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Abstract 

Present and future multi-core computational system architecture attracts researchers as an 

adequate and inexpensive solution to achieve high performance computation for many 

problems. The multi-core architecture enables implementation of shared memory and/or 

message passing parallel processing paradigms. Therefore, there is a great need for 

standard libraries in order to utilize the resources efficiently and effectively. In this work, 

we evaluate the performance of message passing using two versions of the well-known 

message-passing interface (MPI) library: MPICH1 vs. MPICH2. Furthermore, we 

compared the performance of shared memory using OpenMP that supports multithreading 

with MPI. 

The added features (total 9) impacted the MPICH2 results over MPICH1. On the other 

hand, the overheads of message passing and large data communication impact negatively 

on the performance of this paradigm against multithreading paradigm.  
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تمریر الرسائل ومتعدد : نیات الخوارزمیات المتوازیةدراسة مقارنة الأداء والكفاءة بین تق

  جهاز حاسوب متعدد المعالجات على الخیوط 
 

  ھادي محمود یوسف خلیلیة  :إعداد

  نضال الكفري.د  :إشراف

  

 :ملخص

انظمة الحاسوب متعددة المعالجات الحالیة والمستقبلیة تشكل عامل جذب وتحول نحو تكثیف هیكلیة ان التطور في 

استخدام المعالجة المتوازیة في التطبیقات على اختلاف انواعها للووصول الى اداء افضل حیث یمكن تقسیم العملیات 

لذا یشهد البحث العلمي . العملیات/ومعالجات اصغر وتقسم البیانات على هذه المعالجات/والبیانات الكبیرة الى عملیات

حیث یمكن . یمكن عالیة استخدام هذه البنیة الحاسوبیة بافضل مانشاطا مكثفا في البحث عن افضل الطرق لزیادة ف

توفیر التواصل والتفاعل بین العملیات التي تساعد في استخدام النماذج والطرق الاساسیة المتبعة في المعالجة المتوازیة و 

 )Shared memory parallel processing paradigm(زیة بوجود الذاكرة المشتركة الجة المتو االمع:  المختلفة

 و كلاهما معاأ )Message passing interface MPI(وكذلك باستخدام تبادل الرسائل والبیانات بین هذه العملیات 

)Hybrid approach .( لذا توفر مراكز الابحاث والمؤسسات مكتبات برمجیة لتسهیل تطویر برمجیات المعالجة

تجارب الابحاث لاستخدام هذه البنیة وطبیعة التطبیقات البرمجیة لابد من ولتقییم الطرق المقترحة في . المتوازیة

 .استخدام برمجیات وبیانات قیاسیة معرفة في مجال البحث العلمي

، هذه (WEIN2K)هناك العدید من المشاكل الیومیة التي تم حلها باستخدام المعالجة المتوازیة منها الحزمة الفیزیائیة 

المشاكل منها استغراق الوقت الكبیر في التشغیل، وهذا ناتج من أن الحزمة لازالت تستخدم  الحزمة تحتوي على بعض

  .  في تبادل الرسائل للمعالجة المتوازیة  (MPICH1) القناة القدیمة

 قییمتبادل الرسائل، ومن ثم قمنا بتل  (MPICH2)على القناة الجدیدة الفیزیائیة بتمثیل الحزمة في هذا العمل البحثي قمنا

بین العملیات وهي ) MPI(تبادل الرسائل  بطریقةزیة االمعالجة المتو  دعمت التي برمجیةالحزمة لداء اصدارین متتالیان لأ
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بحاث علم الفیزیاء أالمعروفة في ) WIEN2K(ة منا بتنفیذ الحزمحیث ق). MPICH2(و ) MPICH1(بالتحدید 

عتماد على نظریة الخصائص الفیزیائیة والكیمیائیة للمواد بالإوهي حزمة مخصصة لدراسة . والكیمیاء كحالة دراسیة

 ).MPICH2(و ) MPICH1(ام دباستخ الكثافة الوظیفیة الفیزیائیة بواسطة المحاكاة  كتطبیق قیاسي لتجاربنا

على خاصیة  عتماداً إ)  OpenMP(المتوفرة في حزمة ) Multithreading(داء  أییم قوفي هذا البحث تم كذلك ت

باستخدام تبادل الرسائل بین العملیات في تطبیقین مختلفین ) Multiprocesses(كرة المشتركة في هذه الهیكلیة و الذا

لذا قمنا بتنفیذ خوارزمیة  ضرب مصفوفتین كتطبیق فیه حجم تبادل البیانات كبیر . من حیث تبادل البیانات وحجمها

ن تبادل البیانات حیث إ. التقریبیة لمحیط الدائرة إلى نصف قطرهاالنسبة وهي ) π(واخر وهو حساب الثابت الحسابي 

 .جداً  غیراً یكاد یكون ص

  

صدار الأول من آداء الإأفضل ) MPICH2(صدار الثاني من مكتبة واجهة تمریر الرسائل النتائج أظهرت أن آداء الإ

)MPICH1(ضافتها على الممیزات الإضافیة التسعة التي تم إ/یرجع الى التحسینات ، وتعلیل ذلك(MPICH2).  كما

فضل من أیكون  في التطبیقات التي تتبادل فیها العملیات بیانات كبیرة) Multithreading(ن آداء ألنتائج ظهرت اأ

)Message Passing (الرسائل الكبیرلى عملیات ذات حمولة كبیرة وحجم إ، وهذا یرجع والعكس صحیح. 
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Chapter One 

Introduction 
 

In order to achieve high performance computing (i.e. reducing computing elapsed time), 

parallel processing is widely used in multimedia computing, signal processing, scientific 

computing, engineering, general purpose application, industry, computer systems, 

statistical applications, and simulation. Usually, mainframes and super computers are used 

to implement shared memory parallel computing, while clusters and grid computing are 

utilized to speed up the computation-using message passing [7]. Thus, parallel processing 

was carried out on expensive supercomputers and mainframes.  After that, the emerging 

high performance computer network and protocols attracted the researcher to use message 

passing on distributed memory to implement parallel processing on clusters of on shelf 

computers and grid computing.  

 

Obviously, parallel processing is implemented on shared memory computer architectures 

using Single Instruction Multiple Data (SIMD), Multiple Instruction Multiple Data 

(MIMD), Single Program Multiple Data (SPMD) Techniques, or multithreading. Whilst 

message passing paradigm can be used on distributed memory architectures by means of 

SPMD and MIMD, a hybrid approach using both paradigms can also be implemented on 

both architectures [25], [42]. 
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However, the emerging and promising multi-core computer architecture attracts the 

researchers to utilize this architecture as an adequate and inexpensive solution to gain high 

performance computation for many problems and applications. Therefore, this architecture 

shifted the interest of many researchers towered parallel computing on such multi-core 

systems.  Thus, we can achieve relatively cheap high performance using message passing, 

multithreading on shared memory, or hybrid techniques on a single or cluster of multi-core 

computers [2], [3]. This architecture enables us to implement both shared memory and/or 

message passing parallel processing paradigms. Therefore, we need to evaluate which 

paradigm can be used more efficiently and effectively on multi-core architectures. 

Furthermore, to carry out our computations, we need appropriate standard libraries in order 

to utilize the resources efficiently for a given computational problem. Hence, to facilitate 

realization of parallel programming on different platforms, there are several supporting 

libraries.  For example, we can use PVM, JPVM and MPI for message passing on 

distributed memory. Posix and OpenMP are also used for multithreading on shared 

memory [3].  It should be noted that these libraries provide us with a well-defined standard 

interface to achieve portability and flexibility of usage. However, the developers of these 

libraries intend to improve the implementation to cope with the emerging platforms to 

increase the utilization efficiency [15]. 

 

In this work, we focus on evaluation of the performance of parallel computing using 

message passing (multi-processes) and shared memory (multiprocessing) on multi-core 

systems. We used different versions of MPI library namely MPICH1 and MPICH2 for 

message passing and OpenMP for multithreading in our experiments. 
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Since, one of the important applications that need to speed up computation is the WIEN2K 

application, which is based on Density Functional Theory (DFT), we used it as a 

benchmark to evaluate the performance of MPICH1 vs. MPICH2. The WIEN2K 

application enables us to simulate physical and chemical systems that form new materials. 

This is necessary for laboratory researchers who can produce desired materials such as 

drugs and medicine [8], [30]. The WIEN2K applied a parallel method to solve quantum 

mechanics equations based DFT to find the cohesive energy of any material.  It should be 

noted that the current official version of this application uses MPICH1 and it takes a lot of 

time to return the results of forming new material (around 30 days); so these results form a 

big problem. In addition, we used a matrix multiplication benchmark to evaluate the 

performance of multi-processes (message passing) vs. multithreading parallel 

programming performance and efficiency on a multi-core system. 

 

Based on the high efficiency of MPICH2 over MPICH1, in this work we implemented the 

WIEN2K package on MPICH2 and evaluated the performance of MPICH1 and MPICH2 

by running the package that originally used MPICH1 and our new implementation of 

WIEN2K on MPICH2. Results show that MPICH2 increases the speed up of WIEN2K 

execution on each multicore by 3% which indicates decreasing one day of 30 work days to 

simulate producuction of  new material. We believe that this improvement in performance 

is due to the added features to MPICH2. Some of these features are: dynamic spawning of 

tasks in LAPW (i.e., LAPW0, LAPW1 and LAPW2), different collective communication 

routines in LAPW, a number of one-sided and non-blocking routines in LAPW, and 

LCORE, And multiple threads in MIXER module.  
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Moreover, in order to evaluate and compare the performance of multithreding utilzation 

the shared memory property with multiprocessor using message passing techniques on 

multi-core architechture, we implemented a matrix multiplication (MMT) and the 

mathematical constat π (the ratio of a circle's circumference to its diameter) on both 

MPICH1 and MPICH2 message passing and OpenMP for testing multithreading technique. 

 

In case of MMT (for largr size matrices), the results show multithreading execution time is 

lower than multiprocessing time. This is because of the processes schedulaing and large 

size of data chunks communication overheads. Nevertheless, in the second case (π) and 

MMT (for small size matrices), the results show that  MPICH2 performes better than 

multithreading because of the small size of data chunks and the following features: 

Collective communication routines on master computer, a number of non-blocking 

routines on each client, and multiple threads on the master.  

 

The thesis is organized as follows: Next chapter provides a background; chapter 3 

introduces a literature review. In Chapter 4, we introduce our work. Chapter 5 explaines 

the experiment and discusses the results. Finally, Chapter 6 concludes this work and 

introduces future work. 
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Chapter Two 

Background 

 
In this chapter we present a background relevant to our work. Thus, we introduce parallel 

computing classification infrastructure by means of hardware and software supporting 

libraries such as MPICH1, MPICH2 and multithreading. Also, we will introduce/explain 

Density Functional Theory and WIEN2K package as benchmark for our experiments on 

MPICH1 vs. MPICH2 for comparison. Since this is one of the scientific problems 

(physical computation) that need high performance computing. 

 

A. Parallel Approaches 
 

In the last decade, a significant growth was achieved in performance and capability of 

computer systems. Applications need computers with high requirements for computing 

exploited this important event. Example applications include transaction processing, 

computer games and graphics, weather simulation, heat transfer, ray tracing and many 

others [7]. However, the traditional logical view of a sequential computer consists of a 

memory connected to a processor via a datapath. All three components – processor, 

memory, and datapath present bottlenecks to the overall processing rate of a computer 

system.  

Number of architectural innovations over the years have addressed these bottlenecks. One 

of the most important innovations is multiplicity – in processing units, datapaths, and 

memory units. This multiplicity is either entirely hidden from the programmer as in the 
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case of implicit parallelism or exposed to the programmer in different forms [40]: The first 

is Data parallelism [7], [27]: in this form of parallelization data is distributed on multiple 

processors environment, in a multiple system executing a single set of instructions (SIMD), 

data parallelism is achieved when each processor performs the same task on different 

pieces of distributed data. Second: Bit level: this form based on increasing processor work 

size. This will reduce the number of instructions the processor must execute [7], [29]. 

Third: Instruction-Level Parallelism (ILP): ILP used in very long instruction word 

(VLIW) processors relies on the compiler to resolve dependencies and resource availability 

at compile time [24]. 

The previous styles depend on several parallel algorithm models such as Data model, task 

model, work pool model etc. The data-parallel model is one of the simplest algorithm 

models. In this model, the data is statically or semi-statically mapped on to processes and 

each processor performs similar operations on different data.  In it, the decomposition of 

computations is done in two steps. In the first step, the data on which the computations are 

performed are partitioned, and in the second step, this data partitioning is used to induce a 

partitioning of the computations into tasks. The operations that these tasks perform on 

different data partitions are usually similar (e.g., matrix multiplication) [7], [9]. But, we 

can calculate the PI (π) value using the task model which isn’t need to decompose data 

because it depends on tasks decompositions. The third model, which is work pool model 

that is characterized by a dynamic mapping of tasks onto processes for load balancing in 

which any task may potentially be performed by any processes. Parallel tree search where 

the work is represented by a centralized or distributed data structure is an example of the 

use of the work pool model where the tasks are generated dynamically [40].  
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However, in parallelization of the computations or operations can often be achieved in two 

ways: by replicating the hardware components (processor, memory and bus) or by 

interleaving and organizing the single processor execution between multiple tasks [27].  

     The main intention in using the parallel systems is to support high execution speeds. 

The scope of parallelization of an application comes from the identification of multiple 

tasks of the same kind, which is a major source of speed up achieved by the parallel 

computers [39]. 

 

A.1 Parallel Hardware and Software 

It is necessary to know about the parallel hardware before going deep into the study. The 

traditional uni-processor computer is said to follow Von-Neumann architecture, which 

consists of a single memory, connected to processor via data paths and works on the 

“stored memory concept”. These kinds of architectures often represent a bottleneck for 

sequential processing and the performance associated with them is limited. Therefore, to 

relieve from these bottlenecks one possible way is to use the redundancy /duplication of 

the hardware components, which lead us to parallelism in order to achieve high speed and 

efficiency in processing. 

 

We can calculate the speed up by calculate the ratio between the serial and the parallelism 

of the program. The maximum possible speed up of a program such as a result of 

parallelization is observed as Amdahl’s law [12]. It states that a small portion of the 

program which cannot be parallelized will limit the overall speed up available from 

parallelization. A program that solves a large mathematical or engineering problem will 

typically consist of several parallelizable parts and several sequential parts.  If α is the 

fraction of running time a sequential program spends on non-parallelizable parts, then: 
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� ≤
1

�
 

(2.1) 

�: is the maximum speed up with parallelization of the program.  

 

Efficiency is a measure of the fraction of time for which a processing element is usefully 

employed; it is defined as the ratio of speedup to the number of processing elements. In an 

ideal parallel system, speedup is equal to p and efficiency is equal to one. In practice, 

speedup is less than p and efficiency is between zero and one, depending on the 

effectiveness with which the processing elements are utilized. We denote efficiency by the 

symbol E. Mathematically, it is given by 

� =
�

�
 

(2.2) 

If the speed up by parallel program is 3X and with four processors, we get efficiency value 

equals 75%.  

 

Good speed and efficiency in parallel computing is due to replication of hardware 

components, thereby various types of parallel platforms that depend on duplication of 

hardware components designed to support the better parallel programming. The hardware 

used for parallel programming known as multiprocessors that introduce the classification 

of multi-core platforms. This classified into two types [7], [27]: 

 SIMD architectures - involves multiple processors sharing the same instructions but 

rather executing them on multiple data.  

 MIMD architectures – involves multiple processors each having its own set of 

instructions and data.  
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They are several designs and architectures that support parallelism such as RISC (Reduced 

Instruction Set Computer), cluster, grid, new architecture NVIDIA’s GPUs (Graphics 

Processing Units) etc [41]. As a result, we are seeing the design that is best whose 

processors suited to parallel architecture become the performance leader as well. 

 

A.2 Shared Memory and Distributed Memory Paradigms 

Parallel programming models are not new and dates back to the cell processors. Several 

programming models have been proposed for multi-core processors. They can be classified 

based on the communication behaviour model used [39]. The communications can be 

applied on any one of these parallel architectures: the first is a shared memory architecture 

that shares the global address space under shared-memory multiprocessors. The multi-

processors in these systems communicate with each other through global variables stored 

in a shared address space. They are several programming models that based on shared 

memory such as threading, tasking and directive models. The most important one of them 

is a threading model. It uses mutual exclusion locks and conditional variables for 

establishing communications and synchronizations between threads. This model 

distinguishes from others by: flexibility, more suitable for applications based on the 

multiplicity of data, easy to find tools related to the threading models and easy to develop 

parallel routines for it. Despite of threading model is the important one it includes several 

disadvantages such as hard to manage because of more errors can happen, the developer 

should be more careful in using global data otherwise this leads to data races, deadlocks 

and false sharing. Moreover, Threading models stand at low level of abstraction, which 

isn‘t required for a better programming model.  
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The second is a distributed memory architecture that each processor has its own memory 

module and the data at any time instant is private to the processors. These types of systems 

are constructed by interconnecting each component with a high-speed communications 

network. These architectures rely on the send/receive primitives for communication 

between multiple processors communicate to each other over the network. In addition, the 

distributed memory has the following advantages:  low cost and a message passing models 

avoids the data races (no locks). But from its obstacles are: Development of applications 

on message passing models is hard and takes more time, the developer is responsible for 

establishing communication between processors and message passing models incur high 

communication overheads.  

 

A comparison base characteristic using methods between shared vs. distributed is listed in 

Table 1 [44]. Knowing that a hybrid approach using both paradigms can also be 

implemented on both architectures. 

 

In this research, we will concentrate on the ways of parallelism: message passing and 

shared memory approaches. We will go in details of message passing channel1 (MPICH1) 

and message passing channel2 (MPICH2) by using WIEN2K package with Density 

Functional Theory as first case study in the 1st part of the work. In addition, we will 

compare OpenMP and MPICH by using Matrix Multiplication and computing the 

mathematical constant π as a two cases study in the 2nd part. 
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Table 1: A Comparison between Shared vs. Distributed [44].   

Architecture 

Distributed 

Memory 

MPI 

Shared Memory 

Arch OpenMP 

Hybrid Distributed & 

Shared Memory 

Creation 

mathematical 

model 

Easy 
Slightly 

complicated 
Difficult 

Balancing 
Changeable with 

Difficulties 

Changeable 

easily 
Easily changeable 

Simulation of 

parallel models 
Advisable Convenient Useful 

Synchronization 

models 
Simple Complicated Complicated 

Transfer dates 

between models 
Large Little Intermediate 

Power of large 

modules 
Reasonable Big Big 

 

The two parts of our research implemented and executed on a multi-core platform, which 

is the most common processor architectures available today and supports the two types of 

parallel paradigms: shared and distributed memory. Multi-core architecture implies to at 

least three aspects: there are multiple computational cores, there is a way by which these 

cores communicate and the processor cores have to communicate with the outside world. 
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So this platform based on several important processor architecture concepts such as (core 

organization, interconnects, memory architectures, support for parallel programming etc).  

The major vendors of multi-core are: Intel (supports the Hyper Threading Technologies 

(HTT) concept), IBM (which also supports thread priorities) and Oracle Sun (where as 

much as eight hardware threads are supported on each core). Knowing that machine 

specifications that we used in the experiment will be chapter 4 (Experiments and Results 

Analysis). 

 

B. Message Passing Channel (MPICH) 

Message passing is a paradigm used widely on certain classes of parallel machines, 

especially those with distributed memory. The basic concept of message passing is 

processes communicating through messages. Over the last ten years, substantial progress 

has been made in casting significant applications in this paradigm.  

 

More recently, several systems have demonstrated that a message passing system can be 

efficiently and portably implemented. It is thus an appropriate time to try to know both the 

syntax and semantics of a core of library routines in MPI (Message Passing Interface) 

standards that will be useful to a wide range of users and efficiently implementable on a 

wide range of computers. MPI is a specification, not an implementation; there are multiple 

implementations of MPI. It is not a language, and all MPI operations are expressed as 

functions, subroutines, or methods, according to the appropriate language bindings, which 

for C and Fortran-77 in the MPICH1 standard and which for C++ and Fortran-95 in the 

MPICH2.  
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The goal of the MPI simply stated is to develop a widely used standard for writing 

message-passing programs. As such, the interface should establish a practical, portable, 

efficient, and flexible standard for message passing. A complete list of goals follows [4], 

[28]: 

 Standardization - MPI is the only message passing library which can be considered a 

standard.  

 Portability - There is little or no need to modify your source code when you port your 

application to a different platform.  

 Performance Opportunities - Vendor implementations should be able to exploit 

native hardware features to optimize performance.  

 Functionality - There are over 440 new routines defined in MPICH2.  

 Availability - A variety of implementations are available, both vendor and public 

domain. 

 Flexibility: Define an interface, such as PVM, NX, Express, p4, etc 

 Communication Reliability: The user need not cope with communication failures.  

 Thread-Safety: The interface should be designed to allow for thread-safety. 

 Language Independent: Semantics of the interface should be language independent. 

 

All goals and basic rules in MPI applied on all versions of message passing channel 

releases, where each MPI channel (MPICH1 and MPICH2) has several releases as shown 

in next two tables (Table 2, Table 3). 
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Table 2:  Message Passing Channel One (MPICH1) Versions [4], [18]. 

No Version Name Released Date 

1 Version 1.0 May, 1994 

2 Version 1.1 June, 1995 

3 Version 1.2 July 18, 1997 

4 Version 1.3 May 30, 2008 

 

All MPICH1 versions focused on five areas: further corrections and clarifications, new 

datatype constructors and language interoperability, dynamic processes and one-sided 

communication, extensions to the Fortran 77 and C bindings and areas in which the MPI 

process and framework seem likely to be useful. 

 

Table 3:  Message Passing Channel Two (MPICH2) Versions [12], [20]. 

No Version Name Released Date 

1 Version 2.0 May 20, 1998 

2 Version 2.1 June 23, 2008 

3 Version 2.2 September 4, 2009 

 

All MPICH2 versions focused on extensions to the classical message-passing model. 

Those are provided in collective operations, remote-memory access operations, dynamic 

process creation, and parallel I/O.  

 

Note: the major work of the current MPI Forum is the preparation and checking the 

stability of MPICH3 [18]. 
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B.1 Differences between Two Channels: MPICH1 vs. MPICH2 

If you have been using the latest version of MPICH2, you will find a number of things 

about MPICH1 that are different (and hopefully better in every case.) Your MPI 

application programs need not change, of course, but a number of settings and 

configurations about how you run them will be different.  

MPICH2 is an all-new implementation of the MPI Standard, designed to implement all of 

the additions to MPICH1 such as (dynamic process management, one-sided operations, 

parallel I/O, and other extensions). If we apply the additions over MPICH1 in 

implementing MPICH2, we will get MPICH2 more robust, efficient, and convenient to 

use. So this motivates us to learn the changes between MPICH1 and MPICH2 as shown in 

Table 4 [4], [16]. 

Table 4: Different Changes that show the Differences between MPICH1 and MPICH2 

[4], [16]. 

No Changes MPICH1 MPICH2 

1 

 
MPI Thread 

Multiple 
 

Doesn’t Support Support 

2 

 
Configuration of 

MPICH  
 

./configure -cc=pgcc ./configure CC=pgcc 

3 
Process 

Management and 
Communication 

Process Management 
entagled with 
Communication Mechanism 
(Not Seperated) 
 

Provides a Seperation of 
Process Management and 
Communication Mechanism  

 
4 

 
Collective 
Operations 

 

Defined collective 
communication for 
intracommunicators. 

Introduces extensions of the 
MPICH1 collective routines 
to intercommunicators. The 
two new collective routines: 
a generalized all-to-all and 
an exclusive scan.  
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No Changes MPICH1 MPICH2 

5 
Message Passing 
Daemon (mpd) 

MPD is built in, so it doesn’t 
need to start manually. 
mpd: establishes 
communication among the 
machines to be used before 
application process startup, 
thus providing a clearer 
picture of what is wrong 
when communication cannot 
be established and providing 
a fast and scalable startup 
mechanism when parallel 
jobs are started. 

MPD is not built in, so it 
needs to start manually [13]. 
Some of commands that are 
used to daemon are” 
mpd: starts an mpd daemon. 
mpdboot: starts a set of 
mpd’s on a list of machines. 
mpdtrace: lists all the MPD 
daemons that are running. 
mpdlistjobs: lists the jobs 
that the mpd’s are running.  
mpdkilljob: kills a job 
specified by the name 
returned by mpd list jobs. 
 
 

6 

 
Starting Parallel 

Jobs 
 

MPICH1 provided the 
mpirun command to start 
MPICH1 jobs.  
 
 

MPICH2 provided the 
mpiexec command to start the 
jobs. 

7 
Command-Line 

Arguments  

MPICH1 required access to 
command line arguments in 
all application programs, and  
MPICH1’s configure 
devoted some effort to 
finding the libraries that 
contained the right versions 
of iargc and getarg and 
including those libraries with 
which the mpif77 script 
linked MPI programs. 
 
 

MPICH2 does not require 
access to command line 
arguments to applications. 

8 
Arguments argc and 

argv 
  

Needs to pass the arguments 
argc and argv by an 
application to MPI INIT and 
main functions.  
 

Does not need to pass the 
arguments. 
  

9 Error Handlers 

Attached error handlers only 
to communicators.  

Attached error handlers to 
three types of objects: 
communicators, windows 
and files. 
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No Changes MPICH1 MPICH2 

10 
Communicator 

Caching 

Doesn’t include functions 
for caching on 
communicators.  

Includes several functions 
for caching on 
communicators. 
 

11 

 
Size-Specific MPI 

DataTypes 
 

Optional Required 

 

They are several useful tools and components included in MPICH2 but not all of them 

included in MPICH1, these tools can be shown as in Table 5 [12]. 

Table 5: Different Criteria that show the differences between MPICH1 and MPICH2 [12]. 

No Criteria MPICH1 MPICH2 

1 Point-to-point communication Include Include 

2 Datatypes Not Include Include 

3 Collective operations Include Include 

4 Process groups Include Include 

5 Communication contexts Include Include 

6 Process topologies Include Include 

7 

Environmental Management and 

inquiry 
Include Include 

8 The info object Not Include Include 

9 Process creation and management Not Include Include 

10 One-sided communication Not Include Include 

11 External interfaces Not Include Include 

12 Parallel file I/O Not Include Include 

13 Language Bindings for Fortran, C 

and C++ 

Include Bindings for 

Fortran 77 and C 

Include Bindings for 

Fortran 77, Fortran 

95, C and C++ 

14 Profiling interface Include Include 
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MPICH2 includes C++ and Fortran 95 bindings, but MPICH1 provides the C and Fortran 

77 bindings. So, the C++ binding matches the new C functions, datatypes and constants. 

That means the functions in C are replaced in C++. The FORTRAN 95 binding matches 

the new FORTRAN 77 functions [5], [12], [19].  (See Appendix 1). Moreover, MPICH2 

replaced several MPICH1 constructors. (See Appendix 1) 

 

Consequently, we can brief the differences that affect on the improvements in MPICH2 

that we believe they have an impact on the performance: 

1. MPICH1 focused mainly on point-to-point communications, but MPICH2 included a 

number of collective communication routines and was thread-safe [4].  

2. MPICH2 supports dynamic spawning of tasks. It provides primitives to spawn 

processes during the execution and enables them to communicate together [10].  

3. MPICH2 supports one-sided communication. It provides three communication calls: 

MPI_PUT (remote write), MPI_GET (remote read), and MPI_ACCUMULATE 

(remote update). These operations are non-blocking [11], [12]. 

4. MPICH2 used generalized requests that are not used by MPICH1. These requests allow 

users to create new non-blocking operations with an interface [12].  

5. In MPICH2, significant optimizations required for efficiency (e.g. asynchronous I/O, 

grouping, collective buffering, and disk-directed I/O) are achieved by the parallel I/O 

system [12]. 

6. MPICH1 defined collective communication for intra-communicators and two routines 

for creating new intercommunicators. But MPICH2 introduces extensions of many of 

the MPICH1 collective routines to intercommunicators, additional routines for creating 

intercommunicators, and two new collective routines: a generalized all-to-all and an 

exclusive scan [12]. 
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7. MPICH2 supports MPI THREAD MULTIPLE by using a simple communication 

device, known as   “ch3 device” (the third version of the “channel” interface), but 

MPICH1 doesn’t support MPI THREAD MULTIPLE [5]. 

8. MPICH1 is not concerned with communication, but rather process management. But 

MPICH2 is concerned with communication rather than process management. However, 

MPICH2 provides a separation of process management and communication. The 

default runtime environment consists of a set of daemons, called mpd’s, that establish 

communication among the machines to be used before application process startup, thus 

providing a clearer picture of what is wrong when communication cannot be 

established. In addition, it provides a fast and scalable startup mechanism when parallel 

jobs are started. But MPICH1 doesn’t separate them and mpd’s are built in [13]. 

9. MPICH1 required access to command line arguments in all application programs 

before startup, including FORTRAN ones. Thus, MPICH1’s configuration devotes 

some effort to finding the libraries, such as libraries that contained the right versions of 

iargc and get arg. But MPICH2 does not require access to command line arguments of 

applications before startup and MPICH2 does nothing special for configuration. If one 

needs them in their applications, they must ensure that they are available in the 

environment being used [13].  

 

Therefore, in the conclusion we stated that MPICH2 extends most of the MPICH1 

datatypes, routines, constants and constructors. It makes them more feasible and flexible in 

calling and implementation. But the extending takes into account the compatibility and 

portability of the applications. 
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Physicists, chemists, mathematicians, computer users and owners etc., benefit and achieve 

high performance when their applications and simulation softwares are implemented and 

built on new version of MPI channel (MPICH2) such as WIEN2K package that based on 

Density Functional Theory (DFT). WIEN2K used to simulate physical systems inorder to 

produce new materials such as medicine as we’ll see in the next section. 

 
 

C. Benchmarks 
 
 
C.1 Density Functional Theory 

 
 

Materials are build from atoms, atoms composed of a heavy positively charged nucleus and 

lighter particles called electrons. These particles interact with each other and also with their 

neighbors in the next atoms.  In order to study the stability, structural, thermodynamic, 

mechanical, transport properties and electronic properties of these materials we have to 

solve many body second order deferential equation called equation of state, this equation 

obeys the laws of quantum mechanisms.  

 

The equation of state composed of the kinetic energy operators for both the nucleus and 

electrons, potential energy resulted from interaction between electrons them self, nuclei’s 

them self and nuclei’s and electrons; these operators are measured by solving many-body 

Hamiltonian for the system, which  is illustrated in equation (2.3) [8],[22] 

 

This equation can be solved numerically after transforming it to a one body problem after 

some approximations, this method called Density Functional Theory (DFT) [21], [26].  
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In Our work here, the Program packages like WIEN2K [8], using Full potential –Linear 

Augmented Plane Wave and Local Orbital’s (FP-LAPW+Lo) technique is used. The 

WIEN2K can simulate physical and chemical systems supposed to form a new material, 

this is very necessary to the laboratory person, who can produce the desired material such 

as drug and medicine [21], [23]. It applied a parallel method to solve quantum mechanics 

equations based Density Functional Theory (DFT) to find the cohesive energy of any 

material. 

 In such studies we have two main factors controlling the calculation, these two factors are 

vice versa, the first factor is the time of calculation and the second is the sample actuality, 

the sample actuality means here the number of atoms constituting the sample, the bigger 

the number is the more actual case we have, and more complexity, this will cost a lot of 

calculation time. WIEN2K package composed of five modules, each module solve one of 

the equations from (2.4) to (2.7) sequentially [6], [8]:  

 The first module is called LAPW0, in this process the ��� is calculated in the crystal 

from the initial density �� using poisons equation: 

                                   ∇���� = ρ(r)                                                       (2.4) 

 

 The second and third module is called LAPW1, LAPW2 which are responsible for 

building and solving the Schrӧdinger equations (2.5) and (2.6), (setting up H and S 

matrix), and solves the generalized Eigen value problem for special point in the crystal. 

The number of these points is proportional to the reality of the study. The high number 
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gives more accurate results and costs a lot of computational time, so Balanced is 

essential. 

                                 ���Ψ = E Ψ                                                        (2.5) 
 

                          (-∇� +��� ) Ψ = E Ψ                                                 (2.6) 

 

��:  is the second derivative with respect to space 

coordinates. 

Ψ:  is the wave function of this electron.  

���: is the effective attractive potential each 

electron feel. 

E:   is the energy of this electron in this 

crystal phase.  

 

 The fourth module is called LCORE: from the density function, the electrons in the 

crystal are distributed on the lowest energy values, the density function for the core 

electrons is also calculated and in LCORE process as in equation (2.7): 

                     ρ(r)= ∫��∗���                                                       (2.7) 

 

 The fifth module is called MIXER: the new total density is compared with the old 

density, if the values are the same or the difference is less than an assigned value; the 

self consistent (SC) is finished as shown in Figure 1. The total energy and wave 

functions of the electrons are found. Otherwise, the new density is mixed with old 

density with a percentage decided at the beginning of the calculation to reproduce a 

new density to run another cycle to get faster convergence and recalculate ��� using 

equation (2.4). 

 

The main scalable quantity for measuring the stability of any material is the cohesive 

energy; cohesive energy equals the difference between the total energy of the material in 

combined form and the sum of the free atom’s energy in their free state as shown in 

equation (2.8)  
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E cohesive energy = E compound  - ∑Efree atoms                    (2.8) 

 
 

Each stable form of these atoms can produce positive value for the cohesive energy, the 

material normally can take more than one stable state, and the state with the highest 

cohesive energy is the most stable one [22].  

To see more about density functional theory (DFT) and WIEN2K see Appendix 2. 

 
Figure 1: Physical Problem Solving Steps 
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The authors in [21] compared two parallel approaches that run on MPICH1 channel. The 

two methods are: Distributed k-point and Data distribution. However, the first one runs 

each of the two modules (LAPW1, LAPW2) in parallel way. But the other runs each of the 

first three modules in parallel. In addition, a comparison between serial and parallel 

approaches for running Matrix Multiplication on MPICH1 was in [1].  

 

C.2   Matrix Multiplication 
 
 
This section discusses parallel algorithms for multiplying two n × n dense, square matrices 

A and B to yield the product matrix C = A × B. Parallel matrix multiplication algorithm in 

this section is based on the conventional serial algorithm shown in Algorithm 1.  

 

procedure MAT_MULT(A,B,C) 

begin 

for i:=0 to n-1 do 

for j:=0 to n-1 do 

begin 

C[I,j] :=0; 

for k :=0 to n-1 do 

C[i,j] := C[i,j] + A[i,k] x B[k,j]  

Endfor 

end MAT_MULT 

Algorithm1: The conventional serial algorithm for multiplication of two n × n matrices. 

 

If we assume that an addition and multiplication pair (line 8) takes unit time, then the 

sequential run time of this algorithm is ��. However, for the sake of simplicity and better 

performance, we take parallel matrix multiplication algorirhm, which based on the 

conventional best serial algorithm. A concept that is useful in matrix multiplication as well 

as in a variety of other matrix algorithms is that of block matrix operations. 
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The authors in [40] express a matrix computation involving scalar algebraic operations on 

all its elements in terms of identical matrix algebraic operations on blocks or submatrices 

of the original matrix. Such algebraic operations on the submatrices are called block matrix 

operations.  

 

For example, an n × n matrix A can be regarded as a q × q array of blocks Ai, j (0≤ i, j < q) 

such that each bock is an (n/q) × (n/q) submatrix. The matrix multiplication algorithm in 

Algorithm 1 can then be rewritten as Algorithm 2, in which the multiplication and addition 

operations on line 8 are matrix multiplication and matrix addition, respectively.  

 

Not only are the final results of Algorithm 1 and 2 identical, but so are the total numbers of 

scalar additions and multiplications performed by each. Algorithm 1 performs �� additions 

and multiplications, and Algorithm 2 performs �� matrix multiplications, each involving 

(n/q)×(n/q) matrices and requiring (
�

�
)� additions and multiplications. We can use p 

processes to implement the block version of matrix multiplication in parallel by choosing q 

=�� and computing a distinct Ci, j block at each process. 

 
Procedure BLOCK_MAT_MULT(A,B,C) 

begin 

for i:=0 toq-1 do 

for j:=0 toq-1 do 

begin 

 Initialize all elements of Ci,j to zero; 

for k :=0 toq-1 do 

C[i,j] := C[i,j] + A[i,k] x B[k,j]  

Endfor 

End BLOCK_MAT_MULT 

Algorithm 2: The block MMT algorithm for n × n matrices with a block size of (n/q) × (n/q). 
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C.3 Approximate Value/ Mathemetical Constant --PI (π) 

PI is a name given to the ratio of the circumference of a circle to the diameter. That means, 

for any circle, you can divide the circumference (the distance around the circle) by the 

diameter and always get exactly the same number. It does not matter how big or small the 

circle is, PI remains the same.  

The value of PI can be calculated in a number of ways. Consider the following method of 

approximating PI [28]: 

1- Inscribe a circle in a square see Figure 2 

2- Randomly generate points in the square. 

3- Determine the number of points in the square that are also in the circle 

4- Let r be the number of points in the circle divided by the number of points in the 

square 

5- PI ~ 4 r 

6- Note that the more points generated, the better the approximation 

 
Figure 2: Inscribed circle in a square to calculate PI (π). 
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If the previous steps executed sequentially the pseudo code for this procedure can be as in 

Figure 3:  

 
npoints = 10000 
circle_count = 0 
 
do j = 1,npoints 
  generate 2 random numbers between 0 and 1 
xcoordinate = random1 
ycoordinate = random2 
  if (xcoordinate, ycoordinate) inside circle 
  then circle_count = circle_count + 1 
end do 
 
PI = 4.0*circle_count/npoints 
 

Figure 3: Serial Pseudo Code to Calculate PI (π) 
 
 
Note that most of the time in running this program would be spent executing the loop. 

Therefore, this leads us to check the parallel solution, which means: Computationally 

intensive, Minimal communication and Minimal I/O. however, Parallel strategy breaks the 

loop into portions that can be executed by the tasks. By the task of approximating PI in 

parallel way [28]:  

 Each task executes its portion of the loop a number of times.  

 Each task can do its work without requiring any information from the other tasks (there 

are no data dependencies).  

 Uses the SPMD model. One task acts as master and collects the results.  

If the previous steps executed in parallelized way, the pseudo code for this procedure can 

be as in Figure 4. Note that: Italic Font highlights changes for parallelism.  
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From parallel pseudo code to calculate PI, we conclude that the most of the time in running 

this program would be log(p). p is the number of processors. This indicates the 

performance is bigger that in serial way. 

npoints = 10000 
circle_count = 0 
 
p = number of tasks 
num = npoints/p 
 
find out if I am MASTER or WORKER 
 
do j = 1,num 
  generate 2 random numbers between 0 and 1 
xcoordinate = random1 
ycoordinate = random2 
  if (xcoordinate, ycoordinate) inside circle 
  then circle_count = circle_count + 1 
end do 
 
if I am MASTER 
 
  receive from WORKERS their circle_counts 
  compute PI (use MASTER and WORKER calculations) 
 
else if I am WORKER 
 
  send to MASTER circle_count 
 
endif 

 
Figure 4: Parallel Pseudo Code to Calculate PI (π) 

 
 
 
Consequently, in this work, we evaluate the performance of two versions of the well-

known massage passing interface (MPI) library: MPICH1 vs. MPICH2 and evaluate the 

performance between MPICH and OpenMP. In our experiments, we used three 

benchmarks. The first one is the WIEN2K application, which is based on Density Function 

Theory, the second is a Matrix Multiplication and the third is the approximate value PI. 
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Chapter Three 

Literature Review 

 
 
There are many studies and researches carried out on tasks distributing and system 

implementation in parallel processing systems. Applications based parallel processing used 

in a large number of fields: scientific, business, industrial and medical purposes. 

Implementation of tasks distributing via parallel algorithms using MPICH1, MPICH2 and 

OpenMP is important and very helpful in resources utilization and maximum throughput in 

minimum execution time. Many researches were conducted on comparison between 

parallelized implementations using different channels in several areas. In this chapter, we 

present related works and literature review relevant to our work. 

 

A research by Erik Mc Clements (2006) implemented a Performance Comparison of Open 

Source MPI Implementations.   They compared and contrasted various Open Source MPI 

implementations by using message size as key factor, Identifying their strengths and 

weaknesses across multiple machine architectures commonly used for HPC (High 

Performance Computing). Their results were as the following: MPICH performance is 

higher than OpenMP performance in the execution when a message size less than 5 kb. 

However, if it is more than 5 kb the OpenMP performance is better [29]. In Information 

Security of scientific computing, a study by Xiaojun Ruan and al proposed an optimization 

strategy for MPICH2 improvement by designing ES-MPICH2: A Message Passing 

Interface with Enhanced Security (2010). They integrated encryption algorithms into the 
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MPICH2 library so that data confidentiality of MPI applications could be readily preserved 

without a need to change the source codes of the MPI applications. Since they provide a 

security enhanced MPI-library with the standard MPI interface, data communications of a 

conventional MPI program can be secured without converting the program into the 

corresponding secure version. The results show ES-MPICH2 provides secured Message 

Passing Interface with a reasonable performance better than original MPICH2. Future work 

will implement some stronger and more efficient cryptographic algorithms like Elliptic 

Cureve Cryptography in ES-MPICH2 [31]. 

In parallel implementation area, Rahmadi Trimananda and Christoforus Yoga Haryanto 

performed a study of A Parallel Implementation of Hybridized Merge-Quicksort Algorithm 

on MPICH, study (2010). The paper indicated how the data elements are distributed to 

processors, sorted in smaller groups of data elements in parallel on each processor by using 

quicksort algorithm and later merged in parallel by using mergesort algorithm. The 

implementation results on MPICH1 platform are showing potential speedups since that the 

communication channel is adequate for large groups of data elements. In future work, the 

experiments are to be conducted on some other platforms, e.g. MPICH2, to compare the 

results with the ones obtained [16].  

In addition, another research in parallelism of matrix multiplication by Sherihan Abu 

ElEnin, Mohamed Abu ElSoud (2011). The researchers implemented an Evaluation of 

Matrix Multiplication on an MPI Cluster by comparing between serial and parallel 

approaches for running Matrix Multiplication on MPICH1. The results show that the 

developed performance model checked and it showed that the parallel model is faster than 

the serial model and the computation time was reduced [1]. 
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Finally, Rezek Mohammad, Areej Jabir, and Rashid Jayousi developed a comparison 

between distribute K-Point method and data distribution method for sparse matrix 

distribution over MPICH1, the two methods have been used to run WIEN2K package 

which is used to study the physical and chemical properties of the materials (2011). The 

result was as follows, the data distribution method gives better reduction in the time of 

calculation [21]. Table 6 presents a summary of the above literature review contributions. 

Table 6: Summary of Literature Review Contributions According to Area of Research 
 

Area of 
Research 

Study Title Author Year Main Contribution 

Education 

Optimization 
of Sparse 

Matrix-Vector 
Multiplication 
on Emerging 

Multicore 
Platforms 

 

Samuel 
Williams, 

Leonid Oliker 
and Richard 

Vuduc 

2007  Comparison between a 
multicore-specific Pthreads 
implementation versus a 
traditional MPI approach to 
parallelization across the cores. 
Results showed that the 
Pthreads strategy resulted in 
runtimes more than twice as 
fast as the message passing 
strategy [11].   

Design 
Considerations 

for Shared 
Memory MPI 
Implementati-
ons on Linux 

NUMA 
Systems: An 
MPICH/MPI-

CH2 Case 
Study. 

Per Ekman 
and Philip 

Mucci 

2005 The work is to make MPICH 
and MPICH2 more tolerant of 
Non Uniform Memory Access 
architectures (NUMA). The 
results showed that: the 
patched MPICH is efficient 
than the original mpich [33]. 

Cilkvs MPI: 
Comparing 
Two Very 
Different 
Parallel 

Programming 
Styles 

 

Sonny Tham 
and John 
Morris 

2003 The results were: problems, 
which have simple dataflow 
solutions and involve transfer 
of large blocks of data are 
simpler and faster in Cilk, 
whereas MPI handles problems 
with iterative solutions and 
smaller messages better. MPI 
was clearly more efficient than 
Cilk only in the iterative, 
irregular Gaussian elimination 
problem [17]. 
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Area of 
Research 

Study Title Author Year Main Contribution 

Education 
 

Hybrid 
Programming 
Fun: Making 
bzip2 Parallel 
with MPICH2 
& pthreads on 
the Cray XD1 

 
 

Charles 
Wright 

2006 A reasonable approach would 
be to combine pthreads and 
MPI on the XD1. Using this 
hybrid model, the author was 
able to parallelize non-
computational tasks such as 
I/O and communication easily. 
This study focuses on how 
pthreads were used to extend 
MPI in a natural way to 
improve the speed and 
efficiency of the program. The 
results were as the following : 
The combination of pthreads 
and MPICH2 can result in 
many benefits ranging from 
easier programming to more 
effective use of system 
resources. In the case of the 
parallel bzip program, the 
resulting improvements in both 
speedup and efficiency 
overshadow the lack of 
hardware support for MPICH2 
currently available on the XD1 
[32].   

NUMA-aware 
shared-
memory 

collective 
communica-
tion for MPI 

 

Shigang Li, 
Torsten 

Hoefler and 
Marc Snir 

2013 The results showed that: 
performance of HMPI dropped 
between the MPICH2 
performance and OpenMP one. 
This is better than MPICH2 
and lower than OpenMP 
performance [34]. 
 

Physics 
  

Optimum 
Execution For 

WIEN2K 
using Parallel 
Programming 

Models 
(Comparison 

Study) 

 

Rezek 
Mohammad, 
Areej Jabir, 
and Rashid 

Jayousi 

 

2011 
 

Development of data 
distribution method and 
compared between k-point 
method and data distribution. 
The results were, the data 
distribution method gives 
better reduction in the time of 
calculation and in case of large 
number of atoms or the 
complexity it is better to use 
data distribution method [21]. 
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Area of 
Research 

Study Title Author Year Main Contribution 

Education 
 

A Parallel 
Implemen-

tation of 
Hybridized 

Merge-
Quicksort 

Algorithm on 
MPICH 

 

Rahmadi 
Trimananda 

and 
Christoforus 

Yoga 
Haryanto 

2010 Showed how the data elements 
are distributed to processors, 
sorted in smaller groups of 
data elements in parallel on 
each processor by using 
quicksort algorithm, and later 
merged in parallel by using 
mergesort. The implementation 
results on MPICH1 showed 
potential speedups provided 
that the communication 
channel is adequate for large 
groups of data elements [16]. 

Efficient 
Sparse Matrix 

Multiple-
Vector 

Multiplication 
Using a 

Bitmapped 
Format 

 

Ramaseshan 
Kannan 

2012 The implemented algorithm 
achieves high-level advantage 
for very large problem sizes, 
e.g iterative solvers for linear 
systems. Moreover, its 
performance results proved 
that these performance 
optimizations could achieve 
good efficiency gains on all 
platforms by increasing 
register and cache reuse [14]. 

Evaluation of 
Matrix 

Multiplication 
on an MPI 

Cluster 
 

Sherihan Abu 
ElEnin, 

Mohamed 
Abu ElSoud 

2011 In addition, a comparison 
between serial and parallel 
approaches for running Matrix 
Multiplication on MPICH1 
was in [1].The results show 
that the developed model has 
been checked and it has been 
shown that the parallel model 
is faster than the serial and the 
computation time was reduced. 

Scientific 
Computing 

  
 

Implementati-
on and Shared-

Memory 
Evaluation of 
MPICH2 over 
the Nemesis 
Communic-

ation  
Subsystem 

 

Darius 
Buntinas, 
Guillaume 

Mercier, and 
William 
Gropp 

2008 They  describe how we ported 
MPICH2 over Nemesis and 
show the performance benefits 
of MPICH2 Nemesis. 
The resulting MPICH2 
software stack yields a very 
low latency and high 
bandwidth and compares 
favorably with previous 
competing software (MPICH1) 
[30]. 
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Area of 
Research 

Study Title Author Year Main Contribution 

 
Information 

Security 
 

ES-MPICH2: 
A Message 

Passing 
Interface with 

Enhanced 
Security 

 
 

Xiaojun Ruan, 
Qing Yang, 

Mohammed I. 
Alghamdi, 
Shu Yin, 

Zhiyang Ding, 
Jiong Xie, 

Joshua Lewis, 
and Xiao Qin 

2010 They integrated encryption 
algorithms into the MPICH2 
library so that data  
confidentiality of MPI 
applications could be readily 
Preserved without a need to 
change the source codes of the 
MPI applications. since they 
provide a security enhanced 
MPI-library with the standard 
MPI interface, data  
communications of a 
Conventional MPI program 
can be secured without 
converting the program into 
the corresponding secure 
version. The results were, ES-
MPICH2 provides secured 
Message Passing Interface 
with a reasonable performance 
better than original MPICH2.   
In the future, they may 
implement some stronger and 
more efficient cryptographic 
algorithms like Elliptic Cureve 
Cryptography in ES-MPICH2 
[31]. 
 

Scientific 
Computing 

  
 

Blocking vs. 
Non-Blocking 
Coordinated 
Checkpoint-

ing for 
Large-Scale 

Fault Tolerant 
MPI 

 

Camille Coti, 
Thomas 
Herault, 
Pierre 

Lemarinier 
and Laurence 

Pilard 

2006  
A comparison between these 
two approaches (blocking and 
non-blocking) and a study of 
their scalability. Then they 
evaluate their impact on large-
scale applications. The results 
were, the experimental study 
demonstrated that for high 
speed networks, the blocking 
implementation gives the best 
performance for sensible 
checkpoint frequency. On 
clusters of workstations and 
computational grids, the non-
blocking implementation gives 
the best performance [35]. 
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Area of 
Research 

Study Title Author Year Main Contribution 

Scientific 
Computing 

  

 
Adaptive 

Strategy for 
One-sided 

Communicati-
on in MPICH2 

 
 

 
Xin Zhao, 

Gopalakrishn-
an 

Santhanaram-
an, and 
William 
Gropp 

 
2012 

 
In this paper they describe 
their design and 
implementation of an adaptive 
strategy for one-sided 
operations and synchronization 
mechanisms (fence, post-start-
complete-wait, lock-unlock) 
supported by MPICH2, which 
combines benefits from both 
lazy and eager approaches. 
Their performance results 
demonstrate that our approach 
performs as well as the lazy 
approach for small data 
transfers and achieves similar 
performance as the eager 
Approach for large data 
transfers [36]. 
 

 
Multi-core 

Aware 
Optimization 

for MPI 
Collectives 

 

 
BiboTu, Ming 
Zou, Jianfeng 

Zhan, 
Xiaofang 
Zhao and 

Jianping Fan 

  
2008 

 
The authors construct a 
portable optimization 
methodology over MPICH2 
for collective operations on 
multicore clusters. In this 
study, collective algorithms 
with hierarchical virtual 
topology focus on the 
performance difference among 
different  communication 
levels on multi-core clusters, 
simply for intra-node and 
inter-node communication; 
The results of performance 
evaluation 
show that the multi-core aware 
optimization  methodology 
over MPICH2 is efficient [37]. 
 

Asynchronous 
MPI for the 

Masses 

 

Markus 
Wittmann, 

Georg Hager, 
Thomas 

Zeiser, and 
Gerhard 
Wellein 

2013 

They implemented non-
blocking point-to-point 
communication. The results 
were, many applications show 
performance improvements 
when they use the new 
implemented approach [38]. 
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Area of 
Research 

Study Title Author Year Main Contribution 

Scientific 
Computing 

  

 
Performance 

Comparison of 
Open Source 

MPI 
Implementati-

ons 
 

 
Erik 

McClements 
 

 
2006 

 
The main aim of this project is 
to compare and contrast 
various Open Source MPI 
implementations by using 
message size as key factor, 
Identifying their strengths and 
weaknesses across multiple 
machine architectures 
commonly used for HPC. The 
results were as the following: 
MPICH performance is higher 
than OpenMP performance in 
the execution when the 
message size less than 5 kb. 
But if it is more than 5 kb the 
OpenMP is higher [29]. 
 
 

Scientific 
Computing 

 

Scheduling 
Dynamically 

Spawned 
Processes in 

MPI-2 

M´arcia C. 
Cera1, 

Guilherme P. 
Pezzi, 

Maur´ıcio 
L. Pilla, 

Nicolas B. 
Maillard1, 

and Philippe 
O. A. 

Navaux, , 

2006 MPICH2 supports dynamic 
spawning of tasks. It provides 
primitives to spawn processes 
during the execution and to 
enable them to communicate 
together. This paper presents a 
scheduler module, that has 
been implemented with 
MPICH2, that determines, on-
line (i.e. during the execution), 
on which processor a newly 
Spawned process should be 
run, and with which priority. 
The scheduling is computed 
under the hypotheses that the 
MPICH2 program follows a 
Divide and Conquer model. A 
clear improvement in the 
balance of the load is shown 
by the experiments [10].  

 
 
It should be noted that in this research, we expanded on the work of Rahmadi Trimananda 

and Christoforus Yoga Haryanto [16]. The work of Sherihan Abu ElEnin, Mohamed Abu 

ElSoud[1]. And the work of Rezek Mohammad, Areej Jabir, and Rashid Jayousi [21].  The 
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differences between our research and the other three researches are that our research will 

respond to future work of [16] that recommended, “Distributing the data elements, sorted 

in smaller groups of data elements in parallel on each processor by using quicksort 

algorithm and later merged in parallel by using mergesort algorithm on MPICH2 

platform”. Also it follows the recommended future work in [1] that recommended “to 

Evaluation of Matrix Multiplication on an MPICH2 Cluster”. Furthermore, this research 

follows the proposed future work in [21] that recommended, “Studying the accuracy and 

the execution time of WIEN2K on MPICH2”.  

 

Our research main contributions are the evaluation of WIEN2K Performance on MPICH2 

vs. MPICH1 and Evaluation of MMT and PI(π) Performances on MPICH vs. OpenMP 

used in this study . It should be noted that a comparison of partial results of our 

experiments is compared with the results of [1], [16], [21]. The next chapter introduces our 

work methodology and the environments of the experiments. 
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Chapter Four 

Methodology 
 

In this chapter, we present our research and work methodology. To achieve the objectives 

of this research, we started to prepare the environment, in order to conduct the experiment. 

We prepared a multi-core computer with Linux Fedora 14 operating system, MPICH1, 

MPICH2, Open MP files, WIEN2K packages modules and supported libraries. Moreover, 

a matrix multiplication program, mathmetical constant π program and other supported tools 

and programs as Mathematical Kernel Library (MKL), SCALAPACK and Secure Shell 

(SSH) program were installed and prepared for the experements. It should be noted that 

SCALPACK is needed for sparse matrices diagonalizating and Fastest Fourier Transform 

in the west (FFTW), whilest Secure Shell program is used for secure communication. 

 

In the present work, two parts have been tested, in the first part (Part 1), we focused on 

implementing WIEN2K package on MPICH2 and distributing tasks of the package using 

MPICH1 and MPICH2 on multi-core machine (see Figure 5).  

 

The experiments have been tested by running first module of WIEN2K package (LAPW0) 

as benchmark using MPICH1 and MPICH2 on one, two, three, and four processors of the 

quad multi-core machine. Each experiment has been repeated several times then the 

average of the elapsed time has been computed and recorded. 



39 

 

 

Figure 5: Possible Running for WIEN2K Package 

 

MPICH2 included many new features, so we have focused on MPICH2 settings and 

configurations when we run MPI programs on the second channel. A complete focused list 

of changes follows: 

1. Dynamic process management: MPICH2 presents a set of MPI interfaces that 

allow for a variety of approaches to process management while placing minimal 

restrictions on the execution environment. MPICH1 doesn’t concern with 

communication rather than process management.  

2. One-sided operations: put, get and accumulate routines.  

3. Machine file: MPICH1 distribues CPUs for modules using machine file in 

different way than MPICH2 as shown in Figure 6. 

MPICH1 MPICH2 

Lapw0: rezek-dell15:0 

Lapw0: rezek-dell15:1 

Lapw1:  rezek-dell15:2 

Lapw1: rezek-dell15:3 

Lapw0: rezek-dell15:2 

Lapw1: rezek-dell15:2 

 

Figure 6: Sample of machine file shows CPUs distribution for modules in 
MPICH1 and MPICH2. 
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4. Datatypes: MPICH1 includes simple datatypes, but MPICH2 includes simple, 

advanced and derived dataypes. 

5. The Info Object: MPICH2 includes info object, this object is used for several 

functions. Info is an opaque object with a handle of type MPI_Info in C, MPI::Info 

in C++, and INTEGER in FORTRAN. It stores an unordered set of (key, value) 

pairs (both key and value are strings). A key can have only one value. Each pair 

(key, value) is special for a determined function. 

6. External Interfaces: MPICH2 used generalized requests that are not used by 

MPICH1. These requests allow users to create new non-blocking operations with 

an interface. A fundamental property of non-blocking operations is that progress 

toward the completion of this operation occurs asynchronously.  

7. I/O: MPICH2 supports parallel I/O (e.g: grouping, collective buffering and disk-

directed I/O) that added flexibility and expressiveness [12]. 

8. Bindings: MPICH2 includes C++ and FORTRAN 90 bindings, but MPICH1 

provides the C and FORTRAN 77 bindings. Therefore, the C++ and FORTRAN 90 

binding matches the new C and FORTRAN 77 functions respectively. The same 

deal with datatypes and constants. 

9. Arguments argc and argv:  MPICH1 needs to pass the arguments argc and argv 

by an application to MPI INIT and main functions. In MPICH2 does not need to 

pass them. 

10.  Classes: The members of the MPI namespace are those classes corresponding to 

objects implicitly used by MPI. An abbreviated definition of the MPICH1 

namespace and its member classes is as follows: 
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namespace MPICH1 { 

class Comm {...}; 

class Intracomm : public Comm {...}; 

class Graphcomm : public Intracomm {...}; 

class Cartcomm : public Intracomm {...}; 

class Intercomm : public Comm {...}; 

class Datatype {...}; 

class Errhandler {...}; 

class Exception {...}; 

class Group {...}; 

class Op {...}; 

class Request {...}; 

class Prequest : public Request {...}; 

class Status {...}; 

}; 

 

Additionally, the following classes defined for MPICH2: 

namespace MPI { 

class File {...}; 

classGrequest : public Request {...}; 

class Info {...}; 

class Win {...}; 

}; 

 

At the end, in the part 1 we have tested and concentrated with core changes between 

MPICH1 and MPICH2 to implement WIEN2K on MPICH2 and compare between the 

results WIEN2K MPICH1 running and MPICH2 one . However, we have looked forward 

to apply the additions over MPICH1 in implemention of  MPICH2 in order to get MPICH2 

more robust, efficient, and convenient to use. As a result, the performance of WIEN2K on 

MPICH2 will increase over MPICH1. 
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WIEN2K execution on OpenMP encountered by two factors and the same factors were the 

reseaons of our using other two benchmarks (Matrix Multiplication of different sizes and 

Mathmetical Constant): librariers that support WIEN2K running on OpenMP are not 

available and WIEN2K includes a large number of subroutines, cycles and modules. 

WIEN2K structure is complex and interleaved. Moreover, it is not clear in its commercial 

documentation. Therefore, we extended our experemnts using more benchmarks.  

 

 

Figure 7: Possible Running for Matrix Multiplication 

 

In the second part (Part 2) of experiments, two cases of experiments have been tested. In 

the first case (Case 1: example on large size of data chuncks) that presented heavy load 

communications and big data distributions; we tested the performance of parallel matrix 

multiplication using multi-processing (message passing) using MPICH1 and MPICH2, and 

multithreading paradigms using OpenMP (see Figure 7). In the second case (Case 2: 

example on small size of data chuncks) that presented light load communications and small 

data distributions; we tested the performance of parallel approximate value PI (π) using 
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multi-processing (message passing) using MPICH1 and MPICH2, and multithreading 

paradigms using OpenMP (Figure 8). 

 

In Case 1, the matrix multiplication has been implemented using MPICH1, MPICH2, and 

OpenMP by different matrix sizes that indicate twelve states (128, 256, 384, 512, 640, 768, 

896, 1024, 2048, 3072, 4096 and 5120). Each state has acted a unique matrix size. In the 

other case (Case 2) of Part 2, the PI (π) has been computed using MPICH1, MPICH2 and 

OpenMP. 

  

 

Figure 8: Possible Running for Mathmetical Constant π 

 

Consequently, in Part 2 we have tested and concentrated with comparing and evaluating 

results between MPICH1, MPICH2 and OpenMP tests for matrix multiplication of 

different sizes and mathmetical constant. 
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Finally, in our research we encountered by number of obstacles but the most important of 

them are as follow:   

1. We waited a round four months for preparing a cluster of computers in order run 

WIEN2K and evaluate MPICH1 and MPICH2. 

2. Libraries that support running of WIEN2K on OpenMP are not available due to the 

lake of fund. 

3. We waited a round two months for preparing MPICH2 standard version, that 

recommended for Linux Fedora 14. 

4. We waited a round one month for preparing standard versions of FFTW and MKL 

programs, which is recommended for WIEN2K. 
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Chapter Five 

Experiments and Results Analysis 
 

In this work, two parts of experiments were carried out.  In the first part (Part 1), we 

focused on distributing tasks of WIEN2K program using MPICH1 and MPICH2 on multi-

core machine. Whereas in [21] the experiments were carried out on a cluster using 

MPICH1 to distribute WIEN2K task. In the second part (Part 2) of experiments, two cases 

of experiments were carried out. In the first case (Case 1) we tested the performance of 

parallel matrix multiplication using multi-processing (message passing) using MPICH1 

and MPICH2, and multithreading paradigms using OpenMP. In the second case (Case 2) 

we tested the performance of parallel approximation of PI (π) value using the two 

paradigms: multi-processing (message passing) using MPICH1 and MPICH2, and 

multithreading paradigms using OpenMP.  

Our experiments were running on Linux (Fedora 14) installed on a multi-core (quad) 

machine (Intel Core i5 3GHz processor); the specification details of the experiments 

platform/machine are listed in Table 7. 

Table 7: Machine Specifications 

No Specification Multi-Core PC 

1 CPU speed Quad 3 GHz 

2 RAM size 8 GB 

3 Cache 8 Mbyte 

4 HD speed 7200 RPM 
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To accomplish the calculations, first we installed MPICH2 on Fedora Linux version 14 

using specific steps as shown in Figure 9 [43]. Then a set of programs were installed and 

optimized with appropriate options together with WIEN2K. These programs are listed in 

Table 8. 

We need the following prerequisites: 

1. The tar file mpich2-1.0.5p3.tar.gz (which can be obtained from http://www-
unix.mcs.anl.gov/mpi/mpich2/)  

2. A C compiler (gcc is sufficient)  

3. A Fortran compiler if Fortran applications are to be used (g77 is sufficient)  

Both the C and Fortran compiler are present in Fedora Core 4 by default.  

Step 1. Create a directory MPI (we can use any name) in the home directory.  

$ cd $HOME 
$ mkdir MPI 
 $ cd $HOME  

Step 2. Unpack the tar file. 

$ tar xfz mpich2-1.0.5p3.tar.gz 

The directory MPI will now contain a sub-directory mpich2-1.0.5p3.  

Step 3. Choose an installation directory (the default is /usr/local/bin)  

$ mkdir mpich2-install  

Step 4. Choose a build directory 

$ mkdir mpich2-1.0.5 

Now the MPI directory will contain three sub-directories namely mpich2-1.0.5p3, mpich2-1.0.5 and mpich2-

install.  

Step 5. Configure MPICH2, specifying the installation directory and running the configure script in the 

source directory.  

$ cd $HOME 

$ cd MPI/mpich2-1.0.5 

$/home/you/MPI/mpich2-1.0.5p3/configure --prefix=/home/you/MPI/mpich2-install 

For other configure options please refer the MPICH2 Installer’s Guide 

Step 6. Build MPICH2 

$ make 

Step 7. Install the MPICH2 commands. 

$ make install 

Step 8. Add the bin directory to your path. 

$ export PATH=/home/you/MPI/mpich2-install/bin:$PATH 

(It is better to add this line in .bash_profile file present in the home directory so that this path gets 

permanently added once we reboot the system. 
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$ cd $HOME 

$ vi .bash_profile 

Then append the above command of step 8.) 

We can check that everything is in order at this point by doing 

$ which mpd 

$ which mpicc 

$ which mpiexec 

$ which mpirun 

All should refer to the commands in the bin subdirectory of our install directory. 

The MPICH2 has been successfully installed now.  

Figure 9: Installation Steps for MPICH2 on Fedora Linux Version 14 

 

Recall that we continue the work of [21], where they installed and used MPICH1 to run 

WIEN2K program. For this work, we installed MPICH2 channels figure (9) then installed 

MPICH2 WIEN2K version and run "LAPW0", which is a basic module of WIEN2K. This 

is done via determined parallel commands. These commands were written on the terminal 

of the operating system.  

 

The experiments were carried out by running the programs LAPW0 as benchmarks using 

MPICH1 MPICH2 on one, two, three, and four processors of the quad multi-core machine, 

where, each processor has a unique id (0,1,2,3).   Each experiment was repeated several 

times then the average of the elapsed time was computed.  After that, the calculation was 

recorded. The experiments were divided into two parts: the first one run LAPW0 for one 

cycle. In the second experiment (Part 2), in first case (Case 1), the matrix multiplication 

was implemented using MPICH1, MPICH2, and OpenMP by twelve states (128, 256, 384, 

512, 640, 768, 896, 1024, 2048, 3072, 4096 and 5120). Each state acted a unique matrix 

size. But, in the second case (Case 2) of Part 2 the PI (π) was computed using MPICH1, 

MPICH2, and OpenMP. 
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Table 8: Software Requirements 

Program name Version Source 

WIEN2K 
13.1 www.WIEN2K.at 

MPI Channel 

MPICH1.3 & 

MPICH2-1.0.5p3 
www.mpich.org 

Intel Fortran 90 
Compiler 

11.072 Intel 

Intel C Compiler  
10.074 Intel  

Mathematical Kernel 
Library (MKL) 

11.0 Intel  

Fastest Fourier 
Transform in the west 

(FFTW) 

FFTW-2.1.5 Intel  

 

Part 1: 

MPICH1 does not need to run the daemon explicitly because it is built in the MPICH1 

environment. Also, the command which is used in MPICH1 to execute programs is 

"mpirun". In other side, MPICH2 runs the daemon before any execution because MPICH2 

separate the daemon from MPICH2 environment. In addition, MPICH2 use “mpiexec” to 

execute applications. For example, the steps of the LAPW0 execution on MPICH2 are 

shown in Figure 10. Moreover, Figure 11 shows the steps of the LAPW0 execution on 

MPICH1. 

The results of the average running time for experiment 1 (LAPW0) are summarized in 

Table 9. This table shows the execution time on MPICH1 and MPICH2 and the 

improvement factor (if) by the number of processors. The improvement factor (if) is 

measured as the ratio of the difference between the execution time on MPICH1 and 

MPICH2 to the Execution time on MPICH1 i.e (TMPICH1-TMPICH2)/ TMPICH1.  

 

(4.1) 
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[rezek@rezek-dell15~]$ cd/home/ rezek /mpich2 /examples 

[rezek@rezek-dell15 examples]$ mpicc -c lapw0_mpi.c 

[rezek@rezek-dell15 examples]$ mpicc -o lapw0_mpi lapw0_mpi.o 

[rezek@rezek-dell15 examples]$ mpd& 

[1] 3929 

[rezek@rezek-dell15 examples]$ mpiexec -n 1 lapw0_mpi 

lapw0_mpi has started with 1 tasks. 

Initializing arrays... 

Running Time = 62.005132 

Done. 

[rezek@rezek-dell15 examples]$ mpiexec -n 2 lapw0_mpi 

lapw0_mpi has started with 2 tasks. 

Initializing arrays... 

Running Time = 34.002134 

Done. 

[rezek@rezek-dell15 examples]$ mpiexec -n 3 lapw0_mpi 

lapw0_mpi has started with 3 tasks. 

Initializing arrays... 

Running Time = 25.141348 

Done. 

[rezek@rezek-dell15 examples]$ mpiexec -n 4 lapw0_mpi 

lapw0_mpi has started with 4 tasks. 

Initializing arrays... 

Running Time = 19.001209 

Done. 

Figure  10 : Screen Shot of Running LAPW0 on MPICH2 
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[rezek@rezek-dell15~]$ cd/home/rezek/mpich1/examples 

[rezek@rezek-dell15 examples]$ mpicc -c lapw0_mpi.c 

[rezek@rezek-dell15 examples]$ mpicc -o lapw0_mpi lapw0_mpi.o 

[rezek@rezek-dell15 examples]$ mpirun -np 1 lapw0_mpi 

lapw0_mpi has started with 1 tasks. 

Initializing arrays... 

Running Time = 64.764301 

Done. 

[rezek@rezek-dell15 examples]$ mpirun -np 2 lapw0_mpi 

lapw0_mpi has started with 2 tasks. 

Initializing arrays... 

Running Time = 35.987721 

Done. 

[rezek@rezek-dell15 examples]$ mpirun -np 3 lapw0_mpi 

lapw0_mpi has started with 3 tasks. 

Initializing arrays... 

Running Time = 26.880067 

Done. 

[rezek@rezek-dell15 examples]$ mpirun -np 4 lapw0_mpi  

lapw0_mpi has started with 4 tasks. 

Initializing arrays... 

Running Time = 21.417534 

Done. 

Figure  11 : Screen Shot of Running LAPW0 on MPICH1 
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Table 9: Execution Time of LAPW0 on MPICH1 and MPICH2 on Different # of 

Processors. 

# of Proc 
Exec. time on 

mpich1  (min) 

Exec. time on 

mpich2 (min) 
If 

1 64.25 62.54 0.026615 

2 35.05 34.38 
0.019116 

3 26.03 25.37 
0.025355 

4 20.5 19.52 0.047805 

 

 

As shown in Figure 12, it is clear that MPICH2 performance is higher than MPICH1 

performance by approximately 3%. In other words, MPICH2 increases the speed up of 

WIEN2K execution on each multicore by 3%. Consequently,  the simulation of production 

a new material in our case which needs 30 working days  will be decreased  by one day. 

The figure shows the difference between the execution time on MPICH1 and MPICH2. In 

this figure  the curves are decline when number of processors increase until it reaches 4. 

After that the speed up and efficiency approximately reach the stability then decreasing. 

But on all states MPICH2 performance is higher. Therefore, we believe that the following 

nine added features (mentioned in the background chapter) have positive impact on the 

performance of MPICH2: 

1. MPICH2 included a number of collective communication routines and was thread-safe 

[4].  

2. MPICH2 supports dynamic spawning of tasks. It provides primitives to spawn 

processes during the execution and enables them to communicate together [10].  
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3. MPICH2 supports one-sided communication. It provides three communication calls, 

these operations are non-blocking [11], [12]. 

4. MPICH2 used generalized requests that are not used by MPICH1. These requests allow 

users to create new non-blocking operations with an interface [12].  

5. In MPICH2, significant optimizations required for efficiency (e.g. asynchronous I/O, 

grouping, collective buffering, and disk-directed I/O) are achieved by the parallel I/O 

system [12]. 

6. MPICH2 introduces extensions of many of the MPICH1 collective routines to 

intercommunicators, additional routines for creating intercommunicators, and two new 

collective routines: a generalized all-to-all and an exclusive scan [12]. 

7. MPICH2 supports MPI THREAD MULTIPLE [5]. 

8. MPICH2 is concerned with communication rather than process management. In 

addition, it provides a fast and scalable startup mechanism when parallel jobs are 

started [13]. 

9. MPICH2 does not require access to command line arguments of applications before 

startup and MPICH2 does nothing special for configuration. If one needs them in their 

applications, they must ensure that they are available in the environment being used 

[13].  

 

It should be noted that the time unit in the experiments of Part 1 is in minutes, whereas it is 

in seconds in Part2. 
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Figure 12: The WIEN2K Execution Time of MPICH1 vs. MPICH2. 

 

Part 2: 

Case 1: 

In this case the experiments were implemented on a standard parallel matrix multiplication 

(MMT) of sizes 128x128, 256x256, 384x384, 512x512, 640x640, 768x768, 896x896, 

1024x1024, 2048x2048, 3072x3072, 4096x4096 and 5120x5120 using multithreading by 

means of OpenMP and multi-processing (message passing) using MPICH1 and MPICH2. 

Also, in these experiments we utilized 1, 2, 4, 8 and 16 processes. The experiments where 

repeated by using multithreading with 1, 2, 4, 8, and 16 threads. 

However, the steps of the (MMT) execution on OpenMP are shown in Figure 13. 

 

[rezek@rezek~]$ cd /home/rezek/OpenMP/examples 

[rezek@rezek examples]$ icc -o mmtop –openmp mmtop.c 

[rezek@rezek examples]$ ./mmtop 

Starting matrix multiplication with 1 threads 
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Initializing matrices... 

Time for parallel matrix multiplication: 151.24 s 

Done. 

[rezek@rezek examples]$ icc -o mmtop –openmp mmtop.c 

[rezek@rezek examples]$ ./mmtop 

Starting matrix multiplication with 2 threads 

Initializing matrices... 

Time for parallel matrix multiplication: 68.73 s 

Done. 

[rezek@rezek examples]$ icc -o mmtop –openmp mmtop.c 

[rezek@rezek examples]$ ./mmtop 

Starting matrix multiplication with 4 threads 

Initializing matrices... 

Time for parallel matrix multiplication: 51.99 s 

Done. 

[rezek@rezek examples]$ icc -o mmtop –openmp mmtop.c 

[rezek@rezek examples]$ ./mmtop 

Starting matrix multiplication with 8 threads 

Initializing matrices... 

Time for parallel matrix multiplication: 87.87 s 

Done. 

[rezek@rezek examples]$ icc -o mmtop –openmp mmtop.c 

[rezek@rezek examples]$ ./mmtop 

Starting matrix multiplication with 16 threads 

Initializing matrices... 

Time for parallel matrix multiplication: 104.60 s 

Done. 

[rezek@rezek examples]$ 

Figure 13: Screen Shot of Running MMT on OpenMP 
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The results of the average running time for all experiments in Case 1 (MMT) are 

summarized in Table 10. This table shows the execution time on MPICH and OpenMP. 

For  5120x5120 matrices the experiment results in Figure 14 shows that the performance 

and speed up using multithreading is higher than multiprocessing. Also the experiments 

with multiplier sizes larger than or equal 384x384 shows the same results, but the results 

are inverse when the matrix size is smaller than 384x384. Thus, in our experements 

environment 384x384 matrices size become as a conversion point (see Figure 15). This is 

caused by the overhead of processes management, data distribution and large size of data 

chunks communication in case of size larger; than 384x384. 

 

Figure 14: Execution Time of Matrix Multiplication (5120 X 5120) Using 

MPICH1 vs. MPICH2 vs. OpenMP 

 

The experiment's platform has four processing elements. It is clear  in Figure 14 that the 

curve declines (i.e. improving the efficiency and speed-up) until the number of 

processes/threads reaches 4. After that, the curve begins to incline, which indicates a 

decrease in performance and efficiency. This is due to the overheads in scheduling the 
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threads and processes in utilizing shared resources (i.e. processing elements and shared 

memories). 

 

Figure 15: Execution Time of Matrix Multiplication (n x n) Using MPICH2 vs. OpenMP Shows 

the Conversion Point at (384x384) Matrix Size 

 

Table 10: Execution Time of MMT on MPICH and OpenMP on Different # of 

Processors/Threads. 

Num of  

Processes / threads 

Exec. time on mpich1  

(millisecond) 

Exec. time on mpich2  

(millisecond) 

Exec. time on OpenMP  

(millisecond) 

Size = 128 x 128 

1 87.781 80.436 96.675 

2 48.405 42.512 54.623 

4 30.323 22.534 39.962 

8 46.018 37.389 53.976 

16 81.403 75.991 89.482 

Size = 256 x 256 

1 147.129 138.769  168.845  
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Num of  

Processes / threads 

Exec. time on mpich1  

(millisecond) 

Exec. time on mpich2  

(millisecond) 

Exec. time on OpenMP 

 (millisecond) 

2 077.532  072.879 086.129  

4 054.039  050.269 079.136  

8 067.022  060.786 089.033 

16 128.763  122.648  141.881  

Size = 384 x 384 

1 162.543 151.933  192.940 

2 087.015 082.933  099.965 

4 072.345 066.049 088.997 

8 075.595 070.882 093.587 

16 139.387 131.612 153.8717 

Size = 512 x 512 

1 268.312 244.897 197.634 

2 163.469 152.974  109.790  

4 139.221 116.214 098.321 

8 151.038 137.234 115.554 

16 292.520 266.676  201.072 

Size = 640 x 640 

1 319.654 293.109 220.154 

2 213.574  203.027  126.761 

4 193.101 190.285 107.609 

8 253.465  243.779 123.609 

16 306.825 285.076 212.001 

Size = 768 x 768 

1 887.901 840.865 444.901 

2 448.869 422.037 220.051 

4 426.608 403.133 145.439 

8 546.865 513.908 308.432  

16 787.166  768.740 410.876  

Size = 896 x 896 

1 1469.654 1393.109 680.154 
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Num of  

Processes / threads 

Exec. time on mpich1  

(millisecond) 

Exec. time on mpich2  

(millisecond) 

Exec. time on OpenMP 

 (millisecond) 

2 731.463  719.163  341.234 

4 642.388  624.498 249.765 

8 756.627  717.417 388.801  

16 1295.042  1113.259 579.121  

Size = 1024 x 1024  

1 2000.129 1980.769 2027.845 

2 1194.532 1058.879 0800.129 

4 0972.039 0938.269 0421.136 

8 0987.022 0961.786 0470.033 

16 1098.763 1018.648 0951.881 

Size = 2048 x 2048 

1 9495.1936 8165.320 9871.221 

2 8234.1425 7705.432 4170.022 

4 7374.4335 6501.234 3153.409 

8 7478.1800 6887.654 3611.032 

16 7684.7530 7192.301 3912.348 

Size = 3072 x 3072  

1 33004.312 32654.897 34012.341 

2 30012.343 28226.338 15683.412  

4 26786.531 24889.059 10718.798 

8 27612.391 25449.817 16313.106 

16 27998.271 25884.934 19388.321 

Size = 4096 x 4096  

1 71789.654 70003.109 73010.154 

2 68712.106 66762.134 35032.178 

4 62998.804 59250.207 27683.214 

8 64660.081 61236.277 36367.731 

16 66987.789 62067.714 48979.761 

Size = 5120 x 5120  

1 141332.156 139870.865 151764.900 

2 130771.310 129622.182 67590.8700 
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Num of  

Processes / threads 

Exec. time on mpich1  

(millisecond) 

Exec. time on mpich2  

(millisecond) 

Exec. time on OpenMP  

(millisecond) 

4 116896.998 115943.011 52098.7600 

8 120509.880 118134.567 87958.6767 

16 136567.899 134442.371 104934.567 

 

Case 2: 

Now we discus the results of the experemints in Case2. In this case the experiments were 

run to calculate by approximation the  value of PI (π) with different number of points in the 

square (1	X	10�, 2	X	10�, 4	X	10�, 8	X	10� and 16	X	10�)  using multithreading by means 

of OpenMP and multi-processing (message passing) by MPICH1 and MPICH2. Also, in 

these experiments we utilized 1, 2, 4, 8 and 16 processes. The experiments where repeated 

by using multithreading with 1, 2, 4, 8, and 16 threads. The results of the average running 

time for all experiments in Case 2 (PI) are summarized in Table 11. This table shows the 

execution time on MPICH and OpenMP. 

Table 11 shows the execution time for computing (π) program running in all states 

(1	X	10�, 2	X	10�, 4	X	10�, 8	X	10� and 16	X	10�) on three channels (MPICH1, MPICH2 

and OpenMP) versus number of processors (1, 2, 4, 8 and 16) and number of threads (1, 2, 

4, 8 and 16). In the five states the experiments where repeated and recorded the elapsed 

time. 

  

The results in Figure 16 show that the performance using multiprocessing is higher than 

multithreading and MPICH2 performance is the best. This is due to the small size of data 

chunks in data distribution and recall the MPICH2 features that have impact on 

performance: Collective communication routines on master computer, a number of non-

blocking routines on each client. And multiple threads on the master.  
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Table11: Execution Time of PI(π) Computation on MPICH and OpenMP on Different # of 

Processors/Threads and the Number of Points in the Square is (N)     

Num of  

Processes / threads 

Exec. time on 

mpich1  (sec) 

Exec. time on 

mpich2  (sec) 

Exec. time on 

OpenMP  (sec) 

N = �	�	��� 

1 0.891892 0.891885 0.896699 

2 0.462869 0.462855 0.783978 

4 0.443972 0.442911 0.450789 

8 0.488757 0.446034 0.536067 

16 0.503249 0.456917 0.544582 

N = �	�	��� 

1 1.780018 1.771238 1.788288 

2 0.961435 0.930937 0.996978 

4 0.923319 0.884324 0.959076 

8 0.930103 0.887004 0.965559 

16 0.945534 0.897642 0.991138 

N = �	�	��� 

1 3.541244 3.538235 3.552968 

2 1.780001 1.773867 1.786492 

4 1.783344 1.765872 1.799389 

8 1.796789 1.770511 1.831845 

16 1.811341 1.780981 1.854787 

N = �	�	��� 

1 7.097942 7.070931 7.104267 

2 3.748843 3.559537 3.976155 

4 3.560004 3.530808 3.588692 

8 3.579974 3.533668 3.614277 

16 3.608152 3.546725 3.641683 

N = ��	�	��� 

1 14.784593 14.137508 15.202066 

2 7.077461 7.077461 7.588175 

4 7.099601 7.058459 7.167871 

8 7.179459 7.062334 7.215497 

16 7.266179 7.075695 7.429199 
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Figure 16: Execution Time of Mathmetical Constant PI (π) (N=16x10�) Using 
MPICH1 vs. MPICH2 vs. OpenMP 

 

In addition to the mentined features, the significant optimizations required for efficiency 

(e.g. asynchronous I/O, grouping and collective buffering) are supported by MPICH2 too. 

Thus, we can conclude that the added fatures in MPICH2 has positive impact on the 

performance as in in part 1 of the experiments. 

  

On the same experiment's platform, that has four processing elements, it is clear in : Figure 

16 that the curve declines (i.e. improving the efficiency and speed-up) until the number of 

processes/threads reaches 4. Afterwards, the curve begins to incline, which indicates a 

decrease in performance and efficiency. Moreover, the execution time using OpenMP is 

longer than execution time using message passing on all processors. This is due to the 

overheads in scheduling the threads and processes in utilizing shared resources (i.e. 

processing elements and shared memories).  
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Chapter Six 

Conclusion  
 

 

The goal of this work is twofold. The first is to evaluate and compare the performance of 

MPICH1 and MPICH2 using different cases running on one, two, three, and four 

processors. The second aim is to evaluate the performance of running parallel programs 

with big and small data using message passing and multithreading.  

 

As a result, we can conclude that MPICH2 speed up perform better than MPICH1 speed 

up in all cases and MPICH efficiency is higher than OpenMP efficiency when size of 

matrix A is less than 384 x 384 (18 KB) and vice versa. Because, if size of matrix A bigger 

than 384 x 384  then the transfer delay will increase, where many collective operations are 

used in parallel programs that increase execution time when researchers run programs 

using message passing. In addition, the added features in MPICH2 can affect the 

improvement possitively. Moreover, the results show that multithreading programming 

performance on multi-core architectures is higher than message passing when the parallel 

programs works on data size larger than (18 KB).  Can this size be dependent of the 

computer on which the experiments carried out 
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So by using our research, if applications that work in parallel way implemented on 

MPICH2 instead of MPICH1 then researchers and labaratory persons will achieve higher 

performance and speed up in the computations.  

 

Finally, for future work, we intend to extend our experiment to test the performance of 

newly issued MPICH3 and Graphical Processing Units (GPU) using different tasks. 
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Appendix 1: The Predefined MPI Datatypes and Their Corresponding C/ 

C++ Datatypes and the Replaced Constructs by MPICH2. 
 

Table 12: The MPI Predefined Datatypes, and their Corresponding C/C++ Datatypes [5], [12], [19]. 

No MPI DataTypes C DataType C++ DataType 

1 MPI::CHAR char Char 

2 MPI::SHORT signed short signed short 

3 MPI::INT signed int signed int 

4 MPI::LONG signed long signed long 

5 MPI:: LONG_ LONG signed long long signed long long 

6 MPI::SIGNED_CHAR signed char signed char 

7 MPI::UNSIGNED_CHAR unsigned char unsigned char 

8 MPI::UNSIGNED_SHORT unsigned short unsigned short 

9 MPI::UNSIGNED_INT unsigned int unsigned int 

10 MPI::UNSIGNED_LONG unsigned long unsigned long int 

11 MPI::UNSIGNED_LONG_LONG 
unsigned long 

long 
unsigned long long 

12 MPI::FLOAT float Float 

13 MPI::DOUBLE double Double 

14 MPI::LONG_DOUBLE long double long double 

15 MPI::BOOL  Bool 

16 MPI::COMPLEX  Complex<float> 

17 MPI::DOUBLE_COMPLEX  Complex<double> 

18 MPI::LONG_DOUBLE_COMPLEX  Complex<long double> 

19 MPI::WCHAR wchar_t wchar_t 

20 MPI::BYTE   

21 MPI::PACKED   

 

 

Table 13: The Replaced Constructs by MPICH2 [5], [12], [19]. 

 Deprecated MPICH2 Replacement 

1 MPI_ADDRESS MPI_GET_ADDRESS 

2 MPI_TYPE_HINDEXED MPI_TYPE_CREATE_HINDEXED 

3 MPI_TYPE_HVECTOR MPI_TYPE_CREATE_HVECTOR 

4 MPI_TYPE_STRUCT MPI_TYPE_CREATE_STRUCT 

5 MPI_TYPE_EXTENT MPI_TYPE_GET_EXTENT 

6 MPI_TYPE_UB MPI_TYPE_GET_EXTENT 

7 MPI_TYPE_LB MPI_TYPE_GET_EXTENT 

8 MPI_LB MPI_TYPE_CREATE_RESIZED 

9 MPI_UB MPI_TYPE_CREATE_RESIZED 

10 MPI_ERRHANDLER_CREATE MPI_COMM_CREATE_ERRHANDLER 

11 MPI_ERRHANDLER_GET MPI_COMM_GET_ERRHANDLER 

12 MPI_ERRHANDLER_SET MPI_COMM_SET_ERRHANDLER 

13 MPI_HANDLER_FUNCTION MPI_COMM_ERRHANDLER_FUNCTION 

14 MPI_KEYVAL_CREATE MPI_COMM_CREATE_KEYVAL 

15 MPI_KEYVAL_FREE MPI_COMM_FREE_KEYVAL 
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 Deprecated MPICH2 Replacement 

16 MPI_DUP_FN MPI_COMM_DUP_FN 

17 MPI_NULL_COPY_FN MPI_COMM_NULL_COPY_FN 

18 MPI_COPY_FUNCTION MPI_COMM_COPY_FUNCTION_ATTR 

19 COPY_FUNCTION COMM_ATTR_COPY_FN 

20 MPI_DELETE_FUNCTION MPI_COMM_DELETE_ATTR_FN 

21 DELETE_FUNCTION COMM_DELETE_ATTR_FN 

22 MPI_ATTR_DELETE MPI_COMM_ATTR_DELETE 

23 MPI_ATTR_GET MPI_COMM_ATTR_GET 

24 MPI_ATTR_PUT MPI_COMM_ATTR_PUT 
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Appendix 2:  Density Functional Theory (DFT) 
 

 
In physics, a collection of heavy positively charged particles (nuclei) and lighter negatively 

charged particles (electrons) is called a solid. Solids obey the laws of quantum mechanisms. 

By solving these equations, all of properties of solids like structural, thermodynamic, 

mechanical, transport properties and electronic properties are determined. If we have N nuclei 

and Z electrons for each nucleus then we will deal with a problem of N+ZN 

electromagnetically interacting particles. Any material composed of many atoms combined 

together according to the chemical bonding. These atoms can take many positions while 

keeping the same total number of atoms of the material. Each stable of combinations gives 

different properties [26]. This is a quantum many-body problem, and the particles are so light. 

In science of material, stability of any material is measured via main scalable quantity, which 

is called cohesive energy. Cohesive energy equals the difference between the total energy of 

the material in combined form and the sum of the free atom’s energy in their free state as 

shown in equation (2.1) 

                     Ecohesive energy = Ecompound - ∑Efree atoms                             (1) 

Each stable order of these atoms can produce positive value for the cohesive energy. For the 

material to match the stability it normally takes more than one phase and the phase with the 

highest cohesive energy is the most stable one, see Figure 17, which are drawn using WIEN2K 

package [26]. 

 

Figure 17: Schematic Diagram of Simple Cubic Phase along 111 Direction 



70 

 

In practice, applying quantum mechanisms in order to achieve stability is very hard, numerical 

task that consumes time even for idealized cases. In these calculations, all the atomic 

interactions can be done by scalar value model taken from experimental results. This model 

and others are used to explain properties of materials already exist in the laboratory: hence, 

some of famous methods were used to solve like this problem: 

1- Pseudo potential method (PP) was first introduced by Hans Helman (1930) [22], in an 

attempt to replace the complicated effect of core electrons on the atomic potential. This is 

used to fit the experimental data about the material. In many cases many forms of potential 

can be used, for each form of the material; different potential can be used to give the 

experimental data. 

2- Tight binding method (TB) was introduced in 1960 [23]. The value of the interaction 

between the valence electronsis replaced by a numeric value. The value of this number is 

predicted from already known experimental data, as in the PP method (pseudo potential). 

The value of the same interaction differs from form to form for the same material.  

 

In density functional theory, the stability of a solid can be affected by: the kinetic energy 

operators for the nuclei and for the electrons, potential energy between electrons and nuclei 

and potential energy between nuclei and other nuclei; these factors are measured by exact 

many-particle Hamiltonian  for the system, which  is illustrated in [8]: 
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��: The mass of the nucleus at 
�
→. 

��: The mass of the electrons at 
�
→. 

The first term: is the kinetic energy operator for the nuclei. 

The second term: is the kinetic energy operator for the electrons.  

The third term: the Coulomb interaction (potential energy) between electrons and nuclei 

The fourth term: the Coulomb interaction (potential energy) between electrons and other electrons. 

The fifth term: the Coulomb interaction (potential energy) between nuclei and other nuclei. 
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In order to attain stability and find acceptable approximate eigenstates (eigenvalues and 

eigenvectors) for a system with a reasonable calculation time, we will need to make 

approximations at different levels: 

1- Level 1: The Born-Oppenheimer Approximation 

The nuclei are much heavier and therefore much slower than the electrons. Born and 

Oppenheimer can hence `freeze' them at fixed positions and assume the electrons to be in 

instantaneous equilibrium with them. In other words, only the electrons are kept as players in 

the many body problems. The nuclei are excluded from this status, reduced to a given source 

of positive charge and therefore become `external' to the electron cloud. After having applied 

this approximation, they are left with a collection of NZ interacting negative particles, moving 

in the (now external or given) potential of the nuclei. 

 

The results of using Born-Oppenheimer approximation on the Hamiltonian (equation 2.2) are: 

The nuclei do not move any more, their kinetic energy is zero and the first term disappears. 

The last term reduces to a constant. We are left with the kinetic energy of the electron gas, the 

potential energy due to electron-electron interactions and the potential energy of the electrons 

in the (now external) potential of the nuclei. We write this as represented in the equation below 

[8]: 

                                     ��  =   ��+  ��+  �� ext                                                                    (3) 

��: The kinetic energy of the electron gas. 

��: The potential energy due to electron-electron interactions. 

��ext: The potential energy of the electrons in the (external) potential of the nuclei. 

 

2- Level 2: Density Functional Theory Approximation 

Together with the Development of theoretical schemes like Density Functional Theory (DFT) 

[8] by Hohenberg and Kohn and the fast cheap computers have helped to change the situation. 

Another name for such calculations is called ab-initio calculation.  Such calculation forms the 

basic information like the form of material and the name of the atoms. Nowadays, many 

packages are using the DFT such as WIEN2K [6], VASP [24], Gaussian [25]….etc. In these 

packages and studies, we have two factors controlling such calculation: 

1- The sample actuality. 

2- The time of calculation. 
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Number of atoms constituting the sample and their distribution are called the sample actuality; 

the bigger number of atoms in study case will cost a lot of calculation time, so the relation 

between the two factors are vice versa. 

In this study, we will focus on the WIEN2K program and on the order structure of atoms that 

are named “Crystal” in solid state physics as shown in Figure 17, the crystal is composed of a 

definite number of atoms, which has a definite position in space. The rest of the crystal is an 

empty space. The space between the atoms in the crystal is called interstitial region [22], as 

shown in Figure 18. This adaptation is achieved by dividing the unit cell into (I) non-

overlapping atomic spheres (centered at the atomic sites) and (II) an interstitial region. 

 

Figure 18: Partitioning of the Unit Cell into Atomic Spheres (I) and an Interstitial Region (II) 

Experiments have proven that the outer shell electrons of the atoms are responsible to define 

the physical and chemical properties of the atoms and its compounds. The net interactions 

between the repulsive and attractive forces between different atoms (electrons and their nuclei) 

decide which phase these atoms will take to attain stability. Each atom composes of a big 

number of electrons and one nucleus, each electron interacts with all the other electrons and 

with each positive nucleus. These interactions can only be treated and analyzed using quantum 

mechanics treatment. 

The quantum many body problems obtained after the first level approximation (Born-

Oppenheimer) is much simpler than the original one, but is still far too difficult to solve. 

Several methods exist to reduce equation 2.3 to an approximate but tractable form. Such as 

Density Functional Theory (DFT). DFT has been formally established by two theorems due to 

Hohenberg and Kohn [8]. The traditional formulation of the two theorems of Hohenberg and 

Kohn is as follows [8]: 

First theorem: There is a one-to-one correspondence between the ground-state density ρ(r) of 

a many-electron system (atom, molecule, solid) and the external potential Vext. An immediate 

consequence is that the ground-state expectation value of any observable Ô is a unique 

functional of the exact ground-state electron density: 

                                             ˂ Ψ |Ô| Ψ > = O[ρ]                                          (4) 
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Second theorem: For Ôbeing the Hamiltonian Ĥ, the ground-state total energy functional 

H[ρ] = EVext[ρ] is of the form: 

                                  EVext[ρ]  =  ˂ Ψ |�� +	�� | Ψ > + ˂ Ψ |��ext | Ψ >                          (5) 

 
Many body problems can only be solved in DFT by making use of the translational symmetry, 

which cause the electronic wave functions to be of Bloch-type, labeled by k-vector in 

reciprocal space and the quantum number of the electron. Thus, the periodicity in real space is 

defined by k-vector in reciprocal space, whose unit cell is called Brillouin Zone (BZ). The 

latter becomes the smaller and the larger real space unit cell gets [21], [26], [30]. The 

interaction between the electrons and nucleus can be presented through the one electron 

Schrӧdinger Equation [26]: 

                                                     ���	Ψ = E Ψ                                                   (6) 

                                            (-∇� +��� ) Ψ = E Ψ                                            (7) 

∇�: is the second derivative with respect to space coordinates. 

���: is the effective attractive potential each electron feel.  

E: is the energy of this electron in this crystal phase. 

Ψ: is the wave function of this electron. 

 

When Ψ is squared and summed over all the crystal space we get the density function of this 

electron as a function of position:  

                                                  ρ(r)= ∫�	�∗���                                                    (8) 

Adding this density function for all the electrons, the sum logically equals the total number of 

electrons in the interaction. The problem is that we do not know the actual ��� and Ψ. This 

problem is treated in DFT by giving initial wave function Ψ and this wave function is 

extremely close to atomic wave function. Later we solve the Schrӧdinger equation and finding 

the ��� from the equation [8]: 

                                                        ∇���� = ρ(r)                                                        (9) 

The exchange-correlation operator ��� depends on the density ρ(r), which in turn depends on 

the Ψi that are being searched. This means we are dealing with a self-consistency problem. 

This ��� is new ��� and it entered again to the Schrӧdinger equation and again we solve for the 

new Ψ and so on. This cycle is kept repeated until the total energy reaches a minimum value. 

This minimum energy value is chosen at the beginning of the calculation; it should be suitable 

and comparable to the size of the problem. The value of this energy is directly related to the 

time of calculation through the number of cycles needed. At this optimum energy, the wave 
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function Ψ and exchange correlation potential ��� are the optimum representative for all the 

electrons see Figure 1, [8].  Some starting density P0 is guessed, and a Hamiltonian HKS1 is 

constructed with it. The eigenvalue problem is solved, and results in a set of P1 from which a 

density P1 can be derived. Most probably P0 will differ from P1. Now P1 is used to construct 

HKS2, which will yield a P2, etc. The procedure can be set up in such a way that this series 

will converge to a density Pf  which generates a HKSf which yields as solution again Pf : this 

final density is then consistent with the Hamiltonian [8]. 

 

These sequential operations of the WIEN2K program are divided into five modules: 

1. The first module is called LAPW0, in this process the ��� is calculated in the crystal from 

the initial.  

2. The second module is called LAPW1, which is responsible for building the Schrӧdinger 

equation (setting up H and S matrix), and solves the generalized eigen value problem for 

special point in the BZ. These points are called K-points. The number of these points is 

proportional to the reality of the study. The high number gives results that are more 

accurate and costs a lot of computational time, so balanced is essential.  

3. The third module in the program is called LAPW2. In this process and after solving the 

Eigen value problem, the Eigen vectors Ψ1 is calculated for each Eigen value and the new 

density is calculated according to Equation (2.5) 

4. The fourth module is called LCORE: from the density function, the electrons in the crystal 

are distributed on the lowest energy values, the density function for the core electrons is 

also calculated and in LCORE process. 

5. The fifth module is called MIXER: the new total density is compared with the old density, 

if the values are the same; the self-consistent (SC) is finished. The total energy and wave 

functions of the electrons are found. Otherwise, the new density is mixed with old density 

with a percentage decided at the beginning of the calculation to reproduce a new density to 

run another cycle. 

 

The cycle (visit of the five modules) is repeated until we get the read difference between the 

total energy and the new total energy, less than a value already expected.  

 

The Linearized Augmented Plane Wave (LAPW) method has proven to be one of the most 

accurate methods for the computation of the electronic structure of solids within density 
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functional theory. A full-potential LAPW-code for crystalline solids has been developed over a 

period of more than twenty years. A first copyrighted software version for the computation of 

the electronic structure of solids within DFT was called WIEN and was published by P. Blaha, 

K. Schwarz, P. Sorantin, and S. B. Trickey [22]. After that significant improvements and 

updates were accomplished on the UNIX original version of WIEN2k. Consequently, sequence 

of versions were issued and known as WIEN 93, WIEN 95 and WIEN 97. 

 

Now a new version, WIEN2K, is available, which is based on an alternative basis set. This 

allows a significant improvement, especially in terms of speed, universality, user-friendliness 

and new features. WIEN2Kis written in FORTRAN 90 and requires a UNIX operating system 

since the programs are linked together via C-shell scripts. It has been implemented 

successfully on the following computer systems: Pentium systems running under Linux, IBM 

RS6000, HP, SGI, Compac DEC Alpha, and SUN. It is expected to run on any modern UNIX 

(LINUX) system [22]. WIEN2K has the several features that are new with respect to WIEN 

97. 

 

In our work, the WIEN2K package is used to study the physical, chemical, electrical, structural 

and electronic properties of the materials, so when we run the WIEN2K then, we will compute 

the electronic structure of solids within DFT. The WIEN2K can simulate physical and 

chemical systems supposed to form a new material, this is very necessary to the laboratory 

person, who can produce the desired material such as drug and medicine.  
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ABSTRACT  
 
Present and future multi-core computational 
system architecture attracts researchers to utilize 
this architecture as an adequate and inexpensive 
solution to achieve high performance 
computation for many problems. The multi-core 
architecture enables us to implement shared 
memory and/or message passing parallel 
processing paradigms. Therefore, we need 
appropriate standard libraries in order to utilize 
the resources of this architecture efficiently and 
effectively. In this work, we evaluate the 
performance of message passing using two 
versions of the well-known message-passing 
interface (MPI) library: MPICH1 vs. MPICH2. 
Furthermore, we compared the performance of 
shared memory using OpenMP that supports 
multithreading with MPI. The results show that 
the performance when MPICH2 is used is better 
than MPICH1. The results indicate that 
multithreading performs better than message 
passing. 
 

 

KEYWORDS  

 

Parallel Processing, Performance Evaluation, 
Message Passing, MPICH1, MPICH2, 
Multithreading, Multicore systems, WIEN2K.  
 
 

1 INTRODUCTION 
 
In order to achieve high performance computing 
(i.e. reducing computing elapsed time), parallel 
processing is widely used in multimedia 
computing, signal processing, scientific 
computing, engineering, general purpose 
application, industry, computer systems, 
statistical applications, and simulation. Usually, 
mainframes and super computers are used to 
implement shared memory parallel computing, 
while clusters and grid computing are utilized to 
speed up the computation using message 
passing. Thus, parallel processing was carried 
out on expensive supercomputers and 
mainframes. After that, the emerging high 
performance computer network and protocols 
attracted the researcher to use message passing 
on distributed memory to implement parallel 
processing on clusters of on shelf computers and 
grid computing.  
 
Obviously, parallel processing is implemented 
on shared memory computer architectures using 
Single Instruction Multiple Data (SIMD), 
Multiple Instruction Multiple Data (MIMD), 
Single Program Multiple Data (SPMD) 
Techniques, or multithreading. Whilst message-
passing paradigm can be used on distributed 
memory architectures by means of SPMD and 
MIMD, a hybrid approach using both paradigms 
can also be implemented on both architectures. 
 



2 

 

However, the emerging and promising multi-
core computer architecture attracts the 
researchers to utilize this architecture as an 
adequate and inexpensive solution to gain high 
performance computation for many problems. 
Therefore, this architecture shifted the interest of 
many researchers towered parallel computing on 
such multi-core systems. Thus, we can achieve 
relatively cheap high performance using message 
passing, share memory, or hybrid techniques on 
a single or cluster of multi-core computers[2][3]. 
This architecture enables us to implement both 
shared memory and/or message passing parallel 
processing paradigms. Therefore, we need to 
evaluate which paradigm can be used more 
efficiently and effectively on multi-core 
architectures. Furthermore, to carry out our 
computations, we need appropriate standard 
libraries in order to utilize the resources 
efficiently for a given computational problem. 
Hence, to facilitate realization of parallel 
programming on different platforms, there are 
several supporting libraries. For example, we can 
use PVM, JPVM and MPI for message passing 
on distributed memory. Posix and OpenMP are 
also used for multithreading on shared memory 
[3]. It should be noted that these libraries provide 
us with a well-defined standard interface to 
achieve portability and flexibility of usage. 
However, the developers of these libraries intend 
to improve the implementation to cope with the 
emerging platforms to increase the utilization 
efficiency.  
  
In this work, we focus on evaluation of the 
performance of parallel computing using 
message passing (multi-processes) and shared 
memory (multiprocessing) on multi-core 
systems. We used different versions of MPI 
library namely MPICH1 and MPICH2 for 
message passing and OpenMP for multithreading 
in our experiments.  
 
Since, one of the important applications that is 
needed to speed up computation is the WIEN2K 
application, which is based on Density 
Functional Theory (DFT), we used it as a 
benchmark to evaluate the performance of 
MPICH1 vs. MPICH2. The WIEN2K 
application enables us to simulate physical and 

chemical systems, which form new materials. 
This is necessary for laboratory researchers who 
can produce desired materials such as drugs and 
medicine [8]. The WIEN2K applied a parallel 
method to solve quantum mechanics equations 
based DFT to find the cohesive energy of any 
material. It should be noted that the current 
official version of this application uses MPICH1. 
In addition, we used a matrix multiplication 
benchmark to evaluate the performance of multi-
processes (message passing) vs. multithreading 
parallel programming performance and 
efficiency on a multi-core system.  
 
In this work, we evaluated the performance of 
MPICH1 and MPICH2 by running WIEN2K that 
originally used MPICH1 and the new 
implementation of WIEN2K on MPICH2. 
Moreover, we implemented a matrix 
multiplication on both MPICH1 and MPICH2 
message passing and OpenMP for testing 
multithreading technique. 
 
The paper is organized as follows: section 2 
introduces a background and literature review. 
Next, section 3 discusses the experiment and the 
results. Finally, section 4 concludes this work 
and introduces future work. 
 
 

2 BACKGROUND & LITERATURE 
REVIEW 

 
Multi-core systems and clusters become an 
interesting and affordable platform for running 
parallel processing to achieve high performance 
computing for many applications and 
experiments. Some examples include internet 
services, databases, scientific computing, and 
simulation. This is due to their scalability 
performance/cost ratio [1]. 
 
There are two main approaches that support 
parallel computing via multi-core processors: 
shared memory and distributed memory 
approaches. Thus, we will provide an overview 
of the evolution of the two main approaches.  
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2.1 Shared Memory Approach 
 

Shared memory based parallel programming 
models communicate by sharing the data objects 
in the global address space. Shared memory 
models assume that all parallel activities can 
access all of memory. Consistency in the data 
need to be achieved when different processors 
communicate and share the same data item, this 
is done by using the cache coherence protocols 
used by the parallel computer. All operations 
such as load and store for data carried out by the 
automatically without direct intervention by the 
programmer. For shared memory based parallel 
programming models, communication between 
parallel activities is completed via a shared 
mutable state that must be carefully managed to 
ensure correctness. Various synchronization 
primitives such as locks or transactional memory 
are used to enforce this management [3]. In this 
approach a main memory is shared between all 
processing elements in a single address space.  
 
The advantages with using shared memory based 
parallel programming models are presented 
below. 
 Shared memory based parallel programming 

models facilitate easy development of the 
application more than distributed memory 
based multiprocessors. 

 Shared memory based parallel programming 
models avoid the multiplicity of data items 
and allows the programmer to not be 
concerned about the programming model's 
responsibility. 

 Shared memory based programming models 
offer better performance than the distributed 
memory based parallel programming models. 

 
The disadvantages with using the shared 
memory based parallel programming models are 
described below. 
 The hardware requirements for the shared 

memory based parallel programming models 
are very high, complex, and cost prohibitive. 

 Shared memory parallel programming 
models often encounter data races and 
deadlocks during the development of the 
applications. 

A diverse range of shared memory based parallel 

Programming models are developed to this day. 
They can be classified into mainly three types as:  
Threading, directive based, and tasking models 
[16, 17]. However, we will only focus on the 
threading model.  
 
Threading models 
 
These models are based on the thread library that 
provides low-level library routines for 
parallelizing the application. These models use 
mutual exclusion locks and conditional variables 
for establishing communications and 
synchronizations between threads. Some of the 
well-known libraies are OpenMP and Posix. The 
advantages with threading models are as follows: 
 More suitable for applications based on the 

multiplicity of data. 
 Flexibility provided to the programmer is 

very high. 
 Threading libraries are widely used and 

threading model tools are readily available. 
 Performance can still be improved by using 

conditional waits and try locks. 
 Easy to develop parallel routines for 

threading models 
 
The disadvantages associated with threading 

models include the following: 

 Hard to write applications using threading 

models because establishing a 

communication or synchronization incurs 

code overhead, this is hard to manage, 

thereby leaving more scope for errors. 

 The developer should be more careful in 

using global data otherwise this leads to 

data races, deadlocks, and false sharing. 

 Threading models stand at low level of 

abstraction, which isn‘t required for a better 

programming model. 

 

2.2  Distributed Memory Approach 

This type of parallel programming approach 
allows communication between processors by 
using the send/receive communication routines. 
Message passing models avoids 
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communications between processors based on 
shared/global data [16]. They are typically used 
to program clusters, where in each processor in 
the architecture gets its own instance of data and 
instructions. The advantages of distributed 
memory based programming models as follows:  
 The hardware requirement for the message 

passing models is low, less complex, and 
comes at very low cost.  

 The message passing models avoids the data 

races and consequently the programmer is 

freed from using the locks. 

 

The disadvantages with distributed memory 
based parallel programming model are listed 
below: 
 Message passing models in contrast 

encounter deadlocks during the process of 
communications. 

 Development of applications on message 
passing models is hard and takes more time. 

 The developer is responsible for 
establishing communication between 
processors. 

 Message passing models are less 
performance oriented and incur high 
communication overheads. 

 

A comparison base characteristic using methods 
between shared vs. distributed is listed in Table 1 
[17]. the message-passing interface (MPI) is a 
set of API functions that facilitate parallel 
programming based on message passing 
paradigm. One of the well-known APIs is 
MPICH1, which is based on an MPI standard 
founded on April 29-30, 1992 at a workshop in 
Williamsburg, Virginia [4]. This library API 
supports FORTRAN and C programming 
languages. It has been issued with several 
modifications and extensions to support dynamic 
processes, one-sided communication, parallel 
I/O, etc [13][14]. MPICH2 standard is intended 
for use by all those who want to write portable 
message-passing programs in Fortran 77, 
FORTRAN 95, C and C++ [5]. The 
improvement of MPICH2 focused on many 
issues and functionalities such as dynamic 
processes, one sided communication, parallel 
I/O, etc. [13][14].  

Table 1: A Comparison between Shared vs. distributed   

Architecture 

Distribu-
ted 

Memory 
MPI 

Shared 
Memory 

Arch 
OpenMP 

Hybrid 
Dist. & 
Shared 

Memory 
Creation 

mathematical 
model 

Easy 
Slightly 
complic-

ated 
Difficult 

Balancing 

Change-
able with 
Difficulti

-es 

Change-
able- 
easily 

Easily 
changeab-

le 

Simulation of 
parallel 
models 

Advisab-
le 

Conveni-
ent 

Useful 

Synchronizat
ion 

Models 
Simple 

Complic-
ated 

Complica-
ted 

Transfer 
dates 

between 
models 

Large Little 
Intermedi-

ate 

Power of 
large 

modules 

Reasona-
ble 

Big Big 

 
 
Of course, a number of changes to dynamic 
spawning tasks, the nature of communication, 
and how one runs them will be different. By 
adding new features in MPICH2, it will be more 
robust, efficient, and convenient to use [4]. 
Consequently, we will focus on the 
improvements in MPICH2 that we believe they 
have an impact on the performance: 
 
1. MPICH1 focused mainly on point-to-point 

communications, but MPICH2 included a 
number of collective communication 
routines and was thread-safe [4]. 

2. MPICH2 supports dynamic spawning of 
tasks. It provides primitives to spawn 
processes during the execution and enables 
them to communicate together [11]. 

3. MPICH2 supports one-sided 
communication. It provides three 
communication calls: MPI_PUT (remote 
write), MPI_GET (remote read), and 
MPI_ACCUMULATE (remote update). 



5 

 

These operations are non-blocking [12] 
[14]. 

4. MPICH2 used generalized requests that 
aren’t used by MPICH1. These requests 
allow users to create new non-blocking 
operations with an interface [14]. 

5. In MPICH2, significant optimizations 
required for efficiency (e.g. asynchronous 
I/O, grouping, collective buffering, and 
disk-directed I/O) are achieved by the 
parallel I/O system [14]. 

6. MPICH-1 defined collective communication 
for intra-communicators and two routines 
for creating new intercommunicators. But 
MPICH-2 introduces extensions of many of 
the MPICH-1 collective routines to 
intercommunicators, additional routines for 
creating intercommunicators, and two new 
collective routines: a generalized all-to-all 
and an exclusive scan [14]. 

7. MPICH2 supports MPI THREAD 
MULTIPLE by using a simple 
communication device, known as   “ch3 
device” (the third version of the “channel” 
interface), but MPICH1 does not support 
MPI THREAD MULTIPLE [5]. 

8. MPICH1 is not concerned with 
communication, but rather process 
management. But MPICH2 is concerned 
with communication rather than process 
management. However, MPICH2 provides a 
separation of process management and 
communication. The default runtime 
environment consists of a set of daemons, 
called mpd’s, that establish communication 
among the machines to be used before 
application process startup, thus providing a 
clearer picture of what is wrong when 
communication cannot be established. In 
addition, it provides a fast and scalable 
startup mechanism when parallel jobs are 
started. But MPICH1 doesn’t separate them 
and mpd’s are built in [15]. 

9. MPICH1 required access to command line 
arguments in all application programs 
before startup, including FORTRAN ones. 
Thus, MPICH1’s configuration devotes 
some effort to finding the libraries, such as 
libraries that contained the right versions of 
iargc and getarg. But MPICH2 does not 

require access to command line arguments 
of applications before startup and MPICH2 
does nothing special for configuration. If 
one needs them in their applications, they 
must ensure that they are available in the 
environment being used [15]. 

 
Various operating systems such as Linux, 
Solaris, and Windows can be used for scheduling 
computer resources such as memory, I/O, and 
CPU [6]. 
 
 
2.3  Cohesive Energy & WIEN2K 
 
Condense matter physics looks different from 50 
years ago. Scientist knows that solids obey the 
laws of quantum mechanics; by solving these 
quantum equations all properties of solids, 
including electrical, magnetic, optical and 
thermal can be found. The main scalable 
quantity for measuring the stability of any 
material is the cohesive energy; cohesive energy 
equals the difference between the total energy of 
the material in the combined form and the sum 
of the free atom’s energy in their free state as 
shown in equation (1)  
 
E cohesive energy = E compound  - ∑E free atoms  (1) 
 
Each stable form of these atoms can produce 
positive value for the cohesive energy. 
Furthermore, the material can normally take 
more than one stable state, and the state with the 
highest cohesive energy is the most stable one 
[10].  
 
In order to study the previous characteristics of 
the materials we have to solve many second 
body order differential equation called equation 
of state. This equation obeys the laws of 
quantum mechanics. The equation of state is 
composed of the kinetic energy operators for 
both the nucleus and electrons, the potential 
energy resulting from interaction between 
electrons themselves, nucleis themselves, and 
nucleis and electrons; these operators are 
measured by solving many-body Hamiltonian for 
the system, which  is illustrated in equation (2) 
[7][10].  
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This equation can be solved numerically after 
transforming it to a one-body problem after some 
approximations. This method called Density 
Functional Theory (DFT) [8][9].  
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 Program packages like WIEN2K [3], using Full 
potential Linear Augmented Plane Wave and 
Local Orbital’s (FP-LAPW+Lo) technique 
allows such studies on the basis of quantum 
mechanics using density functional theory 
(DFT). In these studies, we have two main 
factors controlling the calculation. The first 
factor is the time of calculation and the second is 
the sample actuality; the sample actuality 
meaning the number of atoms constituting the 
sample, the bigger the number is the more actual 
case we have, and more complexity, which costs 
a lot of calculation time.  
  
WIEN2K package is composed of these five 
modules: LAPW0, LAPW1, LAPW2, LCORE 
and MIXER.  Each module solves one equation 
to get the highest cohesive energy. The state with 
the highest cohesive energy is the most stable 
one [10]. The calculation is repeated until it 
obtains the highest cohesive energy.  
 
The authors in [8] compared two parallel 
approaches that run on MPICH1 channel. The 
two methods are: distributed k-point and data 
distribution. However, the first one runs each of 
the two modules (LAPW1, LAPW2) in parallel 
way. The other runs each of the first three 
modules in parallel. In addition, a comparison 
between serial and parallel approaches for 

running Matrix Multiplication on MPICH1 was 
in [1]. 
 

 
3 EXPERIMENT AND RESULTS 

DISCUSSION 
 

In this work, two cases of experiments were 
carried out.  In the first case (Case 1), we 
focused on distributing tasks of WIEN2K 
program using MPICH1 and MPICH2 on multi-
core machine. Whereas in [8] the experiments 
were carried out on a cluster using MPICH1 to 
distribute WIEN2K task. In the second case 
(Case 2) of experiments, we tested the 
performance of parallel matrix multiplication 
using multi-processing (message passing) using 
MPICH1 and MPICH2, and multithreading 
paradigms using OpenMP. 
  
Our experiments were running on Linux (Fedora 
14) installed on a multi-core (quad) machine 
(Intel Core i5 3GHz processor); the specification 
details of the experiments platform/machine are 
listed in Table 2. 
 

 Table 2: Machine Specifications 

No Specification Multi-Core PC 
1 CPU speed Quad 3 GHz 
2 RAM size 8 GB 
3 Cache 8 Mbyte 
4 HD speed 7200 RPM 

 
To accomplish the calculations, a set of 
programs were installed on Fedora Linux version 
14 and optimized with appropriate options 
together with WIEN2K. These programs are 
listed in Table 3.  
 
Recall that we continue the work of [8], where 
they installed and used MPICH1 to run WIEN2K 
program. For this work, we installed MPICH2 
channel then installed WIEN2K MPICH2 
version and run "LAPW0," which is a basic 
module of WIEN2K. This is done via 
determined parallel commands. These 
commands were written on the terminal of the 
operating system.  
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The experiments were carried out by running the 
programs LAPW0 as benchmarks using 
MPICH1 MPICH2 on one, two, three, and four 
processors of the quad multi-core machine, 
where, each processor has a unique id from 0 to 
3.   Each experiment was repeated several times 
and the average of the elapsed time was 
recorded. The experiments were divided into two 
cases: the first one ran LAPW0 for one cycle. In 
the second experiment (Case 2), the matrix 
multiplication was implemented using MPICH1, 
MPICH2, and OpenMP. 
 

 Table 3: Software Requirements 

Program name Version Source 
WIEN2K 13.1  www.WIEN2K.at 

MPI Channel 

MPICH1.3 
& 

MPICH2-
1.0.5p3 

 www.mpich.org 

Intel Fortran 90 
Compiler 

11.072 Intel 

Intel C 
Compiler  

10.074 Intel  

Mathematical 
Kernel Library 

(MKL) 
11.0 Intel  

Fastest Fourier 
Transform in 

the west 
(FFTW) 

FFTW-
2.1.5 

Intel  

 

Case 1: 

The experiments on MPICH1 used "mpirun" 
command and “mpiexec” for MPICH2. For 
example, the steps of the LAPW0 execution on 
MPICH2 are shown in Figure (1).  
 
The results of the average running time for case 
1 (LAPW0) are summarized in Table 4. This 
table shows the execution time on MPICH1 and 
MPICH2 and the improvement factor (if) by the 
number of processors. The improvement factor 
(if) is measured as the ratio of the difference 
between the execution time on MPICH1 and 
MPICH2 to the Execution time on MPICH1 i.e.         
(TMPICH1-TMPICH2)/ TMPICH1.  

�� = 	
���������������

�������
 

 
[rezek@rezek-dell15~]$ cd/home/ rezek 
/mpich2 /examples 
[rezek@rezek-dell15 examples]$ mpicc -c 
lapw0_mpi.c 
[rezek@rezek-dell15 examples]$ mpicc -o 
lapw0_mpi lapw0_mpi.o 
[rezek@rezek-dell15 examples]$ mpd & 
[1] 3929 
[rezek@rezek-dell15 examples]$ mpiexec 
-n 1 lapw0_mpi 
lapw0_mpi has started with 1 tasks. 
Initializing arrays... 
Running Time = 62.005132 
Done. 
 
[rezek@rezek-dell15 examples]$ mpiexec 
-n 2 lapw0_mpi 
lapw0_mpi has started with 2 tasks. 
Initializing arrays... 
Running Time = 34.002134 
Done. 
 
rezek@rezek-dell15 examples]$ mpiexec -
n 3 lapw0_mpi 
lapw0_mpi has started with 3 tasks. 
Initializing arrays... 
Running Time = 25.141348 
Done. 

 
Figure  1 : Screen Shot of Running LAPW0 on MPICH2  

 
 

Table 4: Execution Time of LAPW0 on MPICH1 

and MPICH2 on Different # of Processors. 

# of 
Proc 

Exec. 
time on 
mpich1  
(min) 

Exec. 
time on 
mpich2 
(min) 

If 

1 64.25 62.54 0.026615 

2 35.05 34.38 0.019116 

3 26.03 25.37 0.025355 

4 20.5 19.52 0.047805 

 
 
It is clear that the performance of MPICH2 is 
better than MPICH1 by approximately 3%. Also, 
Figure 2 shows the difference between the 
execution time on MPICH1 and MPICH2. 
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Therefore, we believe that the nine added 
features have positive impact on the 
performance.  The most important added features 
in MPICH2 are the collective communications, 
the support of one-sided communication, MPI 
Thread Multiple, and its concern on 
communication rather than process management. 
It should be noted that the time unit in the 
experiments of case 1 is in minutes, whereas it is 
in seconds in case 2. 
 

Figure 2: the WIEN2K execution time of MPICH1 vs. 
MPICH2. 

 

 
Case 2: 
 
In this case the experiments were implemented 
on a standard parallel matrix multiplication of 
size 5120 x 5120 using multithreading by means 
of OpenMP and multi-processing (message 
passing) using MPICH1 and MPICH2. Also, in 
these experiments we utilized 1, 2, 4, 8 and 16 
processes. The experiments where repeated by 
using multithreading with 1, 2, 4, 8, and 16 
threads. The results in Figure 3 show that the 
performance using multithreading is better than 
multiprocessing. This is because of the overhead 
processes and data distribution.  
 
Recall that the experiment's platform has four 
processing elements. It is apparent from Figure 3 
that the curve declines (i.e. improving the 
efficiency and speed-up) until the number of 
processes/threads reaches 4. Afterwards, the 
curve begins to incline, which indicates a 

decrease in performance and efficiency. This is 
due to the overheads in scheduling the threads 
and processes in utilizing shared resources (i.e. 
processing elements and shared memories).  
 

Fig 3: Execution Time of Matrix Multiplication Using 

MPICH1 vs. MPICH2 vs. OpenMP 

 
 
 
4 CONCLUSION AND FUTURE WORKS 
 
The goal of this work is twofold. The first is to 
evaluate and compare the performance of 
MPICH1 and MPICH2 using different cases 
running on one, two, three, and four processors. 
The second aim is to evaluate the performance 
of running parallel programs with big data using 
message passing and multithreading. As a result, 
we can conclude that MPICH2 perform better 
than MPICH1 in all cases. It is due to the 
collective improvement and added features in 
MPICH2. Moreover, the results show that 
multithreading programming on multi-core 
architectures perform better than message 
passing when the parallel programs works on big 
data.   
 
Finally, for future work, we intend to extend our 
experiment to test the performance of newly 
issued MPICH3 and Graphical Processing Units 
(9999999GPU) using different tasks. 
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ABSTRACT 

The emerging multi-core computer architecture 
attracts the researchers to utilize this architecture 
as an adequate and inexpensive solution to 
achieve high performance computation for many 
problems. Where, the multi-core architecture 
enables us to implement shared memory and/or 
message passing parallel processing paradigms. 
Therefore, we need appropriate standard 
software libraries in order to utilize the resources 
efficiently for a given computational problem.  
 
In this work, we evaluate the performance of two 
versions of the well-known massage passing 
interface (MPI) library: MPICH1 vs. MPICH2. 
In our experiments, we used two benchmarks. 
The first one is the WIEN2K application, which 
is based on Density Function Theory, and the 
second is a Matrix multiplication. The results 
show that we achieve better performance when 
MPICH2 is used than MPICH1. 
 
 
KEYWORDS 

Parallel Processing, Message Passing Interface 
MPI, MPICH1, MPICH2, performance, multi-
core systems, WIEN2K. 
 

1. INTRODUCTION 

In order to achieve high performance computing 
i.e., reducing computing elapsed time, parallel 
processing is widely used in scientific 
computing, engineering, multimedia application, 

industry, computer systems, statistical 
applications, and simulation. One of the 
important applications that need to speed up 
computation is WIEN2K application, which is 
base on Density Functional theory.  
 
Usually parallel processing can be implemented 
on shared memory computer systems or 
distributed memory systems using message-
passing paradigms. A hybrid approach using 
both paradigms also can be implemented. 
Parallel processing was usually carried out on 
expensive supercomputers and mainframes. 
After that, the emerging high performance 
computer network and protocols attracted the 
researcher to use the distributed memory parallel 
processing on clusters of on shelf computers and 
Grid computing. 
 
In the past decade, the development of multicore 
Systems shifted the interest of many researchers 
towered parallel computing on such multi-core 
systems. Thus, we can achieve relatively cheap 
high performance using message passing, share 
memory, or hybrid techniques on single or a 
cluster of multi-core computers[2][3]. In order to 
facilitate realization of parallel programming on 
different platforms, there are several supporting 
libraries. For example, we can use PVM, JPVM 
and MPI for message passing on distributed 
memory. Also Posix and OpenMP are used for 
multithreading on shared memory [3]. It should 
be noted that these libraries provide us with 
well-defined standard interface to achieve 
portability and flexibility of usage. However, the 
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developers of these libraries intend to improve 
the implementation to cope with the emerging 
platforms to increase the utilization efficiency. In 
this work, we focus on evaluating the 
performance of different versions of MPI library 
namely MPICH1 and MPICH2. Since WIEN2K 
is currently using MPICH1.  
 
The WIEN2K can simulate physical and 
chemical systems supposed to form a new 
material, this is very necessary to the laboratory 
person, who can produce the desired material 
such as drug and medicine [8]. The WIEN2K 
applied a parallel method to solve quantum 
mechanics equations based Density Functional 
Theory (DFT) to find the cohesive energy of any 
material.  
 
In this work, we evaluated the performance of 
MPICH1 and MPICH2 by running WIEN2K that 
originally uses MPICH1 and the new 
implementation of WIEN2K on MPICH2 as 
benchmark. Moreover, we implemented a matrix 
multiplication on both MPICH1 and MPICH2. 
 
This paper is organized as follows: Section 2 
reviews the main difference between MPICH1 
and MPICH2. In section 3, literature review and 
background are introduced. Next section (4) 
discusses the experiment and the results. Finally, 
a conclusion and future work are provided in 
section 5.  
 
 

2. PRELIMINARIES 

Multi-core systems and clusters become an 
interesting and affordable platform for running 
parallel processing to achieve a high 
performance computing for many applications 
and experiments. For instance: internet service, 
database, scientific computing and simulation. 
This is due to their scalability performance/cost 
ratio [1].  
 
On the other hand, there are many Libraries to 
support the shared and distributed memory. The 
message passing interface (MPI) is a set of API 
functions that enable programmers to write 
parallel programs based on message passing 

paradigm. One of the well known APIs MPICH1 
which established based on MPI standard that 
founded in April 29-30, 1992 work shop in 
Williamsburg Virginia [4]. This library API 
supports FORTRAN and C programming 
languages. It has been issued with several 
modifications and extensions to support dynamic 
processes, one-sided communication, parallel 
I/O, etc [13][14]. MPICH2 standard is intended 
for use by all those who want to write portable 
message passing programs in Fortran 77, 
FORTRAN 95, C and C++ [5]. The 
improvement of MPICH2 focused on many 
issues and functionalities such as dynamic 
processes, one-sided communication, parallel 
I/O, etc [13][14]. Of course, a number of 
changes about how you run them, dynamic 
spawning tasks and the nature of communication 
will be different. By new added features in 
MPICH2, we will get it more robust, efficient, 
and convenient to use [4]. Consequently, we will 
focus on the improvements in MPICH2 that we 
believe they have an impact on the performance: 
 
1. MPICH1 focused mainly on point-to-point 

communications But MPICH2 included a 
number of collective communication routines 
and was thread-safe [4]. 

2. MPICH2 supports dynamic spawning of 
tasks. It provides primitives to spawn 
processes during the execution and to enable 
them to communicate together [11]. 

3. MPICH2 supports One-sided 
Communication. It provides three 
communication calls: MPI_PUT (remote 
write), MPI_GET (remote read) and 
MPI_ACCUMULATE (remote update). 
These operations are non-blocking [12][14]. 

4. MPICH2 used generalized requests that 
aren’t used by MPICH1. These requests 
allow users to create new non-blocking 
operations with an interface [14]. 

5. In MPICH2, significant optimizations 
required for efficiency (e.g., asynchronous 
I/O, grouping, collective buffering, and disk-
directed I/O) are achieved by the parallel I/O 
system [14]. 

6. MPICH-1 defined collective communication 
for intra-communicators and two routines for 
creating new intercommunicators. But, 
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MPICH2 introduces extensions of many of 
the MPICH-1 collective routines to 
intercommunicators, additional routines for 
creating intercommunicators, and two new 
collective routines: a generalized all-to-all 
and an exclusive scan [14]. 

7. MPICH2 supports MPI THREAD 
MULTIPLE by using a simple 
communication device, known as “ch3 
device” (the third version of the “channel” 
interface) but MPICH1 does not support MPI 
THREAD MULTIPLE [5]. 

8. MPICH1 does not concern with 
communication rather than process 
management. But, MPICH2 concerns with 
communication rather than process 
management. However, MPICH2 provides a 
separation of process management and 
communication. The default runtime 
environment consists of a set of daemons, 
called mpd’s, that establish communication 
among the machines to be used before 
application process startup, thus providing a 
clearer picture of what is wrong when 
communication cannot be established and 
providing a fast and scalable startup 
mechanism when parallel jobs are started. 
But MPICH1 doesn’t separate them and 
mpd’s are built in [15].  

9. MPICH1 required access to command line 
arguments in all application programs before 
startup; including FORTRAN ones, so 
MPICH1’s configure devoted some effort to 
finding the libraries such as libraries that 
contained the right versions of iargc and 
getarg. But MPICH2 does not require access 
to command line arguments of applications 
before startup and MPICH2 does nothing 
special for configuration. If you need them in 
your applications, you will have to ensure 
that they are available in the environment 
you are using [15]. 

 
 
Various operating systems including Linux, 
Solaris, and Windows can be used for managing 
computer resources such as memory, I/O and 
CPU [6].  
 
 

3. LITERATURE REVIEW AND 

BACKGROUND 

Materials are build from atoms, atoms composed 
of a heavy positively charged nucleus and lighter 
particles called electrons. These particles interact 
with each other and with their neighbors in the 
next atoms. In order to study the stability, 
structural, thermodynamic, mechanical, transport 
properties and electronic properties of these 
materials we have to solve many-body second 
order deferential equation called equation of 
state, this equation obeys the laws of quantum 
mechanisms.  
 
The equation of state composed of the kinetic 
energy operators for both the nucleus and 
electrons, potential energy resulted from 
interaction between electrons them self, nuclei’s 
them self and nuclei’s and electrons; these 
operators are measured by solving many body 
Hamiltonian for the system, which is illustrated 
in equation (1) [7][10] 
 
This equation can be solved numerically after 
transforming it to a one body problem after some 
approximations, this method called Density 
Functional Theory (DFT) [8][9]. 
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In Our work, the program packages like 
WIEN2K [7], using Full potential –Linear 
Augmented Plane Wave And Local Orbital’s 
(FP-LAPW+Lo) technique is used, in such 
studies we have two main factors controlling the 
calculation, these two factors are vice versa, the 
first factor is the time of calculation and the 
second is the sample actuality, the sample 
actuality means here the number of atoms 
constituting the sample, the bigger the number is 
the more actual case we have, and more 
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complexity, this will cost a lot of calculation 
time. WIEN2K package composed of five 
modules, each module solve one of the equations 
from (2) to (5) sequentially: 
 The first module is called LAPW0, in this 

process the ��� is calculated in the crystal 
from the initial density �� using poisons 
equation: 
                           ∇���� = ρ(r)                        (2) 

 The second and third module is called 
LAPW1, LAPW2 which are responsible for 
building and solving the Schrӧdinger 
equations (3) and (4), (setting up H and S 
matrix), and solves the generalized Eigen 
value problem for special point in the crystal. 
The number of these points is proportional to 
the reality of the study. The high number 
gives more accurate results and costs a lot of 
computational time, so Balanced is essential. 

                                ���Ψ = E Ψ                         (3) 

                    (-∇� +��� ) Ψ = E Ψ                      (4)   
 

∇�: is the second derivative with respect to 
space coordinates. 
���: is the effective attractive potential each 
electron feel.  
E: is the energy of this electron in this crystal 
phase. 
Ψ: is the wave function of this electron. 
 
 

 The fourth module is called LCORE: from 
the density function, the electrons in the 
crystal are distributed on the lowest energy 
values, the density function for the core 
electrons is also calculated and in LCORE 
process as in equation (5): 

                   ρ(r)= ∫��∗���                          (5) 

 The fifth module is called MIXER: the new 
total density is compared with the old 
density, if the values are the same or the 
difference is less than an assigned value; the 
self-consistent (SC) is finished as shown in 
Figure 1. The total energy and wave 
functions of the electrons are found. 
Otherwise, the new density is mixed with old 
density with a percentage decided at the 
beginning of the calculation to reproduce a 

new density to run another cycle to get faster 
convergence and recalculate ��� using 
equation (2). 

The main scalable quantity for measuring the 
stability of any material is the cohesive energy; 
cohesive energy equals the difference between 
the total energy of the material in combined form 
and the sum of the free atom’s energy in their 
free state as shown in equation (6) 

  
  E cohesive energy = E compound  - ∑E free atoms   (6) 
 

Each stable form of these atoms can produce 
positive value for the cohesive energy, the 
material normally can take more than one stable 
state, and the state with the highest cohesive 
energy is the most stable one [10]. 
 
The authors in [8] compared two parallel 
approaches that run on MPICH1 channel. The 
two methods are distributed k-point and Data 
distribution. However, the first one runs each of 
the two modules (LAPW1, LAPW2) in parallel 
way. But the other runs each of the first three 
modules in parallel. In addition, a comparison 
between serial and parallel approaches for 
running Matrix Multiplication on MPICH1 was 
in [1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
        no 
  
                                                   yes 
 
 

Figure 1: Physical problem solving steps 
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4 EXPERIMENT AND RESULTS 

DISCUSSION 
 

In our study, we focused on distributing tasks of 
WIEN2K program using MPICH1 and MPICH2 
on multi-core machine. Whereas, in [8] the 
experiments were carried out on a cluster using 
MPICH1 to distribute WIEN2K task. The main 
contribution in our work depends on the 
comparison between the results of these 
experiments.  
 
Our experiments were running on Linux (Fedora 
14) installed on multi-core (quad) machine (Intel 
Core i5 3GHz processor); the specification 
details of the experiments platform/machine are 
listed in Table 1. 
 

Table 1: Machine Specifications 

No Specification Multi-Core PC 

1 CPU speed Quad 3 GHz 

2 RAM size 8 GB 

3 Cache 8 Mbyte 

4 HD speed 7200 RPM 

 

To accomplish the calculations, a set of 
programs were installed on Fedora Linux version 
14 and optimized with appropriate options 
together with WIEN2K. These programs are 
listed in Table 2.  
 

Table 2: Software Requirements 

Program name Version Source 

WIEN2K 13.1 www.WIEN2K.at  

MPI Channel 
MPICH1.3 & 

MPICH2-1.0.5p3 
www.mpich.org  

Intel Fortran 90 

Compiler 
11.072 Intel 

Intel C Compiler  10.074 Intel  

Mathematical 

Kernel Library 

(MKL) 

11.0 Intel  

Fastest Fourier 

Transform in the 

west (FFTW) 

FFTW-2.1.5 Intel  

 
Recall that we continue the work of [8], where 
they installed and used MPICH1 to run WIEN2K 
program. For this work, we installed MPICH2 
channel then installed WIEN2K MPICH2 
version and run "LAPW0" which is a basic 
module of WIEN2K. This is done via 
determined parallel commands. These 
Commands were written on the terminal of the 
operating system.  
 
The experiment was carried out by running the 
programs (LAPW0 and Matrix Multiplication) 
using MPICH1 and MPICH2 on one, two, three, 
and four processors of the quad multi-core 
machine. Where, each processor has a unique id 
from 0 to 3.   Each experiment was repeated 
several times and the average of the elapsed time 
were recorded. The experiments in divided into 
two cases: the first one is running LAPW0 for 
one cycle, and in the second case is the running 
of Matrix multiplication. 
 
[rezek@rezek-dell15~]$ cd/home/ 
rezek /mpich2 /examples 
[rezek@rezek-dell15 examples]$ 
mpicc -c lapw0_mpi.c 
[rezek@rezek-dell15 examples]$ 
mpicc -o lapw0_mpi lapw0_mpi.o 
[rezek@rezek-dell15 examples]$ mpd & 
[1] 3929 
[rezek@rezek-dell15 examples]$ 
mpiexec -n 1 lapw0_mpi 
lapw0_mpi has started with 1 tasks. 
Initializing arrays... 
 
Running Time = 62.005132 
 
Done. 
[rezek@rezek-dell15 examples]$ 
mpiexec -n 2 lapw0_mpi 
lapw0_mpi has started with 2 tasks. 
Initializing arrays... 
 
Running Time = 34.002134 
 
Done. 
[rezek@rezek-dell15 examples]$ 
mpiexec -n 3 lapw0_mpi 
lapw0_mpi has started with 3 tasks. 
Initializing arrays... 
 
Running Time = 25.141348 
 
Done.  

Fig 2 : Screen Shot of Running LAPW0 on MPICH2  



6 

 

It should be noted that for running the 
experiments on MPICH1 we use "mpirun" 
command and “mpiexec” for running it on 
MPICH2. For example, the steps of the LAPW0 
execution on MPICH2 are shown in Figure (2).  
 
The results of the average running time for case 
1 (LAPW0) are summarized in table 3. This 
table shows the execution time on MPICH1 and 
MPICH2 and the improvement factor (if) by the 
number of processors. Where the improvement 
factor (if) is measured as the ratio of the 
difference between the execution time on 
MPICH1 and MPICH2 to the Execution time on 
MPICH1 i.e.,         (TMPICH1-TMPICH2)/ TMPICH1. 

 

�� = 	
���������������

�������
 

 
It is clear that the performance of MPICH2 is 
better than MPICH1 by approximately 3%. Also, 
Figure 3 shows the difference between the 
execution time on MPICH1 and MPICH2.  
 
 

Table 3: Execution Time of LAPW0 on MPICH1 and 

MPICH2 on Different # of Processors. 

# of 

Proc 

Exec. time 

on mpich1  

(min) 

Exec. time 

on mpich2 

(min) 

If 

1 64.25 62.54 0.026615 

2 35.05 34.38 0.019116 

3 26.03 25.37 0.025355 

4 20.5 19.52 0.047805 

  

 
Recall that in case 2  matrix multiplication 
program for matrices of size (5120 x 5120) were 
running using MPICH1 and MPICH2 on one, 
two, three, and four processors. The results of 
the average running time are summarized in 
table 4 and depicted in Figure 4. Again it is clear 
that the performance of MPICH2 is better than 
MPICH1.  
 
The results of the experiments in case 1 and case 
2 assess the improvement of MPICH2 over 

MPICH1, which has significant results on the 
performance and efficient utilization of 
resources.  Note that the time units in case 1 are 
in minutes, whereas it is in seconds in case 2. 
 
Consequently, in all cases MPICH2 is better than 
MPICH1. Therefore, we believe that the nine 
added features have positive impact on the 
performance.  The most important added features 
in MPICH2 are the collective communications, 
the support of one-sided communication, MPI 
Thread Multiple, and its concern on 
communication rather than process management. 
 
 

Fig 3: the WIEN2K execution time of MPICH2 vs. the 

execution time of MPICH1. 

 

 

 

Table 4: Execution Time of Matrix Multiplication on 

MPICH1 and MPICH2 on Different # of Processors. 

# of 

Proc 

Exec. time  

on mpich1  

(sec) 

Exec. time 

on mpich2 

(sec) 

If 

1 92.357 89.562 0.030263 

2 63.109 61.776 0.021122 

3 60.910 59.113 0.029503 

4 57.965 55.935 0.035021 
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Fig 4: Execution Time of Matrix Multiplication Using 

MPICH1 vs. MPICH2 

 
 

CONCLUSION AND FUTURE 

WORKS 

The goal of this work is to evaluate and compare 
the performance of MPICH1 and MPICH2 using 
different cases running on one, two, three, and 
four processors. As a result, we can conclude 
that MPICH2 perform better than MPICH1. This 
is due to the collective improvement and added 
features in MPICH2.  
 
Finally, as a future work we intend to extend our 
experiment to test the performance of newly 
issued MPICH3 using different tasks.  
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