐 : is the effective attractive potential each

electron feel.

E: is the energy of this electron in this crystal

phase.

Ψ: is the wave function of this electron.

 The fourth module is called LCORE: from

the density function, the electrons in the

crystal are distributed on the lowest energy

values, the density function for the core

electrons is also calculated and in LCORE

process as in equation (5):

 ρ(r)= 𝛹𝛹∗𝑑𝑟3 (5)

 The fifth module is called MIXER: the

new total density is compared with the old

density, if the values are the same or the

difference is less than an assigned value;

the self consistent (SC) is finished as

shown in Figure 1. The total energy and

wave functions of the electrons are found.

Otherwise, the new density is mixed with

old density with a percentage decided at

the beginning of the calculation to

reproduce a new density to run another

cycle to get faster convergence and

recalculate 𝑉𝑥𝑐 using equation (2).

The main scalable quantity for measuring

the stability of any material is the cohesive

energy; cohesive energy equals the

difference between the total energy of the

material in combined form and the sum of

the free atom’s energy in their free state as

shown in equation (6)
 E cohesive energy = E compound - ∑E free atoms (6)

Each stable form of these atoms can

produce positive value for the cohesive

energy, the material normally can take

more than one stable state, and the state

with the highest cohesive energy is the

most stable one [10].

The authors in [8] compared two parallel

approaches that run on MPICH1 channel.

The two methods are: Distributed k-point

and Data distribution. However, the first

one runs each of the two modules

(LAPW1, LAPW2) in parallel way. But

the other runs each of the first three

ISBN:978-0-9891305-6-1 ©2014 SDIWC 115

modules in parallel. In addition, a

comparison between serial and parallel

approaches for running Matrix

Multiplication on MPICH1 was in [1].

 no

 yes

Figure 1: Physical problem solving steps

4. EXPERIMENT AND RESULTS

DISCUSSION

In our study, we focused on distributing tasks

of WIEN2K program using MPICH1 and

MPICH2 on multi-core machine. Whereas, in

[8] the experiments were carried out on a

cluster using MPICH1 to distribute WIEN2K

task. The main contribution in our work

depends on the comparison between the

results of these experiments.

Our experiments were running on Linux

(Fedora 14) installed on multi-core (quad)

machine (Intel Core i5 3GHz processor); the

specification details of the experiments

platform/machine are listed in Table 1.

 Table 1: Machine Specifications

No Specification Multi-Core PC

1 CPU speed Quad 3 GHz

2 RAM size 8 GB

3 Cache 8 Mbyte

4 HD speed 7200 RPM

To accomplish the calculations, a set of

programs were installed on Fedora Linux

version 14 and optimized with appropriate

options together with WIEN2K. These

programs are listed in Table 2.

Table 2: Software Requirements

Program name Version Source

WIEN2K 13.1 www.WIEN2K.at

MPI Channel
MPICH1.3 &

MPICH2-1.0.5p3
www.mpich.org

Intel Fortran 90

Compiler
11.072 Intel

Intel C Compiler 10.074 Intel

Mathematical

Kernel Library

(MKL)

11.0 Intel

Fastest Fourier

Transform in the

west (FFTW)

FFTW-2.1.5 Intel

Recall that we continue the work of [8], where

they installed and used MPICH1 to run

WIEN2K program. For this work we installed

MPICH2 channel then installed WIEN2K

MPICH2 version and run "LAPW0" which is a

basic module of WIEN2K. This is done via

determined parallel commands. These

Commands were written on the terminal of the

operating system.

The experiment was carried out by running the

programs (LAPW0 and Matrix Multiplication)

using MPICH1 and MPICH2 on one, two,

three, and four processors of the quad multi-

core machine. Where, each processor has a

unique id from 0 to 3. Each experiment was

repeated several times and the average of the

elapsed time were recorded. The experiments

in divided into two cases: the first one is

running LAPW0 for one cycle, and in the

second case is the running of Matrix

multiplication.

guess 𝝆𝟎 𝒓

Input: 𝝆𝒏−𝟏 𝒓

determine 𝑽𝑯 and 𝑽𝒙𝒄 𝑯𝑲𝑺 𝒏

𝝓𝒏

solve 𝑯𝑲𝑺 𝒏 𝜺𝒏 = 𝜺𝒏 𝝓𝒏

construct 𝝆𝒏 from 𝝓𝒏

𝝆𝒏 = 𝝆𝒏−𝟏 ?

𝝆𝒏 is selfconsistent density

=

Type equation here.
?

ISBN:978-0-9891305-6-1 ©2014 SDIWC 116

http://www.wien2k.at/
http://www.mpich.org/

It should be noted that for running the

experiments on MPICH1 we use "mpirun"

command and “mpiexec” for running it on

MPICH2. For example, the steps of the

LAPW0 execution on MPICH2 are shown in

figure (2).

[rezek@rezek-dell15~]$ cd/home/

rezek /mpich2 /examples

[rezek@rezek-dell15 examples]$

mpicc -c lapw0_mpi.c

[rezek@rezek-dell15 examples]$

mpicc -o lapw0_mpi lapw0_mpi.o

[rezek@rezek-dell15 examples]$ mpd &

[1] 3929

[rezek@rezek-dell15 examples]$

mpiexec -n 1 lapw0_mpi

lapw0_mpi has started with 1 tasks.

Initializing arrays...

Running Time = 62.005132

Done.

[rezek@rezek-dell15 examples]$

mpiexec -n 2 lapw0_mpi

lapw0_mpi has started with 2 tasks.

Initializing arrays...

Running Time = 34.002134

Done.

[rezek@rezek-dell15 examples]$

mpiexec -n 3 lapw0_mpi

lapw0_mpi has started with 3 tasks.

Initializing arrays...

Running Time = 25.141348

Done.

Fig 2 : Screen Shot of Running LAPW0 on MPICH2

The results of the average running time for

case 1 (LAPW0) are summarized in table 3.

This table shows the execution time on

MPICH1 and MPICH2 and the improvement

factor (if) by the number of processors. Where

the improvement factor (if) is measured as the

ratio of the difference between the execution

time on MPICH1 and MPICH2 to the

Execution time on MPICH1 i.e.,

(TMPICH1-TMPICH2)/ TMPICH1.

𝑖𝑓 =
𝑇𝑀𝑃𝐼𝐶𝐻1−𝑇𝑀𝑃𝐼𝐶𝐻2

𝑇𝑀𝑃𝐼𝐶𝐻1

It is clear that the performance of MPICH2 is

better than MPICH1 by approximately 3%.

Also, Figure 3 shows the difference between

the execution time on MPICH1 and MPICH2.

Table 3: Execution Time of LAPW0 on MPICH1 and

MPICH2 on Different # of Processors.

of

Proc

Exec. time

on mpich1

(min)

Exec. time

on mpich2

(min)

If

1 64.25 62.54 0.026615

2 35.05 34.38 0.019116

3 26.03 25.37 0.025355

4 20.5 19.52 0.047805

Recall that in case 2 matrix multiplication

program for matrices of size (5120 x 5120)

were running using MPICH1 and MPICH2 on

one, two, three, and four processors. The

results of the average running time are

summarized in table 4 and depicted in Figure

4. Again it is clear that the performance of

MPICH2 is better than MPICH1.

The results of the experiments in case 1 and

case 2 assess the improvement of MPICH2

over MPICH1 which has significant results on

the performance and efficient utilization of

resources. Note that the time units in case 1

are in minutes, whereas it is in seconds in case

2.

Consequently, in all cases MPICH2 is better

than MPICH1. Therefore, we believe that the

nine added features have positive impact on

the performance. The most important added

features in MPICH2 are the collective

communications, the support of one sided

communication, MPI Thread Multiple, and its

concern on communication rather than process

management.

ISBN:978-0-9891305-6-1 ©2014 SDIWC 117

Fig 3: the WIEN2K execution time of MPICH2 vs. the

execution time of MPICH1.

Table 4: Execution Time of Matrix Multiplication on

MPICH1 and MPICH2 on Different # of Processors.

of

Proc

Exec. time

on mpich1

(sec)

Exec. time

on mpich2

(sec)

If

1 92.357 89.562 0.030263

2 63.109 61.776 0.021122

3 60.910 59.113 0.029503

4 57.965 55.935 0.035021

Fig 4: Execution Time of Matrix Multiplication Using

MPICH1 vs. MPICH2

CONCLUSION AND FUTURE

WORKS

 The goal of this work is to evaluate and

compare the performance of MPICH1 and

MPICH2 using different cases running on one,

two, three, and four processors. As a result we

can conclude that MPICH2 perform better

than MPICH1. This is due to the collective

improvement and added features in MPICH2.

Finally, as a future work we intend to extend

our experiment to test the performance of

newly issued MPICH3 using different tasks.

REFERENCES:

[1] Sherihan Abu ElEnin, Mohamed Abu ElSoud,”

Evaluation of Matrix Multiplication on an MPI Cluster”

Faculty of computers and Information,

Mansourauniversity, Egypt. 2011

[2] Dami´an A. Mall´on, Guillermo L. Taboada, Carlos

Teijeiro, Juan Touri˜no, Basilio B. Fraguela, Andr´es

G´omez1, Ram´on Doallo, and J. Carlos Mouri˜no1,”

Performance Evaluation of MPI, UPC and OpenMP on

Multicore Architectures”.Galicia Supercomputing

Center (CESGA), Santiago de Compostela, Spain.

Computer Architecture Group, University of A Coru˜na,

A Coru˜na, Spain. 2009

[3] David Culler. Jaswinder Pal Singh, Anoop Gupta.”

Parallel Computer Architecture A Hardware / Software

Approach ”. University of California, Berkeley,

Princeton University, Stanford University, Aug 28,

1997, Pages 40 -127.

[4] ”MPI: A Message-Passing Interface Standard,

Message Passing Interface Forum”. ARPA and NSF

under grant ASC-9310330, the National Science

Foundation Science and Technology Center

Cooperative Agreement No. CCR-8809615, by the

Commission of the European Community through

Esprit project P6643. Nov 15, 2003

[5] ”MPI: A Message-Passing Interface Standard,

Version 2.1, and Message Passing Interface Forum”.

June 23, 2008

[6] EDOUARD BUGNION, SCOTT DEVINE,

KINSHUK GOVIL, and MENDEL ROSENBLUM,

“Disco: Running Commodity Operating Systems on

Scalable Multiprocessors”, Stanford University,

November 1997, Vol. 15, No. 4, Pages 412–447.

[7] S. Cottenier, “Density Functional Theorythe Family

of (L)APW-methods: a step-by-step introduction”,

August 6, 2004, ISBN 90-807215-1-4.

ISBN:978-0-9891305-6-1 ©2014 SDIWC 118

[8] Rezek Mohammad, Areej Jabir, and Rashid Jayousi,

“Optimum Execution For WIEN2K using Parallel

Programming Models (Comparison Study)”.

Department of physics, Palestinian Technical

University/Khadoorie, Middle East Technical

University, and department of Computer Science, Al-

Quds University, Jerusalem, Palestine. 2011.

[9] Schrodinger¸ E. “An Adulatory Theory of the

Mechanics of Atoms and Molecules”. Physical Review

28 (26): 1049-1070. 1926.

[10] Hellmann¸ Hans, “A new Approximation Method in

the Problem of Many Electrons”. Journal of Chemical

Physics (Karpow-Institute for Physical

Chemistry,Moscow), 1935.

[11] M´arcia C. Cera1, Guilherme P. Pezzi, Maur´ıcio

L. Pilla, Nicolas B. Maillard1, and Philippe O. A.

Navaux, , “Scheduling Dynamically Spawned Processes

in MPI-2”. Universidade Federal do Rio Grande do Sul,

Porto Alegre Brazil and Universidade Cat´olica de

Pelotas, Pelotas, Brazil).

[12] C.M. Maynard, “Comparing One-Sided

Communication with MPI, UPC and SHMEM”. EPCC,

School of Physics and Astronomy, University of

Edinburgh, JCMB, Kings Buildings, Mayfield Road,

Edinburgh, EH9 3JZ, UK.

[13] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin,

Dhabaleswar K. Panda, William Gropp and Rajeev

Thakur, “High Performance MPI-2 One-Sided

Communication over InfiniBand”. Computer and

Information Science The Ohio State University

Columbus, OH 43210 Mathematics and Computer

Science Division Argonne National Laboratory

Argonne, IL 60439.

[14] “MPI: A Message-Passing Interface Standard,

Version 2.2, and Message Passing Interface Forum”.

Sept 4, 2009

[15] William Gropp, Ewing Lusk, David Ashton, Pavan

Balaji, Darius Buntinas, Ralph Butler, Anthony Chan,

Jayesh Krishna, Guillaume Mercier, Rob Ross, Rajeev

Thakur, and Brian Toonen,“ MPICH2 User’s Guide,

Version 1.0.6, Mathematics and Computer Science

Division Argonne National Laboratory”. September

14, 2007

ISBN:978-0-9891305-6-1 ©2014 SDIWC 119

