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ABSTRACT  

Present and future multi-core computational   

system architecture attracts researchers to utilize 

this architecture as an adequate and inexpensive 

solution to achieve high performance computation 

for many problems. The multi-core architecture 

enables us to implement shared memory and/or 

message passing parallel processing paradigms.  

Therefore, we need appropriate standard libraries 

in order to utilize the resources of this architecture 

efficiently and effectively. In this work, we 

evaluate the performance of message passing 

using two versions of the well-known message 

passing interface (MPI) library:  MPICH1 vs.  

MPICH2. Furthermore, we compared the 

performance of shared memory using OpenMP 

that supports multithreading with MPI. The results 

show that the performance when MPICH2 is used 

is better than MPICH1. The results indicate that 

multithreading performs better than message 

passing.  

 KEYWORDS  

Parallel Processing, Performance Evaluation, Message 

Passing, MPICH1, MPICH2, Multithreading, Multi-

core systems, WIEN2K.  

 

 

 

 

1  INTRODUCTION 

In order to achieve high performance computing 

(i.e. reducing computing elapsed time), parallel 

processing is widely used in multimedia 

computing, signal processing, scientific 

computing, engineering, general purpose 

application, industry, computer systems, statistical 

applications, and simulation. Usually, mainframes 

and super computers are used to implement shared 

memory parallel computing, while clusters and 

grid computing are utilized to speed up the 

computation using message passing. Thus, parallel 

processing was carried out on expensive 

supercomputers and mainframes.  After that, the 

emerging high performance computer network and 

protocols attracted the researcher to use message 

passing on distributed memory to implement 

parallel processing on clusters of on shelf 

computers and grid computing.  

Obviously, parallel processing is implemented on 

shared memory computer architectures using 

Single Instruction Multiple Data (SIMD), Multiple 

Instruction Multiple Data (MIMD), Single 

Program Multiple Data (SPMD) Techniques, or 

multithreading. Whilst message passing paradigm 

can be used on distributed memory architectures 

by means of SPMD and MIMD, a hybrid approach 
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using both paradigms can also be implemented on 

both architectures.   

However, the emerging and promising multi-core 

computer architecture attracts the researchers to 

utilize this architecture as an adequate and 

inexpensive solution to gain high performance 

computation for many problems. Therefore, this 

architecture shifted the interest of many 

researchers towered parallel computing on such 

multi-core systems.  Thus, we can achieve 

relatively cheap high performance using message 

passing, share memory, or hybrid techniques on a 

single or cluster of multi-core computers[2][3]. 

This architecture enables us to implement both 

shared memory and/or message passing parallel 

processing paradigms. Therefore, we need to 

evaluate which paradigm can be used more 

efficiently and effectively on multi-core 

architectures. Furthermore, to carry out our 

computations, we need appropriate standard 

libraries in order to utilize the resources efficiently 

for a given computational problem. Hence, to 

facilitate realization of parallel programming on 

different platforms, there are several supporting 

libraries.  For example, we can use PVM, JPVM 

and MPI for message passing on distributed 

memory. Posix and OpenMP are also used for 

multithreading on shared memory [3].  It should 

be noted that these libraries provide us with a well 

defined standard interface to achieve portability 

and flexibility of usage. However, the developers 

of these libraries intend to improve the 

implementation to cope with the emerging 

platforms to increase the utilization efficiency.   

In this work, we focus on evaluation of the 

performance of parallel computing using message 

passing (multi-processes) and shared memory 

(multiprocessing) on multi-core systems. We used 

different versions of MPI library namely MPICH1 

and MPICH2 for message passing and OpenMP 

for multithreading in our experiments.  

Since, one of the important applications that is 

needed to speed up computation is the WIEN2K 

application, which is based on Density Functional 

Theory (DFT), we used it as a benchmark to 

evaluate the performance of MPICH1 vs. 

MPICH2. The WIEN2K application enables us to 

simulate physical and chemical systems which 

form new materials. This is necessary for 

laboratory researchers who can produce desired 

materials such as drugs and medicine [8]. The 

WIEN2K applied a parallel method to solve 

quantum mechanics equations based DFT to find 

the cohesive energy of any material.  It should be 

noted that the current official version of this 

application uses MPICH1. In addition, we used a 

matrix multiplication benchmark to evaluate the 

performance of multi-processes (message passing) 

vs. multithreading parallel programming 

performance and efficiency on a multi-core 

system.   

 In this work we evaluated the performance of 

MPICH1 and MPICH2 by running WIEN2K that 

originally used MPICH1 and the new 

implementation of WIEN2K on MPICH2. 

Moreover, we implemented a matrix 

multiplication on both MPICH1 and MPICH2 

message passing and OpenMP for testing 

multithreading technique.  

The paper is organized as follows: section 2 

introduces a background and literature review. 

Next, section 3 discusses the experiment and the 

results. Finally, section 4 concludes this work and 

introduces future work.   

2 BACKGROUND & LITERATURE REVIEW   

 

Multi-core systems and clusters become an 

interesting and affordable platform for running 

parallel processing to achieve high performance 

computing for many applications and experiments. 

Some examples include internet services, 

databases, scientific computing, and simulation. 

This is due to their scalability performance/cost 

ratio [1].  

 

There are two main approaches that support 

parallel computing via multi-core processors: 

shared memory and distributed memory 

approaches. Thus, we will provide an overview of 

the evolution of the two main approaches. 
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2.1  Shared Memory Approach 

Shared memory based parallel programming 

models communicate by sharing the data objects 

in the global address space. Shared memory 

models assume that all parallel activities can 

access all of memory. Consistency in the data need 

to be achieved when different processors 

communicate and share the same data item, this is 

done by using the cache coherence protocols used 

by the parallel computer. All operations such as 

load and store for data carried out by the 

automatically without direct intervention by the 

programmer. For shared memory based parallel 

programming models, communication between 

parallel activities is completed via a shared 

mutable state that must be carefully managed to 

ensure correctness. Various synchronization 

primitives such as locks or transactional memory 

are used to enforce this management [3]. In this 

approach a main memory is shared between all 

processing elements in a single address space. 

The advantages with using shared memory based 

parallel programming models are presented below.  

 Shared memory based parallel programming 

models facilitate easy development of the 

application more than distributed memory 

based multiprocessors. 

 Shared memory based parallel programming 

models avoid the multiplicity of data items and 

allows the programmer to not be concerned 

about the programming model's responsibility.  

 Shared memory based programming models 

offer better performance than the distributed 

memory based parallel programming models.  

 

The disadvantages with using the shared memory 

based parallel programming models are described 

below.  

 The hardware requirements for the shared 

memory based parallel programming models 

are very high, complex, and cost prohibitive.  

 Shared memory parallel programming models 

often encounter data races and deadlocks 

during the development of the applications.  

 

A diverse range of shared memory based parallel 

programming models are developed to this day. 

They can be classified into mainly three types as: 

threading, directive based, and tasking models [16, 

17].  However, we will only focus on the threading 

model.  

  

Threading models 

 

These models are based on the thread library that 

provides low level library routines for parallelizing 

the application. These models use mutual 

exclusion locks and conditional variables for 

establishing communications and synchronizations 

between threads. Some of the well known libraies 

are OpenMP and Posix. The advantages with 

threading models are as follows:  

 More suitable for applications based on the 

multiplicity of data.  

 Flexibility provided to the programmer is very 

high.  

 Threading libraries are widely used and 

threading model tools are readily available. 

 Performance can still be improved by using 

conditional waits and try locks.  

 Easy to develop parallel routines for threading 

models  

The disadvantages associated with threading 

models include the following:  

 Hard to write applications using threading 

models because establishing a communication 

or synchronization incurs code overhead which 

is hard to manage, thereby leaving more scope 

for errors.  

 The developer should be more careful in using 

global data otherwise this leads to data races, 

deadlocks, and false sharing.  

 Threading models stand at low level of 

abstraction, which isn‘t required for a better 

programming model.  

 

2.2  Distributed Memory Approach 

 

This type of parallel programming approach 

allows communication between processors by 

using the send/receive communication routines. 

Message passing models avoids communications 
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between processors based on shared/global data 

[16]. They are typically used to program clusters, 

wherein each processor in the architecture gets its 

own instance of data and instructions. The 

advantages of distributed memory based 

programming models as follows:  

 The hardware requirement for the message 

passing models is low, less complex, and 

comes at very low cost.  

 The message passing models avoids the data 

races and as a consequence the programmer is 

freed from using the locks.  

 

The disadvantages with distributed memory based 

parallel programming model are listed below:  

 Message passing models in contrast encounter 

deadlocks during the process of 

communications.  

 Development of applications on message 

passing models is hard and takes more time.  

 The developer is responsible for establishing 

communication between processors.  

 Message passing models are less performance 

oriented and incur high communication 

overheads. 

 

 

A comparison base characteristic using methods 

between shared vs. distributed is listed in Table 1 

[17]. The message passing interface (MPI) is a set 

of API functions that facilitate parallel 

programming based on message passing paradigm. 

One of the well-known APIs is MPICH1 which is 

based on an MPI standard founded on April 29-30, 

1992 at a work shop in Williamsburg, Virginia [4].  

This library API supports FORTRAN and C 

programming languages.  It has been issued with 

several modifications and extensions to support 

dynamic processes, one-sided communication,   

parallel I/O, etc [13][14]. MPICH2 standard is 

intended for use by all those who want to write 

portable message-passing programs in Fortran 77, 

FORTRAN 95, C and C++ [5].  The improvement 

of MPICH2 focused on many issues and 

functionalities such as dynamic processes, one-

sided communication,   parallel I/O, etc. [13][14].  

Table 1: A Comparison between Shared vs. distributed   

Architecture 

Distribu-

ted 

Memory 

MPI 

Shared 

Memory 

Arch 

OpenMP 

Hybrid 

Dist. & 

Shared 

Memory 

Creation 

mathematical 

model 

Easy 

Slightly 

complic-

ated 

Difficult 

Balancing 

Change-

able with 

difficultie

s 

Change-

able 

easily 

Easily 

changeab-

le 

Simulation of 

parallel 

models 

Advisab-

le 

Conveni-

ent 
Useful 

Synchronizat

ion 

models 

Simple 
Complic-

ated 

Complica-

ted 

Transfer 

dates 

between 

models 

Large Little 
Intermedi-

ate 

Power of 

large 

modules 

Reasona-

ble 
Big Big 

 

Of course, a number of changes to dynamic 

spawning tasks, the nature of communication, and 

how one runs them will be different. By adding 

new features in MPICH2, it will be more robust, 

efficient, and convenient to use [4]. Consequently, 

we will focus on the improvements in MPICH2 

that we believe they have an impact on the 

performance: 

1. MPICH1 focused mainly on point-to-point 

communications, but MPICH2 included a 

number of collective communication routines 

and was thread-safe [4].  

2. MPICH2 supports dynamic spawning of tasks. 

It provides primitives to spawn processes 

during the execution and enables them to 

communicate together [11].  

3. MPICH2 supports one-sided communication. 

It provides three communication calls: 

MPI_PUT (remote write), MPI_GET (remote 

read), and MPI_ACCUMULATE (remote 
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update). These operations are non-blocking 

[12] [14].  

4. MPICH2 used generalized requests that aren’t 

used by MPICH1. These requests allow users 

to create new non-blocking operations with an 

interface [14].  

5. In MPICH2, significant optimizations required 

for efficiency (e.g. asynchronous I/O, 

grouping, collective buffering, and disk-

directed I/O) are achieved by the parallel I/O 

system [14]. 

6. MPICH-1 defined collective communication 

for intra-communicators and two routines for 

creating new intercommunicators. But 

MPICH-2 introduces extensions of many of 

the MPICH-1 collective routines to 

intercommunicators, additional routines for 

creating intercommunicators, and two new 

collective routines: a generalized all-to-all and 

an exclusive scan [14]. 

7. MPICH2 supports MPI THREAD 

MULTIPLE by using a simple communication 

device, known as   “ch3 device” (the third 

version of the “channel” interface), but 

MPICH1 doesn’t support MPI THREAD 

MULTIPLE [5]. 

8. MPICH1 is not concerned with 

communication, but rather process 

management. But MPICH2 is concerned with 

communication rather than process 

management. However, MPICH2 provides a 

separation of process management and 

communication. The default runtime 

environment consists of a set of daemons, 

called mpd’s, that establish communication 

among the machines to be used before 

application process startup, thus providing a 

clearer picture of what is wrong when 

communication cannot be established. In 

addition, it provides a fast and scalable startup 

mechanism when parallel jobs are started. But 

MPICH1 doesn’t separate them and mpd’s are 

built in [15]. 

9. MPICH1 required access to command line 

arguments in all application programs before 

startup, including FORTRAN ones. Thus, 

MPICH1’s configuration devotes some effort 

to finding the libraries, such as libraries that 

contained the right versions of iargc and 

getarg. But MPICH2 does not require access 

to command line arguments of applications 

before startup and MPICH2 does nothing 

special for configuration. If one needs them in 

their applications, they must ensure that they 

are available in the environment being used 

[15].  

 

Various operating systems such as Linux, Solaris, 

and Windows can be used for scheduling 

computer resources such as memory, I/O, and 

CPU [6].   

 

2.3  Cohesive Energy & WIEN2K 
 

 Condense matter physics looks different than 50 

years ago. Scientist know that solids obey the laws 

of quantum mechanics, by solving these quantum 

equations all properties of solids including 

electrical, magnetic, optical and thermal can be 

found. The main scalable quantity for measuring 

the stability of any material is the cohesive energy; 

cohesive energy equals the difference between the 

total energy of the material in the combined form 

and the sum of the free atom’s energy in their free 

state as shown in equation (1)  

 

  E cohesive energy = E compound  - ∑E free atoms   (1) 

Each stable form of these atoms can produce 

positive value for the cohesive energy. 

Furthermore, the material can normally take more 

than one stable state, and the state with the highest 

cohesive energy is the most stable one [10].  

 

In order to study the previous characteristics of the 

materials we have to solve many second body 

order differential equation called equation of state. 

This equation obeys the laws of quantum 

mechanics. The equation of state is composed of 

the kinetic energy operators for both the nucleus 

and electrons, the potential energy resulting from 

interaction between electrons themselves, nucleis 

themselves, and nucleis and electrons; these 

operators are measured by solving many-body 

Hamiltonian for the system, which  is illustrated in 

equation (2) [7][10].   

 

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 108-116 
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

112



This equation can be solved numerically after 

transforming it to a one body problem after some 

approximations. This method called Density 

Functional Theory (DFT) [8][9].  

 

𝐻Ψ = 𝐸 Ψ 
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= −
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𝑅
→

𝑖
−

𝑅
→

𝑗
│

                  (2)

𝑖≠𝑗

 

 

 Program packages like WIEN2K [3], using Full 

potential Linear Augmented Plane Wave and 

Local Orbital’s (FP-LAPW+Lo) technique allows 

such studies on the basis of quantum mechanics 

using density functional theory (DFT). In these 

studies, we have two main factors controlling the 

calculation. The first factor is the time of 

calculation and the second is the sample actuality; 

the sample actuality meaning the number of atoms 

constituting the sample, the bigger the number is 

the more actual case we have, and more 

complexity, which costs a lot of calculation time.  

 

WIEN2K package is composed of these five 

modules: LAPW0, LAPW1, LAPW2, LCORE 

and MIXER.  Each module solves one equation to 

get the highest cohesive energy. The state with the 

highest cohesive energy is the most stable one 

[10]. The calculation is repeated until it obtains the 

highest cohesive energy. 

 

The authors in [8] compared two parallel 

approaches that run on MPICH1 channel. The two 

methods are: distributed k-point and data 

distribution. However, the first one runs each of 

the two modules (LAPW1, LAPW2) in parallel 

way. The other runs each of the first three modules 

in parallel. In addition, a comparison between 

serial and parallel approaches for running Matrix 

Multiplication on MPICH1 was in [1]. 

 

3 EXPERIMENT AND RESULTS 

DISCUSSION 

 

In this work two cases of experiments were 

carried out.  In the first case (Case 1), we focused 

on distributing tasks of WIEN2K program using 

MPICH1 and MPICH2 on multi-core machine. 

Whereas in [8] the experiments were carried out 

on a cluster using MPICH1 to distribute WIEN2K 

task. In the second case (Case 2) of experiments, 

we tested the performance of parallel matrix 

multiplication using multi-processing (message 

passing) using MPICH1 and MPICH2, and 

multithreading paradigms using OpenMP.  

Our experiments were running on Linux (Fedora 

14) installed on a multi-core (quad) machine (Intel 

Core i5 3GHz processor); the specification details 

of the experiments platform/machine are listed in 

Table 2. 

 Table 2: Machine Specifications 

No Specification Multi-Core PC 

1 CPU speed Quad 3 GHz 

2 RAM size 8 GB 

3 Cache 8 Mbyte 

4 HD speed 7200 RPM 

 

To accomplish the calculations, a set of programs 

were installed on Fedora Linux version 14 and 

optimized with appropriate options together with 

WIEN2K. These programs are listed in Table 3.                                                         

Recall that we continue the work of [8], where 

they installed and used MPICH1 to run WIEN2K 

program. For this work we installed MPICH2 

channel then installed WIEN2K MPICH2 version 

and run "LAPW0," which is a basic module of 

WIEN2K. This is done via determined parallel 

commands. These commands were written on the 

terminal of the operating system.  

The experiments were carried out by running the 

programs LAPW0 as benchmarks using MPICH1 

MPICH2 on one, two, three, and four processors 
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of the quad multi-core machine, where, each 

processor has a unique id from 0 to 3.   Each 

experiment was repeated several times and the 

average of the elapsed time was recorded. The 

experiments were divided into two cases: the first 

one ran LAPW0 for one cycle. In the second 

experiment (Case 2), the matrix multiplication was 

implemented using MPICH1, MPICH2, and 

OpenMP. 

Table 3: Software Requirements 

Program name Version Source 

WIEN2K 13.1 www.WIEN2K.at  

MPI Channel 

MPICH1.3 & 

MPICH2-

1.0.5p3 

www.mpich.org  

Intel Fortran 

90 Compiler 
11.072 Intel 

Intel C 

Compiler  
10.074 Intel  

Mathematical 

Kernel Library 

(MKL) 

11.0 Intel  

Fastest Fourier 

Transform in 

the west 

(FFTW) 

FFTW-2.1.5 Intel  

 

Case 1: 

The experiments on MPICH1 used "mpirun" 

command and “mpiexec” for MPICH2. For 

example, the steps of the LAPW0 execution on 

MPICH2 are shown in Figure (1).  

The results of the average running time for case 1 

(LAPW0) are summarized in Table 4. This table 

shows the execution time on MPICH1 and 

MPICH2 and the improvement factor (if) by the 

number of processors. The improvement factor (if) 

is measured as the ratio of the difference between 

the execution time on MPICH1 and MPICH2 to 

the Execution time on MPICH1 i.e.         (TMPICH1-

TMPICH2)/ TMPICH1.  

𝑖𝑓 =  
𝑇𝑀𝑃𝐼𝐶𝐻1−𝑇𝑀𝑃𝐼𝐶𝐻2

𝑇𝑀𝑃𝐼𝐶𝐻1
 

[rezek@rezek-dell15~]$ cd/home/ rezek 

/mpich2 /examples 

[rezek@rezek-dell15 examples]$ mpicc -c 

lapw0_mpi.c 

[rezek@rezek-dell15 examples]$ mpicc -o 

lapw0_mpi lapw0_mpi.o 

[rezek@rezek-dell15 examples]$ mpd & 

[1] 3929 

[rezek@rezek-dell15 examples]$ mpiexec -

n 1 lapw0_mpi 

lapw0_mpi has started with 1 tasks. 

Initializing arrays... 

Running Time = 62.005132 

Done. 

 

[rezek@rezek-dell15 examples]$ mpiexec -

n 2 lapw0_mpi 

lapw0_mpi has started with 2 tasks. 

Initializing arrays... 

Running Time = 34.002134 

Done. 

 

rezek@rezek-dell15 examples]$ mpiexec -n 

3 lapw0_mpi 

lapw0_mpi has started with 3 tasks. 

Initializing arrays... 

Running Time = 25.141348 

Done. 

 
Figure  1 : Screen Shot of Running LAPW0 on MPICH2  

 

Table 4: Execution Time of LAPW0 on MPICH1 

and MPICH2 on Different # of Processors. 

# of 

Proc 

Exec. 

time on 

mpich1  

(min) 

Exec. 

time on 

mpich2 

(min) 

If 

1 64.25 62.54 0.026615 

2 35.05 34.38 0.019116 

3 26.03 25.37 0.025355 

4 20.5 19.52 0.047805 

  

It is clear that the performance of MPICH2 is 

better than MPICH1 by approximately 3%. Also, 

Figure 2 shows the difference between the 

execution time on MPICH1 and MPICH2. 

Therefore, we believe that the nine added features 

have positive impact on the performance.  The 

most important added features in MPICH2 are the 
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collective communications, the support of one 

sided communication, MPI Thread Multiple, and 

its concern on communication rather than process 

management. It should be noted that the time unit 

in the experiments of case 1 is in minutes, whereas 

it is in seconds in case 2. 

 
Figure 2: the WIEN2K execution time of MPICH1 vs. 

MPICH2. 

 

Case 2: 

In this case the experiments were implemented on 

a standard parallel matrix multiplication of size 

5120x5120 using multithreading by means of 

OpenMP and multi-processing (message passing) 

using MPICH1 and MPICH2. Also, in these 

experiments we utilized 1, 2, 4, 8 and 16 

processes. The experiments where repeated by 

using multithreading with 1, 2, 4, 8, and 16 

threads. The results in Figure 3 show that the 

performance using multithreading is better than 

multiprocessing. This is because of the overhead 

processes and data distribution.  

Recall that the experiment's platform has four 

processing elements. It is apparent from Figure 3 

that the curve declines (i.e. improving the 

efficiency and speed-up) until the number of 

processes/threads reaches 4. Afterwards, the curve 

begins to incline, which indicates a decrease in 

performance and efficiency. This is due to the 

overheads in scheduling the threads and processes 

in utilizing shared resources (i.e. processing 

elements and shared memories).  

 

 
Fig 3: Execution Time of Matrix Multiplication Using 

MPICH1 vs. MPICH2 vs. OpenMP 

 

 

4 CONCLUSION AND FUTURE WORKS 

  The goal of this work is twofold. The first is to 

evaluate and compare the performance of 

MPICH1 and MPICH2 using different cases 

running on one, two, three, and four processors. 

The second aim is to evaluate the performance of 

running parallel programs with big data using 

message passing and multithreading. As a result 

we can conclude that MPICH2 perform better than 

MPICH1 in all cases. It is due to the collective 

improvement and added features in MPICH2. 

Moreover, the results show that multithreading 

programming on multi-core architectures perform 

better than message passing when the parallel 

programs works on big data.   

Finally, for future work, we intend to extend our 

experiment to test the performance of newly 

issued MPICH3 and Graphical Processing Units 

(9999999GPU) using different tasks. 
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