
Deanship of Graduate Studies
Al-Quds University

Performance Evaluation of Message Passing vs.

Multithreading Parallel Programming Paradigms on
Multi-core Systems

Hadi Mahmoud Khalilia

M.Sc. Thesis

Jerusalem – Palestine

1435/ 2014

Deanship of Graduate Studies
Al-Quds University

Performance Evaluation of Message Passing vs.

Multithreading Parallel Programming Paradigms on
Multi-core Systems

Prepared By

Hadi Mahmoud Khalilia

Supervisor: Dr.Nidal Kafri

Co-Supervisor: Dr.Rezek Mohammad

Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at Al-Quds
University

1435/ 2014

Al-Quds University

Deanship of Graduate Studies

Master in Computer Science

Computer Science & Information Technology

Thesis Approval

Performance Evaluation of Message Passing vs.

Multithreading Parallel Programming Paradigms on
Multi-core Systems

Prepared By: Hadi Mahmoud Khalilia

Registration No: 21011433

Supervisor: Dr.Nidal Kafri

Master thesis submitted and accepted, Date: / / 2015

The names and signatures of the examining committee members are as

follows:

1- Head of Committee: Dr.Jehad Najjar Signature …………...

2- Internal Examiner: Signature …………...

3- External Examiner: Signature …………...

4- Committee Member: Dr.Nidal Kafri Signature …………...

5- Co-Supervisor: Dr.Rezek Mohammad Signature …………...

Jerusalem – Palestine

1435 / 2014

Dedication

To my beloved Country Palestine

To My Parents and family

To My wife and sons (Zaid and Mahmoud)

i

Declaration

I certify that this thesis submitted for the degree of Master, is the result of my own

research, except where otherwise acknowledged, and that this study (or any part of the

same) has not been submitted for a higher degree to any other university or institution.

Signed……………………………

Hadi Mahmoud Yousef Khalilia

Date:……………………………..

ii

Acknowledgments

For his support and guidance, I would like to thank my supervisors,

Dr. Nidal Kafri and Dr.Rezek Mohammad. Without their

meticulous effort and support, this thesis would not have been the

same.

I would also very much like to express my gratitude to all people in

the Computer Science department for their endless help during

study.

In addition, I would like to dedicate special and great thanks to my

parents, brothers, sisters, wife, lovely son Zaid and friends for their

inspiration and support throughout my academic life.

iii

Abstract

Present and future multi-core computational system architecture attracts researchers as an

adequate and inexpensive solution to achieve high performance computation for many

problems. The multi-core architecture enables implementation of shared memory and/or

message passing parallel processing paradigms. Therefore, there is a great need for

standard libraries in order to utilize the resources efficiently and effectively. In this work,

we evaluate the performance of message passing using two versions of the well-known

message-passing interface (MPI) library: MPICH1 vs. MPICH2. Furthermore, we

compared the performance of shared memory using OpenMP that supports multithreading

with MPI.

The added features (total 9) impacted the MPICH2 results over MPICH1. On the other

hand, the overheads of message passing and large data communication impact negatively

on the performance of this paradigm against multithreading paradigm.

iv

تمریر الرسائل ومتعدد : نیات الخوارزمیات المتوازیةدراسة مقارنة الأداء والكفاءة بین تق

 جهاز حاسوب متعدد المعالجات على الخیوط

 ھادي محمود یوسف خلیلیة :إعداد

 نضال الكفري.د :إشراف

 :ملخص

انظمة الحاسوب متعددة المعالجات الحالیة والمستقبلیة تشكل عامل جذب وتحول نحو تكثیف هیكلیة ان التطور في

استخدام المعالجة المتوازیة في التطبیقات على اختلاف انواعها للووصول الى اداء افضل حیث یمكن تقسیم العملیات

لذا یشهد البحث العلمي . العملیات/ومعالجات اصغر وتقسم البیانات على هذه المعالجات/والبیانات الكبیرة الى عملیات

حیث یمكن . یمكن عالیة استخدام هذه البنیة الحاسوبیة بافضل مانشاطا مكثفا في البحث عن افضل الطرق لزیادة ف

توفیر التواصل والتفاعل بین العملیات التي تساعد في استخدام النماذج والطرق الاساسیة المتبعة في المعالجة المتوازیة و

)Shared memory parallel processing paradigm(زیة بوجود الذاكرة المشتركة الجة المتو االمع: المختلفة

 و كلاهما معاأ)Message passing interface MPI(وكذلك باستخدام تبادل الرسائل والبیانات بین هذه العملیات

)Hybrid approach .(لذا توفر مراكز الابحاث والمؤسسات مكتبات برمجیة لتسهیل تطویر برمجیات المعالجة

تجارب الابحاث لاستخدام هذه البنیة وطبیعة التطبیقات البرمجیة لابد من ولتقییم الطرق المقترحة في . المتوازیة

 .استخدام برمجیات وبیانات قیاسیة معرفة في مجال البحث العلمي

، هذه (WEIN2K)هناك العدید من المشاكل الیومیة التي تم حلها باستخدام المعالجة المتوازیة منها الحزمة الفیزیائیة

المشاكل منها استغراق الوقت الكبیر في التشغیل، وهذا ناتج من أن الحزمة لازالت تستخدم الحزمة تحتوي على بعض

 . في تبادل الرسائل للمعالجة المتوازیة (MPICH1) القناة القدیمة

 قییمتبادل الرسائل، ومن ثم قمنا بتل (MPICH2)على القناة الجدیدة الفیزیائیة بتمثیل الحزمة في هذا العمل البحثي قمنا

بین العملیات وهي) MPI(تبادل الرسائل بطریقةزیة االمعالجة المتو دعمت التي برمجیةالحزمة لداء اصدارین متتالیان لأ

v

بحاث علم الفیزیاء أالمعروفة في) WIEN2K(ة منا بتنفیذ الحزمحیث ق). MPICH2(و) MPICH1(بالتحدید

عتماد على نظریة الخصائص الفیزیائیة والكیمیائیة للمواد بالإوهي حزمة مخصصة لدراسة . والكیمیاء كحالة دراسیة

).MPICH2(و) MPICH1(ام دباستخ الكثافة الوظیفیة الفیزیائیة بواسطة المحاكاة كتطبیق قیاسي لتجاربنا

على خاصیة عتماداً إ) OpenMP(المتوفرة في حزمة) Multithreading(داء أییم قوفي هذا البحث تم كذلك ت

باستخدام تبادل الرسائل بین العملیات في تطبیقین مختلفین) Multiprocesses(كرة المشتركة في هذه الهیكلیة و الذا

لذا قمنا بتنفیذ خوارزمیة ضرب مصفوفتین كتطبیق فیه حجم تبادل البیانات كبیر . من حیث تبادل البیانات وحجمها

ن تبادل البیانات حیث إ. التقریبیة لمحیط الدائرة إلى نصف قطرهاالنسبة وهي) π(واخر وهو حساب الثابت الحسابي

 .جداً غیراً یكاد یكون ص

صدار الأول من آداء الإأفضل) MPICH2(صدار الثاني من مكتبة واجهة تمریر الرسائل النتائج أظهرت أن آداء الإ

)MPICH1(ضافتها على الممیزات الإضافیة التسعة التي تم إ/یرجع الى التحسینات ، وتعلیل ذلك(MPICH2). كما

فضل من أیكون في التطبیقات التي تتبادل فیها العملیات بیانات كبیرة) Multithreading(ن آداء ألنتائج ظهرت اأ

)Message Passing (الرسائل الكبیرلى عملیات ذات حمولة كبیرة وحجم إ، وهذا یرجع والعكس صحیح.

vi

Table of Contents

DECLARATION ... i

ABSTRACT .. iii

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF APPENDICES ……... x

LIST OF ABBREVIATIONS.. xi

CHAPTER ONE .. 1

INTRODUCTION ... 1

CHAPTER TWO ... 5

BACKGROUND .. 5

A. PARALLEL APPROACHES... 5

A.1 PARALLEL HARDWARE AND SOFTWARE.. 7

A.2 SHARED MEMORY AND DISTRIBUTED MEMORY PARADIGMS........................ 9

B. MESSAGE PASSING CHANNEL (MPICH) ... 12

B.1 DIFFERENCES BETWEEN TWO CHANNELS: MPICH1 Vs. MPICH2 ………….. 15

C. BENCHMARKS... 20

C.1 DENSITY FUNCTIONAL THEORY (DFT) ... 20

 C.2 MATRIX MULTIPLICATION.. 24

 C.3 APPROXIMATE VALUE -- PI (π)... 26

CHAPTER THREE .. 29

LITERATURE REVIEW ... 29

CHAPTER FOUR ... 38

vii

METHODOLOGY ….. 38

CHAPTER FIVE ... 45

EXPERIMENTS AND RESULTS ANALYSIS.. 45

1. PART 1.. 48

2. PART 2.. 53

A. PART 2: CASE 1.. 53

B. PART 2: CASE 2.. 59

CHAPTER SIX.. 62

CONCLUSION.. 62

REFERENCES... 64

APPENDICES.. 67

viii

List of Tables

Table 1: A Comparison between Shared vs. Distributed …………...…………………..… 11

Table 2: Message Passing Channel One (MPICH1) Versions …………………….…....... 14

Table 3: Message Passing Channel Two (MPICH2) Versions.………………………….... 14

Table 4: Different Changes that show the Differences between MPICH1 and MPICH2… 15

Table 5: Different Criteria that show the differences between MPICH1 and MPICH2………….. 17

Table 6: Summary of Literature Review Contributions According to Area of Research… 31

Table 7: Machine Specifications …………………………………………………...…….. 45

Table 8: Software Requirements ……………………………………………………...….. 48

Table 9: Execution Time of LAPW0 on MPICH1 and MPICH2 on Different Number of

Processors……………………………………………………………………………….....

51

Table 10: Execution Time of MMT on MPICH and OpenMP on Different Number of

Processors/Threads………………………………………………………………………...

56

Table 11: Execution Time of PI(π) Computation on MPICH and OpenMP on Different

Number of Processors/Threads…………………………………………………………….

60

Table 12: The MPI Predefined Datatypes, and their Corresponding C/C++ Datatypes …. 67

Table 13: The Replaced Constructs by MPICH2 ………………………………………….. 67

ix

List of Figures

Figure 1: Physical Problem Solving Steps ….…………………………………..……........ 23

Figure 2: Inscribed circle in a square to calculate PI (π)…………………………....……… 26

Figure 3: Serial Pseudo Code to Calculate PI (π) …………………………………………. 27

Figure 4: Parallel Pseudo Code to Calculate PI (π) ……………………………………… 28

Figure 5: Possible Running for WIEN2K Package ……………………..…………....... 39

Figure 6: Sample of machine file shows CPUs distribution for modules in MPICH1

and MPICH2.…………………………………………...………………..………….......

39

Figure 7: Possible Running for Matrix Multiplication ……………………..………….. 42

Figure 8: Possible Running for Mathmetical Constant π …………………..…………... 43

Figure 9: Installation steps for MPICH2 on Fedora Linux version 14…………………....... 47

Figure 10: Screen Shot of Running LAPW0 on MPICH2 ………………....................….… 49

Figure 11: Screen Shot of Running LAPW0 on MPICH1……………….….….…………. 50

Figure 12: The WIEN2K Execution Time of MPICH1 vs. MPICH2………………………… 53

Figure 13: Screen Shot of Running MMT on OpenMP …..… 54

Figure 14: Execution Time of Matrix Multiplication (5120 X 5120) Using MPICH1 vs.

MPICH2 vs. OpenMP ………………………………………………………………...…

55

Figure 15: Execution Time of Matrix Multiplication (n x n) Using MPICH2 vs. OpenMP

Shows the Conversion Point at (384x384) Matrix Size …..…

56

Figure 16: Execution Time of Mathmetical Constant PI (π) (N=16x10�) Using MPICH1 vs.

MPICH2 vs. OpenMP ……………………………………..……………………...……..

61

Figure 17: Schematic Diagram of Simple Cubic Phase along 111 Direction ……….............. 69

Figure 18: Partitioning of the unit cell into atomic spheres and an interstitial region …...…… 72

x

List of Appendices

APPENDIX 1: THE PREDEFINED MPI DATATYPES AND THEIR CORRESPONDING C/C++

DATATYPES AND REPLACED CONSTRUCTORS BY MPICH2 ... 67

APPENDIX 2: DENSITY FUNCTIONAL THEORY (DFT) ... 69

APPENDIX 3: PUBLICATIONS ... 76

xi

List of Abbreviations

Abbreviation Full Name

M.Sc. Master Degree
SIMD Single Instruction Multiple Data
MIMD Multiple Instruction Multiple Data
SPMD Single Program Multiple Data
MPI Message Passing Interface
MPICH1 Message Passing Interface Channel One
MPICH2 Message Passing Interface Channel Two
MPICH3 Message Passing Interface Channel Three
DFT Density Functional Theory
FLOP Floating-Point Operation
ILP Instruction-Level Parallelism
VLIW Very Long IinstructionWord
MMT Matrix Multiplication
CISC Complex Instruction Set Computer
RISC Reduced Instruction Set Computer
LAN Local Area Network
WAN Wide Area Network
GPUs Graphics Processing Units
UMA Uniform Memory Access
NUMA Non-Uniform Memory Access
DMA Direct Memory Access
FIFO First In First Out
ISA Instruction Set Architecture
SMT Simultaneous Multithreading
CMP Chip Multiprocessor
HTT Hyper Threading Technologies
QPI Intel’s QuickPath Interconnect
Rsh Remote Shell
Mpd Message Passing Daemon
mpiexe The mpiexec command
mpirun The mpirun command
RMA Remote Memory Access
PP Pseudo potential method
TB Tight binding method
BZ Brillouin Zone
SC Self-Consistent
LAPW Linearized Augmented Plane Wave
HPC High Performance Computing
ES-MPICH2 A Message Passing Interface with Enhanced Security
MBR Mapped Block Row
MKL Mathematical Kernel Library
FFTW Fastest Fourier Transform in the West
IF Improvement Factor
CMOS Complementary Metal Oxide Semiconductor

1

Chapter One

Introduction

In order to achieve high performance computing (i.e. reducing computing elapsed time),

parallel processing is widely used in multimedia computing, signal processing, scientific

computing, engineering, general purpose application, industry, computer systems,

statistical applications, and simulation. Usually, mainframes and super computers are used

to implement shared memory parallel computing, while clusters and grid computing are

utilized to speed up the computation-using message passing [7]. Thus, parallel processing

was carried out on expensive supercomputers and mainframes. After that, the emerging

high performance computer network and protocols attracted the researcher to use message

passing on distributed memory to implement parallel processing on clusters of on shelf

computers and grid computing.

Obviously, parallel processing is implemented on shared memory computer architectures

using Single Instruction Multiple Data (SIMD), Multiple Instruction Multiple Data

(MIMD), Single Program Multiple Data (SPMD) Techniques, or multithreading. Whilst

message passing paradigm can be used on distributed memory architectures by means of

SPMD and MIMD, a hybrid approach using both paradigms can also be implemented on

both architectures [25], [42].

2

However, the emerging and promising multi-core computer architecture attracts the

researchers to utilize this architecture as an adequate and inexpensive solution to gain high

performance computation for many problems and applications. Therefore, this architecture

shifted the interest of many researchers towered parallel computing on such multi-core

systems. Thus, we can achieve relatively cheap high performance using message passing,

multithreading on shared memory, or hybrid techniques on a single or cluster of multi-core

computers [2], [3]. This architecture enables us to implement both shared memory and/or

message passing parallel processing paradigms. Therefore, we need to evaluate which

paradigm can be used more efficiently and effectively on multi-core architectures.

Furthermore, to carry out our computations, we need appropriate standard libraries in order

to utilize the resources efficiently for a given computational problem. Hence, to facilitate

realization of parallel programming on different platforms, there are several supporting

libraries. For example, we can use PVM, JPVM and MPI for message passing on

distributed memory. Posix and OpenMP are also used for multithreading on shared

memory [3]. It should be noted that these libraries provide us with a well-defined standard

interface to achieve portability and flexibility of usage. However, the developers of these

libraries intend to improve the implementation to cope with the emerging platforms to

increase the utilization efficiency [15].

In this work, we focus on evaluation of the performance of parallel computing using

message passing (multi-processes) and shared memory (multiprocessing) on multi-core

systems. We used different versions of MPI library namely MPICH1 and MPICH2 for

message passing and OpenMP for multithreading in our experiments.

3

Since, one of the important applications that need to speed up computation is the WIEN2K

application, which is based on Density Functional Theory (DFT), we used it as a

benchmark to evaluate the performance of MPICH1 vs. MPICH2. The WIEN2K

application enables us to simulate physical and chemical systems that form new materials.

This is necessary for laboratory researchers who can produce desired materials such as

drugs and medicine [8], [30]. The WIEN2K applied a parallel method to solve quantum

mechanics equations based DFT to find the cohesive energy of any material. It should be

noted that the current official version of this application uses MPICH1 and it takes a lot of

time to return the results of forming new material (around 30 days); so these results form a

big problem. In addition, we used a matrix multiplication benchmark to evaluate the

performance of multi-processes (message passing) vs. multithreading parallel

programming performance and efficiency on a multi-core system.

Based on the high efficiency of MPICH2 over MPICH1, in this work we implemented the

WIEN2K package on MPICH2 and evaluated the performance of MPICH1 and MPICH2

by running the package that originally used MPICH1 and our new implementation of

WIEN2K on MPICH2. Results show that MPICH2 increases the speed up of WIEN2K

execution on each multicore by 3% which indicates decreasing one day of 30 work days to

simulate producuction of new material. We believe that this improvement in performance

is due to the added features to MPICH2. Some of these features are: dynamic spawning of

tasks in LAPW (i.e., LAPW0, LAPW1 and LAPW2), different collective communication

routines in LAPW, a number of one-sided and non-blocking routines in LAPW, and

LCORE, And multiple threads in MIXER module.

4

Moreover, in order to evaluate and compare the performance of multithreding utilzation

the shared memory property with multiprocessor using message passing techniques on

multi-core architechture, we implemented a matrix multiplication (MMT) and the

mathematical constat π (the ratio of a circle's circumference to its diameter) on both

MPICH1 and MPICH2 message passing and OpenMP for testing multithreading technique.

In case of MMT (for largr size matrices), the results show multithreading execution time is

lower than multiprocessing time. This is because of the processes schedulaing and large

size of data chunks communication overheads. Nevertheless, in the second case (π) and

MMT (for small size matrices), the results show that MPICH2 performes better than

multithreading because of the small size of data chunks and the following features:

Collective communication routines on master computer, a number of non-blocking

routines on each client, and multiple threads on the master.

The thesis is organized as follows: Next chapter provides a background; chapter 3

introduces a literature review. In Chapter 4, we introduce our work. Chapter 5 explaines

the experiment and discusses the results. Finally, Chapter 6 concludes this work and

introduces future work.

5

Chapter Two

Background

In this chapter we present a background relevant to our work. Thus, we introduce parallel

computing classification infrastructure by means of hardware and software supporting

libraries such as MPICH1, MPICH2 and multithreading. Also, we will introduce/explain

Density Functional Theory and WIEN2K package as benchmark for our experiments on

MPICH1 vs. MPICH2 for comparison. Since this is one of the scientific problems

(physical computation) that need high performance computing.

A. Parallel Approaches

In the last decade, a significant growth was achieved in performance and capability of

computer systems. Applications need computers with high requirements for computing

exploited this important event. Example applications include transaction processing,

computer games and graphics, weather simulation, heat transfer, ray tracing and many

others [7]. However, the traditional logical view of a sequential computer consists of a

memory connected to a processor via a datapath. All three components – processor,

memory, and datapath present bottlenecks to the overall processing rate of a computer

system.

Number of architectural innovations over the years have addressed these bottlenecks. One

of the most important innovations is multiplicity – in processing units, datapaths, and

memory units. This multiplicity is either entirely hidden from the programmer as in the

6

case of implicit parallelism or exposed to the programmer in different forms [40]: The first

is Data parallelism [7], [27]: in this form of parallelization data is distributed on multiple

processors environment, in a multiple system executing a single set of instructions (SIMD),

data parallelism is achieved when each processor performs the same task on different

pieces of distributed data. Second: Bit level: this form based on increasing processor work

size. This will reduce the number of instructions the processor must execute [7], [29].

Third: Instruction-Level Parallelism (ILP): ILP used in very long instruction word

(VLIW) processors relies on the compiler to resolve dependencies and resource availability

at compile time [24].

The previous styles depend on several parallel algorithm models such as Data model, task

model, work pool model etc. The data-parallel model is one of the simplest algorithm

models. In this model, the data is statically or semi-statically mapped on to processes and

each processor performs similar operations on different data. In it, the decomposition of

computations is done in two steps. In the first step, the data on which the computations are

performed are partitioned, and in the second step, this data partitioning is used to induce a

partitioning of the computations into tasks. The operations that these tasks perform on

different data partitions are usually similar (e.g., matrix multiplication) [7], [9]. But, we

can calculate the PI (π) value using the task model which isn’t need to decompose data

because it depends on tasks decompositions. The third model, which is work pool model

that is characterized by a dynamic mapping of tasks onto processes for load balancing in

which any task may potentially be performed by any processes. Parallel tree search where

the work is represented by a centralized or distributed data structure is an example of the

use of the work pool model where the tasks are generated dynamically [40].

7

However, in parallelization of the computations or operations can often be achieved in two

ways: by replicating the hardware components (processor, memory and bus) or by

interleaving and organizing the single processor execution between multiple tasks [27].

 The main intention in using the parallel systems is to support high execution speeds.

The scope of parallelization of an application comes from the identification of multiple

tasks of the same kind, which is a major source of speed up achieved by the parallel

computers [39].

A.1 Parallel Hardware and Software

It is necessary to know about the parallel hardware before going deep into the study. The

traditional uni-processor computer is said to follow Von-Neumann architecture, which

consists of a single memory, connected to processor via data paths and works on the

“stored memory concept”. These kinds of architectures often represent a bottleneck for

sequential processing and the performance associated with them is limited. Therefore, to

relieve from these bottlenecks one possible way is to use the redundancy /duplication of

the hardware components, which lead us to parallelism in order to achieve high speed and

efficiency in processing.

We can calculate the speed up by calculate the ratio between the serial and the parallelism

of the program. The maximum possible speed up of a program such as a result of

parallelization is observed as Amdahl’s law [12]. It states that a small portion of the

program which cannot be parallelized will limit the overall speed up available from

parallelization. A program that solves a large mathematical or engineering problem will

typically consist of several parallelizable parts and several sequential parts. If α is the

fraction of running time a sequential program spends on non-parallelizable parts, then:

8

� ≤
1

�

(2.1)

�: is the maximum speed up with parallelization of the program.

Efficiency is a measure of the fraction of time for which a processing element is usefully

employed; it is defined as the ratio of speedup to the number of processing elements. In an

ideal parallel system, speedup is equal to p and efficiency is equal to one. In practice,

speedup is less than p and efficiency is between zero and one, depending on the

effectiveness with which the processing elements are utilized. We denote efficiency by the

symbol E. Mathematically, it is given by

� =
�

�

(2.2)

If the speed up by parallel program is 3X and with four processors, we get efficiency value

equals 75%.

Good speed and efficiency in parallel computing is due to replication of hardware

components, thereby various types of parallel platforms that depend on duplication of

hardware components designed to support the better parallel programming. The hardware

used for parallel programming known as multiprocessors that introduce the classification

of multi-core platforms. This classified into two types [7], [27]:

 SIMD architectures - involves multiple processors sharing the same instructions but

rather executing them on multiple data.

 MIMD architectures – involves multiple processors each having its own set of

instructions and data.

9

They are several designs and architectures that support parallelism such as RISC (Reduced

Instruction Set Computer), cluster, grid, new architecture NVIDIA’s GPUs (Graphics

Processing Units) etc [41]. As a result, we are seeing the design that is best whose

processors suited to parallel architecture become the performance leader as well.

A.2 Shared Memory and Distributed Memory Paradigms

Parallel programming models are not new and dates back to the cell processors. Several

programming models have been proposed for multi-core processors. They can be classified

based on the communication behaviour model used [39]. The communications can be

applied on any one of these parallel architectures: the first is a shared memory architecture

that shares the global address space under shared-memory multiprocessors. The multi-

processors in these systems communicate with each other through global variables stored

in a shared address space. They are several programming models that based on shared

memory such as threading, tasking and directive models. The most important one of them

is a threading model. It uses mutual exclusion locks and conditional variables for

establishing communications and synchronizations between threads. This model

distinguishes from others by: flexibility, more suitable for applications based on the

multiplicity of data, easy to find tools related to the threading models and easy to develop

parallel routines for it. Despite of threading model is the important one it includes several

disadvantages such as hard to manage because of more errors can happen, the developer

should be more careful in using global data otherwise this leads to data races, deadlocks

and false sharing. Moreover, Threading models stand at low level of abstraction, which

isn‘t required for a better programming model.

10

The second is a distributed memory architecture that each processor has its own memory

module and the data at any time instant is private to the processors. These types of systems

are constructed by interconnecting each component with a high-speed communications

network. These architectures rely on the send/receive primitives for communication

between multiple processors communicate to each other over the network. In addition, the

distributed memory has the following advantages: low cost and a message passing models

avoids the data races (no locks). But from its obstacles are: Development of applications

on message passing models is hard and takes more time, the developer is responsible for

establishing communication between processors and message passing models incur high

communication overheads.

A comparison base characteristic using methods between shared vs. distributed is listed in

Table 1 [44]. Knowing that a hybrid approach using both paradigms can also be

implemented on both architectures.

In this research, we will concentrate on the ways of parallelism: message passing and

shared memory approaches. We will go in details of message passing channel1 (MPICH1)

and message passing channel2 (MPICH2) by using WIEN2K package with Density

Functional Theory as first case study in the 1st part of the work. In addition, we will

compare OpenMP and MPICH by using Matrix Multiplication and computing the

mathematical constant π as a two cases study in the 2nd part.

11

Table 1: A Comparison between Shared vs. Distributed [44].

Architecture

Distributed

Memory

MPI

Shared Memory

Arch OpenMP

Hybrid Distributed &

Shared Memory

Creation

mathematical

model

Easy
Slightly

complicated
Difficult

Balancing
Changeable with

Difficulties

Changeable

easily
Easily changeable

Simulation of

parallel models
Advisable Convenient Useful

Synchronization

models
Simple Complicated Complicated

Transfer dates

between models
Large Little Intermediate

Power of large

modules
Reasonable Big Big

The two parts of our research implemented and executed on a multi-core platform, which

is the most common processor architectures available today and supports the two types of

parallel paradigms: shared and distributed memory. Multi-core architecture implies to at

least three aspects: there are multiple computational cores, there is a way by which these

cores communicate and the processor cores have to communicate with the outside world.

12

So this platform based on several important processor architecture concepts such as (core

organization, interconnects, memory architectures, support for parallel programming etc).

The major vendors of multi-core are: Intel (supports the Hyper Threading Technologies

(HTT) concept), IBM (which also supports thread priorities) and Oracle Sun (where as

much as eight hardware threads are supported on each core). Knowing that machine

specifications that we used in the experiment will be chapter 4 (Experiments and Results

Analysis).

B. Message Passing Channel (MPICH)

Message passing is a paradigm used widely on certain classes of parallel machines,

especially those with distributed memory. The basic concept of message passing is

processes communicating through messages. Over the last ten years, substantial progress

has been made in casting significant applications in this paradigm.

More recently, several systems have demonstrated that a message passing system can be

efficiently and portably implemented. It is thus an appropriate time to try to know both the

syntax and semantics of a core of library routines in MPI (Message Passing Interface)

standards that will be useful to a wide range of users and efficiently implementable on a

wide range of computers. MPI is a specification, not an implementation; there are multiple

implementations of MPI. It is not a language, and all MPI operations are expressed as

functions, subroutines, or methods, according to the appropriate language bindings, which

for C and Fortran-77 in the MPICH1 standard and which for C++ and Fortran-95 in the

MPICH2.

13

The goal of the MPI simply stated is to develop a widely used standard for writing

message-passing programs. As such, the interface should establish a practical, portable,

efficient, and flexible standard for message passing. A complete list of goals follows [4],

[28]:

 Standardization - MPI is the only message passing library which can be considered a

standard.

 Portability - There is little or no need to modify your source code when you port your

application to a different platform.

 Performance Opportunities - Vendor implementations should be able to exploit

native hardware features to optimize performance.

 Functionality - There are over 440 new routines defined in MPICH2.

 Availability - A variety of implementations are available, both vendor and public

domain.

 Flexibility: Define an interface, such as PVM, NX, Express, p4, etc

 Communication Reliability: The user need not cope with communication failures.

 Thread-Safety: The interface should be designed to allow for thread-safety.

 Language Independent: Semantics of the interface should be language independent.

All goals and basic rules in MPI applied on all versions of message passing channel

releases, where each MPI channel (MPICH1 and MPICH2) has several releases as shown

in next two tables (Table 2, Table 3).

14

Table 2: Message Passing Channel One (MPICH1) Versions [4], [18].

No Version Name Released Date

1 Version 1.0 May, 1994

2 Version 1.1 June, 1995

3 Version 1.2 July 18, 1997

4 Version 1.3 May 30, 2008

All MPICH1 versions focused on five areas: further corrections and clarifications, new

datatype constructors and language interoperability, dynamic processes and one-sided

communication, extensions to the Fortran 77 and C bindings and areas in which the MPI

process and framework seem likely to be useful.

Table 3: Message Passing Channel Two (MPICH2) Versions [12], [20].

No Version Name Released Date

1 Version 2.0 May 20, 1998

2 Version 2.1 June 23, 2008

3 Version 2.2 September 4, 2009

All MPICH2 versions focused on extensions to the classical message-passing model.

Those are provided in collective operations, remote-memory access operations, dynamic

process creation, and parallel I/O.

Note: the major work of the current MPI Forum is the preparation and checking the

stability of MPICH3 [18].

15

B.1 Differences between Two Channels: MPICH1 vs. MPICH2

If you have been using the latest version of MPICH2, you will find a number of things

about MPICH1 that are different (and hopefully better in every case.) Your MPI

application programs need not change, of course, but a number of settings and

configurations about how you run them will be different.

MPICH2 is an all-new implementation of the MPI Standard, designed to implement all of

the additions to MPICH1 such as (dynamic process management, one-sided operations,

parallel I/O, and other extensions). If we apply the additions over MPICH1 in

implementing MPICH2, we will get MPICH2 more robust, efficient, and convenient to

use. So this motivates us to learn the changes between MPICH1 and MPICH2 as shown in

Table 4 [4], [16].

Table 4: Different Changes that show the Differences between MPICH1 and MPICH2

[4], [16].

No Changes MPICH1 MPICH2

1

MPI Thread

Multiple

Doesn’t Support Support

2

Configuration of

MPICH

./configure -cc=pgcc ./configure CC=pgcc

3
Process

Management and
Communication

Process Management
entagled with
Communication Mechanism
(Not Seperated)

Provides a Seperation of
Process Management and
Communication Mechanism

4

Collective
Operations

Defined collective
communication for
intracommunicators.

Introduces extensions of the
MPICH1 collective routines
to intercommunicators. The
two new collective routines:
a generalized all-to-all and
an exclusive scan.

16

No Changes MPICH1 MPICH2

5
Message Passing
Daemon (mpd)

MPD is built in, so it doesn’t
need to start manually.
mpd: establishes
communication among the
machines to be used before
application process startup,
thus providing a clearer
picture of what is wrong
when communication cannot
be established and providing
a fast and scalable startup
mechanism when parallel
jobs are started.

MPD is not built in, so it
needs to start manually [13].
Some of commands that are
used to daemon are”
mpd: starts an mpd daemon.
mpdboot: starts a set of
mpd’s on a list of machines.
mpdtrace: lists all the MPD
daemons that are running.
mpdlistjobs: lists the jobs
that the mpd’s are running.
mpdkilljob: kills a job
specified by the name
returned by mpd list jobs.

6

Starting Parallel

Jobs

MPICH1 provided the
mpirun command to start
MPICH1 jobs.

MPICH2 provided the
mpiexec command to start the
jobs.

7
Command-Line

Arguments

MPICH1 required access to
command line arguments in
all application programs, and
MPICH1’s configure
devoted some effort to
finding the libraries that
contained the right versions
of iargc and getarg and
including those libraries with
which the mpif77 script
linked MPI programs.

MPICH2 does not require
access to command line
arguments to applications.

8
Arguments argc and

argv

Needs to pass the arguments
argc and argv by an
application to MPI INIT and
main functions.

Does not need to pass the
arguments.

9 Error Handlers

Attached error handlers only
to communicators.

Attached error handlers to
three types of objects:
communicators, windows
and files.

17

No Changes MPICH1 MPICH2

10
Communicator

Caching

Doesn’t include functions
for caching on
communicators.

Includes several functions
for caching on
communicators.

11

Size-Specific MPI

DataTypes

Optional Required

They are several useful tools and components included in MPICH2 but not all of them

included in MPICH1, these tools can be shown as in Table 5 [12].

Table 5: Different Criteria that show the differences between MPICH1 and MPICH2 [12].

No Criteria MPICH1 MPICH2

1 Point-to-point communication Include Include

2 Datatypes Not Include Include

3 Collective operations Include Include

4 Process groups Include Include

5 Communication contexts Include Include

6 Process topologies Include Include

7

Environmental Management and

inquiry
Include Include

8 The info object Not Include Include

9 Process creation and management Not Include Include

10 One-sided communication Not Include Include

11 External interfaces Not Include Include

12 Parallel file I/O Not Include Include

13 Language Bindings for Fortran, C

and C++

Include Bindings for

Fortran 77 and C

Include Bindings for

Fortran 77, Fortran

95, C and C++

14 Profiling interface Include Include

18

MPICH2 includes C++ and Fortran 95 bindings, but MPICH1 provides the C and Fortran

77 bindings. So, the C++ binding matches the new C functions, datatypes and constants.

That means the functions in C are replaced in C++. The FORTRAN 95 binding matches

the new FORTRAN 77 functions [5], [12], [19]. (See Appendix 1). Moreover, MPICH2

replaced several MPICH1 constructors. (See Appendix 1)

Consequently, we can brief the differences that affect on the improvements in MPICH2

that we believe they have an impact on the performance:

1. MPICH1 focused mainly on point-to-point communications, but MPICH2 included a

number of collective communication routines and was thread-safe [4].

2. MPICH2 supports dynamic spawning of tasks. It provides primitives to spawn

processes during the execution and enables them to communicate together [10].

3. MPICH2 supports one-sided communication. It provides three communication calls:

MPI_PUT (remote write), MPI_GET (remote read), and MPI_ACCUMULATE

(remote update). These operations are non-blocking [11], [12].

4. MPICH2 used generalized requests that are not used by MPICH1. These requests allow

users to create new non-blocking operations with an interface [12].

5. In MPICH2, significant optimizations required for efficiency (e.g. asynchronous I/O,

grouping, collective buffering, and disk-directed I/O) are achieved by the parallel I/O

system [12].

6. MPICH1 defined collective communication for intra-communicators and two routines

for creating new intercommunicators. But MPICH2 introduces extensions of many of

the MPICH1 collective routines to intercommunicators, additional routines for creating

intercommunicators, and two new collective routines: a generalized all-to-all and an

exclusive scan [12].

19

7. MPICH2 supports MPI THREAD MULTIPLE by using a simple communication

device, known as “ch3 device” (the third version of the “channel” interface), but

MPICH1 doesn’t support MPI THREAD MULTIPLE [5].

8. MPICH1 is not concerned with communication, but rather process management. But

MPICH2 is concerned with communication rather than process management. However,

MPICH2 provides a separation of process management and communication. The

default runtime environment consists of a set of daemons, called mpd’s, that establish

communication among the machines to be used before application process startup, thus

providing a clearer picture of what is wrong when communication cannot be

established. In addition, it provides a fast and scalable startup mechanism when parallel

jobs are started. But MPICH1 doesn’t separate them and mpd’s are built in [13].

9. MPICH1 required access to command line arguments in all application programs

before startup, including FORTRAN ones. Thus, MPICH1’s configuration devotes

some effort to finding the libraries, such as libraries that contained the right versions of

iargc and get arg. But MPICH2 does not require access to command line arguments of

applications before startup and MPICH2 does nothing special for configuration. If one

needs them in their applications, they must ensure that they are available in the

environment being used [13].

Therefore, in the conclusion we stated that MPICH2 extends most of the MPICH1

datatypes, routines, constants and constructors. It makes them more feasible and flexible in

calling and implementation. But the extending takes into account the compatibility and

portability of the applications.

20

Physicists, chemists, mathematicians, computer users and owners etc., benefit and achieve

high performance when their applications and simulation softwares are implemented and

built on new version of MPI channel (MPICH2) such as WIEN2K package that based on

Density Functional Theory (DFT). WIEN2K used to simulate physical systems inorder to

produce new materials such as medicine as we’ll see in the next section.

C. Benchmarks

C.1 Density Functional Theory

Materials are build from atoms, atoms composed of a heavy positively charged nucleus and

lighter particles called electrons. These particles interact with each other and also with their

neighbors in the next atoms. In order to study the stability, structural, thermodynamic,

mechanical, transport properties and electronic properties of these materials we have to

solve many body second order deferential equation called equation of state, this equation

obeys the laws of quantum mechanisms.

The equation of state composed of the kinetic energy operators for both the nucleus and

electrons, potential energy resulted from interaction between electrons them self, nuclei’s

them self and nuclei’s and electrons; these operators are measured by solving many-body

Hamiltonian for the system, which is illustrated in equation (2.3) [8],[22]

This equation can be solved numerically after transforming it to a one body problem after

some approximations, this method called Density Functional Theory (DFT) [21], [26].

 	

21

Ĥ = −
ℎ�

2
�

��
�
→

��
�

	− 	
ℎ�

2
�

��
�
→

��
�

–	
1

4���
�

����

│
�
→
�
− 	

�
→
�
│

�,�

	− 	
1

8���
�

��

│
�
→
�
−	

�
→
�
│

���

	

+		
1

8���
�

������

│
�
→
�
− 	

�
→
�
│
																																								(2.3)

���

In Our work here, the Program packages like WIEN2K [8], using Full potential –Linear

Augmented Plane Wave and Local Orbital’s (FP-LAPW+Lo) technique is used. The

WIEN2K can simulate physical and chemical systems supposed to form a new material,

this is very necessary to the laboratory person, who can produce the desired material such

as drug and medicine [21], [23]. It applied a parallel method to solve quantum mechanics

equations based Density Functional Theory (DFT) to find the cohesive energy of any

material.

 In such studies we have two main factors controlling the calculation, these two factors are

vice versa, the first factor is the time of calculation and the second is the sample actuality,

the sample actuality means here the number of atoms constituting the sample, the bigger

the number is the more actual case we have, and more complexity, this will cost a lot of

calculation time. WIEN2K package composed of five modules, each module solve one of

the equations from (2.4) to (2.7) sequentially [6], [8]:

 The first module is called LAPW0, in this process the ��� is calculated in the crystal

from the initial density �� using poisons equation:

 ∇���� = ρ(r) (2.4)

 The second and third module is called LAPW1, LAPW2 which are responsible for

building and solving the Schrӧdinger equations (2.5) and (2.6), (setting up H and S

matrix), and solves the generalized Eigen value problem for special point in the crystal.

The number of these points is proportional to the reality of the study. The high number

22

gives more accurate results and costs a lot of computational time, so Balanced is

essential.

 ���Ψ = E Ψ (2.5)

 (-∇� +���) Ψ = E Ψ (2.6)

��: is the second derivative with respect to space

coordinates.

Ψ: is the wave function of this electron.

���: is the effective attractive potential each

electron feel.

E: is the energy of this electron in this

crystal phase.

 The fourth module is called LCORE: from the density function, the electrons in the

crystal are distributed on the lowest energy values, the density function for the core

electrons is also calculated and in LCORE process as in equation (2.7):

 ρ(r)= ∫��∗��� (2.7)

 The fifth module is called MIXER: the new total density is compared with the old

density, if the values are the same or the difference is less than an assigned value; the

self consistent (SC) is finished as shown in Figure 1. The total energy and wave

functions of the electrons are found. Otherwise, the new density is mixed with old

density with a percentage decided at the beginning of the calculation to reproduce a

new density to run another cycle to get faster convergence and recalculate ��� using

equation (2.4).

The main scalable quantity for measuring the stability of any material is the cohesive

energy; cohesive energy equals the difference between the total energy of the material in

combined form and the sum of the free atom’s energy in their free state as shown in

equation (2.8)

23

E cohesive energy = E compound - ∑Efree atoms (2.8)

Each stable form of these atoms can produce positive value for the cohesive energy, the

material normally can take more than one stable state, and the state with the highest

cohesive energy is the most stable one [22].

To see more about density functional theory (DFT) and WIEN2K see Appendix 2.

Figure 1: Physical Problem Solving Steps

24

The authors in [21] compared two parallel approaches that run on MPICH1 channel. The

two methods are: Distributed k-point and Data distribution. However, the first one runs

each of the two modules (LAPW1, LAPW2) in parallel way. But the other runs each of the

first three modules in parallel. In addition, a comparison between serial and parallel

approaches for running Matrix Multiplication on MPICH1 was in [1].

C.2 Matrix Multiplication

This section discusses parallel algorithms for multiplying two n × n dense, square matrices

A and B to yield the product matrix C = A × B. Parallel matrix multiplication algorithm in

this section is based on the conventional serial algorithm shown in Algorithm 1.

procedure MAT_MULT(A,B,C)

begin

for i:=0 to n-1 do

for j:=0 to n-1 do

begin

C[I,j] :=0;

for k :=0 to n-1 do

C[i,j] := C[i,j] + A[i,k] x B[k,j]

Endfor

end MAT_MULT

Algorithm1: The conventional serial algorithm for multiplication of two n × n matrices.

If we assume that an addition and multiplication pair (line 8) takes unit time, then the

sequential run time of this algorithm is ��. However, for the sake of simplicity and better

performance, we take parallel matrix multiplication algorirhm, which based on the

conventional best serial algorithm. A concept that is useful in matrix multiplication as well

as in a variety of other matrix algorithms is that of block matrix operations.

25

The authors in [40] express a matrix computation involving scalar algebraic operations on

all its elements in terms of identical matrix algebraic operations on blocks or submatrices

of the original matrix. Such algebraic operations on the submatrices are called block matrix

operations.

For example, an n × n matrix A can be regarded as a q × q array of blocks Ai, j (0≤ i, j < q)

such that each bock is an (n/q) × (n/q) submatrix. The matrix multiplication algorithm in

Algorithm 1 can then be rewritten as Algorithm 2, in which the multiplication and addition

operations on line 8 are matrix multiplication and matrix addition, respectively.

Not only are the final results of Algorithm 1 and 2 identical, but so are the total numbers of

scalar additions and multiplications performed by each. Algorithm 1 performs �� additions

and multiplications, and Algorithm 2 performs �� matrix multiplications, each involving

(n/q)×(n/q) matrices and requiring (
�

�
)� additions and multiplications. We can use p

processes to implement the block version of matrix multiplication in parallel by choosing q

=�� and computing a distinct Ci, j block at each process.

Procedure BLOCK_MAT_MULT(A,B,C)

begin

for i:=0 toq-1 do

for j:=0 toq-1 do

begin

 Initialize all elements of Ci,j to zero;

for k :=0 toq-1 do

C[i,j] := C[i,j] + A[i,k] x B[k,j]

Endfor

End BLOCK_MAT_MULT

Algorithm 2: The block MMT algorithm for n × n matrices with a block size of (n/q) × (n/q).

26

C.3 Approximate Value/ Mathemetical Constant --PI (π)

PI is a name given to the ratio of the circumference of a circle to the diameter. That means,

for any circle, you can divide the circumference (the distance around the circle) by the

diameter and always get exactly the same number. It does not matter how big or small the

circle is, PI remains the same.

The value of PI can be calculated in a number of ways. Consider the following method of

approximating PI [28]:

1- Inscribe a circle in a square see Figure 2

2- Randomly generate points in the square.

3- Determine the number of points in the square that are also in the circle

4- Let r be the number of points in the circle divided by the number of points in the

square

5- PI ~ 4 r

6- Note that the more points generated, the better the approximation

Figure 2: Inscribed circle in a square to calculate PI (π).

27

If the previous steps executed sequentially the pseudo code for this procedure can be as in

Figure 3:

npoints = 10000
circle_count = 0

do j = 1,npoints
 generate 2 random numbers between 0 and 1
xcoordinate = random1
ycoordinate = random2
 if (xcoordinate, ycoordinate) inside circle
 then circle_count = circle_count + 1
end do

PI = 4.0*circle_count/npoints

Figure 3: Serial Pseudo Code to Calculate PI (π)

Note that most of the time in running this program would be spent executing the loop.

Therefore, this leads us to check the parallel solution, which means: Computationally

intensive, Minimal communication and Minimal I/O. however, Parallel strategy breaks the

loop into portions that can be executed by the tasks. By the task of approximating PI in

parallel way [28]:

 Each task executes its portion of the loop a number of times.

 Each task can do its work without requiring any information from the other tasks (there

are no data dependencies).

 Uses the SPMD model. One task acts as master and collects the results.

If the previous steps executed in parallelized way, the pseudo code for this procedure can

be as in Figure 4. Note that: Italic Font highlights changes for parallelism.

28

From parallel pseudo code to calculate PI, we conclude that the most of the time in running

this program would be log(p). p is the number of processors. This indicates the

performance is bigger that in serial way.

npoints = 10000
circle_count = 0

p = number of tasks
num = npoints/p

find out if I am MASTER or WORKER

do j = 1,num
 generate 2 random numbers between 0 and 1
xcoordinate = random1
ycoordinate = random2
 if (xcoordinate, ycoordinate) inside circle
 then circle_count = circle_count + 1
end do

if I am MASTER

 receive from WORKERS their circle_counts
 compute PI (use MASTER and WORKER calculations)

else if I am WORKER

 send to MASTER circle_count

endif

Figure 4: Parallel Pseudo Code to Calculate PI (π)

Consequently, in this work, we evaluate the performance of two versions of the well-

known massage passing interface (MPI) library: MPICH1 vs. MPICH2 and evaluate the

performance between MPICH and OpenMP. In our experiments, we used three

benchmarks. The first one is the WIEN2K application, which is based on Density Function

Theory, the second is a Matrix Multiplication and the third is the approximate value PI.

29

Chapter Three

Literature Review

There are many studies and researches carried out on tasks distributing and system

implementation in parallel processing systems. Applications based parallel processing used

in a large number of fields: scientific, business, industrial and medical purposes.

Implementation of tasks distributing via parallel algorithms using MPICH1, MPICH2 and

OpenMP is important and very helpful in resources utilization and maximum throughput in

minimum execution time. Many researches were conducted on comparison between

parallelized implementations using different channels in several areas. In this chapter, we

present related works and literature review relevant to our work.

A research by Erik Mc Clements (2006) implemented a Performance Comparison of Open

Source MPI Implementations. They compared and contrasted various Open Source MPI

implementations by using message size as key factor, Identifying their strengths and

weaknesses across multiple machine architectures commonly used for HPC (High

Performance Computing). Their results were as the following: MPICH performance is

higher than OpenMP performance in the execution when a message size less than 5 kb.

However, if it is more than 5 kb the OpenMP performance is better [29]. In Information

Security of scientific computing, a study by Xiaojun Ruan and al proposed an optimization

strategy for MPICH2 improvement by designing ES-MPICH2: A Message Passing

Interface with Enhanced Security (2010). They integrated encryption algorithms into the

30

MPICH2 library so that data confidentiality of MPI applications could be readily preserved

without a need to change the source codes of the MPI applications. Since they provide a

security enhanced MPI-library with the standard MPI interface, data communications of a

conventional MPI program can be secured without converting the program into the

corresponding secure version. The results show ES-MPICH2 provides secured Message

Passing Interface with a reasonable performance better than original MPICH2. Future work

will implement some stronger and more efficient cryptographic algorithms like Elliptic

Cureve Cryptography in ES-MPICH2 [31].

In parallel implementation area, Rahmadi Trimananda and Christoforus Yoga Haryanto

performed a study of A Parallel Implementation of Hybridized Merge-Quicksort Algorithm

on MPICH, study (2010). The paper indicated how the data elements are distributed to

processors, sorted in smaller groups of data elements in parallel on each processor by using

quicksort algorithm and later merged in parallel by using mergesort algorithm. The

implementation results on MPICH1 platform are showing potential speedups since that the

communication channel is adequate for large groups of data elements. In future work, the

experiments are to be conducted on some other platforms, e.g. MPICH2, to compare the

results with the ones obtained [16].

In addition, another research in parallelism of matrix multiplication by Sherihan Abu

ElEnin, Mohamed Abu ElSoud (2011). The researchers implemented an Evaluation of

Matrix Multiplication on an MPI Cluster by comparing between serial and parallel

approaches for running Matrix Multiplication on MPICH1. The results show that the

developed performance model checked and it showed that the parallel model is faster than

the serial model and the computation time was reduced [1].

31

Finally, Rezek Mohammad, Areej Jabir, and Rashid Jayousi developed a comparison

between distribute K-Point method and data distribution method for sparse matrix

distribution over MPICH1, the two methods have been used to run WIEN2K package

which is used to study the physical and chemical properties of the materials (2011). The

result was as follows, the data distribution method gives better reduction in the time of

calculation [21]. Table 6 presents a summary of the above literature review contributions.

Table 6: Summary of Literature Review Contributions According to Area of Research

Area of
Research

Study Title Author Year Main Contribution

Education

Optimization
of Sparse

Matrix-Vector
Multiplication
on Emerging

Multicore
Platforms

Samuel
Williams,

Leonid Oliker
and Richard

Vuduc

2007 Comparison between a
multicore-specific Pthreads
implementation versus a
traditional MPI approach to
parallelization across the cores.
Results showed that the
Pthreads strategy resulted in
runtimes more than twice as
fast as the message passing
strategy [11].

Design
Considerations

for Shared
Memory MPI
Implementati-
ons on Linux

NUMA
Systems: An
MPICH/MPI-

CH2 Case
Study.

Per Ekman
and Philip

Mucci

2005 The work is to make MPICH
and MPICH2 more tolerant of
Non Uniform Memory Access
architectures (NUMA). The
results showed that: the
patched MPICH is efficient
than the original mpich [33].

Cilkvs MPI:
Comparing
Two Very
Different
Parallel

Programming
Styles

Sonny Tham
and John
Morris

2003 The results were: problems,
which have simple dataflow
solutions and involve transfer
of large blocks of data are
simpler and faster in Cilk,
whereas MPI handles problems
with iterative solutions and
smaller messages better. MPI
was clearly more efficient than
Cilk only in the iterative,
irregular Gaussian elimination
problem [17].

32

Area of
Research

Study Title Author Year Main Contribution

Education

Hybrid
Programming
Fun: Making
bzip2 Parallel
with MPICH2
& pthreads on
the Cray XD1

Charles
Wright

2006 A reasonable approach would
be to combine pthreads and
MPI on the XD1. Using this
hybrid model, the author was
able to parallelize non-
computational tasks such as
I/O and communication easily.
This study focuses on how
pthreads were used to extend
MPI in a natural way to
improve the speed and
efficiency of the program. The
results were as the following :
The combination of pthreads
and MPICH2 can result in
many benefits ranging from
easier programming to more
effective use of system
resources. In the case of the
parallel bzip program, the
resulting improvements in both
speedup and efficiency
overshadow the lack of
hardware support for MPICH2
currently available on the XD1
[32].

NUMA-aware
shared-
memory

collective
communica-
tion for MPI

Shigang Li,
Torsten

Hoefler and
Marc Snir

2013 The results showed that:
performance of HMPI dropped
between the MPICH2
performance and OpenMP one.
This is better than MPICH2
and lower than OpenMP
performance [34].

Physics

Optimum
Execution For

WIEN2K
using Parallel
Programming

Models
(Comparison

Study)

Rezek
Mohammad,
Areej Jabir,
and Rashid

Jayousi

2011

Development of data
distribution method and
compared between k-point
method and data distribution.
The results were, the data
distribution method gives
better reduction in the time of
calculation and in case of large
number of atoms or the
complexity it is better to use
data distribution method [21].

33

Area of
Research

Study Title Author Year Main Contribution

Education

A Parallel
Implemen-

tation of
Hybridized

Merge-
Quicksort

Algorithm on
MPICH

Rahmadi
Trimananda

and
Christoforus

Yoga
Haryanto

2010 Showed how the data elements
are distributed to processors,
sorted in smaller groups of
data elements in parallel on
each processor by using
quicksort algorithm, and later
merged in parallel by using
mergesort. The implementation
results on MPICH1 showed
potential speedups provided
that the communication
channel is adequate for large
groups of data elements [16].

Efficient
Sparse Matrix

Multiple-
Vector

Multiplication
Using a

Bitmapped
Format

Ramaseshan
Kannan

2012 The implemented algorithm
achieves high-level advantage
for very large problem sizes,
e.g iterative solvers for linear
systems. Moreover, its
performance results proved
that these performance
optimizations could achieve
good efficiency gains on all
platforms by increasing
register and cache reuse [14].

Evaluation of
Matrix

Multiplication
on an MPI

Cluster

Sherihan Abu
ElEnin,

Mohamed
Abu ElSoud

2011 In addition, a comparison
between serial and parallel
approaches for running Matrix
Multiplication on MPICH1
was in [1].The results show
that the developed model has
been checked and it has been
shown that the parallel model
is faster than the serial and the
computation time was reduced.

Scientific
Computing

Implementati-
on and Shared-

Memory
Evaluation of
MPICH2 over
the Nemesis
Communic-

ation
Subsystem

Darius
Buntinas,
Guillaume

Mercier, and
William
Gropp

2008 They describe how we ported
MPICH2 over Nemesis and
show the performance benefits
of MPICH2 Nemesis.
The resulting MPICH2
software stack yields a very
low latency and high
bandwidth and compares
favorably with previous
competing software (MPICH1)
[30].

34

Area of
Research

Study Title Author Year Main Contribution

Information

Security

ES-MPICH2:
A Message

Passing
Interface with

Enhanced
Security

Xiaojun Ruan,
Qing Yang,

Mohammed I.
Alghamdi,
Shu Yin,

Zhiyang Ding,
Jiong Xie,

Joshua Lewis,
and Xiao Qin

2010 They integrated encryption
algorithms into the MPICH2
library so that data
confidentiality of MPI
applications could be readily
Preserved without a need to
change the source codes of the
MPI applications. since they
provide a security enhanced
MPI-library with the standard
MPI interface, data
communications of a
Conventional MPI program
can be secured without
converting the program into
the corresponding secure
version. The results were, ES-
MPICH2 provides secured
Message Passing Interface
with a reasonable performance
better than original MPICH2.
In the future, they may
implement some stronger and
more efficient cryptographic
algorithms like Elliptic Cureve
Cryptography in ES-MPICH2
[31].

Scientific
Computing

Blocking vs.
Non-Blocking
Coordinated
Checkpoint-

ing for
Large-Scale

Fault Tolerant
MPI

Camille Coti,
Thomas
Herault,
Pierre

Lemarinier
and Laurence

Pilard

2006
A comparison between these
two approaches (blocking and
non-blocking) and a study of
their scalability. Then they
evaluate their impact on large-
scale applications. The results
were, the experimental study
demonstrated that for high
speed networks, the blocking
implementation gives the best
performance for sensible
checkpoint frequency. On
clusters of workstations and
computational grids, the non-
blocking implementation gives
the best performance [35].

35

Area of
Research

Study Title Author Year Main Contribution

Scientific
Computing

Adaptive

Strategy for
One-sided

Communicati-
on in MPICH2

Xin Zhao,

Gopalakrishn-
an

Santhanaram-
an, and
William
Gropp

2012

In this paper they describe
their design and
implementation of an adaptive
strategy for one-sided
operations and synchronization
mechanisms (fence, post-start-
complete-wait, lock-unlock)
supported by MPICH2, which
combines benefits from both
lazy and eager approaches.
Their performance results
demonstrate that our approach
performs as well as the lazy
approach for small data
transfers and achieves similar
performance as the eager
Approach for large data
transfers [36].

Multi-core

Aware
Optimization

for MPI
Collectives

BiboTu, Ming
Zou, Jianfeng

Zhan,
Xiaofang
Zhao and

Jianping Fan

2008

The authors construct a
portable optimization
methodology over MPICH2
for collective operations on
multicore clusters. In this
study, collective algorithms
with hierarchical virtual
topology focus on the
performance difference among
different communication
levels on multi-core clusters,
simply for intra-node and
inter-node communication;
The results of performance
evaluation
show that the multi-core aware
optimization methodology
over MPICH2 is efficient [37].

Asynchronous
MPI for the

Masses

Markus
Wittmann,

Georg Hager,
Thomas

Zeiser, and
Gerhard
Wellein

2013

They implemented non-
blocking point-to-point
communication. The results
were, many applications show
performance improvements
when they use the new
implemented approach [38].

36

Area of
Research

Study Title Author Year Main Contribution

Scientific
Computing

Performance

Comparison of
Open Source

MPI
Implementati-

ons

Erik

McClements

2006

The main aim of this project is
to compare and contrast
various Open Source MPI
implementations by using
message size as key factor,
Identifying their strengths and
weaknesses across multiple
machine architectures
commonly used for HPC. The
results were as the following:
MPICH performance is higher
than OpenMP performance in
the execution when the
message size less than 5 kb.
But if it is more than 5 kb the
OpenMP is higher [29].

Scientific
Computing

Scheduling
Dynamically

Spawned
Processes in

MPI-2

M´arcia C.
Cera1,

Guilherme P.
Pezzi,

Maur´ıcio
L. Pilla,

Nicolas B.
Maillard1,

and Philippe
O. A.

Navaux, ,

2006 MPICH2 supports dynamic
spawning of tasks. It provides
primitives to spawn processes
during the execution and to
enable them to communicate
together. This paper presents a
scheduler module, that has
been implemented with
MPICH2, that determines, on-
line (i.e. during the execution),
on which processor a newly
Spawned process should be
run, and with which priority.
The scheduling is computed
under the hypotheses that the
MPICH2 program follows a
Divide and Conquer model. A
clear improvement in the
balance of the load is shown
by the experiments [10].

It should be noted that in this research, we expanded on the work of Rahmadi Trimananda

and Christoforus Yoga Haryanto [16]. The work of Sherihan Abu ElEnin, Mohamed Abu

ElSoud[1]. And the work of Rezek Mohammad, Areej Jabir, and Rashid Jayousi [21]. The

37

differences between our research and the other three researches are that our research will

respond to future work of [16] that recommended, “Distributing the data elements, sorted

in smaller groups of data elements in parallel on each processor by using quicksort

algorithm and later merged in parallel by using mergesort algorithm on MPICH2

platform”. Also it follows the recommended future work in [1] that recommended “to

Evaluation of Matrix Multiplication on an MPICH2 Cluster”. Furthermore, this research

follows the proposed future work in [21] that recommended, “Studying the accuracy and

the execution time of WIEN2K on MPICH2”.

Our research main contributions are the evaluation of WIEN2K Performance on MPICH2

vs. MPICH1 and Evaluation of MMT and PI(π) Performances on MPICH vs. OpenMP

used in this study . It should be noted that a comparison of partial results of our

experiments is compared with the results of [1], [16], [21]. The next chapter introduces our

work methodology and the environments of the experiments.

38

Chapter Four

Methodology

In this chapter, we present our research and work methodology. To achieve the objectives

of this research, we started to prepare the environment, in order to conduct the experiment.

We prepared a multi-core computer with Linux Fedora 14 operating system, MPICH1,

MPICH2, Open MP files, WIEN2K packages modules and supported libraries. Moreover,

a matrix multiplication program, mathmetical constant π program and other supported tools

and programs as Mathematical Kernel Library (MKL), SCALAPACK and Secure Shell

(SSH) program were installed and prepared for the experements. It should be noted that

SCALPACK is needed for sparse matrices diagonalizating and Fastest Fourier Transform

in the west (FFTW), whilest Secure Shell program is used for secure communication.

In the present work, two parts have been tested, in the first part (Part 1), we focused on

implementing WIEN2K package on MPICH2 and distributing tasks of the package using

MPICH1 and MPICH2 on multi-core machine (see Figure 5).

The experiments have been tested by running first module of WIEN2K package (LAPW0)

as benchmark using MPICH1 and MPICH2 on one, two, three, and four processors of the

quad multi-core machine. Each experiment has been repeated several times then the

average of the elapsed time has been computed and recorded.

39

Figure 5: Possible Running for WIEN2K Package

MPICH2 included many new features, so we have focused on MPICH2 settings and

configurations when we run MPI programs on the second channel. A complete focused list

of changes follows:

1. Dynamic process management: MPICH2 presents a set of MPI interfaces that

allow for a variety of approaches to process management while placing minimal

restrictions on the execution environment. MPICH1 doesn’t concern with

communication rather than process management.

2. One-sided operations: put, get and accumulate routines.

3. Machine file: MPICH1 distribues CPUs for modules using machine file in

different way than MPICH2 as shown in Figure 6.

MPICH1 MPICH2

Lapw0: rezek-dell15:0

Lapw0: rezek-dell15:1

Lapw1: rezek-dell15:2

Lapw1: rezek-dell15:3

Lapw0: rezek-dell15:2

Lapw1: rezek-dell15:2

Figure 6: Sample of machine file shows CPUs distribution for modules in
MPICH1 and MPICH2.

40

4. Datatypes: MPICH1 includes simple datatypes, but MPICH2 includes simple,

advanced and derived dataypes.

5. The Info Object: MPICH2 includes info object, this object is used for several

functions. Info is an opaque object with a handle of type MPI_Info in C, MPI::Info

in C++, and INTEGER in FORTRAN. It stores an unordered set of (key, value)

pairs (both key and value are strings). A key can have only one value. Each pair

(key, value) is special for a determined function.

6. External Interfaces: MPICH2 used generalized requests that are not used by

MPICH1. These requests allow users to create new non-blocking operations with

an interface. A fundamental property of non-blocking operations is that progress

toward the completion of this operation occurs asynchronously.

7. I/O: MPICH2 supports parallel I/O (e.g: grouping, collective buffering and disk-

directed I/O) that added flexibility and expressiveness [12].

8. Bindings: MPICH2 includes C++ and FORTRAN 90 bindings, but MPICH1

provides the C and FORTRAN 77 bindings. Therefore, the C++ and FORTRAN 90

binding matches the new C and FORTRAN 77 functions respectively. The same

deal with datatypes and constants.

9. Arguments argc and argv: MPICH1 needs to pass the arguments argc and argv

by an application to MPI INIT and main functions. In MPICH2 does not need to

pass them.

10. Classes: The members of the MPI namespace are those classes corresponding to

objects implicitly used by MPI. An abbreviated definition of the MPICH1

namespace and its member classes is as follows:

41

namespace MPICH1 {

class Comm {...};

class Intracomm : public Comm {...};

class Graphcomm : public Intracomm {...};

class Cartcomm : public Intracomm {...};

class Intercomm : public Comm {...};

class Datatype {...};

class Errhandler {...};

class Exception {...};

class Group {...};

class Op {...};

class Request {...};

class Prequest : public Request {...};

class Status {...};

};

Additionally, the following classes defined for MPICH2:

namespace MPI {

class File {...};

classGrequest : public Request {...};

class Info {...};

class Win {...};

};

At the end, in the part 1 we have tested and concentrated with core changes between

MPICH1 and MPICH2 to implement WIEN2K on MPICH2 and compare between the

results WIEN2K MPICH1 running and MPICH2 one . However, we have looked forward

to apply the additions over MPICH1 in implemention of MPICH2 in order to get MPICH2

more robust, efficient, and convenient to use. As a result, the performance of WIEN2K on

MPICH2 will increase over MPICH1.

42

WIEN2K execution on OpenMP encountered by two factors and the same factors were the

reseaons of our using other two benchmarks (Matrix Multiplication of different sizes and

Mathmetical Constant): librariers that support WIEN2K running on OpenMP are not

available and WIEN2K includes a large number of subroutines, cycles and modules.

WIEN2K structure is complex and interleaved. Moreover, it is not clear in its commercial

documentation. Therefore, we extended our experemnts using more benchmarks.

Figure 7: Possible Running for Matrix Multiplication

In the second part (Part 2) of experiments, two cases of experiments have been tested. In

the first case (Case 1: example on large size of data chuncks) that presented heavy load

communications and big data distributions; we tested the performance of parallel matrix

multiplication using multi-processing (message passing) using MPICH1 and MPICH2, and

multithreading paradigms using OpenMP (see Figure 7). In the second case (Case 2:

example on small size of data chuncks) that presented light load communications and small

data distributions; we tested the performance of parallel approximate value PI (π) using

43

multi-processing (message passing) using MPICH1 and MPICH2, and multithreading

paradigms using OpenMP (Figure 8).

In Case 1, the matrix multiplication has been implemented using MPICH1, MPICH2, and

OpenMP by different matrix sizes that indicate twelve states (128, 256, 384, 512, 640, 768,

896, 1024, 2048, 3072, 4096 and 5120). Each state has acted a unique matrix size. In the

other case (Case 2) of Part 2, the PI (π) has been computed using MPICH1, MPICH2 and

OpenMP.

Figure 8: Possible Running for Mathmetical Constant π

Consequently, in Part 2 we have tested and concentrated with comparing and evaluating

results between MPICH1, MPICH2 and OpenMP tests for matrix multiplication of

different sizes and mathmetical constant.

44

Finally, in our research we encountered by number of obstacles but the most important of

them are as follow:

1. We waited a round four months for preparing a cluster of computers in order run

WIEN2K and evaluate MPICH1 and MPICH2.

2. Libraries that support running of WIEN2K on OpenMP are not available due to the

lake of fund.

3. We waited a round two months for preparing MPICH2 standard version, that

recommended for Linux Fedora 14.

4. We waited a round one month for preparing standard versions of FFTW and MKL

programs, which is recommended for WIEN2K.

45

Chapter Five

Experiments and Results Analysis

In this work, two parts of experiments were carried out. In the first part (Part 1), we

focused on distributing tasks of WIEN2K program using MPICH1 and MPICH2 on multi-

core machine. Whereas in [21] the experiments were carried out on a cluster using

MPICH1 to distribute WIEN2K task. In the second part (Part 2) of experiments, two cases

of experiments were carried out. In the first case (Case 1) we tested the performance of

parallel matrix multiplication using multi-processing (message passing) using MPICH1

and MPICH2, and multithreading paradigms using OpenMP. In the second case (Case 2)

we tested the performance of parallel approximation of PI (π) value using the two

paradigms: multi-processing (message passing) using MPICH1 and MPICH2, and

multithreading paradigms using OpenMP.

Our experiments were running on Linux (Fedora 14) installed on a multi-core (quad)

machine (Intel Core i5 3GHz processor); the specification details of the experiments

platform/machine are listed in Table 7.

Table 7: Machine Specifications

No Specification Multi-Core PC

1 CPU speed Quad 3 GHz

2 RAM size 8 GB

3 Cache 8 Mbyte

4 HD speed 7200 RPM

46

To accomplish the calculations, first we installed MPICH2 on Fedora Linux version 14

using specific steps as shown in Figure 9 [43]. Then a set of programs were installed and

optimized with appropriate options together with WIEN2K. These programs are listed in

Table 8.

We need the following prerequisites:

1. The tar file mpich2-1.0.5p3.tar.gz (which can be obtained from http://www-
unix.mcs.anl.gov/mpi/mpich2/)

2. A C compiler (gcc is sufficient)

3. A Fortran compiler if Fortran applications are to be used (g77 is sufficient)

Both the C and Fortran compiler are present in Fedora Core 4 by default.

Step 1. Create a directory MPI (we can use any name) in the home directory.

$ cd $HOME
$ mkdir MPI
 $ cd $HOME

Step 2. Unpack the tar file.

$ tar xfz mpich2-1.0.5p3.tar.gz

The directory MPI will now contain a sub-directory mpich2-1.0.5p3.

Step 3. Choose an installation directory (the default is /usr/local/bin)

$ mkdir mpich2-install

Step 4. Choose a build directory

$ mkdir mpich2-1.0.5

Now the MPI directory will contain three sub-directories namely mpich2-1.0.5p3, mpich2-1.0.5 and mpich2-

install.

Step 5. Configure MPICH2, specifying the installation directory and running the configure script in the

source directory.

$ cd $HOME

$ cd MPI/mpich2-1.0.5

$/home/you/MPI/mpich2-1.0.5p3/configure --prefix=/home/you/MPI/mpich2-install

For other configure options please refer the MPICH2 Installer’s Guide

Step 6. Build MPICH2

$ make

Step 7. Install the MPICH2 commands.

$ make install

Step 8. Add the bin directory to your path.

$ export PATH=/home/you/MPI/mpich2-install/bin:$PATH

(It is better to add this line in .bash_profile file present in the home directory so that this path gets

permanently added once we reboot the system.

47

$ cd $HOME

$ vi .bash_profile

Then append the above command of step 8.)

We can check that everything is in order at this point by doing

$ which mpd

$ which mpicc

$ which mpiexec

$ which mpirun

All should refer to the commands in the bin subdirectory of our install directory.

The MPICH2 has been successfully installed now.

Figure 9: Installation Steps for MPICH2 on Fedora Linux Version 14

Recall that we continue the work of [21], where they installed and used MPICH1 to run

WIEN2K program. For this work, we installed MPICH2 channels figure (9) then installed

MPICH2 WIEN2K version and run "LAPW0", which is a basic module of WIEN2K. This

is done via determined parallel commands. These commands were written on the terminal

of the operating system.

The experiments were carried out by running the programs LAPW0 as benchmarks using

MPICH1 MPICH2 on one, two, three, and four processors of the quad multi-core machine,

where, each processor has a unique id (0,1,2,3). Each experiment was repeated several

times then the average of the elapsed time was computed. After that, the calculation was

recorded. The experiments were divided into two parts: the first one run LAPW0 for one

cycle. In the second experiment (Part 2), in first case (Case 1), the matrix multiplication

was implemented using MPICH1, MPICH2, and OpenMP by twelve states (128, 256, 384,

512, 640, 768, 896, 1024, 2048, 3072, 4096 and 5120). Each state acted a unique matrix

size. But, in the second case (Case 2) of Part 2 the PI (π) was computed using MPICH1,

MPICH2, and OpenMP.

48

Table 8: Software Requirements

Program name Version Source

WIEN2K
13.1 www.WIEN2K.at

MPI Channel

MPICH1.3 &

MPICH2-1.0.5p3
www.mpich.org

Intel Fortran 90
Compiler

11.072 Intel

Intel C Compiler
10.074 Intel

Mathematical Kernel
Library (MKL)

11.0 Intel

Fastest Fourier
Transform in the west

(FFTW)

FFTW-2.1.5 Intel

Part 1:

MPICH1 does not need to run the daemon explicitly because it is built in the MPICH1

environment. Also, the command which is used in MPICH1 to execute programs is

"mpirun". In other side, MPICH2 runs the daemon before any execution because MPICH2

separate the daemon from MPICH2 environment. In addition, MPICH2 use “mpiexec” to

execute applications. For example, the steps of the LAPW0 execution on MPICH2 are

shown in Figure 10. Moreover, Figure 11 shows the steps of the LAPW0 execution on

MPICH1.

The results of the average running time for experiment 1 (LAPW0) are summarized in

Table 9. This table shows the execution time on MPICH1 and MPICH2 and the

improvement factor (if) by the number of processors. The improvement factor (if) is

measured as the ratio of the difference between the execution time on MPICH1 and

MPICH2 to the Execution time on MPICH1 i.e (TMPICH1-TMPICH2)/ TMPICH1.

(4.1)

49

[rezek@rezek-dell15~]$ cd/home/ rezek /mpich2 /examples

[rezek@rezek-dell15 examples]$ mpicc -c lapw0_mpi.c

[rezek@rezek-dell15 examples]$ mpicc -o lapw0_mpi lapw0_mpi.o

[rezek@rezek-dell15 examples]$ mpd&

[1] 3929

[rezek@rezek-dell15 examples]$ mpiexec -n 1 lapw0_mpi

lapw0_mpi has started with 1 tasks.

Initializing arrays...

Running Time = 62.005132

Done.

[rezek@rezek-dell15 examples]$ mpiexec -n 2 lapw0_mpi

lapw0_mpi has started with 2 tasks.

Initializing arrays...

Running Time = 34.002134

Done.

[rezek@rezek-dell15 examples]$ mpiexec -n 3 lapw0_mpi

lapw0_mpi has started with 3 tasks.

Initializing arrays...

Running Time = 25.141348

Done.

[rezek@rezek-dell15 examples]$ mpiexec -n 4 lapw0_mpi

lapw0_mpi has started with 4 tasks.

Initializing arrays...

Running Time = 19.001209

Done.

Figure 10 : Screen Shot of Running LAPW0 on MPICH2

50

[rezek@rezek-dell15~]$ cd/home/rezek/mpich1/examples

[rezek@rezek-dell15 examples]$ mpicc -c lapw0_mpi.c

[rezek@rezek-dell15 examples]$ mpicc -o lapw0_mpi lapw0_mpi.o

[rezek@rezek-dell15 examples]$ mpirun -np 1 lapw0_mpi

lapw0_mpi has started with 1 tasks.

Initializing arrays...

Running Time = 64.764301

Done.

[rezek@rezek-dell15 examples]$ mpirun -np 2 lapw0_mpi

lapw0_mpi has started with 2 tasks.

Initializing arrays...

Running Time = 35.987721

Done.

[rezek@rezek-dell15 examples]$ mpirun -np 3 lapw0_mpi

lapw0_mpi has started with 3 tasks.

Initializing arrays...

Running Time = 26.880067

Done.

[rezek@rezek-dell15 examples]$ mpirun -np 4 lapw0_mpi

lapw0_mpi has started with 4 tasks.

Initializing arrays...

Running Time = 21.417534

Done.

Figure 11 : Screen Shot of Running LAPW0 on MPICH1

51

Table 9: Execution Time of LAPW0 on MPICH1 and MPICH2 on Different # of

Processors.

of Proc
Exec. time on

mpich1 (min)

Exec. time on

mpich2 (min)
If

1 64.25 62.54 0.026615

2 35.05 34.38
0.019116

3 26.03 25.37
0.025355

4 20.5 19.52 0.047805

As shown in Figure 12, it is clear that MPICH2 performance is higher than MPICH1

performance by approximately 3%. In other words, MPICH2 increases the speed up of

WIEN2K execution on each multicore by 3%. Consequently, the simulation of production

a new material in our case which needs 30 working days will be decreased by one day.

The figure shows the difference between the execution time on MPICH1 and MPICH2. In

this figure the curves are decline when number of processors increase until it reaches 4.

After that the speed up and efficiency approximately reach the stability then decreasing.

But on all states MPICH2 performance is higher. Therefore, we believe that the following

nine added features (mentioned in the background chapter) have positive impact on the

performance of MPICH2:

1. MPICH2 included a number of collective communication routines and was thread-safe

[4].

2. MPICH2 supports dynamic spawning of tasks. It provides primitives to spawn

processes during the execution and enables them to communicate together [10].

52

3. MPICH2 supports one-sided communication. It provides three communication calls,

these operations are non-blocking [11], [12].

4. MPICH2 used generalized requests that are not used by MPICH1. These requests allow

users to create new non-blocking operations with an interface [12].

5. In MPICH2, significant optimizations required for efficiency (e.g. asynchronous I/O,

grouping, collective buffering, and disk-directed I/O) are achieved by the parallel I/O

system [12].

6. MPICH2 introduces extensions of many of the MPICH1 collective routines to

intercommunicators, additional routines for creating intercommunicators, and two new

collective routines: a generalized all-to-all and an exclusive scan [12].

7. MPICH2 supports MPI THREAD MULTIPLE [5].

8. MPICH2 is concerned with communication rather than process management. In

addition, it provides a fast and scalable startup mechanism when parallel jobs are

started [13].

9. MPICH2 does not require access to command line arguments of applications before

startup and MPICH2 does nothing special for configuration. If one needs them in their

applications, they must ensure that they are available in the environment being used

[13].

It should be noted that the time unit in the experiments of Part 1 is in minutes, whereas it is

in seconds in Part2.

53

Figure 12: The WIEN2K Execution Time of MPICH1 vs. MPICH2.

Part 2:

Case 1:

In this case the experiments were implemented on a standard parallel matrix multiplication

(MMT) of sizes 128x128, 256x256, 384x384, 512x512, 640x640, 768x768, 896x896,

1024x1024, 2048x2048, 3072x3072, 4096x4096 and 5120x5120 using multithreading by

means of OpenMP and multi-processing (message passing) using MPICH1 and MPICH2.

Also, in these experiments we utilized 1, 2, 4, 8 and 16 processes. The experiments where

repeated by using multithreading with 1, 2, 4, 8, and 16 threads.

However, the steps of the (MMT) execution on OpenMP are shown in Figure 13.

[rezek@rezek~]$ cd /home/rezek/OpenMP/examples

[rezek@rezek examples]$ icc -o mmtop –openmp mmtop.c

[rezek@rezek examples]$./mmtop

Starting matrix multiplication with 1 threads

54

Initializing matrices...

Time for parallel matrix multiplication: 151.24 s

Done.

[rezek@rezek examples]$ icc -o mmtop –openmp mmtop.c

[rezek@rezek examples]$./mmtop

Starting matrix multiplication with 2 threads

Initializing matrices...

Time for parallel matrix multiplication: 68.73 s

Done.

[rezek@rezek examples]$ icc -o mmtop –openmp mmtop.c

[rezek@rezek examples]$./mmtop

Starting matrix multiplication with 4 threads

Initializing matrices...

Time for parallel matrix multiplication: 51.99 s

Done.

[rezek@rezek examples]$ icc -o mmtop –openmp mmtop.c

[rezek@rezek examples]$./mmtop

Starting matrix multiplication with 8 threads

Initializing matrices...

Time for parallel matrix multiplication: 87.87 s

Done.

[rezek@rezek examples]$ icc -o mmtop –openmp mmtop.c

[rezek@rezek examples]$./mmtop

Starting matrix multiplication with 16 threads

Initializing matrices...

Time for parallel matrix multiplication: 104.60 s

Done.

[rezek@rezek examples]$

Figure 13: Screen Shot of Running MMT on OpenMP

55

The results of the average running time for all experiments in Case 1 (MMT) are

summarized in Table 10. This table shows the execution time on MPICH and OpenMP.

For 5120x5120 matrices the experiment results in Figure 14 shows that the performance

and speed up using multithreading is higher than multiprocessing. Also the experiments

with multiplier sizes larger than or equal 384x384 shows the same results, but the results

are inverse when the matrix size is smaller than 384x384. Thus, in our experements

environment 384x384 matrices size become as a conversion point (see Figure 15). This is

caused by the overhead of processes management, data distribution and large size of data

chunks communication in case of size larger; than 384x384.

Figure 14: Execution Time of Matrix Multiplication (5120 X 5120) Using

MPICH1 vs. MPICH2 vs. OpenMP

The experiment's platform has four processing elements. It is clear in Figure 14 that the

curve declines (i.e. improving the efficiency and speed-up) until the number of

processes/threads reaches 4. After that, the curve begins to incline, which indicates a

decrease in performance and efficiency. This is due to the overheads in scheduling the

56

threads and processes in utilizing shared resources (i.e. processing elements and shared

memories).

Figure 15: Execution Time of Matrix Multiplication (n x n) Using MPICH2 vs. OpenMP Shows

the Conversion Point at (384x384) Matrix Size

Table 10: Execution Time of MMT on MPICH and OpenMP on Different # of

Processors/Threads.

Num of

Processes / threads

Exec. time on mpich1

(millisecond)

Exec. time on mpich2

(millisecond)

Exec. time on OpenMP

(millisecond)

Size = 128 x 128

1 87.781 80.436 96.675

2 48.405 42.512 54.623

4 30.323 22.534 39.962

8 46.018 37.389 53.976

16 81.403 75.991 89.482

Size = 256 x 256

1 147.129 138.769 168.845

57

Num of

Processes / threads

Exec. time on mpich1

(millisecond)

Exec. time on mpich2

(millisecond)

Exec. time on OpenMP

 (millisecond)

2 077.532 072.879 086.129

4 054.039 050.269 079.136

8 067.022 060.786 089.033

16 128.763 122.648 141.881

Size = 384 x 384

1 162.543 151.933 192.940

2 087.015 082.933 099.965

4 072.345 066.049 088.997

8 075.595 070.882 093.587

16 139.387 131.612 153.8717

Size = 512 x 512

1 268.312 244.897 197.634

2 163.469 152.974 109.790

4 139.221 116.214 098.321

8 151.038 137.234 115.554

16 292.520 266.676 201.072

Size = 640 x 640

1 319.654 293.109 220.154

2 213.574 203.027 126.761

4 193.101 190.285 107.609

8 253.465 243.779 123.609

16 306.825 285.076 212.001

Size = 768 x 768

1 887.901 840.865 444.901

2 448.869 422.037 220.051

4 426.608 403.133 145.439

8 546.865 513.908 308.432

16 787.166 768.740 410.876

Size = 896 x 896

1 1469.654 1393.109 680.154

58

Num of

Processes / threads

Exec. time on mpich1

(millisecond)

Exec. time on mpich2

(millisecond)

Exec. time on OpenMP

 (millisecond)

2 731.463 719.163 341.234

4 642.388 624.498 249.765

8 756.627 717.417 388.801

16 1295.042 1113.259 579.121

Size = 1024 x 1024

1 2000.129 1980.769 2027.845

2 1194.532 1058.879 0800.129

4 0972.039 0938.269 0421.136

8 0987.022 0961.786 0470.033

16 1098.763 1018.648 0951.881

Size = 2048 x 2048

1 9495.1936 8165.320 9871.221

2 8234.1425 7705.432 4170.022

4 7374.4335 6501.234 3153.409

8 7478.1800 6887.654 3611.032

16 7684.7530 7192.301 3912.348

Size = 3072 x 3072

1 33004.312 32654.897 34012.341

2 30012.343 28226.338 15683.412

4 26786.531 24889.059 10718.798

8 27612.391 25449.817 16313.106

16 27998.271 25884.934 19388.321

Size = 4096 x 4096

1 71789.654 70003.109 73010.154

2 68712.106 66762.134 35032.178

4 62998.804 59250.207 27683.214

8 64660.081 61236.277 36367.731

16 66987.789 62067.714 48979.761

Size = 5120 x 5120

1 141332.156 139870.865 151764.900

2 130771.310 129622.182 67590.8700

59

Num of

Processes / threads

Exec. time on mpich1

(millisecond)

Exec. time on mpich2

(millisecond)

Exec. time on OpenMP

(millisecond)

4 116896.998 115943.011 52098.7600

8 120509.880 118134.567 87958.6767

16 136567.899 134442.371 104934.567

Case 2:

Now we discus the results of the experemints in Case2. In this case the experiments were

run to calculate by approximation the value of PI (π) with different number of points in the

square (1	X	10�, 2	X	10�, 4	X	10�, 8	X	10� and 16	X	10�) using multithreading by means

of OpenMP and multi-processing (message passing) by MPICH1 and MPICH2. Also, in

these experiments we utilized 1, 2, 4, 8 and 16 processes. The experiments where repeated

by using multithreading with 1, 2, 4, 8, and 16 threads. The results of the average running

time for all experiments in Case 2 (PI) are summarized in Table 11. This table shows the

execution time on MPICH and OpenMP.

Table 11 shows the execution time for computing (π) program running in all states

(1	X	10�, 2	X	10�, 4	X	10�, 8	X	10� and 16	X	10�) on three channels (MPICH1, MPICH2

and OpenMP) versus number of processors (1, 2, 4, 8 and 16) and number of threads (1, 2,

4, 8 and 16). In the five states the experiments where repeated and recorded the elapsed

time.

The results in Figure 16 show that the performance using multiprocessing is higher than

multithreading and MPICH2 performance is the best. This is due to the small size of data

chunks in data distribution and recall the MPICH2 features that have impact on

performance: Collective communication routines on master computer, a number of non-

blocking routines on each client. And multiple threads on the master.

60

Table11: Execution Time of PI(π) Computation on MPICH and OpenMP on Different # of

Processors/Threads and the Number of Points in the Square is (N)

Num of

Processes / threads

Exec. time on

mpich1 (sec)

Exec. time on

mpich2 (sec)

Exec. time on

OpenMP (sec)

N = �	�	���

1 0.891892 0.891885 0.896699

2 0.462869 0.462855 0.783978

4 0.443972 0.442911 0.450789

8 0.488757 0.446034 0.536067

16 0.503249 0.456917 0.544582

N = �	�	���

1 1.780018 1.771238 1.788288

2 0.961435 0.930937 0.996978

4 0.923319 0.884324 0.959076

8 0.930103 0.887004 0.965559

16 0.945534 0.897642 0.991138

N = �	�	���

1 3.541244 3.538235 3.552968

2 1.780001 1.773867 1.786492

4 1.783344 1.765872 1.799389

8 1.796789 1.770511 1.831845

16 1.811341 1.780981 1.854787

N = �	�	���

1 7.097942 7.070931 7.104267

2 3.748843 3.559537 3.976155

4 3.560004 3.530808 3.588692

8 3.579974 3.533668 3.614277

16 3.608152 3.546725 3.641683

N = ��	�	���

1 14.784593 14.137508 15.202066

2 7.077461 7.077461 7.588175

4 7.099601 7.058459 7.167871

8 7.179459 7.062334 7.215497

16 7.266179 7.075695 7.429199

61

Figure 16: Execution Time of Mathmetical Constant PI (π) (N=16x10�) Using
MPICH1 vs. MPICH2 vs. OpenMP

In addition to the mentined features, the significant optimizations required for efficiency

(e.g. asynchronous I/O, grouping and collective buffering) are supported by MPICH2 too.

Thus, we can conclude that the added fatures in MPICH2 has positive impact on the

performance as in in part 1 of the experiments.

On the same experiment's platform, that has four processing elements, it is clear in : Figure

16 that the curve declines (i.e. improving the efficiency and speed-up) until the number of

processes/threads reaches 4. Afterwards, the curve begins to incline, which indicates a

decrease in performance and efficiency. Moreover, the execution time using OpenMP is

longer than execution time using message passing on all processors. This is due to the

overheads in scheduling the threads and processes in utilizing shared resources (i.e.

processing elements and shared memories).

62

Chapter Six

Conclusion

The goal of this work is twofold. The first is to evaluate and compare the performance of

MPICH1 and MPICH2 using different cases running on one, two, three, and four

processors. The second aim is to evaluate the performance of running parallel programs

with big and small data using message passing and multithreading.

As a result, we can conclude that MPICH2 speed up perform better than MPICH1 speed

up in all cases and MPICH efficiency is higher than OpenMP efficiency when size of

matrix A is less than 384 x 384 (18 KB) and vice versa. Because, if size of matrix A bigger

than 384 x 384 then the transfer delay will increase, where many collective operations are

used in parallel programs that increase execution time when researchers run programs

using message passing. In addition, the added features in MPICH2 can affect the

improvement possitively. Moreover, the results show that multithreading programming

performance on multi-core architectures is higher than message passing when the parallel

programs works on data size larger than (18 KB). Can this size be dependent of the

computer on which the experiments carried out

63

So by using our research, if applications that work in parallel way implemented on

MPICH2 instead of MPICH1 then researchers and labaratory persons will achieve higher

performance and speed up in the computations.

Finally, for future work, we intend to extend our experiment to test the performance of

newly issued MPICH3 and Graphical Processing Units (GPU) using different tasks.

64

Reference:

[1] Evaluation of Matrix Multiplication on an MPI Cluster. Sherihan Abu El-Enin,

Mohamed Abu El-Soud. Egypt : Faculty of computers and Information, Mansoura

University, 2011.

[2] Science and Technology Support Group High Performance Computing. 1224 Kinnear

Road, Columbus : Ohio Supercomputer Center. OH 43212-1163.

[3] Towards OpenMP Execution on Software Distributed Shared Memory Systems. Ayon

Basumallik, Seung-Jai Min, Rudolf Eigenmann. West Lafayette : School of Electrical

and Computer Engineering Purdue University. http: // www.ece.purdue.edu/ParaMount. IN

47907-1285.

[4] MPI: A Message-Passing Interface Standard, Message Passing Interface Forum. by

the Commission of the European Community through Esprit project P6643 : ARPA and

NSF under grant ASC-9310330, the National Science Foundation Science and Technology

Center Cooperative, Nov 15, 2003. Agreement No. CCR-8809615.

[5] OpenMP compiler for a Software Distributed Shared Memory System SCASH.

Mitsuhisa Sato, Hiroshi Harada and Yutaka Ishikawa. Real World Computing

Partnership, Tsukuba, Ibaraki 305-0032, Japan : s.n. E-mail: fmsato, h- harada,

ishikawag@trc.rwcp.or.jp.

[6] WIEN2K. http://www.wien2k.at/papers/index.html. [Online]

[7] David Culler. Jaswinder Pal Singh, Anoop Gupta. Parallel Computer Architecture A

Hardware / Software Approach. s.l. : University of California, Berkeley, Princeton

University,Stanford University, Aug28, 1997.

[8] Cottenier, S. Density Functional Theory the Family of (L)APW-methods:a step-by step

introduction. August 6, 2004. ISBN 90-807215-1-4.
[9] an optimal migration algorithm for dynamic load balancing. Y.F.HU, R.J.Blake and

R.D.Emerson. Daresbury laboratory, Daresbury, warrington WA4 4AD : Y.F.HU,

R.J.Blake and R.D.Emerson, 1998. 10(6), 467- 483.

[10] Scheduling Dynamically Spawned Processes in MPI-2. M´arcia C. Cera1,

Guilherme P. Pezzi, Maur´ıcio L. Pilla, Nicolas B. Maillard1, and Philippe O. A.

Navaux. Pelotas, Brazil : Universidade Federal do Rio Grande do Sul, Porto Alegre Brazil

and Universidade, 2006.

[11] Comparing One-Sided Communication with MPI, UPC and SHMEM. Maynard,

C.M. JCMB, Kings Buildings, Mayfield Road, Edinburgh : EPCC, School of Physics and

Astronomy, University of Edinburgh. EH9 3JZ, UK.

[12] MPI: A Message-Passing Interface Standard, Version 2.2, and Message Passing

Interface Forum. Sept 4, 2009.

[13] William Gropp, Ewing Lusk, David Ashton, Pavan Balaji, Darius Buntinas,

Ralph Butler, Anthony Chan, Jayesh Krishna, Guillaume Mercier, Rob Ross, Rajeev

Thakur, and Brian Toonen. MPICH2 User’s Guide, Version 1.0.6, Mathematics and

Computer Science Division Argonne National Laboratory. September 14, 2007.

65

[14] Efficient sparse matrix multiple-vector multiplication using a bitmapped format.

Ramaseshan, Kannan. s.l. : The University of Manchester, September 2012. ISSN 1749-

9097.

[15] Sparse representation of data. Thomas Villmann, Frank-Michael Schleif, and

Barbara Hammer. Germany : University of Applied Sciences Mittweida and Bielefeld

University, 2010.

[16] A Parallel Implementation of Hybridized Merge-Quicksort Algorithm on MPICH.

Haryanto, Rahmadi Trimananda and Christoforus Yoga. Indonesia : Computer

Engineering Department, Universitas Pelita Harapan, 2010.

[17] Cilk vs MPI: Comparing two very different parallel programming styles. Morris,

Sonny Tham and John. s.l. : International Conference on Parallel Processing, IEEE,

2003. (ICPP’03).

[18] MPI: A Message-Passing Interface Standard, Version 2.1, and Message Passing

Interface Forum. June 23, 2008.

[19]http://lists.mcs.anl.gov/pipermail/mpich-discuss/2007-December/002982.html. [Online]

[20] MPI-2: Extensions to the Message-Passing Interface, and Message Passing Interface

Forum. s.l. : This work was supported in part by NSF and DARPA under NSF contract

CDA-9115428 and Esprit under project HPC Standards, Nov 15, 2003. 21111.

[21] Optimum Execution For WIEN2K using Parallel Programming Models (Comparison

Study). Rezek Mohammad, Areej Jabir, and Rashid Jayousi. Jerusalem, Palestine :

Department of physics, Palestinian Technical University/Khadoorie, Middle East

Technical University and department of Computer Science, Al-Quds University, 2011

[22] A new Approximation Method in the Problem of Many Electrons. Hans, Hellmann

Moscow : Journal of Chemical Physics (Karpow-Institute for Physical Chemistry), 1935.

[23] Electronic Structure and the Properties of Solids. Harrison, Walter Ashley. 1989.

[24] Kresse, G. and Furthmuller. Comp. Mat. Sci.6. 1996. B 5, 11169.

[25] Shoaib Akram, Rakesh Kumarand Deming Chen. Workload Adaptive Shared

Memory Multicore Processors with Reconfigurable Interconnects. Urbana Champaign :

Department of Electrical and Computer Engineering, University of Illinois, 2009.

[26] An Adulatory Theory of the Mechanics of Atoms and Molecules. E, Schrodinger :

Physical Review 28, 1926. 1049-1070.

[27] A Survey of Parallel Computer Architectures. Duncan, Ralph. s.l. : IEEE Compute,

1990.

[28] Introduction to Parallel Computing. Blaise Barney, Lawrence Livermore National

Laboratory. s.l. : Available in the link https://computing.llnl.gov/tutorials/parallel_comp.,

14 July 2014.

[29] Performance Comparison of Open Source MPI Implementations. McClements, Erik.

s.l. : the University of Edinburgh, 2006.

[30] Darius Buntinas, Guillaume Mercier, and William Gropp,. Implementation and

Shared-Memory Evaluation of MPICH2 over the Nemesis Communication Subsystem. s.l. :

Mathematics and Computer Science Division, Argonne National Laboratory, 2008.

[31] Xiaojun Ruan, Qing Yang, Mohammed I. Alghamdi, Shu Yin, Zhiyang Ding,

Jiong Xie, Joshua Lewis, and Xiao Qin. ES-MPICH2: A Message Passing Interface with

66

Enhanced Security. Al-Baha City, Kingdom of Saudi Arabia : Department of Computer

Science and Software Engineering, Auburn University and Department of Computer

Science, Al-Baha University, 2010. AL 36849-5347.

[32] Wright, Charles. Hybrid Programming Fun: Making bzip2 Parallel with MPICH2 &

pthreads on the Cray XD1. s.l. : Alabama Supercomputer Center, 2006.

[33] Design Considerations for Shared Memory MPI Implementations on Linux NUMA

Systems: An MPICH/MPICH2 Case Study. Mucci, Per Ekman and Philip. Stockholm,

Sweden : PDC/KTH, 2005.

[34] NUMA-aware shared-memory collective communication for mpi. Shigang Li,

Torsten Hoefler and Marc Snir. Beijing, Urbana-Champaign : School of Computer and

Communication Engineering University of Science and Technology and Department of

Computer Science, ETH Zurich and Department of Computer Science, University of

Illinois and Argonne National Laboratory, 17 Jun 2013.

[35] Blocking vs. Non-Blocking Coordinated Checkpointing for Large-Scale Fault

Tolerant MPI. Camille Coti, Thomas Herault, Pierre Lemarinier and Laurence Pilard.

France : INRIA-Futurs / Grand-Large, Laboratoire de Recherche en Informatique,

Universit´e Paris-XI, 2006.

[36] Adaptive Strategy for One-sided Communication in MPICH2. Xin Zhao,

Gopalakrishnan Santhanaraman, and William Gropp. USA : University of Illinois,

2012. IL 61801.

[37] Multi-core Aware Optimization for MPI Collectives. BiboTu, Ming Zou, Jianfeng

Zhan, Xiaofang Zhao and Jianping Fan. Beijing : Institute of Computing Technology,

Chinese Academy of Sciences, 2008. 100190.

[38] Asynchronous MPI for the Masses. Markus Wittmann, Georg Hager, Thomas

Zeiser, and Gerhard Wellein. Germany : Erlangen Regional Computing Center,

University of Erlangen-Nuremberg, Martensstraße, 2013.

[39] Comparison of Shared memory based parallel programming models. Ravela, Srikar

Chowdary. Sweden : School of Computing Blekinge Institute of Technology Box 520,

2010. SE – 372 25.

[40] Ananth Grama, George Karpis, Vipin Kumar and Anshul Gupta. Introduction to

Parallel Computing. 2nd Edition. Feb, 2003. ISBN13 9780201648652, ISBN10

0201648652

[41] Comparison between CISC and RISC. Yi Gao, Shilang Tang, Zhangli Ding. 2000.

[42] Multi-core and Many-core Processor Architectures. Brorsson, Mats. s.l. : A. Vajda,

Programming Many-Core Chips, Springer Science and Business Media, LLC, 2011. 1-

4419-9739-5.

[43] MPICH2 Installer’s Guide, Version 1.5, Mathematics and Compute Science Division

Argonne National Laboratory. William Gropp, Ewing Lusk, David Ashton, Pavan

Balaji, Darius Buntinas, Ralph Butler, Anthony Chan, Jayesh Krishna, Guillaume

Mercier, Rob Ross, Rajeev Thakur, and Brian Toonen. October 8, 2012

[44] Simulation in Flight Simulator with the Hybrid Distributed-Shared Memory

Architecture. Kvasnica, P., Páleník, T. s.l. : ASIS, 2009. ISBN 978-80-86840-47-5.

67

Appendix 1: The Predefined MPI Datatypes and Their Corresponding C/

C++ Datatypes and the Replaced Constructs by MPICH2.

Table 12: The MPI Predefined Datatypes, and their Corresponding C/C++ Datatypes [5], [12], [19].

No MPI DataTypes C DataType C++ DataType

1 MPI::CHAR char Char

2 MPI::SHORT signed short signed short

3 MPI::INT signed int signed int

4 MPI::LONG signed long signed long

5 MPI:: LONG_ LONG signed long long signed long long

6 MPI::SIGNED_CHAR signed char signed char

7 MPI::UNSIGNED_CHAR unsigned char unsigned char

8 MPI::UNSIGNED_SHORT unsigned short unsigned short

9 MPI::UNSIGNED_INT unsigned int unsigned int

10 MPI::UNSIGNED_LONG unsigned long unsigned long int

11 MPI::UNSIGNED_LONG_LONG
unsigned long

long
unsigned long long

12 MPI::FLOAT float Float

13 MPI::DOUBLE double Double

14 MPI::LONG_DOUBLE long double long double

15 MPI::BOOL Bool

16 MPI::COMPLEX Complex<float>

17 MPI::DOUBLE_COMPLEX Complex<double>

18 MPI::LONG_DOUBLE_COMPLEX Complex<long double>

19 MPI::WCHAR wchar_t wchar_t

20 MPI::BYTE

21 MPI::PACKED

Table 13: The Replaced Constructs by MPICH2 [5], [12], [19].

 Deprecated MPICH2 Replacement

1 MPI_ADDRESS MPI_GET_ADDRESS

2 MPI_TYPE_HINDEXED MPI_TYPE_CREATE_HINDEXED

3 MPI_TYPE_HVECTOR MPI_TYPE_CREATE_HVECTOR

4 MPI_TYPE_STRUCT MPI_TYPE_CREATE_STRUCT

5 MPI_TYPE_EXTENT MPI_TYPE_GET_EXTENT

6 MPI_TYPE_UB MPI_TYPE_GET_EXTENT

7 MPI_TYPE_LB MPI_TYPE_GET_EXTENT

8 MPI_LB MPI_TYPE_CREATE_RESIZED

9 MPI_UB MPI_TYPE_CREATE_RESIZED

10 MPI_ERRHANDLER_CREATE MPI_COMM_CREATE_ERRHANDLER

11 MPI_ERRHANDLER_GET MPI_COMM_GET_ERRHANDLER

12 MPI_ERRHANDLER_SET MPI_COMM_SET_ERRHANDLER

13 MPI_HANDLER_FUNCTION MPI_COMM_ERRHANDLER_FUNCTION

14 MPI_KEYVAL_CREATE MPI_COMM_CREATE_KEYVAL

15 MPI_KEYVAL_FREE MPI_COMM_FREE_KEYVAL

68

 Deprecated MPICH2 Replacement

16 MPI_DUP_FN MPI_COMM_DUP_FN

17 MPI_NULL_COPY_FN MPI_COMM_NULL_COPY_FN

18 MPI_COPY_FUNCTION MPI_COMM_COPY_FUNCTION_ATTR

19 COPY_FUNCTION COMM_ATTR_COPY_FN

20 MPI_DELETE_FUNCTION MPI_COMM_DELETE_ATTR_FN

21 DELETE_FUNCTION COMM_DELETE_ATTR_FN

22 MPI_ATTR_DELETE MPI_COMM_ATTR_DELETE

23 MPI_ATTR_GET MPI_COMM_ATTR_GET

24 MPI_ATTR_PUT MPI_COMM_ATTR_PUT

69

Appendix 2: Density Functional Theory (DFT)

In physics, a collection of heavy positively charged particles (nuclei) and lighter negatively

charged particles (electrons) is called a solid. Solids obey the laws of quantum mechanisms.

By solving these equations, all of properties of solids like structural, thermodynamic,

mechanical, transport properties and electronic properties are determined. If we have N nuclei

and Z electrons for each nucleus then we will deal with a problem of N+ZN

electromagnetically interacting particles. Any material composed of many atoms combined

together according to the chemical bonding. These atoms can take many positions while

keeping the same total number of atoms of the material. Each stable of combinations gives

different properties [26]. This is a quantum many-body problem, and the particles are so light.

In science of material, stability of any material is measured via main scalable quantity, which

is called cohesive energy. Cohesive energy equals the difference between the total energy of

the material in combined form and the sum of the free atom’s energy in their free state as

shown in equation (2.1)

 Ecohesive energy = Ecompound - ∑Efree atoms (1)

Each stable order of these atoms can produce positive value for the cohesive energy. For the

material to match the stability it normally takes more than one phase and the phase with the

highest cohesive energy is the most stable one, see Figure 17, which are drawn using WIEN2K

package [26].

Figure 17: Schematic Diagram of Simple Cubic Phase along 111 Direction

70

In practice, applying quantum mechanisms in order to achieve stability is very hard, numerical

task that consumes time even for idealized cases. In these calculations, all the atomic

interactions can be done by scalar value model taken from experimental results. This model

and others are used to explain properties of materials already exist in the laboratory: hence,

some of famous methods were used to solve like this problem:

1- Pseudo potential method (PP) was first introduced by Hans Helman (1930) [22], in an

attempt to replace the complicated effect of core electrons on the atomic potential. This is

used to fit the experimental data about the material. In many cases many forms of potential

can be used, for each form of the material; different potential can be used to give the

experimental data.

2- Tight binding method (TB) was introduced in 1960 [23]. The value of the interaction

between the valence electronsis replaced by a numeric value. The value of this number is

predicted from already known experimental data, as in the PP method (pseudo potential).

The value of the same interaction differs from form to form for the same material.

In density functional theory, the stability of a solid can be affected by: the kinetic energy

operators for the nuclei and for the electrons, potential energy between electrons and nuclei

and potential energy between nuclei and other nuclei; these factors are measured by exact

many-particle Hamiltonian for the system, which is illustrated in [8]:

Ĥ = −
ℎ�

2
�

��
�
→

��
�

	− 	
ℎ�

2
�

��
�
→

��
�

–	
1

4���
�

����

│
�
→
�
−	

�
→

�
│

�,�

	− 	
1

8���
�

��

│
�
→

�
− 	

�
→
�
│

���

	

+		
1

8���
�

������

│
�
→
�
−	

�
→

�
│
																																								(2)

���

��: The mass of the nucleus at
�
→.

��: The mass of the electrons at
�
→.

The first term: is the kinetic energy operator for the nuclei.

The second term: is the kinetic energy operator for the electrons.

The third term: the Coulomb interaction (potential energy) between electrons and nuclei

The fourth term: the Coulomb interaction (potential energy) between electrons and other electrons.

The fifth term: the Coulomb interaction (potential energy) between nuclei and other nuclei.

71

In order to attain stability and find acceptable approximate eigenstates (eigenvalues and

eigenvectors) for a system with a reasonable calculation time, we will need to make

approximations at different levels:

1- Level 1: The Born-Oppenheimer Approximation

The nuclei are much heavier and therefore much slower than the electrons. Born and

Oppenheimer can hence `freeze' them at fixed positions and assume the electrons to be in

instantaneous equilibrium with them. In other words, only the electrons are kept as players in

the many body problems. The nuclei are excluded from this status, reduced to a given source

of positive charge and therefore become `external' to the electron cloud. After having applied

this approximation, they are left with a collection of NZ interacting negative particles, moving

in the (now external or given) potential of the nuclei.

The results of using Born-Oppenheimer approximation on the Hamiltonian (equation 2.2) are:

The nuclei do not move any more, their kinetic energy is zero and the first term disappears.

The last term reduces to a constant. We are left with the kinetic energy of the electron gas, the

potential energy due to electron-electron interactions and the potential energy of the electrons

in the (now external) potential of the nuclei. We write this as represented in the equation below

[8]:

 �� = ��+ ��+ �� ext (3)

��: The kinetic energy of the electron gas.

��: The potential energy due to electron-electron interactions.

��ext: The potential energy of the electrons in the (external) potential of the nuclei.

2- Level 2: Density Functional Theory Approximation

Together with the Development of theoretical schemes like Density Functional Theory (DFT)

[8] by Hohenberg and Kohn and the fast cheap computers have helped to change the situation.

Another name for such calculations is called ab-initio calculation. Such calculation forms the

basic information like the form of material and the name of the atoms. Nowadays, many

packages are using the DFT such as WIEN2K [6], VASP [24], Gaussian [25]….etc. In these

packages and studies, we have two factors controlling such calculation:

1- The sample actuality.

2- The time of calculation.

72

Number of atoms constituting the sample and their distribution are called the sample actuality;

the bigger number of atoms in study case will cost a lot of calculation time, so the relation

between the two factors are vice versa.

In this study, we will focus on the WIEN2K program and on the order structure of atoms that

are named “Crystal” in solid state physics as shown in Figure 17, the crystal is composed of a

definite number of atoms, which has a definite position in space. The rest of the crystal is an

empty space. The space between the atoms in the crystal is called interstitial region [22], as

shown in Figure 18. This adaptation is achieved by dividing the unit cell into (I) non-

overlapping atomic spheres (centered at the atomic sites) and (II) an interstitial region.

Figure 18: Partitioning of the Unit Cell into Atomic Spheres (I) and an Interstitial Region (II)

Experiments have proven that the outer shell electrons of the atoms are responsible to define

the physical and chemical properties of the atoms and its compounds. The net interactions

between the repulsive and attractive forces between different atoms (electrons and their nuclei)

decide which phase these atoms will take to attain stability. Each atom composes of a big

number of electrons and one nucleus, each electron interacts with all the other electrons and

with each positive nucleus. These interactions can only be treated and analyzed using quantum

mechanics treatment.

The quantum many body problems obtained after the first level approximation (Born-

Oppenheimer) is much simpler than the original one, but is still far too difficult to solve.

Several methods exist to reduce equation 2.3 to an approximate but tractable form. Such as

Density Functional Theory (DFT). DFT has been formally established by two theorems due to

Hohenberg and Kohn [8]. The traditional formulation of the two theorems of Hohenberg and

Kohn is as follows [8]:

First theorem: There is a one-to-one correspondence between the ground-state density ρ(r) of

a many-electron system (atom, molecule, solid) and the external potential Vext. An immediate

consequence is that the ground-state expectation value of any observable Ô is a unique

functional of the exact ground-state electron density:

 ˂ Ψ |Ô| Ψ > = O[ρ] (4)

73

Second theorem: For Ôbeing the Hamiltonian Ĥ, the ground-state total energy functional

H[ρ] = EVext[ρ] is of the form:

 EVext[ρ] = ˂ Ψ |�� +	�� | Ψ > + ˂ Ψ |��ext | Ψ > (5)

Many body problems can only be solved in DFT by making use of the translational symmetry,

which cause the electronic wave functions to be of Bloch-type, labeled by k-vector in

reciprocal space and the quantum number of the electron. Thus, the periodicity in real space is

defined by k-vector in reciprocal space, whose unit cell is called Brillouin Zone (BZ). The

latter becomes the smaller and the larger real space unit cell gets [21], [26], [30]. The

interaction between the electrons and nucleus can be presented through the one electron

Schrӧdinger Equation [26]:

 ���	Ψ = E Ψ (6)

 (-∇� +���) Ψ = E Ψ (7)

∇�: is the second derivative with respect to space coordinates.

���: is the effective attractive potential each electron feel.

E: is the energy of this electron in this crystal phase.

Ψ: is the wave function of this electron.

When Ψ is squared and summed over all the crystal space we get the density function of this

electron as a function of position:

 ρ(r)= ∫�	�∗��� (8)

Adding this density function for all the electrons, the sum logically equals the total number of

electrons in the interaction. The problem is that we do not know the actual ��� and Ψ. This

problem is treated in DFT by giving initial wave function Ψ and this wave function is

extremely close to atomic wave function. Later we solve the Schrӧdinger equation and finding

the ��� from the equation [8]:

 ∇���� = ρ(r) (9)

The exchange-correlation operator ��� depends on the density ρ(r), which in turn depends on

the Ψi that are being searched. This means we are dealing with a self-consistency problem.

This ��� is new ��� and it entered again to the Schrӧdinger equation and again we solve for the

new Ψ and so on. This cycle is kept repeated until the total energy reaches a minimum value.

This minimum energy value is chosen at the beginning of the calculation; it should be suitable

and comparable to the size of the problem. The value of this energy is directly related to the

time of calculation through the number of cycles needed. At this optimum energy, the wave

74

function Ψ and exchange correlation potential ��� are the optimum representative for all the

electrons see Figure 1, [8]. Some starting density P0 is guessed, and a Hamiltonian HKS1 is

constructed with it. The eigenvalue problem is solved, and results in a set of P1 from which a

density P1 can be derived. Most probably P0 will differ from P1. Now P1 is used to construct

HKS2, which will yield a P2, etc. The procedure can be set up in such a way that this series

will converge to a density Pf which generates a HKSf which yields as solution again Pf : this

final density is then consistent with the Hamiltonian [8].

These sequential operations of the WIEN2K program are divided into five modules:

1. The first module is called LAPW0, in this process the ��� is calculated in the crystal from

the initial.

2. The second module is called LAPW1, which is responsible for building the Schrӧdinger

equation (setting up H and S matrix), and solves the generalized eigen value problem for

special point in the BZ. These points are called K-points. The number of these points is

proportional to the reality of the study. The high number gives results that are more

accurate and costs a lot of computational time, so balanced is essential.

3. The third module in the program is called LAPW2. In this process and after solving the

Eigen value problem, the Eigen vectors Ψ1 is calculated for each Eigen value and the new

density is calculated according to Equation (2.5)

4. The fourth module is called LCORE: from the density function, the electrons in the crystal

are distributed on the lowest energy values, the density function for the core electrons is

also calculated and in LCORE process.

5. The fifth module is called MIXER: the new total density is compared with the old density,

if the values are the same; the self-consistent (SC) is finished. The total energy and wave

functions of the electrons are found. Otherwise, the new density is mixed with old density

with a percentage decided at the beginning of the calculation to reproduce a new density to

run another cycle.

The cycle (visit of the five modules) is repeated until we get the read difference between the

total energy and the new total energy, less than a value already expected.

The Linearized Augmented Plane Wave (LAPW) method has proven to be one of the most

accurate methods for the computation of the electronic structure of solids within density

75

functional theory. A full-potential LAPW-code for crystalline solids has been developed over a

period of more than twenty years. A first copyrighted software version for the computation of

the electronic structure of solids within DFT was called WIEN and was published by P. Blaha,

K. Schwarz, P. Sorantin, and S. B. Trickey [22]. After that significant improvements and

updates were accomplished on the UNIX original version of WIEN2k. Consequently, sequence

of versions were issued and known as WIEN 93, WIEN 95 and WIEN 97.

Now a new version, WIEN2K, is available, which is based on an alternative basis set. This

allows a significant improvement, especially in terms of speed, universality, user-friendliness

and new features. WIEN2Kis written in FORTRAN 90 and requires a UNIX operating system

since the programs are linked together via C-shell scripts. It has been implemented

successfully on the following computer systems: Pentium systems running under Linux, IBM

RS6000, HP, SGI, Compac DEC Alpha, and SUN. It is expected to run on any modern UNIX

(LINUX) system [22]. WIEN2K has the several features that are new with respect to WIEN

97.

In our work, the WIEN2K package is used to study the physical, chemical, electrical, structural

and electronic properties of the materials, so when we run the WIEN2K then, we will compute

the electronic structure of solids within DFT. The WIEN2K can simulate physical and

chemical systems supposed to form a new material, this is very necessary to the laboratory

person, who can produce the desired material such as drug and medicine.

76

Appendix 3: Publications

We published two papers in the thesis as the following citations and they are

available in the next pages respectively:

1. Hadi Khalilieh, Nidal Kafri and Rezek Mohammad. International Journal of New

Computer Architectures and their Applications (IJNCAA) 4(2): 108-116.

The Society of Digital Information and Wireless Communications, 2014

(ISSN: 2220-9085). Published

2. Hadi Khalilieh, Nidal Kafri and Rezek Mohammad. The International

Conference on Digital Information, Networking, and Wireless

Communications (DINWC 2014) ISBN: 978-0-9891305-6-1 ©2014

SDIWC, VSB-Technical University of Ostrava, Czech Republic June 24-26,

2014. Published

First Publication in:

International Journal of New Computer Architectures and

their Applications

(IJNCAA)

1

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 108-116

The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

Performance Evaluation of Message Passing vs. Multithreading Parallel

Programming Paradigms on Multi-core Systems

Hadi Khalilieh1, Nidal Kafri2 and Rezek Mohammad3
1,2Department of Computer Science, Al-Quds University, Jerusalem, Palestine

3Palestinian Technical University/Khadoorie, Middle East Technical University/physics department

1hkhalilia1@science.alquds.edu,

2nkafri@science.alquds.edu

3esteteh@hotmail.com

ABSTRACT

Present and future multi-core computational
system architecture attracts researchers to utilize
this architecture as an adequate and inexpensive
solution to achieve high performance
computation for many problems. The multi-core
architecture enables us to implement shared
memory and/or message passing parallel
processing paradigms. Therefore, we need
appropriate standard libraries in order to utilize
the resources of this architecture efficiently and
effectively. In this work, we evaluate the
performance of message passing using two
versions of the well-known message-passing
interface (MPI) library: MPICH1 vs. MPICH2.
Furthermore, we compared the performance of
shared memory using OpenMP that supports
multithreading with MPI. The results show that
the performance when MPICH2 is used is better
than MPICH1. The results indicate that
multithreading performs better than message
passing.

KEYWORDS

Parallel Processing, Performance Evaluation,
Message Passing, MPICH1, MPICH2,
Multithreading, Multicore systems, WIEN2K.

1 INTRODUCTION

In order to achieve high performance computing
(i.e. reducing computing elapsed time), parallel
processing is widely used in multimedia
computing, signal processing, scientific
computing, engineering, general purpose
application, industry, computer systems,
statistical applications, and simulation. Usually,
mainframes and super computers are used to
implement shared memory parallel computing,
while clusters and grid computing are utilized to
speed up the computation using message
passing. Thus, parallel processing was carried
out on expensive supercomputers and
mainframes. After that, the emerging high
performance computer network and protocols
attracted the researcher to use message passing
on distributed memory to implement parallel
processing on clusters of on shelf computers and
grid computing.

Obviously, parallel processing is implemented
on shared memory computer architectures using
Single Instruction Multiple Data (SIMD),
Multiple Instruction Multiple Data (MIMD),
Single Program Multiple Data (SPMD)
Techniques, or multithreading. Whilst message-
passing paradigm can be used on distributed
memory architectures by means of SPMD and
MIMD, a hybrid approach using both paradigms
can also be implemented on both architectures.

2

However, the emerging and promising multi-
core computer architecture attracts the
researchers to utilize this architecture as an
adequate and inexpensive solution to gain high
performance computation for many problems.
Therefore, this architecture shifted the interest of
many researchers towered parallel computing on
such multi-core systems. Thus, we can achieve
relatively cheap high performance using message
passing, share memory, or hybrid techniques on
a single or cluster of multi-core computers[2][3].
This architecture enables us to implement both
shared memory and/or message passing parallel
processing paradigms. Therefore, we need to
evaluate which paradigm can be used more
efficiently and effectively on multi-core
architectures. Furthermore, to carry out our
computations, we need appropriate standard
libraries in order to utilize the resources
efficiently for a given computational problem.
Hence, to facilitate realization of parallel
programming on different platforms, there are
several supporting libraries. For example, we can
use PVM, JPVM and MPI for message passing
on distributed memory. Posix and OpenMP are
also used for multithreading on shared memory
[3]. It should be noted that these libraries provide
us with a well-defined standard interface to
achieve portability and flexibility of usage.
However, the developers of these libraries intend
to improve the implementation to cope with the
emerging platforms to increase the utilization
efficiency.

In this work, we focus on evaluation of the
performance of parallel computing using
message passing (multi-processes) and shared
memory (multiprocessing) on multi-core
systems. We used different versions of MPI
library namely MPICH1 and MPICH2 for
message passing and OpenMP for multithreading
in our experiments.

Since, one of the important applications that is
needed to speed up computation is the WIEN2K
application, which is based on Density
Functional Theory (DFT), we used it as a
benchmark to evaluate the performance of
MPICH1 vs. MPICH2. The WIEN2K
application enables us to simulate physical and

chemical systems, which form new materials.
This is necessary for laboratory researchers who
can produce desired materials such as drugs and
medicine [8]. The WIEN2K applied a parallel
method to solve quantum mechanics equations
based DFT to find the cohesive energy of any
material. It should be noted that the current
official version of this application uses MPICH1.
In addition, we used a matrix multiplication
benchmark to evaluate the performance of multi-
processes (message passing) vs. multithreading
parallel programming performance and
efficiency on a multi-core system.

In this work, we evaluated the performance of
MPICH1 and MPICH2 by running WIEN2K that
originally used MPICH1 and the new
implementation of WIEN2K on MPICH2.
Moreover, we implemented a matrix
multiplication on both MPICH1 and MPICH2
message passing and OpenMP for testing
multithreading technique.

The paper is organized as follows: section 2
introduces a background and literature review.
Next, section 3 discusses the experiment and the
results. Finally, section 4 concludes this work
and introduces future work.

2 BACKGROUND & LITERATURE
REVIEW

Multi-core systems and clusters become an
interesting and affordable platform for running
parallel processing to achieve high performance
computing for many applications and
experiments. Some examples include internet
services, databases, scientific computing, and
simulation. This is due to their scalability
performance/cost ratio [1].

There are two main approaches that support
parallel computing via multi-core processors:
shared memory and distributed memory
approaches. Thus, we will provide an overview
of the evolution of the two main approaches.

3

2.1 Shared Memory Approach

Shared memory based parallel programming
models communicate by sharing the data objects
in the global address space. Shared memory
models assume that all parallel activities can
access all of memory. Consistency in the data
need to be achieved when different processors
communicate and share the same data item, this
is done by using the cache coherence protocols
used by the parallel computer. All operations
such as load and store for data carried out by the
automatically without direct intervention by the
programmer. For shared memory based parallel
programming models, communication between
parallel activities is completed via a shared
mutable state that must be carefully managed to
ensure correctness. Various synchronization
primitives such as locks or transactional memory
are used to enforce this management [3]. In this
approach a main memory is shared between all
processing elements in a single address space.

The advantages with using shared memory based
parallel programming models are presented
below.
 Shared memory based parallel programming

models facilitate easy development of the
application more than distributed memory
based multiprocessors.

 Shared memory based parallel programming
models avoid the multiplicity of data items
and allows the programmer to not be
concerned about the programming model's
responsibility.

 Shared memory based programming models
offer better performance than the distributed
memory based parallel programming models.

The disadvantages with using the shared
memory based parallel programming models are
described below.
 The hardware requirements for the shared

memory based parallel programming models
are very high, complex, and cost prohibitive.

 Shared memory parallel programming
models often encounter data races and
deadlocks during the development of the
applications.

A diverse range of shared memory based parallel

Programming models are developed to this day.
They can be classified into mainly three types as:
Threading, directive based, and tasking models
[16, 17]. However, we will only focus on the
threading model.

Threading models

These models are based on the thread library that
provides low-level library routines for
parallelizing the application. These models use
mutual exclusion locks and conditional variables
for establishing communications and
synchronizations between threads. Some of the
well-known libraies are OpenMP and Posix. The
advantages with threading models are as follows:
 More suitable for applications based on the

multiplicity of data.
 Flexibility provided to the programmer is

very high.
 Threading libraries are widely used and

threading model tools are readily available.
 Performance can still be improved by using

conditional waits and try locks.
 Easy to develop parallel routines for

threading models

The disadvantages associated with threading

models include the following:

 Hard to write applications using threading

models because establishing a

communication or synchronization incurs

code overhead, this is hard to manage,

thereby leaving more scope for errors.

 The developer should be more careful in

using global data otherwise this leads to

data races, deadlocks, and false sharing.

 Threading models stand at low level of

abstraction, which isn‘t required for a better

programming model.

2.2 Distributed Memory Approach

This type of parallel programming approach
allows communication between processors by
using the send/receive communication routines.
Message passing models avoids

4

communications between processors based on
shared/global data [16]. They are typically used
to program clusters, where in each processor in
the architecture gets its own instance of data and
instructions. The advantages of distributed
memory based programming models as follows:
 The hardware requirement for the message

passing models is low, less complex, and
comes at very low cost.

 The message passing models avoids the data

races and consequently the programmer is

freed from using the locks.

The disadvantages with distributed memory
based parallel programming model are listed
below:
 Message passing models in contrast

encounter deadlocks during the process of
communications.

 Development of applications on message
passing models is hard and takes more time.

 The developer is responsible for
establishing communication between
processors.

 Message passing models are less
performance oriented and incur high
communication overheads.

A comparison base characteristic using methods
between shared vs. distributed is listed in Table 1
[17]. the message-passing interface (MPI) is a
set of API functions that facilitate parallel
programming based on message passing
paradigm. One of the well-known APIs is
MPICH1, which is based on an MPI standard
founded on April 29-30, 1992 at a workshop in
Williamsburg, Virginia [4]. This library API
supports FORTRAN and C programming
languages. It has been issued with several
modifications and extensions to support dynamic
processes, one-sided communication, parallel
I/O, etc [13][14]. MPICH2 standard is intended
for use by all those who want to write portable
message-passing programs in Fortran 77,
FORTRAN 95, C and C++ [5]. The
improvement of MPICH2 focused on many
issues and functionalities such as dynamic
processes, one sided communication, parallel
I/O, etc. [13][14].

Table 1: A Comparison between Shared vs. distributed

Architecture

Distribu-
ted

Memory
MPI

Shared
Memory

Arch
OpenMP

Hybrid
Dist. &
Shared

Memory
Creation

mathematical
model

Easy
Slightly
complic-

ated
Difficult

Balancing

Change-
able with
Difficulti

-es

Change-
able-
easily

Easily
changeab-

le

Simulation of
parallel
models

Advisab-
le

Conveni-
ent

Useful

Synchronizat
ion

Models
Simple

Complic-
ated

Complica-
ted

Transfer
dates

between
models

Large Little
Intermedi-

ate

Power of
large

modules

Reasona-
ble

Big Big

Of course, a number of changes to dynamic
spawning tasks, the nature of communication,
and how one runs them will be different. By
adding new features in MPICH2, it will be more
robust, efficient, and convenient to use [4].
Consequently, we will focus on the
improvements in MPICH2 that we believe they
have an impact on the performance:

1. MPICH1 focused mainly on point-to-point

communications, but MPICH2 included a
number of collective communication
routines and was thread-safe [4].

2. MPICH2 supports dynamic spawning of
tasks. It provides primitives to spawn
processes during the execution and enables
them to communicate together [11].

3. MPICH2 supports one-sided
communication. It provides three
communication calls: MPI_PUT (remote
write), MPI_GET (remote read), and
MPI_ACCUMULATE (remote update).

5

These operations are non-blocking [12]
[14].

4. MPICH2 used generalized requests that
aren’t used by MPICH1. These requests
allow users to create new non-blocking
operations with an interface [14].

5. In MPICH2, significant optimizations
required for efficiency (e.g. asynchronous
I/O, grouping, collective buffering, and
disk-directed I/O) are achieved by the
parallel I/O system [14].

6. MPICH-1 defined collective communication
for intra-communicators and two routines
for creating new intercommunicators. But
MPICH-2 introduces extensions of many of
the MPICH-1 collective routines to
intercommunicators, additional routines for
creating intercommunicators, and two new
collective routines: a generalized all-to-all
and an exclusive scan [14].

7. MPICH2 supports MPI THREAD
MULTIPLE by using a simple
communication device, known as “ch3
device” (the third version of the “channel”
interface), but MPICH1 does not support
MPI THREAD MULTIPLE [5].

8. MPICH1 is not concerned with
communication, but rather process
management. But MPICH2 is concerned
with communication rather than process
management. However, MPICH2 provides a
separation of process management and
communication. The default runtime
environment consists of a set of daemons,
called mpd’s, that establish communication
among the machines to be used before
application process startup, thus providing a
clearer picture of what is wrong when
communication cannot be established. In
addition, it provides a fast and scalable
startup mechanism when parallel jobs are
started. But MPICH1 doesn’t separate them
and mpd’s are built in [15].

9. MPICH1 required access to command line
arguments in all application programs
before startup, including FORTRAN ones.
Thus, MPICH1’s configuration devotes
some effort to finding the libraries, such as
libraries that contained the right versions of
iargc and getarg. But MPICH2 does not

require access to command line arguments
of applications before startup and MPICH2
does nothing special for configuration. If
one needs them in their applications, they
must ensure that they are available in the
environment being used [15].

Various operating systems such as Linux,
Solaris, and Windows can be used for scheduling
computer resources such as memory, I/O, and
CPU [6].

2.3 Cohesive Energy & WIEN2K

Condense matter physics looks different from 50
years ago. Scientist knows that solids obey the
laws of quantum mechanics; by solving these
quantum equations all properties of solids,
including electrical, magnetic, optical and
thermal can be found. The main scalable
quantity for measuring the stability of any
material is the cohesive energy; cohesive energy
equals the difference between the total energy of
the material in the combined form and the sum
of the free atom’s energy in their free state as
shown in equation (1)

E cohesive energy = E compound - ∑E free atoms (1)

Each stable form of these atoms can produce
positive value for the cohesive energy.
Furthermore, the material can normally take
more than one stable state, and the state with the
highest cohesive energy is the most stable one
[10].

In order to study the previous characteristics of
the materials we have to solve many second
body order differential equation called equation
of state. This equation obeys the laws of
quantum mechanics. The equation of state is
composed of the kinetic energy operators for
both the nucleus and electrons, the potential
energy resulting from interaction between
electrons themselves, nucleis themselves, and
nucleis and electrons; these operators are
measured by solving many-body Hamiltonian for
the system, which is illustrated in equation (2)
[7][10].

6

This equation can be solved numerically after
transforming it to a one-body problem after some
approximations. This method called Density
Functional Theory (DFT) [8][9].

�Ψ = �	Ψ
Ĥ

= −
ℎ�

2
�

��

�
→

��
�

	

− 	
ℎ�

2
�

��

�
→

��
�

–
1

4���
�

����

│
�
→

�
− 	

�
→
�

│
�,�

	−

1

8���
�

��

│
�
→

�
−

�
→

�
│

���

	

+		
1

8���
�

������

│
�
→

�
−

�
→

�
│
																		(2)

���

 Program packages like WIEN2K [3], using Full
potential Linear Augmented Plane Wave and
Local Orbital’s (FP-LAPW+Lo) technique
allows such studies on the basis of quantum
mechanics using density functional theory
(DFT). In these studies, we have two main
factors controlling the calculation. The first
factor is the time of calculation and the second is
the sample actuality; the sample actuality
meaning the number of atoms constituting the
sample, the bigger the number is the more actual
case we have, and more complexity, which costs
a lot of calculation time.

WIEN2K package is composed of these five
modules: LAPW0, LAPW1, LAPW2, LCORE
and MIXER. Each module solves one equation
to get the highest cohesive energy. The state with
the highest cohesive energy is the most stable
one [10]. The calculation is repeated until it
obtains the highest cohesive energy.

The authors in [8] compared two parallel
approaches that run on MPICH1 channel. The
two methods are: distributed k-point and data
distribution. However, the first one runs each of
the two modules (LAPW1, LAPW2) in parallel
way. The other runs each of the first three
modules in parallel. In addition, a comparison
between serial and parallel approaches for

running Matrix Multiplication on MPICH1 was
in [1].

3 EXPERIMENT AND RESULTS

DISCUSSION

In this work, two cases of experiments were
carried out. In the first case (Case 1), we
focused on distributing tasks of WIEN2K
program using MPICH1 and MPICH2 on multi-
core machine. Whereas in [8] the experiments
were carried out on a cluster using MPICH1 to
distribute WIEN2K task. In the second case
(Case 2) of experiments, we tested the
performance of parallel matrix multiplication
using multi-processing (message passing) using
MPICH1 and MPICH2, and multithreading
paradigms using OpenMP.

Our experiments were running on Linux (Fedora
14) installed on a multi-core (quad) machine
(Intel Core i5 3GHz processor); the specification
details of the experiments platform/machine are
listed in Table 2.

 Table 2: Machine Specifications

No Specification Multi-Core PC
1 CPU speed Quad 3 GHz
2 RAM size 8 GB
3 Cache 8 Mbyte
4 HD speed 7200 RPM

To accomplish the calculations, a set of
programs were installed on Fedora Linux version
14 and optimized with appropriate options
together with WIEN2K. These programs are
listed in Table 3.

Recall that we continue the work of [8], where
they installed and used MPICH1 to run WIEN2K
program. For this work, we installed MPICH2
channel then installed WIEN2K MPICH2
version and run "LAPW0," which is a basic
module of WIEN2K. This is done via
determined parallel commands. These
commands were written on the terminal of the
operating system.

7

The experiments were carried out by running the
programs LAPW0 as benchmarks using
MPICH1 MPICH2 on one, two, three, and four
processors of the quad multi-core machine,
where, each processor has a unique id from 0 to
3. Each experiment was repeated several times
and the average of the elapsed time was
recorded. The experiments were divided into two
cases: the first one ran LAPW0 for one cycle. In
the second experiment (Case 2), the matrix
multiplication was implemented using MPICH1,
MPICH2, and OpenMP.

 Table 3: Software Requirements

Program name Version Source
WIEN2K 13.1 www.WIEN2K.at

MPI Channel

MPICH1.3
&

MPICH2-
1.0.5p3

 www.mpich.org

Intel Fortran 90
Compiler

11.072 Intel

Intel C
Compiler

10.074 Intel

Mathematical
Kernel Library

(MKL)
11.0 Intel

Fastest Fourier
Transform in

the west
(FFTW)

FFTW-
2.1.5

Intel

Case 1:

The experiments on MPICH1 used "mpirun"
command and “mpiexec” for MPICH2. For
example, the steps of the LAPW0 execution on
MPICH2 are shown in Figure (1).

The results of the average running time for case
1 (LAPW0) are summarized in Table 4. This
table shows the execution time on MPICH1 and
MPICH2 and the improvement factor (if) by the
number of processors. The improvement factor
(if) is measured as the ratio of the difference
between the execution time on MPICH1 and
MPICH2 to the Execution time on MPICH1 i.e.
(TMPICH1-TMPICH2)/ TMPICH1.

�� = 	
���������������

�������

[rezek@rezek-dell15~]$ cd/home/ rezek
/mpich2 /examples
[rezek@rezek-dell15 examples]$ mpicc -c
lapw0_mpi.c
[rezek@rezek-dell15 examples]$ mpicc -o
lapw0_mpi lapw0_mpi.o
[rezek@rezek-dell15 examples]$ mpd &
[1] 3929
[rezek@rezek-dell15 examples]$ mpiexec
-n 1 lapw0_mpi
lapw0_mpi has started with 1 tasks.
Initializing arrays...
Running Time = 62.005132
Done.

[rezek@rezek-dell15 examples]$ mpiexec
-n 2 lapw0_mpi
lapw0_mpi has started with 2 tasks.
Initializing arrays...
Running Time = 34.002134
Done.

rezek@rezek-dell15 examples]$ mpiexec -
n 3 lapw0_mpi
lapw0_mpi has started with 3 tasks.
Initializing arrays...
Running Time = 25.141348
Done.

Figure 1 : Screen Shot of Running LAPW0 on MPICH2

Table 4: Execution Time of LAPW0 on MPICH1

and MPICH2 on Different # of Processors.

of
Proc

Exec.
time on
mpich1
(min)

Exec.
time on
mpich2
(min)

If

1 64.25 62.54 0.026615

2 35.05 34.38 0.019116

3 26.03 25.37 0.025355

4 20.5 19.52 0.047805

It is clear that the performance of MPICH2 is
better than MPICH1 by approximately 3%. Also,
Figure 2 shows the difference between the
execution time on MPICH1 and MPICH2.

8

Therefore, we believe that the nine added
features have positive impact on the
performance. The most important added features
in MPICH2 are the collective communications,
the support of one-sided communication, MPI
Thread Multiple, and its concern on
communication rather than process management.
It should be noted that the time unit in the
experiments of case 1 is in minutes, whereas it is
in seconds in case 2.

Figure 2: the WIEN2K execution time of MPICH1 vs.
MPICH2.

Case 2:

In this case the experiments were implemented
on a standard parallel matrix multiplication of
size 5120 x 5120 using multithreading by means
of OpenMP and multi-processing (message
passing) using MPICH1 and MPICH2. Also, in
these experiments we utilized 1, 2, 4, 8 and 16
processes. The experiments where repeated by
using multithreading with 1, 2, 4, 8, and 16
threads. The results in Figure 3 show that the
performance using multithreading is better than
multiprocessing. This is because of the overhead
processes and data distribution.

Recall that the experiment's platform has four
processing elements. It is apparent from Figure 3
that the curve declines (i.e. improving the
efficiency and speed-up) until the number of
processes/threads reaches 4. Afterwards, the
curve begins to incline, which indicates a

decrease in performance and efficiency. This is
due to the overheads in scheduling the threads
and processes in utilizing shared resources (i.e.
processing elements and shared memories).

Fig 3: Execution Time of Matrix Multiplication Using

MPICH1 vs. MPICH2 vs. OpenMP

4 CONCLUSION AND FUTURE WORKS

The goal of this work is twofold. The first is to
evaluate and compare the performance of
MPICH1 and MPICH2 using different cases
running on one, two, three, and four processors.
The second aim is to evaluate the performance
of running parallel programs with big data using
message passing and multithreading. As a result,
we can conclude that MPICH2 perform better
than MPICH1 in all cases. It is due to the
collective improvement and added features in
MPICH2. Moreover, the results show that
multithreading programming on multi-core
architectures perform better than message
passing when the parallel programs works on big
data.

Finally, for future work, we intend to extend our
experiment to test the performance of newly
issued MPICH3 and Graphical Processing Units
(9999999GPU) using different tasks.

9

 5 REFERENCES:

1. Sherihan Abu El-Enin, Mohamed Abu El-Soud,”
Evaluation of Matrix Multiplication on an MPI
Cluster” Faculty of computers and Information,
Mansoura University, Egypt. 2011.

2. Dami´an A. Mall´on, Guillermo L. Taboada, Carlos
Teijeiro, Juan Touri˜no, Basilio B. Fraguela, Andr´es
G´omez1, Ram´on Doallo, and J. Carlos
Mouri˜no1,” Performance Evaluation of MPI, UPC
and OpenMP on Multicore Architectures”.Galicia
Supercomputing Center (CESGA), Santiago de
Compostela, Spain. Computer Architecture Group,
University of A Coru˜na, A Coru˜na, Spain. 2009.

3. David Culler. Jaswinder Pal Singh, Anoop Gupta.”
Parallel Computer Architecture A Hardware /
Software Approach ”. University of California,
Berkeley, Princeton University, Stanford University,
Aug 28, 1997, Pages 40 -127.

4. ”MPI: A Message-Passing Interface Standard,
Message Passing Interface Forum”. ARPA and NSF
under grant ASC-9310330, the National Science
Foundation Science and Technology Center
Cooperative Agreement No. CCR-8809615, by the
Commission of the European Community through
Esprit project P6643. Nov 15, 2003.

5. ”MPI: A Message-Passing Interface Standard,
Version 2.1, and Message Passing Interface Forum”.
June 23, 2008.

6. EDOUARD BUGNION, SCOTT DEVINE,
KINSHUK GOVIL, and MENDEL ROSENBLUM,
“Disco: Running Commodity Operating Systems on
Scalable Multiprocessors”, Stanford University,
November 1997, Vol. 15, No. 4, Pages 412–447.

7. S. Cottenier, “Density Functional Theorythe Family
of (L)APW-methods: a step-by-step introduction”,
August 6, 2004, ISBN 90-807215-1-4.

8. Rezek Mohammad, Areej Jabir, and Rashid Jayousi,
“Optimum Execution For WIEN2K using Parallel
Programming Models (Comparison Study)”.
Department of physics, Palestinian Technical
University/Khadoorie, Middle East Technical
University, and department of Computer Science, Al-
Quds University, Jerusalem, Palestine. 2011

9. Schrodinger¸ E. “An Adulatory Theory of the
Mechanics of Atoms and Molecules”. Physical
Review 28 (26): 1049-1070. 1926.

10. Hellmann¸ Hans, “A new Approximation Method in
the Problem of Many Electrons”. Journal of
Chemical Physics (Karpow-Institute for Physical
Chemistry,Moscow), 1935.

11. M´arcia C. Cera1, Guilherme P. Pezzi, Maur´ıcio L.
Pilla, Nicolas B. Maillard1, and Philippe O. A.
Navaux, , “Scheduling Dynamically Spawned
Processes in MPI-2”. Universidade Federal do Rio
Grande do Sul, Porto Alegre Brazil and
Universidade Cat´olica de Pelotas, Pelotas, Brazil).

12. C.M. Maynard, “Comparing One-Sided
Communication with MPI, UPC and SHMEM”.
EPCC, School of Physics and Astronomy, University

of Edinburgh, JCMB, Kings Buildings, Mayfield
Road, Edinburgh, EH9 3JZ, UK.

13. Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin,
Dhabaleswar K. Panda, William Gropp and Rajeev
Thakur, “High Performance MPI-2 One-Sided
Communication over InfiniBand”. Computer and
Information Science The Ohio State University
Columbus, OH 43210 Mathematics and Computer
Science Division Argonne National Laboratory
Argonne, IL 60439.

14. “MPI: A Message-Passing Interface Standard,
Version 2.2, and Message Passing Interface Forum”.
Sept 4, 2009

15. William Gropp, Ewing Lusk, David Ashton, Pavan
Balaji, Darius Buntinas, Ralph Butler, Anthony
Chan, Jayesh Krishna, Guillaume Mercier, Rob Ross,
Rajeev Thakur, and Brian Toonen,“ MPICH2 User’s
Guide, Version 1.0.6, Mathematics and Computer
Science Division Argonne National Laboratory”.
September 14, 2007

16. Srikar Chowdary Ravela, “Comparison of Shared
memory based parallel programming models”.
School of Computing Blekinge Institute of
Technology Box 520 SE – 372 25 Ronneby Sweden,
2010.

17. Kvasnica, P., Páleník, T “Simulation in Flight
Simulator with the Hybrid Distributed-Shared
Memory Architecture” In: ASIS 2009, s. 19 – 24.
ISBN 978-80-86840-47-5. 2009

10

Second Publication in:

The International Conference on Digital Information, Networking, and

Wireless Communications

(DINWC 2014)

2

Evaluation of WIEN2K Performance on MPICH2 vs. MPICH1

Hadi Khalilieh and Nidal Kafri

Department of Computer Science, Al-Quds University, Jerusalem, Palestine

hkhalilia1@science.alquds.edu, nkafri@science.alquds.edu

Rezek Mohammad

Palestinian Technical University/Khadoorie, Middle East Technical University/physics department

esteteh@hotmail.com

ABSTRACT

The emerging multi-core computer architecture
attracts the researchers to utilize this architecture
as an adequate and inexpensive solution to
achieve high performance computation for many
problems. Where, the multi-core architecture
enables us to implement shared memory and/or
message passing parallel processing paradigms.
Therefore, we need appropriate standard
software libraries in order to utilize the resources
efficiently for a given computational problem.

In this work, we evaluate the performance of two
versions of the well-known massage passing
interface (MPI) library: MPICH1 vs. MPICH2.
In our experiments, we used two benchmarks.
The first one is the WIEN2K application, which
is based on Density Function Theory, and the
second is a Matrix multiplication. The results
show that we achieve better performance when
MPICH2 is used than MPICH1.

KEYWORDS

Parallel Processing, Message Passing Interface
MPI, MPICH1, MPICH2, performance, multi-
core systems, WIEN2K.

1. INTRODUCTION

In order to achieve high performance computing
i.e., reducing computing elapsed time, parallel
processing is widely used in scientific
computing, engineering, multimedia application,

industry, computer systems, statistical
applications, and simulation. One of the
important applications that need to speed up
computation is WIEN2K application, which is
base on Density Functional theory.

Usually parallel processing can be implemented
on shared memory computer systems or
distributed memory systems using message-
passing paradigms. A hybrid approach using
both paradigms also can be implemented.
Parallel processing was usually carried out on
expensive supercomputers and mainframes.
After that, the emerging high performance
computer network and protocols attracted the
researcher to use the distributed memory parallel
processing on clusters of on shelf computers and
Grid computing.

In the past decade, the development of multicore
Systems shifted the interest of many researchers
towered parallel computing on such multi-core
systems. Thus, we can achieve relatively cheap
high performance using message passing, share
memory, or hybrid techniques on single or a
cluster of multi-core computers[2][3]. In order to
facilitate realization of parallel programming on
different platforms, there are several supporting
libraries. For example, we can use PVM, JPVM
and MPI for message passing on distributed
memory. Also Posix and OpenMP are used for
multithreading on shared memory [3]. It should
be noted that these libraries provide us with
well-defined standard interface to achieve
portability and flexibility of usage. However, the

2

developers of these libraries intend to improve
the implementation to cope with the emerging
platforms to increase the utilization efficiency. In
this work, we focus on evaluating the
performance of different versions of MPI library
namely MPICH1 and MPICH2. Since WIEN2K
is currently using MPICH1.

The WIEN2K can simulate physical and
chemical systems supposed to form a new
material, this is very necessary to the laboratory
person, who can produce the desired material
such as drug and medicine [8]. The WIEN2K
applied a parallel method to solve quantum
mechanics equations based Density Functional
Theory (DFT) to find the cohesive energy of any
material.

In this work, we evaluated the performance of
MPICH1 and MPICH2 by running WIEN2K that
originally uses MPICH1 and the new
implementation of WIEN2K on MPICH2 as
benchmark. Moreover, we implemented a matrix
multiplication on both MPICH1 and MPICH2.

This paper is organized as follows: Section 2
reviews the main difference between MPICH1
and MPICH2. In section 3, literature review and
background are introduced. Next section (4)
discusses the experiment and the results. Finally,
a conclusion and future work are provided in
section 5.

2. PRELIMINARIES

Multi-core systems and clusters become an
interesting and affordable platform for running
parallel processing to achieve a high
performance computing for many applications
and experiments. For instance: internet service,
database, scientific computing and simulation.
This is due to their scalability performance/cost
ratio [1].

On the other hand, there are many Libraries to
support the shared and distributed memory. The
message passing interface (MPI) is a set of API
functions that enable programmers to write
parallel programs based on message passing

paradigm. One of the well known APIs MPICH1
which established based on MPI standard that
founded in April 29-30, 1992 work shop in
Williamsburg Virginia [4]. This library API
supports FORTRAN and C programming
languages. It has been issued with several
modifications and extensions to support dynamic
processes, one-sided communication, parallel
I/O, etc [13][14]. MPICH2 standard is intended
for use by all those who want to write portable
message passing programs in Fortran 77,
FORTRAN 95, C and C++ [5]. The
improvement of MPICH2 focused on many
issues and functionalities such as dynamic
processes, one-sided communication, parallel
I/O, etc [13][14]. Of course, a number of
changes about how you run them, dynamic
spawning tasks and the nature of communication
will be different. By new added features in
MPICH2, we will get it more robust, efficient,
and convenient to use [4]. Consequently, we will
focus on the improvements in MPICH2 that we
believe they have an impact on the performance:

1. MPICH1 focused mainly on point-to-point

communications But MPICH2 included a
number of collective communication routines
and was thread-safe [4].

2. MPICH2 supports dynamic spawning of
tasks. It provides primitives to spawn
processes during the execution and to enable
them to communicate together [11].

3. MPICH2 supports One-sided
Communication. It provides three
communication calls: MPI_PUT (remote
write), MPI_GET (remote read) and
MPI_ACCUMULATE (remote update).
These operations are non-blocking [12][14].

4. MPICH2 used generalized requests that
aren’t used by MPICH1. These requests
allow users to create new non-blocking
operations with an interface [14].

5. In MPICH2, significant optimizations
required for efficiency (e.g., asynchronous
I/O, grouping, collective buffering, and disk-
directed I/O) are achieved by the parallel I/O
system [14].

6. MPICH-1 defined collective communication
for intra-communicators and two routines for
creating new intercommunicators. But,

3

MPICH2 introduces extensions of many of
the MPICH-1 collective routines to
intercommunicators, additional routines for
creating intercommunicators, and two new
collective routines: a generalized all-to-all
and an exclusive scan [14].

7. MPICH2 supports MPI THREAD
MULTIPLE by using a simple
communication device, known as “ch3
device” (the third version of the “channel”
interface) but MPICH1 does not support MPI
THREAD MULTIPLE [5].

8. MPICH1 does not concern with
communication rather than process
management. But, MPICH2 concerns with
communication rather than process
management. However, MPICH2 provides a
separation of process management and
communication. The default runtime
environment consists of a set of daemons,
called mpd’s, that establish communication
among the machines to be used before
application process startup, thus providing a
clearer picture of what is wrong when
communication cannot be established and
providing a fast and scalable startup
mechanism when parallel jobs are started.
But MPICH1 doesn’t separate them and
mpd’s are built in [15].

9. MPICH1 required access to command line
arguments in all application programs before
startup; including FORTRAN ones, so
MPICH1’s configure devoted some effort to
finding the libraries such as libraries that
contained the right versions of iargc and
getarg. But MPICH2 does not require access
to command line arguments of applications
before startup and MPICH2 does nothing
special for configuration. If you need them in
your applications, you will have to ensure
that they are available in the environment
you are using [15].

Various operating systems including Linux,
Solaris, and Windows can be used for managing
computer resources such as memory, I/O and
CPU [6].

3. LITERATURE REVIEW AND

BACKGROUND

Materials are build from atoms, atoms composed
of a heavy positively charged nucleus and lighter
particles called electrons. These particles interact
with each other and with their neighbors in the
next atoms. In order to study the stability,
structural, thermodynamic, mechanical, transport
properties and electronic properties of these
materials we have to solve many-body second
order deferential equation called equation of
state, this equation obeys the laws of quantum
mechanisms.

The equation of state composed of the kinetic
energy operators for both the nucleus and
electrons, potential energy resulted from
interaction between electrons them self, nuclei’s
them self and nuclei’s and electrons; these
operators are measured by solving many body
Hamiltonian for the system, which is illustrated
in equation (1) [7][10]

This equation can be solved numerically after
transforming it to a one body problem after some
approximations, this method called Density
Functional Theory (DFT) [8][9].

�Ψ = �	Ψ

Ĥ = −
ℎ�

2
�

��
�
→

��
�

	− 	
ℎ�

2
�

��
�
→

��
�

–
1

4���
�

����

│
�
→

�
− 	

�
→
�

│
�,�

	−

1

8���
�

��

│
�
→

�
−

�
→
�
│

���

	+		
1

8���
�

������

│
�
→

�
−

�
→
�
│
																		(1)

���

In Our work, the program packages like
WIEN2K [7], using Full potential –Linear
Augmented Plane Wave And Local Orbital’s
(FP-LAPW+Lo) technique is used, in such
studies we have two main factors controlling the
calculation, these two factors are vice versa, the
first factor is the time of calculation and the
second is the sample actuality, the sample
actuality means here the number of atoms
constituting the sample, the bigger the number is
the more actual case we have, and more

4

complexity, this will cost a lot of calculation
time. WIEN2K package composed of five
modules, each module solve one of the equations
from (2) to (5) sequentially:
 The first module is called LAPW0, in this

process the ��� is calculated in the crystal
from the initial density �� using poisons
equation:
 ∇���� = ρ(r) (2)

 The second and third module is called
LAPW1, LAPW2 which are responsible for
building and solving the Schrӧdinger
equations (3) and (4), (setting up H and S
matrix), and solves the generalized Eigen
value problem for special point in the crystal.
The number of these points is proportional to
the reality of the study. The high number
gives more accurate results and costs a lot of
computational time, so Balanced is essential.

 ���Ψ = E Ψ (3)

 (-∇� +���) Ψ = E Ψ (4)

∇�: is the second derivative with respect to
space coordinates.
���: is the effective attractive potential each
electron feel.
E: is the energy of this electron in this crystal
phase.
Ψ: is the wave function of this electron.

 The fourth module is called LCORE: from
the density function, the electrons in the
crystal are distributed on the lowest energy
values, the density function for the core
electrons is also calculated and in LCORE
process as in equation (5):

 ρ(r)= ∫��∗��� (5)

 The fifth module is called MIXER: the new
total density is compared with the old
density, if the values are the same or the
difference is less than an assigned value; the
self-consistent (SC) is finished as shown in
Figure 1. The total energy and wave
functions of the electrons are found.
Otherwise, the new density is mixed with old
density with a percentage decided at the
beginning of the calculation to reproduce a

new density to run another cycle to get faster
convergence and recalculate ��� using
equation (2).

The main scalable quantity for measuring the
stability of any material is the cohesive energy;
cohesive energy equals the difference between
the total energy of the material in combined form
and the sum of the free atom’s energy in their
free state as shown in equation (6)

 E cohesive energy = E compound - ∑E free atoms (6)

Each stable form of these atoms can produce
positive value for the cohesive energy, the
material normally can take more than one stable
state, and the state with the highest cohesive
energy is the most stable one [10].

The authors in [8] compared two parallel
approaches that run on MPICH1 channel. The
two methods are distributed k-point and Data
distribution. However, the first one runs each of
the two modules (LAPW1, LAPW2) in parallel
way. But the other runs each of the first three
modules in parallel. In addition, a comparison
between serial and parallel approaches for
running Matrix Multiplication on MPICH1 was
in [1].

 no

 yes

Figure 1: Physical problem solving steps

guess ��(�)

Input:

����(�)

determine �� and

���

���

�solve ���	� �� =

� 	�

construct �� from

	��

�� = 	���� ?

�� is selfconsistent density

Type	equation	here.

5

4 EXPERIMENT AND RESULTS

DISCUSSION

In our study, we focused on distributing tasks of
WIEN2K program using MPICH1 and MPICH2
on multi-core machine. Whereas, in [8] the
experiments were carried out on a cluster using
MPICH1 to distribute WIEN2K task. The main
contribution in our work depends on the
comparison between the results of these
experiments.

Our experiments were running on Linux (Fedora
14) installed on multi-core (quad) machine (Intel
Core i5 3GHz processor); the specification
details of the experiments platform/machine are
listed in Table 1.

Table 1: Machine Specifications

No Specification Multi-Core PC

1 CPU speed Quad 3 GHz

2 RAM size 8 GB

3 Cache 8 Mbyte

4 HD speed 7200 RPM

To accomplish the calculations, a set of
programs were installed on Fedora Linux version
14 and optimized with appropriate options
together with WIEN2K. These programs are
listed in Table 2.

Table 2: Software Requirements

Program name Version Source

WIEN2K 13.1 www.WIEN2K.at

MPI Channel
MPICH1.3 &

MPICH2-1.0.5p3
www.mpich.org

Intel Fortran 90

Compiler
11.072 Intel

Intel C Compiler 10.074 Intel

Mathematical

Kernel Library

(MKL)

11.0 Intel

Fastest Fourier

Transform in the

west (FFTW)

FFTW-2.1.5 Intel

Recall that we continue the work of [8], where
they installed and used MPICH1 to run WIEN2K
program. For this work, we installed MPICH2
channel then installed WIEN2K MPICH2
version and run "LAPW0" which is a basic
module of WIEN2K. This is done via
determined parallel commands. These
Commands were written on the terminal of the
operating system.

The experiment was carried out by running the
programs (LAPW0 and Matrix Multiplication)
using MPICH1 and MPICH2 on one, two, three,
and four processors of the quad multi-core
machine. Where, each processor has a unique id
from 0 to 3. Each experiment was repeated
several times and the average of the elapsed time
were recorded. The experiments in divided into
two cases: the first one is running LAPW0 for
one cycle, and in the second case is the running
of Matrix multiplication.

[rezek@rezek-dell15~]$ cd/home/
rezek /mpich2 /examples
[rezek@rezek-dell15 examples]$
mpicc -c lapw0_mpi.c
[rezek@rezek-dell15 examples]$
mpicc -o lapw0_mpi lapw0_mpi.o
[rezek@rezek-dell15 examples]$ mpd &
[1] 3929
[rezek@rezek-dell15 examples]$
mpiexec -n 1 lapw0_mpi
lapw0_mpi has started with 1 tasks.
Initializing arrays...

Running Time = 62.005132

Done.
[rezek@rezek-dell15 examples]$
mpiexec -n 2 lapw0_mpi
lapw0_mpi has started with 2 tasks.
Initializing arrays...

Running Time = 34.002134

Done.
[rezek@rezek-dell15 examples]$
mpiexec -n 3 lapw0_mpi
lapw0_mpi has started with 3 tasks.
Initializing arrays...

Running Time = 25.141348

Done.

Fig 2 : Screen Shot of Running LAPW0 on MPICH2

6

It should be noted that for running the
experiments on MPICH1 we use "mpirun"
command and “mpiexec” for running it on
MPICH2. For example, the steps of the LAPW0
execution on MPICH2 are shown in Figure (2).

The results of the average running time for case
1 (LAPW0) are summarized in table 3. This
table shows the execution time on MPICH1 and
MPICH2 and the improvement factor (if) by the
number of processors. Where the improvement
factor (if) is measured as the ratio of the
difference between the execution time on
MPICH1 and MPICH2 to the Execution time on
MPICH1 i.e., (TMPICH1-TMPICH2)/ TMPICH1.

�� = 	
���������������

�������

It is clear that the performance of MPICH2 is
better than MPICH1 by approximately 3%. Also,
Figure 3 shows the difference between the
execution time on MPICH1 and MPICH2.

Table 3: Execution Time of LAPW0 on MPICH1 and

MPICH2 on Different # of Processors.

of

Proc

Exec. time

on mpich1

(min)

Exec. time

on mpich2

(min)

If

1 64.25 62.54 0.026615

2 35.05 34.38 0.019116

3 26.03 25.37 0.025355

4 20.5 19.52 0.047805

Recall that in case 2 matrix multiplication
program for matrices of size (5120 x 5120) were
running using MPICH1 and MPICH2 on one,
two, three, and four processors. The results of
the average running time are summarized in
table 4 and depicted in Figure 4. Again it is clear
that the performance of MPICH2 is better than
MPICH1.

The results of the experiments in case 1 and case
2 assess the improvement of MPICH2 over

MPICH1, which has significant results on the
performance and efficient utilization of
resources. Note that the time units in case 1 are
in minutes, whereas it is in seconds in case 2.

Consequently, in all cases MPICH2 is better than
MPICH1. Therefore, we believe that the nine
added features have positive impact on the
performance. The most important added features
in MPICH2 are the collective communications,
the support of one-sided communication, MPI
Thread Multiple, and its concern on
communication rather than process management.

Fig 3: the WIEN2K execution time of MPICH2 vs. the

execution time of MPICH1.

Table 4: Execution Time of Matrix Multiplication on

MPICH1 and MPICH2 on Different # of Processors.

of

Proc

Exec. time

on mpich1

(sec)

Exec. time

on mpich2

(sec)

If

1 92.357 89.562 0.030263

2 63.109 61.776 0.021122

3 60.910 59.113 0.029503

4 57.965 55.935 0.035021

7

Fig 4: Execution Time of Matrix Multiplication Using

MPICH1 vs. MPICH2

CONCLUSION AND FUTURE

WORKS

The goal of this work is to evaluate and compare
the performance of MPICH1 and MPICH2 using
different cases running on one, two, three, and
four processors. As a result, we can conclude
that MPICH2 perform better than MPICH1. This
is due to the collective improvement and added
features in MPICH2.

Finally, as a future work we intend to extend our
experiment to test the performance of newly
issued MPICH3 using different tasks.

REFERENCES:

[1] Sherihan Abu ElEnin, Mohamed Abu ElSoud,”
Evaluation of Matrix Multiplication on an MPI Cluster”
Faculty of computers and Information,
Mansourauniversity, Egypt. 2011
[2] Dami´an A. Mall´on, Guillermo L. Taboada, Carlos
Teijeiro, Juan Touri˜no, Basilio B. Fraguela, Andr´es
G´omez1, Ram´on Doallo, and J. Carlos Mouri˜no1,”
Performance Evaluation of MPI, UPC and OpenMP on
Multicore Architectures”.Galicia Supercomputing Center
(CESGA), Santiago de Compostela, Spain. Computer
Architecture Group, University of A Coru˜na, A Coru˜na,
Spain. 2009
[3] David Culler. Jaswinder Pal Singh, Anoop Gupta.”
Parallel Computer Architecture A Hardware / Software
Approach”. University of California, Berkeley, Princeton
University, Stanford University, Aug 28, 1997, Pages 40 -
127.
[4] ”MPI: A Message-Passing Interface Standard,

Message Passing Interface Forum”. ARPA and NSF under
grant ASC-9310330, the National Science Foundation
Science and Technology Center Cooperative Agreement
No. CCR-8809615, by the Commission of the European
Community through Esprit project P6643. Nov 15, 2003
[5] ”MPI: A Message-Passing Interface Standard, Version
2.1, and Message Passing Interface Forum”. June 23, 2008
[6] EDOUARD BUGNION, SCOTT DEVINE,
KINSHUK GOVIL, and MENDEL ROSENBLUM,
“Disco: Running Commodity Operating Systems on
Scalable Multiprocessors”, Stanford University,
November 1997, Vol. 15, No. 4, Pages 412–447.
[7] S. Cottenier, “Density Functional Theorythe Family of
(L)APW-methods: a step-by-step introduction”, August 6,
2004, ISBN 90-807215-1-4.
[8] Rezek Mohammad, Areej Jabir, and Rashid Jayousi,
“Optimum Execution For WIEN2K using Parallel
Programming Models (Comparison Study)”. Department
of physics, Palestinian Technical University/Khadoorie,
Middle East Technical University, and department of
Computer Science, Al-Quds University, Jerusalem,
Palestine. 2011.
[9] Schrodinger¸ E. “An Adulatory Theory of the
Mechanics of Atoms and Molecules”. Physical Review 28
(26): 1049-1070. 1926.
[10] Hellmann¸ Hans, “A new Approximation Method in
the Problem of Many Electrons”. Journal of Chemical
Physics (Karpow-Institute for Physical
Chemistry,Moscow), 1935.
[11] M´arcia C. Cera1, Guilherme P. Pezzi, Maur´ıcio L.
Pilla, Nicolas B. Maillard1, and Philippe O. A. Navaux, ,
“Scheduling Dynamically Spawned Processes in MPI-2”.
Universidade Federal do Rio Grande do Sul, Porto Alegre
Brazil and Universidade Cat´olica de Pelotas, Pelotas,
Brazil).
[12] C.M. Maynard, “Comparing One-Sided
Communication with MPI, UPC and SHMEM”. EPCC,
School of Physics and Astronomy, University of
Edinburgh, JCMB, Kings Buildings, Mayfield Road,
Edinburgh, EH9 3JZ, UK.
[13] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin,
Dhabaleswar K. Panda, William Gropp and Rajeev
Thakur, “High Performance MPI-2 One-Sided
Communication over InfiniBand”. Computer and
Information Science The Ohio State University Columbus,
OH 43210 Mathematics and Computer Science Division
Argonne National Laboratory Argonne, IL 60439.
[14] “MPI: A Message-Passing Interface Standard,
Version 2.2, and Message Passing Interface Forum”. Sept
4, 2009
[15] William Gropp, Ewing Lusk, David Ashton, Pavan
Balaji, Darius Buntinas, Ralph Butler, Anthony Chan,
Jayesh Krishna, Guillaume Mercier, Rob Ross, Rajeev
Thakur, and Brian Toonen,“ MPICH2 User’s Guide,
Version 1.0.6, Mathematics and Computer Science
Division Argonne National Laboratory”. September 14,
2007

ISBN: 978-0-9891305-6-1 ©2014 SDIWC

	Declaration
	Acknowledgments
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	Chapter One
	Introduction
	Chapter Two
	Background

	Chapter Three
	Literature Review

	Chapter Four
	Methodology
	Chapter Five
	Experiments and Results Analysis
	Chapter Six
	Conclusion

