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Abstract An investigation of classical fields with
fractional derivatives is presented using the fractional
Hamiltonian formulation. The fractional Hamilton’s
equations are obtained for two classical field exam-
ples. The formulation presented and the resulting
equations are very similar to those appearing in classi-
cal field theory.
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1 Introduction

Fractional calculus is an extension of classical calcu-
lus. In this branch of mathematics, definitions are es-
tablished for integrals and derivatives of arbitrary non-

integer (even complex) order, such as d1/2f (t)

dt1/2 . It has
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started in 1695 when Leibniz presented his analysis
of the derivative of order 1/2. Then it is developed
mainly as a theoretical aspect of mathematics, being
considered by some of the great names in mathemat-
ics such as Euler, Lagrange, and Fourier, among many
others.

This branch of mathematics has experienced a re-
vival of interest and has been used in very diverse top-
ics such as fractal theory [1], viscoelasticy [2], elec-
trodynamics [3, 4], optics [5, 6], and thermodynamics
[7]. The literature of fractional calculus started with
Leibniz and today is growing rapidly [8–14].

Fractional derivatives have played a significant role
in physics, mathematics, engineering, and pure and ap-
plied mathematics in recent years [14–20]. Several at-
tempts have been made to include non conservative
forces in the Lagrangian and the Hamiltonian mechan-
ics. Riewe [20, 21] presented a new approach to me-
chanics that allows one to obtain the equations for non
conservative systems using fractional derivatives.

In a previous work, we [22] derived Maxwell’s
equations for the electromagnetic field using the vari-
ation principle in which the independent variables are
the electric and magnetic fields.

For a given Lagrangian density we observed that
both fractional Euler-Lagrange equations and frac-
tional Hamilton’s equations of motion lead to the same
results. The classical results (Maxwell’s equations) are
obtained as a particular case of the fractional formula-
tion.
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We [23] quantized the free electromagnetic La-
grangian density in both radiation (Coulomb) gauge
and Lorentz gauge. For the two cases, we obtained the
Hamiltonian in terms of vector potential and also in
terms of creation and annihilation operators, then we
constructed the fractional canonical commutation re-
lations. We have shown that the two gauges yield the
same results, since the Hamiltonian reduces into a sum
of uncoupled harmonic oscillator Hamiltonian for two
cases.

Recently, Eqab et al. [24] constructed the Hamilto-
nian formulation of discrete and continuous fields in
terms of fractional derivatives. The fractional Hamil-
tonian is not uniquely defined; it seems that there are
several choices of fractional Hamiltonian giving the
same classical limit, i.e., the same classical Hamil-
tonian. This present paper is a generalization of the
above work on Hamilton’s equations for classical
fields with Riemann-Liouville fractional derivatives.

This paper is organized as follows: In Sect. 2,
the definitions of fractional derivatives are discussed
briefly. In Sect. 3, the fractional form of Euler-
Lagrangian equation in terms of functional derivative
of the full Lagrangian is presented. In Sect. 4, the frac-
tional form of Euler-Lagrange equation in terms of
momentum density is investigated. Section 5 is de-
voted to the equations of motion in terms of Hamil-
tonian density in fractional form. In Sect. 6, we in-
troduce two examples of classical fields leading to
Schrödinger equation and Dirac equation in fractional
derivative forms. The work closes with some conclud-
ing remarks (Sect. 7).

2 Definitions of fractional derivatives

In this section two different definitions of the frac-
tional derivatives (left and right Riemann-Liouville
fractional derivatives) are discussed. These definitions
are used in the Hamiltonian formulation and the solu-
tion of examples leading to the equations of motion of
the fractional order.

The left Riemann-Liouville fractional derivative
(LRLFD) reads as [25]:

aD
α
x f (x) = 1

Γ (n − α)

(
d

dx

)n ∫ x

a

f (τ )

(x − τ)α−n+1
dτ.

(1)

The right Riemann-Liouville fractional derivative
(RRLFD) reads as [25]:

xD
α
b f (x) = 1

Γ (n − α)

(
− d

dx

)n

×
∫ b

x

f (τ )

(τ − x)α−n+1
dτ. (2)

Here α is the order of the derivative such that n − 1 ≤
α ≤ n and is not equal to zero. If α is an integer, these
derivatives are defined in the usual sense, i.e.,

aD
α
x f (x) =

(
d

dx

)α

f (x);

xDα
b f (x) =

(
− d

dx

)α

f (x); α = 1,2, . . . .

(3)

3 Fractional form of Euler-Lagrangian equation
in terms of functional derivative of the full
Lagrangian L

We start our formalism by taking the Lagrangian den-
sity to be a function of field amplitude ψ and its frac-
tional derivatives with respect to space and time as:

� = �
(
ψ, aD

α
x ψ, xD

β
b ψ, aD

α
t ψ, tD

β
b ψ, t

)
. (4)

Euler-Lagrange equation for such Lagrangian density
in fractional form can be given as [26]:

∂�

∂ψ
+ xD

α
b

∂�

∂aDα
x ψ

+ aD
β
x

∂�

∂xD
β
b ψ

+ tD
α
b

∂�

∂aD
α
t ψ

+ aD
β
t

∂�

∂tD
β
b ψ

= 0. (5)

Now we can write the full Lagrangian L as:

L =
∫

�d3r. (6)

Using the variational principle, we can write:

δ

∫
Ldt = δ

∫ ∫
�d3r dt =

∫ ∫
(δ�) dt d3r = 0. (7)

Using Eq. (4), the variation of is:

δ� = ∂�

∂ψ
δψ + ∂�

∂aDα
x ψ

δ
(
aD

α
x ψ

)

+ ∂�

∂xD
β
b ψ

δ
(
xD

β
b ψ

) + ∂�

∂aD
α
t ψ

δ
(
aD

α
t ψ

)

+ ∂�

∂tD
β
b ψ

δ
(
tD

β
b ψ

) = 0. (8)

Substituting Eq. (8) into Eq. (7), and using the follow-
ing commutation relation,

∂�

∂aDα
x ψ

δ
(
aD

α
x ψ

) = ∂�

∂aDα
x ψ

aD
α
x (δψ), (9)
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we get,
∫ ∫ [

∂�

∂ψ
(δψ) + ∂�

∂aDα
x ψ

aD
α
x (δψ)

+ ∂�

∂xD
β
b ψ

xD
β
b (δψ) + ∂�

∂aD
α
t ψ

δ
(
aD

α
t ψ

)

+ ∂�

∂tD
β
b ψ

δ
(
tD

β
b ψ

)]
d3r dt = 0. (10)

Integrating by parts the second and the third terms in
Eq. (10) with respect to space, we get:

0 =
∫

dt

∫ [
∂�

∂ψ
+ xD

α
b

∂�

∂aDα
x ψ

+ aD
β
x

∂�

∂xD
β
b ψ

]
dτ δψ

+
∫

dt

∫ [
∂�

∂aD
α
t ψ

δ
(
aD

α
t ψ

)

+ ∂�

∂tD
β
b ψ

δ
(
tD

β
b ψ

)]
dτ. (11)

Now, we can take the integration over space dτ in the
previous equation and convert it into summation, thus:

∑
i

[
∂�

∂ψ
+ xD

α
b

∂�

∂aDα
x ψ

+ aD
β
x

∂�

∂xD
β
b ψ

]
i

δψiδτi

+
∑

i

[
∂�

∂aD
α
t ψ

]
i

δ
(
aD

α
t ψi

)
δτi

+
∑

i

[
∂�

∂tD
β
b ψ

]
i

δ
(
tD

β
b ψi

)
δτi = 0. (12)

We can write Eq. (12) in terms of Lagrangian density
as:∑

i

[δ�]iδτi = 0. (13)

Here the left hand side in Eqs. (12) and (13) repre-
sents the variation of L (i.e. δL) which is now pro-
duced by independent variations in δψi , δ(aD

α
t ψi)

and δ(tD
β
b ψi). Suppose now that all δψi , δ(aD

α
t ψi)

and δ(tD
β
b ψi) are zeros except for a particular δψj .

It is natural to define the functional derivative of the
full Lagrangian (/∂L) with respect to ψ , (aDα

t ψ ) and

(tD
β
b ψ ) for a point in the j -th cell to the ratio of δL to

δψj [27].

/∂L

/∂ψ
= lim

δτj →0

δL

δψjδτj

. (14)

Using Eq. (12), and note that the left hand side repre-
sents δL, we get:

/∂L

/∂ψ
= ∂�

∂ψ
+ xD

α
b

[
∂�

∂aDα
x ψ

]
+ aD

β
x

[
∂�

∂xD
β
b ψ

]
.

(15a)
/∂L

/∂aD
α
t ψ

= lim
δτj →0

δL

δτj δ(aD
α
t ψj )

= ∂�

∂aD
α
t ψ

. (15b)

/∂L

/∂tD
β
b ψ

= lim
δτj →0

δL

δτj δ(tD
β
b ψj )

= ∂�

∂tD
β
b ψ

. (15c)

Now, using Eqs. (15a), (15b), (15c) we can rewrite
Eq. (5) Euler-Lagrange equation in terms of the full
Lagrangian L using functional derivative in fractional
form:
/∂L

/∂ψ
+ tD

α
b

[
/∂L

/∂aD
α
t ψ

]
+ aD

β
t

[
/∂L

/∂tD
β
b ψ

]
= 0. (16)

It is worth mentioning that for α,β → 1, Eq. (16)
reduces to the usual Euler-Lagrange equation for
the classical fields [27]. With the help of Eqs. (12)
and (16), we can write the variation of full Lagrangian
in terms of functional derivatives and variations of ψ ,
aD

α
t ψ and tD

β
b ψ as:

δL =
∫ [

/∂L

/∂ψ
(δψ) + /∂L

/∂aD
α
t ψ

δ
(
aD

α
t ψ

)

+ /∂L

/∂tD
β
b ψ

δ
(
tD

β
b ψ

)]
d3r. (17)

4 Fractional form of Euler-Lagrange equation in
terms of momentum density

The right side fractional form of momentum can be
written as [27]:

P a
j = δL

δaD
α
t ψj

. (18a)

Using Eqs. (12) and (15b) we get:

P a
j = ∂�

∂aD
α
t ψj

δτj = /∂L

/∂aD
α
t ψj

δτj . (18b)

From Eq. (18b), we can define the right side form of
momentum density πα as:

(πα)j = /∂L

/∂aD
α
t ψj

= ∂�

∂aD
α
t ψj

. (19)

Now, taking the left fractional derivative for Eq. (19),
one gets:

tD
α
b (πα)j = tD

α
b

[
/∂L

/∂aD
α
t ψj

]
. (20)
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Repeating same steps above for left side fractional
form of momentum density πβ , we get:

(πβ)j = /∂L

/∂tD
β
b ψj

= ∂�

∂tD
β
b ψj

. (21)

Now, taking the right fractional derivative for Eq. (21),
one gets:

aD
β
t (πβ)j = aD

β
t

[
/∂L

/∂tD
β
b ψj

]
. (22)

Now, substituting Eqs. (20) and (22) into Eq. (16), we
get:

/∂L

/∂ψ
= −[

aD
β
t πβ + tD

α
b πα

]
. (23)

The above equation represents the fractional form of
Euler-Lagrange equation in terms of momentum den-
sity and the functional derivative of full Lagrangian.

5 Equations of motion in terms of Hamiltonian
density in fractional form

We start by the general definition of the Hamiltonian
density h in fractional form as:

h = παaD
α
t ψ + π∗

αaD
α
t ψ∗ + πβtD

β
b ψ

+ π∗
β tD

β
b ψ∗ − �. (24)

Full Hamiltonian H can be also written in terms of
Hamiltonian density h as:

H =
∑

i

hiδτi . (25)

Substituting Eqs. (24) into Eq. (25), one gets:

H =
∑

i

[
(πα)i

(
aD

α
t ψi

) + (
π∗

α

)
i

(
aD

α
t ψ∗

i

)

+ (πβ)i
(
tD

β
b ψi

) + (
π∗

β

)
i

(
tD

β
b ψ∗

i

)]
δτi

−
∑

i

�iδτi . (26)

In continuous form, we can write Eq. (26) as follows:

H =
∫ [

(πα)
(
aD

α
t ψ

) + (
π∗

α

)(
aD

α
t ψ∗)

+ (πβ)
(
tD

β
b ψ

) + (
π∗

β

)(
tD

β
b ψ∗)]d3r

−
∫

�d3r. (27)

Taking the variation of H , using Eqs. (17) and (23),
see Appendix, we get:

δH =
∫ [(

aD
β
t πβ + tD

α
b πα

)
δψ

+ (
aD

β
t π∗

β + tD
α
b π∗

α

)
δψ∗ + (

aD
α
t ψ

)
δπα

+ (
aD

α
t ψ∗)δπ∗

α + (
tD

β
b ψ

)
δπβ

+ (
tD

β
b ψ∗)δπ∗

β

]
d3r. (28)

By analogy with the variation in L (i.e. Eq. (17)),
we can write the variation of full Hamiltonian pro-
duced by variations of independent variables in terms
of functional derivative as follows in cases 1 and 2.

Case 1 All variables are independent (ψ , ψ∗, πα , πβ ,
π∗

α , and π∗
β )

δH =
∫ [

/∂H

/∂ψ
δψ + /∂H

/∂ψ∗ δψ∗ + /∂H

/∂πα

δπα + /∂H

/∂π∗
α

δπ∗
α

+ /∂H

/∂πβ

δπβ + /∂H

/∂π∗
β

δπ∗
β

]
d3r. (29)

Comparing Eq. (29) with Eq. (28), we get the separate
equations of motion in terms of full Hamiltonian as:

/∂H

/∂ψ
= aD

β
t πβ + tD

α
b πα;

/∂H

/∂ψ∗ = aD
β
t π∗

β + tD
α
b π∗

α .

(30a)

/∂H

/∂πα

= aD
α
t ψ; /∂H

/∂π∗
α

= aD
α
t ψ∗;

/∂H

/∂πβ

= tD
β
b ψ; /∂H

/∂π∗
β

= tD
β
b ψ∗.

(30b)

By analogy with Eq. (15a) for functional derivative of
full Lagrangian in terms of fractional derivative of La-
grangian density, we can simply define the functional
derivative of H in terms of fractional derivative of
Hamiltonian density with respect to the general vari-
able field φ as [27]:

/∂H

/∂φ
= ∂h

∂φ
+ xD

α
b

∂h

∂aDα
x φ

+ aD
β
x

∂h

∂xD
β
b φ

. (31)

Using the definition given in Eq. (31) above, we can
rewrite equations of motion (i.e. Eqs. (30a), (30b)) in
terms of Hamiltonian density such that:

∂h

∂ψ
+ xD

α
b

∂h

∂aDα
x ψ

+ aD
β
x

∂h

∂xD
β
b ψ

= aD
β
t πβ + tD

α
b πα. (32a)

∂h

∂ψ∗ + xD
α
b

∂h

∂aDα
x ψ∗ + aD

β
x

∂h

∂xD
β
b ψ∗

= aD
β
t π∗

β + tD
α
b π∗

α . (32b)
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∂h

∂πα

+ xD
α
b

∂h

∂aDα
x πα

+ aD
β
x

∂h

∂xD
β
b πα

= aD
α
t ψ.

(32c)
∂h

∂π∗
α

+ xD
α
b

∂h

∂aDα
x π∗

α

+ aD
β
x

∂h

∂xD
β
b π∗

α

= aD
α
t ψ∗.

(32d)
∂h

∂πβ

+ xD
α
b

∂h

∂aDα
x πβ

+ aD
β
x

∂h

∂xD
β
b πβ

= tD
β
b ψ.

(32e)
∂h

∂π∗
β

+ xD
α
b

∂h

∂aDα
x π∗

β

+ aD
β
x

∂h

∂xD
β
b π∗

β

= tD
β
b ψ∗.

(32f)

In many cases, we take πβ = 0 because we define (in
the Lagrangian density and the Hamiltonian density)
the time derivative in the right side as aD

α
t ψ , so that

πβ = ∂�

∂tD
β
b ψ

= 0. Therefore take πβ = 0, and π∗
β = 0.

Case 2 πα depends on (ψ , or ψ∗) and π∗
α depends on

(ψ , or ψ∗); so that we take the variation just only for
independent variables ψ , and ψ∗. Thus Eq. (31) can
be written as:

δH =
∫ [

/∂H

/∂ψ
δψ + /∂H

/∂ψ∗ δψ∗
]

d3r. (33)

To state the equations of motion from Eq. (29), let us
define πα and π∗

α in a general case πα = g(ψ,ψ∗) and
π∗

α = f (ψ,ψ∗). So that, we can write their variations
as:

δπα = ∂g

∂ψ
δψ + ∂g

∂ψ∗ δψ∗. (34)

δπ∗
α = ∂f

∂ψ
δψ + ∂f

∂ψ∗ δψ∗. (35)

Now, substituting Eqs. (34) and (35) into Eq. (29), and
comparing with Eq. (33), we get the general equations
of the Hamiltonian density for this case:

∂h

∂ψ
+ xD

α
b

∂h

∂aDα
x ψ

+ aD
β
x

∂h

∂xD
β
b ψ

= tD
α
b πα + ∂g

∂ψ
aD

α
t ψ + ∂f

∂ψ
aD

α
t ψ∗. (36)

∂h

∂ψ∗ + xD
α
b

∂h

∂aDα
x ψ∗ + aD

β
x

∂h

∂xD
β
b ψ∗

= tD
α
b π∗

α + ∂g

∂ψ∗ aD
α
t ψ + ∂f

∂ψ∗ aD
α
t ψ∗. (37)

6 Examples

In this section, we study two examples as applications
on the formalism presented above.

Example 1 (Schrödinger Equation) Lagrangian den-
sity in fractional form:

� = − �
2

2m

(
aD

α
x ψ∗)(

aD
α
x ψ

)

− �

2i

[
ψ∗(

aD
α
t ψ

) − (
aD

α
t ψ∗)ψ] − ψ∗V ψ. (38)

Applying Euler-Lagrange equation (Eq. (5)) with
respect to ψ∗, we get:

�
2

2m
xD

α
b

(
aD

α
x ψ

) + V ψ = �i

2

(
aD

α
t ψ − tD

α
b ψ

)
. (39)

Now we want to derive Eq. (39) using the Hamiltonian
density equations of motion. First we determine πα ,
π∗

α , πβ and π∗
β using Eqs. (19) and (21):

πα = ∂�

∂aD
α
t ψ

= −�

2i
ψ∗; π∗

α = ∂�

∂aD
α
t ψ∗ = �

2i
ψ.

(40)

πβ = ∂�

∂tD
β
b ψ

= 0; π∗
β = ∂�

∂tD
β
b ψ∗ = 0. (41)

Then, using Eq. (24), the Hamiltonian density can be
written as:

h = �
2

2m

(
aD

α
x ψ∗)(

aD
α
x ψ

) + ψ∗V ψ. (42)

Now, because πα and π∗
α are variables dependent of

ψ∗, and ψ , respectively, we have to use equations of
motion for case 2. Applying Eq. (37), we get:

V ψ + �
2

2m
xD

α
b

(
aD

α
x ψ

) = �

2i

(
aD

α
t ψ − tD

α
b ψ

)
. (43)

The above equation is exactly the same as the equation
that has been derived by Euler-Lagrange (Eq. (39)) in
fractional form.

If α = β = 1, then Eq. (39) and Eq. (43) become:

−�
2

2m
∇2ψ + V ψ = i�

∂ψ

∂t
. (44)

This is the known Schrödinger equation.
If we do not consider the dependency of πα and

π∗
α on ψ∗, and ψ , respectively, and apply Eq. (32b) in

case 1, then we get:

�
2

2m
xD

α
b

(
aD

α
x ψ

) + V ψ = −�

2i

(
tD

α
b ψ

)
. (45)
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If α = β = 1, then Eq. (45) becomes:

−�
2

2m
∇2ψ + V ψ = i�

2

∂ψ

∂t
. (46)

This is not equivalent to Schrödinger equation given
by Eq. (44). This means that equations of motion men-
tioned in case 1 do not represent the general case for
equations of motion in terms of Hamiltonian density
as in Ref. [24]. But they only represent a special case
for Independence of ψ , ψ∗, πα , πβ , π∗

α , and π∗
β .

Example 2 (Dirac Equation) The Lagrangian density
is [28]:

� = �c

2i

[( �∇ψ∗).�αψ − ψ∗ �α.( �∇ψ)
]

+ �

2i

[
∂ψ∗

∂t
ψ − ψ∗ ∂ψ

∂t

]
− eψ∗(�α. �A)ψ

+ ecψ∗φψ − mc2ψ∗αoψ, (47)

where

φ and �A are electromagnetic potential.
e and m are electron’s charge and mass respectively.
ψ and ψ∗ have four components (i.e. ψ = (ψ1,ψ2,

ψ3,ψ4), and ψ∗ = (ψ∗
1 ,ψ∗

2 ,ψ∗
3 ,ψ∗

4 ) with four spin
vectors)

α an operator with four components (i.e. �α,αo) with
�α = αx î + αyĵ + αzk̂.

We apply our equations for ψ and ψ∗ in general
and then we can generalize them for any given ψj

and ψ∗
j .

Lagrangian density in fractional form is:

� = �c

2i

[(
aD

α
xj

ψ∗)αjψ − ψ∗αj

(
aD

α
xj

ψ
)]

− �

2i

[(
aD

α
t ψ∗)ψ − ψ∗(

aD
α
t ψ

)] − eψ∗(�α. �A)ψ

+ ecψ∗φψ − mc2ψ∗αoψ. (48)

Here the subscript (j ) means sum over (x, y, z).

Equations of motion, using Euler-Lagrange equa-
tion (5), by taking the derivative with respect to ψ∗,
we get:

mcαoψ + �

2i
αj

[
aD

α
xj

ψ − xj
Dα

b ψ + e

c
Ajψ

]

+ �

2ic

[
aD

α
t ψ − ψ∗

tD
α
b ψ

] − eφψ = 0. (49)

For α = 1 we get the real equation of motion:

mcαoψ + �α.

(
�

i
�∇ψ + e

c
�Aψ

)

+
[

�

ic

∂ψ

∂t
− eφψ

]
= 0. (50)

We can determine πα and π∗
α such that:

πα = ∂�

∂aD
α
t ψ

= −�

2i
ψ∗. (51)

π∗
α = ∂�

∂aD
α
t ψ∗ = �

2i
ψ. (52)

Substituting Eqs. (51) and (52) into Eq. (21), the
Hamiltonian density can be written as:

h = −�c

2i

[(
aD

α
xj

ψ∗)αjψ − ψ∗αj

(
aD

α
xj

ψ∗)]
+ eψ∗(�α. �A)ψ − ecψ∗φψ + mc2ψ∗αoψ. (53)

We note from Eqs. (51) and (52) that πα and π∗
α are de-

pending on ψ∗ and ψ , respectively, so that we have to
use equations of motion for case 2. Applying Eq. (37)
with respect to ψ∗ , we get:

mcαoψ + �c

2i
αj

[
aD

α
xj

ψ∗ − xj
Dα

b ψ + e

c
Ajψ

]

+ �

2ic

[
aD

α
t ψ − tD

α
b ψ

] − eφψ = 0. (54)

This result is the same as that obtained by Euler-
Lagrange, see Eq. (49). For α = 1, we get Eq. (50)
in real space.

If we do not consider the dependency condition
of πα and π∗

α on ψ∗ and ψ , respectively, and apply
Eq. (32b) for case 1, we get:

mcαoψ + �c

2i
αj

[
aD

α
xj

ψ − xj
Dα

b ψ + e

c
Ajψ

]

+ −�

2ic
tD

α
b ψ − eφψ = 0. (55)

Equation (55) is not equivalent to Eq. (50), that is de-
rived from Euler-Lagrange equation. By considering
α = 1, we get:

mcψαo + �α.

(
�

i
�∇ψ + e

c
�Aψ

)
+ �

2ic

∂ψ

∂t
− eφψ = 0.

(56)

This equation differs from Eq. (50) by a factor of 1
2

appearing in the time derivative term of �

2ic
∂ψ
∂t

.
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7 Conclusion

We constructed the Hamiltonian formulation of con-
tinuous field systems. Our results are the same as those
derived by using the formulation of Euler-Lagrange.
Two cases are considered: the conjugate momenta are
field dependent or field independent. As special cases,
for derivatives of integer orders only, the results of the
equations of motion are found in agreement with the
Lagrangian formulation of continuous systems.

Appendix: Variation of full Hamiltonian

We can rewrite Eq. (27) as:

H =
∫ [

παaD
α
t ψ + π∗

αaD
α
t ψ∗ + πβtD

β
b ψ

+ π∗
β tD

β
b ψ∗]d3r − L. (A.1)

Now, take the variation of H , we get:

δH =
∫

δ
(
παaD

α
t ψ + πβtD

β
b ψ

)
d3r

+
∫

δ
(
π∗

αaD
α
t ψ∗ + π∗

β tD
β
b ψ∗)d3r − δL.

(A.2)

Using Eq. (19), Eq. (21) and Eq. (23), we rewrite the
variation of full Lagrangian given by Eq. (17) as:

δL =
∫ {−(

aD
β
t πβ + tD

α
b πα

)
δψ + παδ

(
aD

α
t ψ

)
+ πβδ

(
tD

β
b ψ

)}
d3r. (A.3)

The above equation can be arranged as:

δL =
∫ {−(

aD
β
t πβ + tD

α
b πα

)
δψ

+ δ
(
παaD

α
t ψ + πβtD

β
b ψ

)
.

− aD
α
t ψδπα − tD

β
b ψδπβ

}
d3r. (A.4)

Substituting Eq. (A.4) into Eq. (A.2), one gets:

δH =
∫ {(

aD
β
t πβ + tD

α
b πα

)
δψ + aD

α
t ψδπα

+ aD
α
t ψ∗δπ∗

α + tD
β
b ψδπβ + tD

β
b ψ∗δπ∗

β

+ π∗
αaD

α
t

(
δψ∗) + π∗

β tD
β
b

(
δψ∗)}d3r. (A.5)

Taking the time integration of δH , we get:∫
δH dt =

∫
dt

∫
d3r

{(
aD

β
t πβ + tD

α
b πα

)
δψ

+ aD
α
t ψδπα + aD

α
t ψ∗δπ∗

α + tD
β
b ψδπβ

+ tD
β
b ψ∗δπ∗

β + π∗
αaD

α
t

(
δψ∗)

+ π∗
β tD

β
b

(
δψ∗)}. (A.6)

Integrate (by parts) the last two terms in the above
equation then separate integrals over time and integrals
over space to get:

δH =
∫ [(

aD
β
t πβ + tD

α
b πα

)
δψ

+ (
aD

β
t π∗

β + tD
α
b π∗

α

)
δψ∗ + (

aD
α
t ψ

)
δπα

+ (
aD

α
t ψ∗)δπ∗

α + (
tD

β
b ψ

)
δπβ

+ (
tD

β
b ψ∗)δπ∗

β

]
d3r. (A.7)
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