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Abstract The equivalent resistance between the origin and the lattice site (2n,0,0), in an
infinite Face Centered Cubic (FCC) network consisting from identical resistors each of re-
sistance R, has been evaluated analytically and numerically. The asymptotic behavior of
the equivalent resistance has been also investigated. Finally, some numerical values for the
equivalent resistance are presented.

Keywords Lattice Green’s function · Infinite FCC network · Resistors

1 Introduction

The calculation of the equivalent resistance in infinite networks of identical resistors is one
of the classic and interesting problems in the electric circuit theory. Many approaches have
been introduced to calculate the resistance in infinite networks, such as:

The superposition of current distribution has been used to calculate the effective resis-
tance between adjacent sites on infinite networks [1–3].

A mapping between random walk problems and resistor networks problems have been
used by Monwhea Jeng [4]. This method was used to calculate the effective resistance be-
tween any two sites in an infinite two-dimensional square lattice of unit resistors.

A third educational important method based on the Lattice Green’s Function (LGF) of the
lattices is used to calculate the equivalent resistance [5–11]. This method has been applied
to both perfect and perturbed square, simple cubic (SC) networks.

The LGF plays a key role in the theory of solid state physics, and as seen from literature
most studies on the lattice functions are based on elliptic integral and recurrence relation
approaches [12–25]. The importance of the LGF comes from the fact that many quantities
in solid state physics can be expressed in terms of it, for example, phase shift, density of
states, scattering cross section and thermodynamic functions.
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The present work is oriented as follows: In Sect. 2, we briefly introduce the basic for-
mulas of interest for the LGF of the FCC network. In Sect. 3, an application to the LGF of
the FCC network is applied to calculate the equivalent resistance between the origin and the
lattice site (2n,0,0) in the infinite FCC network. Finally, we close the present work (i.e.,
Sect. 4) with a discussion to the results obtained in this study.

2 Preliminaries

The LGF of the FCC lattice appears in many statistical problems, and it is defined as [21]:

F(n,m, l;w)

= 1

π3

∫ π

0

∫ π

0

∫ π

0

Cosnθ1 Cosmθ2 Cos lθ3

w − (Cos θ1 Cos θ2 + Cos θ2 Cos θ3 + Cos θ1 Cos θ3)
dθ1 dθ2 dθ3

(1)

where n + m + l = even integer, and w = w1 + iw2 is a complex variable and (n,m, l) is
any lattice site in the FCC lattice.

The LGF of the FCC at the site (0,0,0) which represents the origin of the lattice for
w = 3 (i.e., F(0,0,0;3) = fo), was evaluated by Watson [26], where he found:

F(0,0,0;3) = fo =
√

3

π2

[
K(k3)

]2 = 0.4482203944 (2)

where K(k3) is the complete elliptic integral of the first kind

k3 = Sin
π

12
=

√
3 − 1

2
√

2

(i.e., the singular modulus of the elliptic integral).
Recently, Joyce and Delves [21] showed that at the site (2n,0,0) the LGF of the FCC

lattice can be written as:

F(2n,0,0;3) = (−1)n

√
3

3n

{[
Ŭ (1)

n K3

π

]2

−
[

Ŭ (2)
n

K3

]2}
. (3)

Here {Ŭ (j)
n : j = 1,2} are rational numbers satisfying the following recurrence relation

(2n + 1)Ŭ
(j)

n+1 − 12nŬ (j)
n − 3(2n − 1)Ŭ

(j)

n−1 = 0 (4)

with n = 1,2, . . . , and the following initial conditions

Ŭ
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(1)

1 = 1,

Ŭ
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3 Application: Evaluation of the Resistance R(2n,0,0;3) in an Infinite FCC Network

The aim of this section is to express the equivalent resistance between the origin (0,0,0)

and the lattice site (2n,0,0) in an infinite FCC network of identical resistors in terms of
F(2n,0,0;3).

First of all, it has been showed that for a 3D infinite network consisting of identical
resistors each of resistance R, the equivalent resistance between the origin and any other
lattice site is [5]:

R(�r) = 2
[
G(�0) − G(�r)]. (5)

Here �r is the position vector of the lattices point, and for a d-dimensional lattice it takes the
form:

�r = l1�a1 + l2�a2 + · · · + ld �ad (6)

with l1, l2, . . . , ld are integers, and �a1, �a2, . . . , �ad are independent primitive translation vec-
tors.

Also, the equivalent resistance between the origin and any other lattice site is can be
expressed in an integral form [5]:

R(l1, l2, . . . , ld ) = R

∫ π

−π

dx1

2π
· · ·

∫ π

−π

dxd

2π

1 − exp(il1x1 + il2x2 + · · · + ildxd)∑d

i=1(1 − Cosxi)
. (7)

On the other hand, the LGF for a 3D hypercube read as [5]:

G(l1, l2, . . . , ld) =
∫ π

−π

dx1

2π
· · ·

∫ π

−π

dxd

2π

exp(il1x1 + il2x2 + · · · + ildxd)

2
∑d

i=1(1 − Cosxi)
. (8)

For cubic lattices d = 3. Then substituting d = 3 into Eqs. (7) and (8) and comparing
them with Eq. (5) one get:

R(n,m, l) = R
[
fo − F(n,m, l)

]
. (9)

Now make use of Eq. (3) and Eq. (9) one yields

R(2n,0,0) =
(√

3

π2

[
K(k3)

]2 − (−1)n

√
3

3n

{[
Ŭ (1)

n K3

π

]2

−
[

Ŭ (2)
n

K3

]2})
. (10)

This is our basic relation. Now, using Eq. (4) and Eq. (10) with the initial conditions of
{Ŭ (j)

n : j = 1,2}, one can calculate the required equivalent resistance. In Table 1 we present
some numerical calculated values for the resistance between the origin and the site (2n,0,0).
The results obtained in the present work are in exact agreement with those obtained recently
[27] using the so-called the recurrence formulae for the LGF of the infinite FCC lattice
presented by Morita [18].

Since the LGF is an even function (i.e., F(2n,0,0;3) = F(−2n,0,0;3)) then the resis-
tance is also symmetric due to the fact that the FCC network is pure and symmetric, and
also R(2n,0,0) = R(−2n,0,0).

Finally, it is worth studying the asymptotic behavior of the resistance (i.e., as the separa-
tion between the origin (0,0,0) and the site (2n,0,0) goes to a large value or infinity). In
this case the resistance goes to a finite value.
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Table 1 Calculated values of R(2n,0,0)

The site (2n,0,0) Û1
n Û2

n R(2n,0,0)

(0,0,0) 1 0 0

(2,0,0) 1 1 0.371575

(4,0,0) 5 4 0.408775

(6,0,0) 129
5 21 0.421792

(8,0,0) 717
5

816
7 0.428366

(10,0,0) 825 4695
7 0.432325

(12,0,0) 266859
55

27612
7 0.434969

(14,0,0) 1593171
55

2142999
91 0.43686

(16,0,0) 9615591
55

12934080
91 0.438278

(18,0,0) 994789431
935

78712155
91 0.439382

(20,0,0) 1218673431
187

9160550820
1729 0.440265

(22,0,0) 3410853057
85

56405302965
1729 0.440988

(24,0,0) 5336440769529
21505

348809334480
1729 0.441597

(26,0,0) 1948213488537
1265

10824102013941
8645 0.441895

This can be explained as follows: It is well known from the theory of Fourier series (Rie-
mann’s Lemma) that Limn→∞

∫ b

a
Φ(x)Cosnx dx → 0 for any integrable function Φ(x).

Thus, F(n,m, l) → 0 (corresponding to the boundary condition of Green’s function at in-
finity), and as a result Eq. (9) becomes:

R(2n,0,0)

R
→ fo(3,0,0,0). (11)

Or alternatively, it has been showed [25] that the asymptotic expansion of F(2n,0,0;3) is:

F(2n,0,0;3) ≈ 1

4πn
Ŝo(n,3), (12)

where

Ŝo(n,3) = 1 − 1

32π2
− 37

2048n4
+ 1147

65536n6
+ 430163

8388608n8
− 70774943

268435456n10
+ · · · .

(13)

This expansion approaches zero as n → ∞.
As, a result Eq. (9) becomes:

R(2n,0,0) = fo − 1

4πn
Ŝo(n,3) → fo. (14)

4 Results and Discussion

We have expressed the equivalent resistance between the origin (0,0,0) and the lattice site
(2n,0,0) in an infinite FCC network consisting of identical resistors each of resistance R.
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Fig. 1 Resistance R(2n,0,0) in an infinite FCC against the site (2n,0,0)

The equivalent resistance is obtained in terms of rational numbers, π and the complete
elliptic integral of the first kind. By means of Mathematica we obtained numerical values
for these calculated resistance as presented in Fig. 1.

In Fig. 1 the calculated resistance in an infinite FCC lattice is plotted against the site
(2n,0,0) along the [100] direction. From this figure it is clear that the resistance is symmet-
ric, and approaching a finite value (i.e., fo(3,0,0,0) = 0.4482203944 as n → ∞).

A similar result was obtained for the resistance in an infinite SC network [8] whereas the
separation between the origin and any other lattice site the equivalent resistance approaches
a finite value (i.e., go = 0.505462) which is the LGF at the origin in an infinite SC lattice,
while the resistance in an infinite square network diverges for large separation between the
two sites [9].
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