
Performance Evaluation of Message Passing vs. Multithreading Parallel

Programming Paradigms on Multi-core Systems

Hadi Khalilieh1, Nidal Kafri2 and Rezek Mohammad3

1,2Department of Computer Science, Al-Quds University, Jerusalem, Palestine

3Palestinian Technical University/Khadoorie, Middle East Technical University/physics department

 1hkhalilia1@science.alquds.edu,

2nkafri@science.alquds.edu

3esteteh@hotmail.com

ABSTRACT

Present and future multi-core computational

system architecture attracts researchers to utilize

this architecture as an adequate and inexpensive

solution to achieve high performance computation

for many problems. The multi-core architecture

enables us to implement shared memory and/or

message passing parallel processing paradigms.

Therefore, we need appropriate standard libraries

in order to utilize the resources of this architecture

efficiently and effectively. In this work, we

evaluate the performance of message passing

using two versions of the well-known message

passing interface (MPI) library: MPICH1 vs.

MPICH2. Furthermore, we compared the

performance of shared memory using OpenMP

that supports multithreading with MPI. The results

show that the performance when MPICH2 is used

is better than MPICH1. The results indicate that

multithreading performs better than message

passing.

 KEYWORDS

Parallel Processing, Performance Evaluation, Message

Passing, MPICH1, MPICH2, Multithreading, Multi-

core systems, WIEN2K.

1 INTRODUCTION

In order to achieve high performance computing

(i.e. reducing computing elapsed time), parallel

processing is widely used in multimedia

computing, signal processing, scientific

computing, engineering, general purpose

application, industry, computer systems, statistical

applications, and simulation. Usually, mainframes

and super computers are used to implement shared

memory parallel computing, while clusters and

grid computing are utilized to speed up the

computation using message passing. Thus, parallel

processing was carried out on expensive

supercomputers and mainframes. After that, the

emerging high performance computer network and

protocols attracted the researcher to use message

passing on distributed memory to implement

parallel processing on clusters of on shelf

computers and grid computing.

Obviously, parallel processing is implemented on

shared memory computer architectures using

Single Instruction Multiple Data (SIMD), Multiple

Instruction Multiple Data (MIMD), Single

Program Multiple Data (SPMD) Techniques, or

multithreading. Whilst message passing paradigm

can be used on distributed memory architectures

by means of SPMD and MIMD, a hybrid approach

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 108-116
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

108

mailto:hkhalilia1@science.alquds.edu
mailto:nkafri@science.alquds.edu
mailto:esteteh@hotmail.com

using both paradigms can also be implemented on

both architectures.

However, the emerging and promising multi-core

computer architecture attracts the researchers to

utilize this architecture as an adequate and

inexpensive solution to gain high performance

computation for many problems. Therefore, this

architecture shifted the interest of many

researchers towered parallel computing on such

multi-core systems. Thus, we can achieve

relatively cheap high performance using message

passing, share memory, or hybrid techniques on a

single or cluster of multi-core computers[2][3].

This architecture enables us to implement both

shared memory and/or message passing parallel

processing paradigms. Therefore, we need to

evaluate which paradigm can be used more

efficiently and effectively on multi-core

architectures. Furthermore, to carry out our

computations, we need appropriate standard

libraries in order to utilize the resources efficiently

for a given computational problem. Hence, to

facilitate realization of parallel programming on

different platforms, there are several supporting

libraries. For example, we can use PVM, JPVM

and MPI for message passing on distributed

memory. Posix and OpenMP are also used for

multithreading on shared memory [3]. It should

be noted that these libraries provide us with a well

defined standard interface to achieve portability

and flexibility of usage. However, the developers

of these libraries intend to improve the

implementation to cope with the emerging

platforms to increase the utilization efficiency.

In this work, we focus on evaluation of the

performance of parallel computing using message

passing (multi-processes) and shared memory

(multiprocessing) on multi-core systems. We used

different versions of MPI library namely MPICH1

and MPICH2 for message passing and OpenMP

for multithreading in our experiments.

Since, one of the important applications that is

needed to speed up computation is the WIEN2K

application, which is based on Density Functional

Theory (DFT), we used it as a benchmark to

evaluate the performance of MPICH1 vs.

MPICH2. The WIEN2K application enables us to

simulate physical and chemical systems which

form new materials. This is necessary for

laboratory researchers who can produce desired

materials such as drugs and medicine [8]. The

WIEN2K applied a parallel method to solve

quantum mechanics equations based DFT to find

the cohesive energy of any material. It should be

noted that the current official version of this

application uses MPICH1. In addition, we used a

matrix multiplication benchmark to evaluate the

performance of multi-processes (message passing)

vs. multithreading parallel programming

performance and efficiency on a multi-core

system.

 In this work we evaluated the performance of

MPICH1 and MPICH2 by running WIEN2K that

originally used MPICH1 and the new

implementation of WIEN2K on MPICH2.

Moreover, we implemented a matrix

multiplication on both MPICH1 and MPICH2

message passing and OpenMP for testing

multithreading technique.

The paper is organized as follows: section 2

introduces a background and literature review.

Next, section 3 discusses the experiment and the

results. Finally, section 4 concludes this work and

introduces future work.

2 BACKGROUND & LITERATURE REVIEW

Multi-core systems and clusters become an

interesting and affordable platform for running

parallel processing to achieve high performance

computing for many applications and experiments.

Some examples include internet services,

databases, scientific computing, and simulation.

This is due to their scalability performance/cost

ratio [1].

There are two main approaches that support

parallel computing via multi-core processors:

shared memory and distributed memory

approaches. Thus, we will provide an overview of

the evolution of the two main approaches.

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 108-116
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

109

2.1 Shared Memory Approach

Shared memory based parallel programming

models communicate by sharing the data objects

in the global address space. Shared memory

models assume that all parallel activities can

access all of memory. Consistency in the data need

to be achieved when different processors

communicate and share the same data item, this is

done by using the cache coherence protocols used

by the parallel computer. All operations such as

load and store for data carried out by the

automatically without direct intervention by the

programmer. For shared memory based parallel

programming models, communication between

parallel activities is completed via a shared

mutable state that must be carefully managed to

ensure correctness. Various synchronization

primitives such as locks or transactional memory

are used to enforce this management [3]. In this

approach a main memory is shared between all

processing elements in a single address space.

The advantages with using shared memory based

parallel programming models are presented below.

 Shared memory based parallel programming

models facilitate easy development of the

application more than distributed memory

based multiprocessors.

 Shared memory based parallel programming

models avoid the multiplicity of data items and

allows the programmer to not be concerned

about the programming model's responsibility.

 Shared memory based programming models

offer better performance than the distributed

memory based parallel programming models.

The disadvantages with using the shared memory

based parallel programming models are described

below.

 The hardware requirements for the shared

memory based parallel programming models

are very high, complex, and cost prohibitive.

 Shared memory parallel programming models

often encounter data races and deadlocks

during the development of the applications.

A diverse range of shared memory based parallel

programming models are developed to this day.

They can be classified into mainly three types as:

threading, directive based, and tasking models [16,

17]. However, we will only focus on the threading

model.

Threading models

These models are based on the thread library that

provides low level library routines for parallelizing

the application. These models use mutual

exclusion locks and conditional variables for

establishing communications and synchronizations

between threads. Some of the well known libraies

are OpenMP and Posix. The advantages with

threading models are as follows:

 More suitable for applications based on the

multiplicity of data.

 Flexibility provided to the programmer is very

high.

 Threading libraries are widely used and

threading model tools are readily available.

 Performance can still be improved by using

conditional waits and try locks.

 Easy to develop parallel routines for threading

models

The disadvantages associated with threading

models include the following:

 Hard to write applications using threading

models because establishing a communication

or synchronization incurs code overhead which

is hard to manage, thereby leaving more scope

for errors.

 The developer should be more careful in using

global data otherwise this leads to data races,

deadlocks, and false sharing.

 Threading models stand at low level of

abstraction, which isn‘t required for a better

programming model.

2.2 Distributed Memory Approach

This type of parallel programming approach

allows communication between processors by

using the send/receive communication routines.

Message passing models avoids communications

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 108-116
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

110

between processors based on shared/global data

[16]. They are typically used to program clusters,

wherein each processor in the architecture gets its

own instance of data and instructions. The

advantages of distributed memory based

programming models as follows:

 The hardware requirement for the message

passing models is low, less complex, and

comes at very low cost.

 The message passing models avoids the data

races and as a consequence the programmer is

freed from using the locks.

The disadvantages with distributed memory based

parallel programming model are listed below:

 Message passing models in contrast encounter

deadlocks during the process of

communications.

 Development of applications on message

passing models is hard and takes more time.

 The developer is responsible for establishing

communication between processors.

 Message passing models are less performance

oriented and incur high communication

overheads.

A comparison base characteristic using methods

between shared vs. distributed is listed in Table 1

[17]. The message passing interface (MPI) is a set

of API functions that facilitate parallel

programming based on message passing paradigm.

One of the well-known APIs is MPICH1 which is

based on an MPI standard founded on April 29-30,

1992 at a work shop in Williamsburg, Virginia [4].

This library API supports FORTRAN and C

programming languages. It has been issued with

several modifications and extensions to support

dynamic processes, one-sided communication,

parallel I/O, etc [13][14]. MPICH2 standard is

intended for use by all those who want to write

portable message-passing programs in Fortran 77,

FORTRAN 95, C and C++ [5]. The improvement

of MPICH2 focused on many issues and

functionalities such as dynamic processes, one-

sided communication, parallel I/O, etc. [13][14].

Table 1: A Comparison between Shared vs. distributed

Architecture

Distribu-

ted

Memory

MPI

Shared

Memory

Arch

OpenMP

Hybrid

Dist. &

Shared

Memory

Creation

mathematical

model

Easy

Slightly

complic-

ated

Difficult

Balancing

Change-

able with

difficultie

s

Change-

able

easily

Easily

changeab-

le

Simulation of

parallel

models

Advisab-

le

Conveni-

ent
Useful

Synchronizat

ion

models

Simple
Complic-

ated

Complica-

ted

Transfer

dates

between

models

Large Little
Intermedi-

ate

Power of

large

modules

Reasona-

ble
Big Big

Of course, a number of changes to dynamic

spawning tasks, the nature of communication, and

how one runs them will be different. By adding

new features in MPICH2, it will be more robust,

efficient, and convenient to use [4]. Consequently,

we will focus on the improvements in MPICH2

that we believe they have an impact on the

performance:

1. MPICH1 focused mainly on point-to-point

communications, but MPICH2 included a

number of collective communication routines

and was thread-safe [4].

2. MPICH2 supports dynamic spawning of tasks.

It provides primitives to spawn processes

during the execution and enables them to

communicate together [11].

3. MPICH2 supports one-sided communication.

It provides three communication calls:

MPI_PUT (remote write), MPI_GET (remote

read), and MPI_ACCUMULATE (remote

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 108-116
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

111

update). These operations are non-blocking

[12] [14].

4. MPICH2 used generalized requests that aren’t

used by MPICH1. These requests allow users

to create new non-blocking operations with an

interface [14].

5. In MPICH2, significant optimizations required

for efficiency (e.g. asynchronous I/O,

grouping, collective buffering, and disk-

directed I/O) are achieved by the parallel I/O

system [14].

6. MPICH-1 defined collective communication

for intra-communicators and two routines for

creating new intercommunicators. But

MPICH-2 introduces extensions of many of

the MPICH-1 collective routines to

intercommunicators, additional routines for

creating intercommunicators, and two new

collective routines: a generalized all-to-all and

an exclusive scan [14].

7. MPICH2 supports MPI THREAD

MULTIPLE by using a simple communication

device, known as “ch3 device” (the third

version of the “channel” interface), but

MPICH1 doesn’t support MPI THREAD

MULTIPLE [5].

8. MPICH1 is not concerned with

communication, but rather process

management. But MPICH2 is concerned with

communication rather than process

management. However, MPICH2 provides a

separation of process management and

communication. The default runtime

environment consists of a set of daemons,

called mpd’s, that establish communication

among the machines to be used before

application process startup, thus providing a

clearer picture of what is wrong when

communication cannot be established. In

addition, it provides a fast and scalable startup

mechanism when parallel jobs are started. But

MPICH1 doesn’t separate them and mpd’s are

built in [15].

9. MPICH1 required access to command line

arguments in all application programs before

startup, including FORTRAN ones. Thus,

MPICH1’s configuration devotes some effort

to finding the libraries, such as libraries that

contained the right versions of iargc and

getarg. But MPICH2 does not require access

to command line arguments of applications

before startup and MPICH2 does nothing

special for configuration. If one needs them in

their applications, they must ensure that they

are available in the environment being used

[15].

Various operating systems such as Linux, Solaris,

and Windows can be used for scheduling

computer resources such as memory, I/O, and

CPU [6].

2.3 Cohesive Energy & WIEN2K

 Condense matter physics looks different than 50

years ago. Scientist know that solids obey the laws

of quantum mechanics, by solving these quantum

equations all properties of solids including

electrical, magnetic, optical and thermal can be

found. The main scalable quantity for measuring

the stability of any material is the cohesive energy;

cohesive energy equals the difference between the

total energy of the material in the combined form

and the sum of the free atom’s energy in their free

state as shown in equation (1)

 E cohesive energy = E compound - ∑E free atoms (1)

Each stable form of these atoms can produce

positive value for the cohesive energy.

Furthermore, the material can normally take more

than one stable state, and the state with the highest

cohesive energy is the most stable one [10].

In order to study the previous characteristics of the

materials we have to solve many second body

order differential equation called equation of state.

This equation obeys the laws of quantum

mechanics. The equation of state is composed of

the kinetic energy operators for both the nucleus

and electrons, the potential energy resulting from

interaction between electrons themselves, nucleis

themselves, and nucleis and electrons; these

operators are measured by solving many-body

Hamiltonian for the system, which is illustrated in

equation (2) [7][10].

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 108-116
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

112

This equation can be solved numerically after

transforming it to a one body problem after some

approximations. This method called Density

Functional Theory (DFT) [8][9].

𝐻Ψ = 𝐸 Ψ

Ĥ

= −
ℎ2

2
∑

𝛻2

𝑅
→

𝑀𝑖
𝑖

−
ℎ2

2
∑

𝛻2

𝑟
→

𝑚𝑒
𝑖

–
1

4𝜋𝜖0
∑

𝑒2𝑍𝑖

│
𝑅
→

𝑖
−

𝑟
→

𝑗
│

𝑖,𝑗

 −

1

8𝜋𝜖0
∑

𝑒2

│
𝑟
→

𝑖
−

𝑟
→

𝑗
│

𝑖≠𝑗

+
1

8𝜋𝜖0
∑

𝑒2𝑍𝑖𝑍𝑗

│
𝑅
→

𝑖
−

𝑅
→

𝑗
│

 (2)

𝑖≠𝑗

 Program packages like WIEN2K [3], using Full

potential Linear Augmented Plane Wave and

Local Orbital’s (FP-LAPW+Lo) technique allows

such studies on the basis of quantum mechanics

using density functional theory (DFT). In these

studies, we have two main factors controlling the

calculation. The first factor is the time of

calculation and the second is the sample actuality;

the sample actuality meaning the number of atoms

constituting the sample, the bigger the number is

the more actual case we have, and more

complexity, which costs a lot of calculation time.

WIEN2K package is composed of these five

modules: LAPW0, LAPW1, LAPW2, LCORE

and MIXER. Each module solves one equation to

get the highest cohesive energy. The state with the

highest cohesive energy is the most stable one

[10]. The calculation is repeated until it obtains the

highest cohesive energy.

The authors in [8] compared two parallel

approaches that run on MPICH1 channel. The two

methods are: distributed k-point and data

distribution. However, the first one runs each of

the two modules (LAPW1, LAPW2) in parallel

way. The other runs each of the first three modules

in parallel. In addition, a comparison between

serial and parallel approaches for running Matrix

Multiplication on MPICH1 was in [1].

3 EXPERIMENT AND RESULTS

DISCUSSION

In this work two cases of experiments were

carried out. In the first case (Case 1), we focused

on distributing tasks of WIEN2K program using

MPICH1 and MPICH2 on multi-core machine.

Whereas in [8] the experiments were carried out

on a cluster using MPICH1 to distribute WIEN2K

task. In the second case (Case 2) of experiments,

we tested the performance of parallel matrix

multiplication using multi-processing (message

passing) using MPICH1 and MPICH2, and

multithreading paradigms using OpenMP.

Our experiments were running on Linux (Fedora

14) installed on a multi-core (quad) machine (Intel

Core i5 3GHz processor); the specification details

of the experiments platform/machine are listed in

Table 2.

 Table 2: Machine Specifications

No Specification Multi-Core PC

1 CPU speed Quad 3 GHz

2 RAM size 8 GB

3 Cache 8 Mbyte

4 HD speed 7200 RPM

To accomplish the calculations, a set of programs

were installed on Fedora Linux version 14 and

optimized with appropriate options together with

WIEN2K. These programs are listed in Table 3.

Recall that we continue the work of [8], where

they installed and used MPICH1 to run WIEN2K

program. For this work we installed MPICH2

channel then installed WIEN2K MPICH2 version

and run "LAPW0," which is a basic module of

WIEN2K. This is done via determined parallel

commands. These commands were written on the

terminal of the operating system.

The experiments were carried out by running the

programs LAPW0 as benchmarks using MPICH1

MPICH2 on one, two, three, and four processors

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 108-116
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

113

of the quad multi-core machine, where, each

processor has a unique id from 0 to 3. Each

experiment was repeated several times and the

average of the elapsed time was recorded. The

experiments were divided into two cases: the first

one ran LAPW0 for one cycle. In the second

experiment (Case 2), the matrix multiplication was

implemented using MPICH1, MPICH2, and

OpenMP.

Table 3: Software Requirements

Program name Version Source

WIEN2K 13.1 www.WIEN2K.at

MPI Channel

MPICH1.3 &

MPICH2-

1.0.5p3

www.mpich.org

Intel Fortran

90 Compiler
11.072 Intel

Intel C

Compiler
10.074 Intel

Mathematical

Kernel Library

(MKL)

11.0 Intel

Fastest Fourier

Transform in

the west

(FFTW)

FFTW-2.1.5 Intel

Case 1:

The experiments on MPICH1 used "mpirun"

command and “mpiexec” for MPICH2. For

example, the steps of the LAPW0 execution on

MPICH2 are shown in Figure (1).

The results of the average running time for case 1

(LAPW0) are summarized in Table 4. This table

shows the execution time on MPICH1 and

MPICH2 and the improvement factor (if) by the

number of processors. The improvement factor (if)

is measured as the ratio of the difference between

the execution time on MPICH1 and MPICH2 to

the Execution time on MPICH1 i.e. (TMPICH1-

TMPICH2)/ TMPICH1.

𝑖𝑓 =
𝑇𝑀𝑃𝐼𝐶𝐻1−𝑇𝑀𝑃𝐼𝐶𝐻2

𝑇𝑀𝑃𝐼𝐶𝐻1

[rezek@rezek-dell15~]$ cd/home/ rezek

/mpich2 /examples

[rezek@rezek-dell15 examples]$ mpicc -c

lapw0_mpi.c

[rezek@rezek-dell15 examples]$ mpicc -o

lapw0_mpi lapw0_mpi.o

[rezek@rezek-dell15 examples]$ mpd &

[1] 3929

[rezek@rezek-dell15 examples]$ mpiexec -

n 1 lapw0_mpi

lapw0_mpi has started with 1 tasks.

Initializing arrays...

Running Time = 62.005132

Done.

[rezek@rezek-dell15 examples]$ mpiexec -

n 2 lapw0_mpi

lapw0_mpi has started with 2 tasks.

Initializing arrays...

Running Time = 34.002134

Done.

rezek@rezek-dell15 examples]$ mpiexec -n

3 lapw0_mpi

lapw0_mpi has started with 3 tasks.

Initializing arrays...

Running Time = 25.141348

Done.

Figure 1 : Screen Shot of Running LAPW0 on MPICH2

Table 4: Execution Time of LAPW0 on MPICH1

and MPICH2 on Different # of Processors.

of

Proc

Exec.

time on

mpich1

(min)

Exec.

time on

mpich2

(min)

If

1 64.25 62.54 0.026615

2 35.05 34.38 0.019116

3 26.03 25.37 0.025355

4 20.5 19.52 0.047805

It is clear that the performance of MPICH2 is

better than MPICH1 by approximately 3%. Also,

Figure 2 shows the difference between the

execution time on MPICH1 and MPICH2.

Therefore, we believe that the nine added features

have positive impact on the performance. The

most important added features in MPICH2 are the

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 108-116
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

114

http://www.wien2k.at/
http://www.mpich.org/

collective communications, the support of one

sided communication, MPI Thread Multiple, and

its concern on communication rather than process

management. It should be noted that the time unit

in the experiments of case 1 is in minutes, whereas

it is in seconds in case 2.

Figure 2: the WIEN2K execution time of MPICH1 vs.

MPICH2.

Case 2:

In this case the experiments were implemented on

a standard parallel matrix multiplication of size

5120x5120 using multithreading by means of

OpenMP and multi-processing (message passing)

using MPICH1 and MPICH2. Also, in these

experiments we utilized 1, 2, 4, 8 and 16

processes. The experiments where repeated by

using multithreading with 1, 2, 4, 8, and 16

threads. The results in Figure 3 show that the

performance using multithreading is better than

multiprocessing. This is because of the overhead

processes and data distribution.

Recall that the experiment's platform has four

processing elements. It is apparent from Figure 3

that the curve declines (i.e. improving the

efficiency and speed-up) until the number of

processes/threads reaches 4. Afterwards, the curve

begins to incline, which indicates a decrease in

performance and efficiency. This is due to the

overheads in scheduling the threads and processes

in utilizing shared resources (i.e. processing

elements and shared memories).

Fig 3: Execution Time of Matrix Multiplication Using

MPICH1 vs. MPICH2 vs. OpenMP

4 CONCLUSION AND FUTURE WORKS

 The goal of this work is twofold. The first is to

evaluate and compare the performance of

MPICH1 and MPICH2 using different cases

running on one, two, three, and four processors.

The second aim is to evaluate the performance of

running parallel programs with big data using

message passing and multithreading. As a result

we can conclude that MPICH2 perform better than

MPICH1 in all cases. It is due to the collective

improvement and added features in MPICH2.

Moreover, the results show that multithreading

programming on multi-core architectures perform

better than message passing when the parallel

programs works on big data.

Finally, for future work, we intend to extend our

experiment to test the performance of newly

issued MPICH3 and Graphical Processing Units

(9999999GPU) using different tasks.

5 REFERENCES:

1. Sherihan Abu El-Enin, Mohamed Abu El-Soud,”

Evaluation of Matrix Multiplication on an MPI Cluster”

Faculty of computers and Information, Mansoura

University, Egypt. 2011.

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 108-116
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

115

2. Dami´an A. Mall´on, Guillermo L. Taboada, Carlos

Teijeiro, Juan Touri˜no, Basilio B. Fraguela, Andr´es

G´omez1, Ram´on Doallo, and J. Carlos Mouri˜no1,”

Performance Evaluation of MPI, UPC and OpenMP on

Multicore Architectures”.Galicia Supercomputing

Center (CESGA), Santiago de Compostela, Spain.

Computer Architecture Group, University of A Coru˜na,

A Coru˜na, Spain. 2009.

3. David Culler. Jaswinder Pal Singh, Anoop Gupta.”

Parallel Computer Architecture A Hardware / Software

Approach ”. University of California, Berkeley,

Princeton University, Stanford University, Aug 28,

1997, Pages 40 -127.

4. ”MPI: A Message-Passing Interface Standard, Message

Passing Interface Forum”. ARPA and NSF under grant

ASC-9310330, the National Science Foundation Science

and Technology Center Cooperative Agreement No.

CCR-8809615, by the Commission of the European

Community through Esprit project P6643. Nov 15,

2003.

5. ”MPI: A Message-Passing Interface Standard, Version

2.1, and Message Passing Interface Forum”. June 23,

2008.

6. EDOUARD BUGNION, SCOTT DEVINE, KINSHUK

GOVIL, and MENDEL ROSENBLUM, “Disco:

Running Commodity Operating Systems on Scalable

Multiprocessors”, Stanford University, November 1997,

Vol. 15, No. 4, Pages 412–447.

7. S. Cottenier, “Density Functional Theorythe Family of

(L)APW-methods: a step-by-step introduction”, August

6, 2004, ISBN 90-807215-1-4.

8. Rezek Mohammad, Areej Jabir, and Rashid Jayousi,

“Optimum Execution For WIEN2K using Parallel

Programming Models (Comparison Study)”.

Department of physics, Palestinian Technical

University/Khadoorie, Middle East Technical

University, and department of Computer Science, Al-

Quds University, Jerusalem, Palestine. 2011

9. Schrodinger¸ E. “An Adulatory Theory of the Mechanics

of Atoms and Molecules”. Physical Review 28 (26):

1049-1070. 1926.

10. Hellmann¸ Hans, “A new Approximation Method in the

Problem of Many Electrons”. Journal of Chemical

Physics (Karpow-Institute for Physical

Chemistry,Moscow), 1935.

11. M´arcia C. Cera1, Guilherme P. Pezzi, Maur´ıcio L.

Pilla, Nicolas B. Maillard1, and Philippe O. A. Navaux,

, “Scheduling Dynamically Spawned Processes in MPI-

2”. Universidade Federal do Rio Grande do Sul, Porto

Alegre Brazil and Universidade Cat´olica de Pelotas,

Pelotas, Brazil).

12. C.M. Maynard, “Comparing One-Sided Communication

with MPI, UPC and SHMEM”. EPCC, School of

Physics and Astronomy, University of Edinburgh,

JCMB, Kings Buildings, Mayfield Road, Edinburgh,

EH9 3JZ, UK.

13. Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin,

Dhabaleswar K. Panda, William Gropp and Rajeev

Thakur, “High Performance MPI-2 One-Sided

Communication over InfiniBand”. Computer and

Information Science The Ohio State University

Columbus, OH 43210 Mathematics and Computer

Science Division Argonne National Laboratory

Argonne, IL 60439.

14. “MPI: A Message-Passing Interface Standard, Version

2.2, and Message Passing Interface Forum”. Sept 4,

2009
15. William Gropp, Ewing Lusk, David Ashton, Pavan

Balaji, Darius Buntinas, Ralph Butler, Anthony Chan,

Jayesh Krishna, Guillaume Mercier, Rob Ross, Rajeev

Thakur, and Brian Toonen,“ MPICH2 User’s Guide,

Version 1.0.6, Mathematics and Computer Science

Division Argonne National Laboratory”. September

14, 2007
16. Srikar Chowdary Ravela, “Comparison of Shared

memory based parallel programming models”. School

of Computing Blekinge Institute of Technology Box

520 SE – 372 25 Ronneby Sweden, 2010.

17. Kvasnica, P., Páleník, T “Simulation in Flight Simulator

with the Hybrid Distributed-Shared Memory

Architecture” In: ASIS 2009, s. 19 – 24. ISBN 978-80-

86840-47-5. 2009

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 108-116
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

116

