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Abstract Network reconfiguration is a well-known tech-
nique for the distribution system to reduce power losses.
However, the reconfiguration technique, by itself, could only
minimize power losses up to a certain point. Further power
losses reduction could be realized via the application of dis-
tributed generation (DG). However, the integration of DG to
the distribution system at a non-optimal value could instead
increase power losses and voltage fluctuation. Therefore, it
is vital to develop an effective optimization strategy to deter-
mine the optimal output of theDGand simultaneously ensure
optimal configuration. This paper presents a simultaneous
optimal network reconfiguration with optimal DG output to
minimize power losses and improve the voltage profile. Dif-
ferent objectives are discussed in this paper: (1) to minimize
power losses, (2) to improve voltage profile index, (3) to
maximize DG output. Evolutionary programming, particle
swarm optimization, firefly, and gravitational search algo-
rithm methods have been applied for optimal distribution
network reconfiguration with optimal DG output. To eval-
uate the possibilities of the suggested method, simulations
using MATLAB software are carried out on an IEEE 33-bus
radial distribution system. The obtained outcomes prove the
efficiency of the proposed strategy to find an optimal network
configuration and optimal output of DG units.
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List of symbols

F Objective function
w1 and w2 Weighting factors
PR
loss Net power loss

IVD Voltage profile index
DGoutput Distributed generation output
P rec
loss Active power loss after reconfiguration

process
P0
loss Active power loss before reconfiguration

process
Ploss Total active losses power in the network

distribution
M Branch number
RN Resistance in the branch N
IN Current in the branch N
Vi Voltage at base i ; i = 2, 3, . . . , nbus
K Number of DG
Pmax
I , Pmin

I Upper and the lower bound of DG output
PLoad Total load of the network
β0 Attractiveness at r = 0
γ Coefficient of the light absorption
r Distance between any two fireflies
xl,k, x j,k A kth component of the Cartesian coordi-

nate xl and x j of fireflies l and j
m Population size
n Number of the switches
d Number of the parameters that need to be

optimized
α A randomization parameter
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xdc Position of cth agent in the dth dimensions
h Apace dimension
S Tie switch
PDG DG output
mo(t) Value of the fitness function of agent o at

iteration t
MAo Active gravitational mass
MPo Passive gravitational mass
Moo Computed using fitness evaluation
Mo Inertial mass of mass o
fitnesso(t) Agent o fitness value at time t
G(t) Constant of gravitational at the time t
G0 Initial value
MAp(t), MPo(t) Active and thepassivegravitationalmasses

related to the agent o
ε Constant termwith a very smallmagnitude
Rop(t) The Euclidian distance between o and p
randp A random number between 0 and 1
ado (t) Acceleration of the agent o and at time t

in the dth direction
vdo (t), ado (t) The current velocity and the acceleration

of an agent o
rando A random number between 0 and 1

1 Introduction

One of the important issues of power distribution companies
is electrical power losses from their system. This problem
is usually solved by reconfiguring the network [1]. Network
reconfiguration is the process of changing the switch state of
the network. This switch could be normally open, where it
is called tie switches, or normally closed, where it is called
sectionalizing switches. The topological structure of the net-
work is changedby closing the open switches andopening the
closed switches. This technique can reduce the power losses
and improve the overall voltage profile, provided that the
optimal reconfiguration could be determined. By doing this,
the load will be transferred to relatively less heavily loaded
feeders from the heavily loaded feeders; this leads to the
minimization of power losses. The authors in [2], proposed
multi-objective method to solve a reconfiguration problem
for a radial systemusing adaptive genetic algorithmand fuzzy
framework. Themain objective function combines the objec-
tive of minimizing power losses, minimizing the number of
node voltage that violate the constraints, and minimizing
the number of branch current that violate the constraints. A
heuristic method was used to generate the initial population
of genetic algorithm (GA), and the genetic operator was used
to create feasible individuals that achieved graph theory. The
effectiveness of the presented method was demonstrated in
70-bus and 136-bus radial distribution network. The results
obtained show that the presented method is promising and

efficient formulti-objective reconfiguration of radial systems
and takes less computational time compared with other pub-
lished work.

Since distribution network has many candidate configura-
tions and the switch status is regarded as discrete nature, the
network reconfiguration method is considered as a discrete,
non-differentiable optimization issue, and constrained com-
binatorial. Furthermore, it will become more serious when
integrating with discrete size and location of DG. Thus, a
robust approach is needed to solve such a complex issue in
an efficient manner. The renowned methods used to treat
reconfiguration problem are categorized as follows:

(a) Heuristic methods such as branch exchange [3], branch
and bound [4], single-loop optimization [5], and loop
cutting [6].

(b) Meta-heuristic algorithms such as simulated annealing
(SA) [7], genetic algorithm (GA) [8], Evolutionary pro-
gramming (EP) [9], ant colony optimization (ACO) [10],
and harmony search algorithm (HSA) [11].

Heuristic methods are very fast, but it could find a local solu-
tion rather than global solutions. By contrary, Meta-heuristic
algorithms could find a global solution than the local solu-
tion, but the computation time is greater than for heuristic
due to the random selections and probabilistic nature.

Power losses could be also minimized by installing local
generation, commonly referred to as the distributed gener-
ation (DG). A DG is a small generating unit installed at
strategic location in the distribution system, and most of
the time, it is based on renewable energy sources, such as
mini-hydro, wind, solar, and biofuels [12]. The integration
of DG to the distribution system leads to benefits such as the
improvement of the voltage profile, deferral the expansion of
the network, and improving the reliability of the system. In
[13], an ordinal optimization (OO)methodology is presented
for determining the size and the location of the DG. This
method aims to a trade-off between both maximum capacity
of the DG andminimum power losses, and it consists of three
stages. In the beginning, the method presents a large space of
the search for the potential combinations of the DG location
as a relative sampling. Then, the objective function of each
sample is evaluated by the efficient computation crude pro-
gram. At the end, the maximum alternatives evaluated from
the crude program are simulated to determine the capacity
and the location of the DG via optimal power flow program.
This methodology describes the sampling approaches prob-
lem, implementation of the crudemodel, and size selection of
the substation. To validate the method efficiency, the results
were compared with other published work and carried out on
a 69-node system. The results were shown that OO satisfies
more ability to reduce the computation effort for a hard prob-
lem.Moreover, the results prove that the optimal DG location
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minimizes the system power losses. Moreover, studies in
[14] presented an optimization framework that optimizes the
planning of distributed generation by leveraging different
complementary resources, e.g., solar energy, wind energy,
and energy storage. Studies in [15] analyzed realistic renew-
able energy data and developed a theoretic framework for
the placing and sizing of distributed energy resources that
improves the utilization of renewable energy and enhances
the power supply reliability.

By combining both approaches, power losses could be fur-
ther reduced. However, the network reconfiguration problem
will be more challenging when accounting for DGs in the
network. Thus, a robust approach is needed to solve such a
complex issue efficiently. Many works have been conducted
for optimal reconfiguration method and optimal DGs output.
However, there are few works on network reconfiguration
that studied optimal DGs output at the same time. Further-
more, the focus is to minimize power losses. Most of them
are based on sequential or simultaneous techniques. In the
former, the optimal size of the DG is determined first before
conducting network reconfiguration. The work in [16] is an
example of the sequential technique. The ACO was used in
the proposed reconfiguration method with DG that aims to
minimize power losses and improve the load balance fac-
tor of radial distribution networks. The effectiveness of the
proposed method is validated using a 33-bus distribution
network of the 11.4 kV system. The result showed that net-
work reconfiguration with DG results in lower power losses
and better load balance compared to a system without DG.
Meanwhile, in [17], a method was presented to solve both
DG sizing and reconfiguration problem simultaneously. The
main objective was to reduce the total power losses. Sensi-
tivity analysis was done using a harmony search algorithm
to solve the simultaneous process and compare it to GA and
refine the genetic algorithm (RGA). Various scenarios were
applied on 33- and 69-bus systems for the reconfiguration
and DG sizing. The results proved that the simultaneous
process was more effective than the sequential process for
minimizing power losses and improving the voltage profile.
Furthermore, the performance of HSA is better than that of
GA and RGA.

This paper proposes a simultaneous optimization of net-
work reconfiguration andDGoutput.Different frompervious
works, the main objective is to simultaneously minimize the
active power losses, improve the voltage profile, and maxi-
mize theDGoutput. Themethod is tested on a 33-bus system,
and the results are obtained from the EP, PSO, andGSA com-
pared to one another. To further verify the effectiveness of the
proposed method, the test results are also compared with the
literature. The content of this paper is arranged as follows:
Sect. 2 describes the problem formation and the optimized
technique and the proposed strategy to get the optimal net-
work configuration with optimal DG output and maximum

DG output. Section 3 presents the case study of the work.
Section 4 presents the results and discussion. The conclu-
sion is presented in Sect. 5.

2 Mathematical Formation and Constraints

The optimal network reconfiguration and optimal DG output
can be determined based on lower power losses to improve
the overall voltage profile for the network system. The fol-
lowing describes the objective function and constraints of the
optimization.

2.1 Objective Functions of the Problem

The objective function F can be presented in the following
form:

F = w1 ×
(
PR
loss + IVD

)
+ w2 ×

(
1

DGoutput

)
(1)

where w1 and w2 are the weighting factors. Both net power
loss (PR

loss) and voltage profile index (IVD) should be min-
imized and distributed generation output (DGoutput) should
be maximized.

Since the total fitness has a different objective units, the
net power loss PR

loss is taken as the ratio between the system
total active power loss after reconfiguration process P rec

loss and
before reconfiguration process P0

loss, as follows:

PR
loss = P rec

loss

P0
loss

(2)

The power losses equation for a distribution system is given
by:

Ploss =
M∑

N=1

(
RN × |IN |2

)
(3)

where Ploss is the total active losses power in the network
distribution; M is the branch number; RN is the resistance in
the branch N ; and IN is the current in the branch N .

Voltage profile index (IVD) This index penalizes the size-
location pair which gives higher voltage deviations from the
nominal voltage. In this way, closer the index to zero, better
is the network performance. IVD is defined as follows:

IVD = maxni=2

(|V1| − |Vi|
)
/|V1| (4)

where Vi is the voltage at bus i ; i = 2, 3, . . . , nbus.
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Maximizing the DGs output is defined as follows:

DGoutput =
K∑
1

DGK output (5)

where K is number of DG.
The main constraints that the optimization is subjected to

fulfill during network reconfiguration with DGs technique
are:

(1) Distributed generator operation:

Pmin
I ≤ PDG,I ≤ Pmax

I (6)

where Pmax
I and Pmin

I are the upper and the lower bound
of DG output. All DG units should function within the
acceptable limit.

(2) Power injection:

k∑
I=1

PDG,I < (PLoad + Ploss) (7)

where k = number of the DG; PLoad is the total load of
the network; Ploss is the total active power losses of the
network. This constraint is to ensure there is no power
from DGs flow to the grid, which might create a protec-
tion issue.

(3) Power balance:

k∑
I=1

PDG,I + PSubstation = PLoad + Ploss (8)

Depending on the principle of equilibrium, where the
supply of power must equal its demand. The summation
of power losses and power load should be equal to the
total power generated from DG units and substation.

(4) Voltage bus

Vmin ≤ Vbus ≤ Vmax (9)

Each bus should have an acceptable voltage value within
the limits of 0.95 and 1.05 (±5% of rated value).

(5) Radial Configuration:

The network configuration must be in radial after the
reconfiguration process. For this purpose, a graph theory
function in MATLAB is used to determine the radiality
of the network as follows:

TF = graphisspa_ntree(G) (10)

TF =
{
1 radial
0 not_radial

}
(11)

where G is the distribution network. If the network is
radial, TF is equal to 1 (true), else it is 0 (false).

(6) No load isolation:

All nodes must be energized to ensure all loads receive the
power sources.

2.2 Optimization Technique for Simultaneous Network
Reconfiguration and DG Output

Power flow analysis is used to determine the power losses and
the voltage profile for the network. The proposed strategy
aims to simultaneously determine the optimal DGs output
real power and optimal network reconfiguration. In thiswork,
the optimal network reconfiguration and the DG output prob-
lem are solved using EP, PSO, FA and GSA techniques.
However, a detailed description of the implementation is pro-
vided only for FA and GSA techniques, while EP algorithm
was described in detail in [9] and PSO algorithmwas detailed
in [18].

2.2.1 Firefly

FA is a recent nature-inspired meta-heuristic optimization
method. The main feature of FA is based on the flashing
characteristics of the firefly [19]. The main concept of FA is
based on the following set of assumptions:

(1) All fireflies are unisex that everyone is attracted to each
other.

(2) The attractiveness of the fireflies is strongly proportional
to their brightness. The firefly with a higher degree of
brightness is attracting the less brightness one, i.e., the
less bright one moves toward the higher bright one. Both
brightness and attractiveness decrease as the distance
between the fireflies increases. If no firefly of higher level
of brightness than the particular one is found, the fireflies
move randomly.

(3) The firefly brightness intensity is determined by the
landscape of fitness function to be optimized, i.e., the
objective function could be maximized or minimized.
According to the minimization problem, the level of the
brightness is proportional to the fitness function value
inversely.

The firefly attractiveness β can be presented as the follow-
ing form:

β(r) = β0e
−γ r2 (12)

where β0 is the attractiveness at r = 0; γ is the coefficient
of the light absorption; r is the distance between any two
fireflies. The Cartesian distance can be expressed as follows:
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rlj = ‖xl − x j‖ =
√∑d

k=1
(xl,k − x j,k)2 (13)

where xl,k and x j,k represent a kth component of theCartesian
coordinate xl and x j of fireflies l and j , respectively.

The movement of fireflies, where firefly l is attracted to
firefly j , is determined by:

xl = xl + β0e
−γ r2lj (x j − xl) + α(rand − 0.5) (14)

where the second term is caused by the attraction, while the
third term represents the randomized parameter and the ran-
dom range should be between 0 and 1 and near 1 like 0.8 that
fastens the program.

The problem of network reconfiguration and DG output
is solved using FA in the following manner:
Step 1 Input data are determined, such as the bus load and
voltage, DG location, and the values of the resistance and
reactance of the lines.
Step 2 The basic firefly parameters are set as β0 = 1, γ = 1
and α = 0.8.
Step 3 Generate random initial populations of firefly (x),
where in this case the switches’ number and the DGs output
are represented, taking into consideration all the limitations
and constraints. Thevariable used in thiswork for tie switches
is represented by S, and DG output is represented by PDG.
For the simultaneous case, both the number of switches and
DG output should be determined simultaneously, as follows:

x=

⎡
⎢⎢⎢⎢⎣

S11, S12, · · · S1n, PDG11, PDG12, · · · PDG1K
S21, S22, · · · S2n , PDG21, PDG22, · · · PDG2K

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Sm1, Sm2, · · · Smn , PDGm1, PDGm2, · · · PDGmK

⎤
⎥⎥⎥⎥⎦

(15)

wherem indicates the population size; n is the number of the
switches; K the number of DG
Step 4 Start the iteration by solving load flow analysis to
obtain power flow through all network lines. From the results,
the power losses and minimum value of the voltage for the
entire system can be determined.
Step 5 Evaluate the fitness for each of the population (1 to
m) using equation (1). That means evaluating the summation
of the power losses and the minimum value of the stability
index for each hour of one day.
Step 6 Rank the population, according to the light intensity
(low to high fitness) and save the best value in the following
manner:

[FIndex = sort(x)]

Fbest = F(1)
(16)

Step 7 Update all fireflies on matrix x (switches number and
DGs output) and rank the movement taking into consider-
ation all the limitations and constraints using the following
equations:

The firefly attractiveness β is presented as the following
form:

β(r) = β0e
−γ r2 (17)

where β0 is the attractiveness at r = 0; γ is the coefficient
of the light absorption; r is the distance between any two
fireflies. The Cartesian distance between any two fireflies
l and j (which represent by row of the x matrix) can be
expressed as follows:

rlj = ‖xl − x j‖ =
√∑d

k=1
(xl,k − x j,k)2 (18)

where xl,k and x j,k represent a kth component of theCartesian
coordinate xl and x j of fireflies l and j , respectively; d is the
number of the parameters that need to be optimized. The
movement of fireflies, where firefly l is attracted to brighter
firefly j , is determined by:

xl,k = xl,k + β0e
−γ r2lj (x j,k − xl,k) + α(rand − 0.5) (19)

where the second term is caused by the attraction (with γ =
1), while the third term represents the randomized parameter
(α being a randomization parameter). The random number
rand(1) is usually a uniformly distributed random number in
[0, 1].
Step 8Repeat the steps from point 4 until completing themax
iteration number.
Step 9 Stop the process and print out the best solution, which
represents the switch number that forms the new network
configuration, the output of the DGs, the power losses in this
process and the voltage at each bus, and plot the total fitness
during the iterations.

2.3 Gravitational Search Algorithm

GSA is a new developed random search algorithm, intended
to solve optimization problems and based on the mass inter-
actions between agents and the law of gravity. In GSA, the
agents are treated as objects and their features determined by
their masses, and gravity force all objects toward the heav-
ier masses object according to the objects’ global movement
[20]. In this algorithm, the population individuals are referred
to as masses and their performances are measured by their
position masses. Each mass will have four particulars: its
position, its inertial mass, its active gravitational mass, and
passive gravitational mass. The position of the mass repre-
sented a solution, while its gravitational and inertial masses
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are corresponding to the fitness function. According to New-
tonian laws, all these objects will attract each other due to the
gravity force. Due to this force, all these objects will move
toward the object with heavier mass. In other words, heavy
masses equaled good solutions and they move slower than
the lighter masses that equaled bad solutions. In this way, the
exploitation step of the algorithm is guaranteed.

The problem of network reconfiguration and DG output
is solved using GSA as follows:
Step 1 The position of agent c consisting of H number of
mass is:

Xc =
(
x1c , · · · , xdc , · · · xhc

)
, for c = 1, 2, · · · ,H (20)

where xdc is the position of cth agent in the dth dimensions,
while h is the apace dimension. In simultaneous case, the
detailed position of each cth agent is given as:

xhc = [S1, S2, . . . , Sn, PDG1, PDG2, . . . , PDGK ] (21)

where S is the tie switch; PDG is the DG output; n is the
number of the tie switches; K is the number of DG.
Step 2 Evaluate the fitness in (1) and store the best and worst
solutions. best (t) and worst (t) are defined as:

best(t) =
⎧⎨
⎩

min
p∈{1,2,....H}fitnessp(t) for minimization problem

max
p∈{1,2,....H}fitnessp(t) for maximization problem

worst(t) =
⎧⎨
⎩

max
p∈{1,2,....H}fitnessp(t) for minimization problem

min
p∈{1,2,....H}fitnessp(t) for maximization problem

(22)

Step 3 Calculates the inertial and gravitational masses. The
efficient agent is heavier and moves more slowly. By assum-
ing the equality of the inertia and gravitational mass, the
values of the masses are evaluated using the map of fitness.
Furthermore, the gravitational and inertial masses could be
updated by the following equations:

MAo = MPo = Moo = Mo, o = 1, 2, . . . , H

mo(t) = fitnesso(t) − worst(t)

best(t) − worst(t)

Mo(t) = mo(t)∑H
p=1 mp(t)

(23)

where mo(t) is the value of the fitness function of agent o
at iteration t , MAo is the active gravitational mass, MPo is
passive gravitational mass, Moo is computed using fitness
evaluation, and Mo is inertial mass of mass o, fitnesso(t) is
the agent o fitness value at time t .

Step 4 Using Newton gravitation theory to calculate the total
force. The force acting onmass ‘o’ frommass ‘p’ at any time
‘t’, could be presented in the following form:

f dop(t) = G(t) ×
(
MAp(t) × MPo(t)

Rop(t) + ε

)
×

(
xdp(t)−xdo (t)

)
,

G(t) = G(G0, t) (24)

where G(t) is constant of gravitational at the time t and is
updated based on the initial value G0 and time t ; MAp(t) and
MPo(t) are the active and the passive gravitational masses
related to the agent o, respectively; and ε is a constant term
with a very small magnitude. The Euclidian distance Rop(t)
between o and p could be presented as:

Rop(t) = ‖xo(t), xp(t)‖2 (25)

The total force that acts on the agent o in a dimension d is a
randomly weighted dth component of the forces exerted from
other agents.

f do (t) =
H∑

o=1
p �=o

randp× f dop(t) (26)

where randp is a random number between 0 and 1.
Step 5 Calculate the acceleration agent. Based on Newton’s
law of motion, the acceleration ado (t) of the agent o and at
time t in the dth direction is given as:

ado (t) = f do (t)

Moo(t)
(27)

where Moo is oth agent inertial mass.
Step 6 Update the velocity and the position of an agent
according to the following equations:

vdo (t + 1) = rando × vdo (t) + ado (t) (28)

xdo (t + 1) = xdo (t) + vdo (t + 1) (29)

where vdo (t) and ado (t) are the current velocity and the accel-
eration of an agent o, respectively; and rando is a random
number between 0 and 1 that gives a randomized character-
istic to the search.
Step 7 Stop the process after the maximum number of itera-
tions finished and print the best solution.

3 Case Study

An IEEE 33-bus distribution network systemwas used to test
the proposed method. The network consists of 37 switches,
32 sectionalizing switches, and 5 tie switches. Switch num-
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Fig. 1 IEEE 33-bus distribution network before reconfiguration process

bers 33, 34, 35, 36, and 37 are normally open for the original
network, while the other switches are normally closed, as
shown in Fig. 1. The total real load demand is 3715 kW,
while the system voltage is 12.66kV. The base value of the
apparent power is 100MVA.The power losses of the network
at the initial configuration were 202.677 kW, with 0.913 pu.
as the lowest bus voltage. The complete bus and line data are
given in [21]. The DG in this test system is assumed to be a
mini-hydro generation. The capacity for each DG is 2 MW.
That mean and lower and upper bounds of the DG output
ranged from 0 to 2 MW. In this work, the optimal location
for the DGs is located at buses 31, 32, and 33. This location
is based on previous work in [17]. The optimal solution is
obtained for tie switch and DG output (real power). Both DG
output and the tie switches were determined simultaneously.

Three cases will be analyzed to test the efficiency and
robustness of the proposed strategy. Case 1 aims to minimize
the power losses by simultaneous network reconfiguration
with optimal DG output. Case 2 aims to minimize power
losses and improve voltage profile index by simultaneous net-
work reconfiguration with optimal DG output. Case 3 aims
to minimize power losses, improve the voltage profile index,
andmaximize theDGoutput by simultaneous network recon-
figuration with optimal DG output.

The algorithms were executed in MATLAB on a PC
with 3.07 GHz CPU and 8-GB RAM. For the application
of all of the algorithms, the population size was set to 100.
The iteration size was set to 300 iterations.

4 Simulation Results and Discussion

4.1 Case 1: Aims to Minimize the Power Losses by
Simultaneous Network Reconfiguration with
Optimal DG Output

Table 1 summarizes the overall results for the EP, PSO, FA,
and GSA related to case 1. These algorithms were applied
for simultaneous network reconfiguration with optimal DG
output compared to the initial case. The minimum power
losses were obtained using FA, which means that FA results
in better values than anEP, PSO, andGSA.As seen inTable 1,
by using FA, the power losses after network reconfiguration
within DG is 72.436 kW, while before reconfiguration, it
is 202.6 kW. Power losses were reduced by 130.164 kWh,
i.e., about 64.25% reduction compared to the initial state.
The minimum voltage for all busses after reconfiguration is
improved to 0.9731 pu, while before reconfiguration, it is
0.9131 pu. The normally open switches after reconfiguration
are 7, 9, 28, 32, and 34, while before reconfiguration, they
are 33, 34, 35, 36, and 37. DG1 output is 0.899 MW, DG2
is 0.253 MW, and DG3 is 0.601 MW. The voltage profile
plots for case 1 for both initial and optimal solutions using
EP, PSO, FA, and GSA are compared and shown in Fig. 2.

To prove the validity of the simultaneous network recon-
figuration within the optimal DG output, the robustness test
was carried out by the proposed method using the different
algorithms, and the results are compared and shown in Fig. 3
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Table 1 Network reconfiguration and DG output results for case 1

Case Open switches DG output in MW (Bus
number)

Bus voltage (pu) (at bus) Power losses
(kW)

Losses
reduction (%)

min max

Initial 33, 34, 35, 36, 37 No DG 0.9131(18)–1(1) 202.6 –

EP 7, 10, 12, 26, 32 DG1=0.533, DG2=0.639 0.9692(13)–1(1) 74.528 63.32

DG3=0.586

PSO 7, 8, 28, 32, 34 DG1=0.513, DG2=0.587 0.9706(14)–1(1) 73.141 63.90

DG3=0.576

GSA 7, 9, 13, 28, 32 DG1=0.585, DG2=0.574 0.9728(14)–1(1) 72.625 64.15

DG3=0.549

FA 7, 9, 28, 32, 34 DG1=0.899, DG2=0.253 0.9731(14)–1(1) 72.436 64.25

DG3=0.601
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Fig. 2 Voltage profile of IEEE 33-bus network using different algo-
rithms for case 1
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Fig. 3 Comparison of robustness test of the simultaneous reconfigu-
ration and optimal DG output algorithms for case 1

for case 1. The robustness test can be defined as the test used
to check the quality of the algorithms to give answers closed
to gather for all runs. That means an algorithm which gives
the same answer at each run or gives answers closed to gather
for all runs is better than the algorithm which gives different
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Fig. 4 Comparison of convergence performance of the simultaneous
reconfiguration and optimal DG output algorithms for case 1

answers at each run. It is clearly seen that by using GSA or
FA, the results values are consistent with EP or PSO for case
1. Thus, it can be said that GSA and FA are highly robust
compared to the EP and PSO. In our work, we take 100 ini-
tial populations (fixed initial populations) for all algorithms
used. In this case, the results of FA and GSA are better than
those of EP and PSO. When the initial populations change,
the result for each algorithm will change (the optimal solu-
tion), but if we compare between the algorithms at the same
size of initial populations, FA andGSAwill be better than EP
and PSO. For each algorithm, there is a sub-optimal solution,
which represents theminimumvalue during the 20 times sim-
ulation run of the program. According to case 1, the values
are 74.528, 73.141, 72.625, and 72.436 kW of EP, PSO, FA,
and GSA, respectively.

Moreover, based on the global solutions for each algo-
rithm, the convergence performance for these global values
are also compared and shown in Fig. 4 for case 1. It is clearly
observed that FA resulted in the minimum value of power
losses compared to the other algorithms in case 1, as shown
in Fig. 4.
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4.2 Case 2: Aims to Minimize Power Losses and
Improve Voltage Profile Index by Simultaneous
Network Reconfiguration with Optimal DG Output

Figure 5 shows the flow chart for simultaneous network
reconfiguration with optimal DG output. Table 2 summarizes
the overall results for the EP, PSO, FA, and GSA related to
case 2. The optimal main fitness F according to Eq. (1) with-
out DG maximization is 0.4105, obtained using FA, which
is better than the EP, PSO, and GSA. As seen from Table 2,
by using FA, the power losses after network reconfiguration
within DG are 72.361 kW, while before reconfiguration, it is
202.6 kW. Power losses were reduced by 130.239 kWh, i.e.,
about 64.28% reduction compared to the initial state. It was
observed that the power reduction in case 2 is better than in
case 1. Theminimum voltage for all busses after reconfigura-
tion is improved to 0.9750 pu, while before reconfiguration,
it is 0.9131 pu. The normally open switches after reconfigu-
ration are 7, 10, 13, 28, and 32, while before reconfiguration,
they are 33, 34, 35, 36, and 37. DG1 output is 0.6756 MW,
DG2 is 0.516 MW, and DG3 is 0.6334 MW.

The voltage profile plots for case 2 for both initial and
optimal solutions using EP, PSO, FA, andGSA are compared
and shown in Fig. 6.

It can be observed from Figs. 2 and 6 that all buses voltage
magnitudes for all algorithms are improved to a value larger
than their respective initial states. FA obtained the best volt-
age profile for cases 1 and 2. The minimum values for the
voltage profile plots in case 2 is better than in case 1.

Figure 7 shows the robustness test for case 2. It is clearly
seen that byusingGSAorFA, the results values are consistent
with EP or PSO for case 2. Thus, it can be said that GSA and
FA are highly robust compared to the EP and PSO. For each
algorithm, there is a sub-optimal solution, which represents
the minimum value during the 20 times simulation run of the
program. According to case 2, the values are 0.4223, 0.4116,
0.4117, and 0.4105 for EP, PSO, GSA, and FA, respectively.

The convergence performance for these global values are
also compared and shown in Fig. 8 for case 2. It is clearly
observed that, FA resulted in the minimum value of the fit-
ness F compared to other algorithms in case 2, as shown in
Fig. 8.
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Fig. 5 Flowchart for simultaneous network reconfiguration with optimal DG output for case 2
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Table 2 Network reconfiguration and DG output results for case 2

Case Open switch DG output in
MW (Bus NO)

Bus voltage (pu) (at bus) FR = PR
loss + IVD Power losses

(kW)
Losses reduction
(%)

min max

Initial 33, 34, 35, 36, 37 No DG 0.9131(18)–1(1) 1.1135 202.6 –

EP 7, 8, 9, 28, 32 DG1=0.7024 0.9710(9)–1(1) 0.4223 73.971 63.49

DG2=0.6390

DG3=0.6224

PSO 7, 10, 13, 28, 32 DG1=0.6120 0.9738(29)–1(1) 0.41199 72.421 64.30

DG2=0.5200

DG3=0.6340

GSA 7, 9, 13, 28, 32 DG1=0.6450 0.9742(14)–1(1) 0.4117 72.425 64.25

DG2=0.5200

DG3=0.5800

FA 7, 10, 13, 28, 32 DG1=0.6756 0.9750(29)–1(1) 0.4105 72.361 64.28

DG2=0.5160

DG3=0.6334

0.905
0.915
0.925
0.935
0.945
0.955
0.965
0.975
0.985
0.995
1.005

1 5 9 13 17 21 25 29 33

V
ol

ta
ge

 M
ag

ni
tu

de
 (p

u)
 

Bus Number 

Original Form EP PSO GSA FA

Fig. 6 Voltage profile of IEEE 33-bus network using different algo-
rithms for case 2
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Fig. 7 Comparison of robustness test of the simultaneous reconfigu-
ration and optimal DG output algorithms for case 2

The results proved that case 2 resulted in better solution
than case 1, which means that minimizing power losses and
simultaneously improving voltage profile index resulted in
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Fig. 8 Comparison of convergence performance of the simultaneous
reconfiguration and optimal DG output algorithms for case 2

optimal solution that is better than minimizing power losses
alone. To validate the proposed method, the performance of
case 2 is compared with published results in [17] as shown
in Table 3. It is clear that the proposed method, which is
based on PSO, GSA, or FA, is producing better results than
published work, while EP obtained value of power losses
larger than HSA.

In order to show the advantage of simultaneously optimiz-
ing the network reconfiguration andDGoutput, a comparison
between sequential and simultaneous optimization is done
using FA. In sequential case, network reconfiguration was
done first and then DG sizing was optimized, while in simul-
taneous case both reconfiguration and DG sizing were done
at the same time. For sequential case, power losses after net-
work reconfiguration is 86.43kW. The minimum voltage for
all busses after reconfiguration is improved to 0.96413 pu.
The normally open switches after reconfiguration are 7, 14,
9, 32, and 37. DG1 output is 0.6005 MW, DG2 is 0.1522
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Table 3 Comparison of simulation result of 33-bus system

Method Open switches DG output (MW) (at bus) Power losses (kW) Losses reduction (%)

HSA [17] 7, 10, 14, 28, 32 0.5586 (31), 0.5258 (32), 0.5840 (33) 73.050 63.95

EP 7, 8, 9, 28, 32 0.7024 (31), 0.6390 (32), 0.6224 (33) 73.971 63.49

PSO 7, 10, 13, 28, 32 0.6120 (31), 0.5200 (32), 0.6340 (33) 72.421 64.30

GSA 7, 9, 13, 28, 32 0.6450 (31), 0.5200 (32), 0.5800 (33) 72.425 64.25

FA 7, 10, 13, 28, 32 0.6756 (31), 0.5160 (32), 0.6334 (33) 72.361 64.28

Table 4 Network reconfiguration and DG output results for case 3 for different weights

Case Weight Open switch DG output in
MW (Bus NO)

Bus voltage (pu) (at bus) F =w1 × (PR
loss + IVD)

+w2 × ( 1
DGoutput

)

Power losses
(kW)

Losses
reduction (%)

min max

Initial – 33, 34, 35,
36, 37

No DG 0.9131(18)–1(1) 1.1135 202.6 –

EP w1=0.5 5, 10, 12, 26,
32

DG1=0.344 0.9779(26)-1.009(32) 0.8914 131.4 35.1

w2=0.5 DG2=1.8

DG3=1.283

w1=0.6 11, 26, 12,
31, 33

DG1=1.961 0.9885(7)–1.0138(32) 0.8334 127.4 37.1

w2=0.4 DG2= .918

DG3=0.561

w1=0.7 5, 26, 10, 12,
32

DG1=0.517 0.9742(26)–1(1) 0.7794 104.1 48.6

w2=0.3 DG2=1.269

DG3=1.134

w1=0.8 31, 10, 35,
27, 33

DG1=1.241 0.9792(11)–1(1) 0.6972 94.1 53.6

w2=0.2 DG2=0.987

DG3=0.37

w1=0.9 33, 27, 35,
10, 31

DG1=1.055 0.9726(11)–1(1) 0.5941 85.2 57.9

w2=0.1 DG2=0.809

DG3=0.382

PSO w1=0.5 7, 26, 35, 9,
32

DG1=1.269 0.9830(10)–1.0110(32) 0.87 125.5 38.1

w2=0.5 DG2=1.042

DG3=1.145

w1=0.6 32, 12, 10,
26, 5

DG1=0.482 0.9744(26)–1.005(32) 0.8446 115.0 43.2

w2=0.4 DG2=1.533

DG3=1.136

w1=0.7 10, 25, 8, 31,
33

DG1=2 0.9840(10)–1.0071(31) 0.7597 109.9 45.8

w2=0.3 DG2=0.148

DG3=1.047

w1=0.8 9, 32, 7, 27,
13

DG1=0.776 0.9773(13)–1(1) 0.6766 86.1 57.5

w2=0.2 DG2=1.019

DG3=0.717
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Table 4 continued

Case Weight Open switch DG output in
MW (Bus NO)

Bus voltage (pu) (at bus) F =w1 × (PR
loss + IVD)

+w2 × ( 1
DGoutput

)

Power losses
(kW)

Losses
reduction (%)

min max

w1=0.9 9, 27, 34, 32,
7

DG1=0.655 0.9701(14)–1(1) 0.5824 74.3 63.3

w2=0.1 DG2=0.677

DG3=0.527

GSA w1=0.5 25, 10, 32,
20, 12

DG1=0.875 0.9671(11)–1(1) 0.9708 101.0 50.1

DG2=0.975

DG3=0.838

w2=0.5

w1=0.6 10, 12, 20,
28, 31

DG1=1.017 0.9669(11)–1(1) 0.9517 98.2 51.5

w2=0.4 DG2=0.545

DG3=0.819

w1=0.7 10, 25, 8, 33,
32

DG1=1.213 0.9838(26)–1(1) 0.7535 97.1 52.1

w2=0.3 DG2=0.772

DG3=0.899

w1=0.8 12, 9, 27, 7,
32

DG1=1.032 0.9813(10)–1(1) 0.6629 84 58.5

w2=0.2 DG2=0.630

DG3=0.868

w1=0.9 32, 27, 34,
10, 7

DG1=0.829 0.9776(10)–1(1) 0.5581 77.2 61.9

w2=0.1 DG2=0.631

DG3=0.734

FA w1=0.5 26, 11, 15,
34, 33

DG1=0.58 0.9741(15)–1(1) 1.1502 98.2 51.5

w2=0.5 DG2=0.696

DG3=0.833

w1=0.6 6, 13, 32, 8,
27

DG1=0.595 0.9738(7)–1(1) 0.9644 81.5 59.8

w2=0.4 DG2=0.689

DG3=0.869

w1=0.7 12, 32, 11,
26, 7

DG1=0.670 0.9713(27)–1(1) 0.8460 77.6 61.7

w2=0.3 DG2=0.536

DG3=0.865

w1=0.8 7, 32, 8, 10,
26

DG1=0.735 0.9710(10)–1(1) 0.7153 74.6 63.2

w2=0.2 DG2=0.563

DG3=0.683

w1=0.9 34, 28, 32, 7,
10

DG1=0.556 0.9753(14)–1(1) 0.5741 73.4 63.8

w2=0.1 DG2=0.680

DG3=0.618
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Fig. 9 Voltage profile of IEEE 33-bus network using different algo-
rithms for case 3 at w1 = w2

MW, and DG3 is 0.2598 MW. While for simultaneous case,
the power losses after network reconfiguration within DG
are 72.361 kW. The minimum voltage for all busses after
reconfiguration is improved to 0.9750 pu. The normally open
switches after reconfiguration are 7, 10, 13, 28, and 32. DG1
output is 0.6756 MW, DG2 is 0.516 MW, and DG3 is 0.6334
MW. It is observed that simultaneous case gives better results
than sequential case.

4.3 Case 3: Aims to Minimize Power Losses, Improve
Voltage Profile Index, and Maximize the DG Output
by Simultaneous Network Reconfiguration with
Optimal DG Output

Table 4 summarizes the overall results for the EP, PSO, FA,
and GSA related to case 3. Different weights are used for
each algorithm in order to analyze the effect of maximization
the DG output. It can be conducted that the power losses
obtained using FA are better than the EP, PSO, and GSA at
each weight. Additional, the power losses obtained in case
3 are larger than in case 2. That means case 2 is better than
case 3 in minimizing power losses. In other words, obtaining
the optimal output of the DG leads to power losses more than
maximizing the DG output.

The voltage profile plots for case 3 for both initial and
optimal solutions using EP, PSO, FA, andGSA are compared
and shown in Fig. 9 at w1 = w2. It can be observed from
Fig. 8 that all buses voltage magnitudes for all algorithms are
improved to a value larger than their respective initial states.

5 Conclusion

This paper has proposed a new strategy to determine the
optimal distribution network reconfiguration and DG output
for the network simultaneously. Different objectives are dis-
cussed in this paper: (1) to minimize power losses, (2) to
improve voltage profile index, (3) to maximize DG output.

The presented method achieved the minimum power losses
and the best voltage profile. The EP, PSO, FA, and GSA are
the meta-heuristic methods that have been used to realize
the distribution minimum main fitness. The effectiveness of
the presented method has been verified on a 33-bus distribu-
tion system. The presented approach is of high quality and
robustness in realizing an optimal network configuration and
DG output. The results proved that the optimal reconfigu-
ration within the optimal DG output minimized the power
losses and improved the overall system voltage profile. Fur-
thermore, the results show that the minimizing power losses
with improving voltage profile index is better than other cases
which are (1) minimizing power losses only, (2) minimizing
power losses, improving the voltage profile, and maximiz-
ing DG output. The computational results showed that the
performance of FA in minimizing power losses was better
than that of HAS, EP, PSO, and GSA. The results indicate
the possibility of the method to be adapted on practical real
systems for planning purposes.
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