
Commun. Theor. Phys. 61 (2014) 221–225 Vol. 61, No. 2, February 1, 2014

Fractional Bateman–Feshbach Tikochinsky Oscillator∗

Dumitru Baleanu,1,2,3,† Jihad H. Asad,4 and Ivo Petras5

1Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University,
P.O. Box 80204, Jeddah 21589, Saudi Arabia

2Department of Mathematics and Computer Science, Faculty of Arts and Sciences, Cankaya University,
06530 Ankara, Turkey

3Institute of Space Sciences, P.O. Box, MG-23, 76900, Magurele, Bucharest, Romania

4Department of Physics, College of Arts and Sciences, Palestine Technical University, P.O. Box 7, Tulkarm, Palestine

5BERG Faculty, Technical University of Kosice, B. Nemcovej 3, 04200 Kosice, Slovakia

(Received July 1, 2013; revised manuscript received October 8, 2013)

Abstract In the last few years the numerical methods for solving the fractional differential equations started to be

applied intensively to real world phenomena. Having these thinks in mind in this manuscript we focus on the fractional

Lagrangian and Hamiltonian of the complex Bateman–Feshbach Tikochinsky oscillator. The numerical analysis of the

corresponding fractional Euler-Lagrange equations is given within the Grünwald–Letnikov approach, which is power

series expansion of the generating function.
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1 Introduction

One of the new directions in fractional calculus
and its applications is to investigate the numerical so-
lutions of fractional Euler-Lagrange and Hamiltonian
equations.[1−7] These types of equations are new and they
involved both left and right derivatives (see for more de-
tails Refs. [8–11] and the references therein).

The fractional Hamiltonians are non-local and they
are associated with dissipative systems. We recall that
Bateman suggested the time-dependent Hamiltonian to
describe the dissipative systems.[12] Also, we mention the
fact that the time dependent Hamiltonian describing the
damped oscillation was introduced by Caldirola[13] (see
for more details Refs. [14] and [15]). Bateman suggested
a variational principle for equations of motion containing
a friction linear term in velocity.[12] After more than half
century it was find out that the frictional models can be
treated naturally within the fractional calculus,[1−6] which
studies derivatives and integrals of non-integer order.
Constructing a complete description for non-conservative
systems can be considered as one of promising applications
of fractional calculus. The results reported in Refs. [16–
17] are considered as the beginning of the fractional calcu-
lus of variations with a deep impact for non-conservative
and dissipative processes. Besides, in Ref. [8] it was in-
vestigated a Lagrangian formulation for variation prob-
lems with both the right and the left fractional derivatives
within Riemann–Liouville sense as well as the Lagrangian
and Hamiltonian fractional sequential mechanics.

Recently, the numerical methods are used intensively
and successfully to solve the fractional nonlinear differen-
tial equations fractional calculus.[4]

We have used the decomposition method to study the
fractional Euler–Lagrange equations for some important
three different physical systems,[11,18−20] and we have ob-
tained a numerical solution for the corresponding equa-
tions. In two of these references[18−19] we considered the
Lagrangian of a Harmonic oscillators, where in Ref. [18]
the considered model (i.e., Pais–Uhlenbeck oscillator) is
interesting by itself and in connection with gravity since
it involves a differential equation of order higher than two,
whereas in Ref. [19] we considered a Harmonic Oscillator
whose mass depends on time. In the last work[20] we con-
sidered the Lagrangian of a two-electric pendulum.

Bearing in mind the above mentioned facts, in this
manuscript, we study the fractional Euler-Lagrange equa-
tions for the fractional Bateman–Feshbach–Tikochinsky
oscillator, which is a non-conservative dissipative system.
We mention that the corresponding fractional differential
equations contain both the left and the right derivatives
and the study of this type of equations is still at the be-
ginning of its development.

The plan of this manuscript is given below. In Sec. 2,
we introduce briefly the basic definitions of the fractional
derivatives as well as their basic properties. In Sec. 3,
we study the fractional Bateman–Feshbach–Tikochinsky
oscillator. In Sec. 4, we investigate numerically the frac-
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tional Euler–Lagrange equations of the fractional system.
Finally, the conclusions are depicted in Sec. 5.

2 Mathematical Backgrounds

In the following we give a brief review for Riemann–
Liouville fractional integral and derivatives. The left
Riemann–Liouville fractional integral has the form:[1,5−6]

aIα
t x(t) =

1

Γ(α)

∫ t

a

(t − τ)α−1x(τ)dτ . (1)

The corresponding right Riemann–Liouville fractional in-
tegral is given by

tI
α
b x(t) =

1

Γ(α)

∫ b

t

(τ − t)α−1x(τ)dτ . (2)

Thus, the expression of the left Riemann–Liouville frac-
tional reads us[1,5−6]

aDα
xf(x) =

1

Γ(n − α)

( d

dx

)n
∫ x

a

f(τ)

(x − τ)α−n+1
dτ . (3)

The right Riemann–Liouville fractional derivative is pre-
sented below

xDα
b f(x) =

1

Γ(n − α)

(

−

d

dx

)n
∫ b

x

f(τ)

(τ − x)α−n+1
dτ . (4)

Here α denotes the order of the derivative such that
n − 1 6 α 6 n and is not equal to zero.[1,5−6]

The fractional Leibniz formula is given as

aDα
t [fg] =

∞
∑

k=0

(

α

k

)

aDα−k
t [g]aDk

t [f ] , (5)

where
(

α

k

)

=
Γ(α + 1)

Γ(k + 1)Γ(α + 1 − k)
.

Finally, let us suppose that φ(t) is a composition func-
tion φ(t) = F (h(t)), thus, the fractional derivative of the
composition function φ(t) is given by[5]

aDp
t φ(t) ≡ aDp

t F (h(t)) =
(t − a)p

Γ(1 − p)
F (h(t))

+
∞
∑

k=1

(

p

k

)

k!
(t − a)k−p

Γ(k − p + 1)

×

k
∑

m=1

Fm(h(t))
∑

k
∏

r=1

1

ar!

(h(r)(t)

r!

)ar

. (6)

3 The Investigated Fractional System

The starting point is the Lagrangian of the classical
Bateman–Feshbach Tikochinsky oscillator (see for exam-
ple Ref. [21]), namely

L = mq̇ẏ +
γ

2
(qẏ − q̇y) − Kqy , (7)

where q is the damped harmonic oscillator coordinate, y
corresponds to the time-reversed counterpart and m, K,
and γ are time independent.

The second step is to fractionalize the Lagrangian (7).
In this manuscript we suggest the following counterpart

LF = m(aDα
t q)(aDα

t y)

+
γ

2
[q(aDα

t y) − (aDα
t q)y] = Kqy . (8)

By inspection we conclude that the expressions of the four
corresponding canonical momenta are given below

Pα,q =
∂L

∂aDα
t q

= maDα
t y −

γ

2
y , Pβ,q =

∂L

∂tD
β
b q

= 0 ,

Pα,y =
∂L

∂aDα
t y

= maDα
t q +

γ

2
q , Pβ,y =

∂L

∂tD
β
b y

= 0 .(9)

By using Eqs. (8) and (9) the form of fractional Hamilto-
nian is:

H = Pα,qaDα
t q + Pβ,qtD

β
b q

+ Pα,yaDα
t y + Pβ,ytD

β
b y − L . (10)

By substituting Eqs. (8) and (9) into Eq. (10) the expres-
sion of the Hamiltonian became:

H = m(aDα
t q)aDα

t y + Kqy . (11)

As a result, the first Hamiltonian equation of motion
reads as[10] ∂H/∂q = tD

α
b Pα,q +aDβ

t Pβ,q, which simplifies
to

mtD
α
b aDα

t y − tD
α
b

γ

2
y = Ky . (12)

Using the same procedure as before, the second Hami-
tonian equation becomes ∂H/∂y = tD

α
b Pα,y + αDβ

t Pβ,y,
which reduces to

mtD
α
b aDα

t q + tD
α
b

γ

2
q = Kq . (13)

The main aim is to solve the fractional differential equa-
tions of motion (12) and (13), respectively.

We notice that these two equations are the same as the
corresponding fractional Euler–Lagrange equations. In
addition we observe that as α → 1, Eqs. (12) and (13)
reduce to the classical Hamiltonian of motion for the gen-
eralized coordinates q, and y, namely

m
d2y

dt2
−

γ

2

dy

dt
= Ky , (14)

− m
d2q

dt2
−

γ

2

dq

dt
= Kq . (15)

4 Numerical Results of Fractional Euler–
Lagrange Equations of Bateman–
Feshbach Tikochinsky Oscillator

We recall that Riemann–Liouville fractional derivative
is equivalent to the Grünwald–Letnikov derivative for a
wide class of the functions. For the numerical solution of
the linear fractional-order equations (12) and (13) we use
the decomposition to its canonical form with the substi-
tutions of y ≡ x1, and q ≡ x2. As a result, we obtain the
following set of equations in the form:

aDα
t x1 = x3 , tD

α
b

[

mx3 −
γ

2
x1

]

= Kx1 , (16)

aDα
t x2 = x4 , tD

α
b

[

mx4 +
γ

2
x2

]

= Kx2 . (17)

We use a set of four initial conditions: x1(0) ≡ y(0),
x2(0) ≡ q(0) and x3(0) ≡ aDα

t y(0), x2(0) ≡ aDα
t q(0). In-

stead of left and right side Riemann–Liouville fractional
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derivatives (3) and (4) in the set of Eqs. (16) and (17) the
left and right Grünwald–Letnikov derivatives can be used.
This is due to the fact that the left and right Grünwald–
Letnikov derivatives are equivalent to the left and right
side Riemann–Liouville fractional derivatives for a wide
class of functions.[5] These derivatives can be defined by
using the methodology presented in Refs. [22–23], which
depends on the upper and lower triangular strip matri-
ces, or one can use directly the formula derived from the
Grünwald–Letnikov definitions, backward and forward,
respectively, for discrete time step kh, k = 1, 2, 3, . . . Con-
sidering the second approach, the time interval [a, b] is dis-
cretized by (N+1) equal grid points, where N = (b−a)/h.
Thus, we obtain the following formula for discrete equiv-
alents of left and right fractional derivatives:

aDα
t xk = h−α

k
∑

i=0

cixk−i , k = 0, . . . , N , (18)

tD
α
b xk = h−α

N−k
∑

i=0

cixk+i , k = N, . . . , 0 , (19)

respectively, where xk ≈ x(tk) and tk = kh. The binomial
coefficients ci, i = 1, 2, 3, . . ., can be calculated according
to relation

ci =
(

1 −

1 + α

i

)

ci−1 , (20)

for c0 = 1. Then, the general numerical solution of the
fractional linear differential equation with left side deriva-
tive (initial value problem) in the form[18−20] becomes:

aDα
t x(t) = f(x(t), t) . (21)

Under the initial conditions: y(k)(0) = y
(k)
0 , k = 0, 1, . . .,

n−1, where n−1 < α < n, it can be expressed for discrete
time tk = kh in the following form:

x(tk) = f(x(tk), tk)hα
−

k
∑

i=m

cix(tk−i) , (22)

where m = 0 if we do not use a short memory principle,
otherwise it can be related to the memory length. Sim-
ilarly, it can be derived a solution for an equation with
right side fractional derivative.

5 Conclusions

In this paper we investigated the numerical solutions of
the Euler-Lagrange equations of the fractional Bateman–
Feshbach Tikochinsky. We started by fractionalizing the
corresponding Lagrangian and after that we obtained the
fractional Hamiltonian equations. Finally, we investigated
numerically the solution of the obtained fractional Euler–
Lagrange equations. The numerical results are shown in
Figs. 1–12.

Fig. 1 Time response of variable x1(t), for m = 10, γ = 2,
K = 0.1, α = 0.9, h = 0.001, and the simulation time 5 s.

Fig. 2 Time response of variable x2(t) corresponding to m =
10, γ = 2, K = 0.1, α = 0.9, h = 0.001, and the simulation
time 5 s.

Fig. 3 Time response of variable x3(t) such that m = 10,
γ = 2, K = 0.1, α = 0.9, h = 0.001, and the simulation time
5 s.

Fig. 4 Time response of variable x4(t), for m = 10, γ = 2,
K = 0.1, α = 0.9, h = 0.001, and the simulation time 5 s.
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Fig. 5 Time response of variable x1(t) corresponding to
m = 0.5, γ = 2, K = 0.1, h = 0.001, and the simulation time
5 s.

Fig. 6 Time response of variable x2(t) such that m = 0.5,
γ = 2, K = 0.1, h = 0.001, and the simulation time 5 s.

Fig. 7 Time response of variable x3(t), for m = 0.5, γ = 2,
K = 0.1, h = 0.001, and the simulation time 5 s.

Fig. 8 Time response of variable x4(t) for m = 0.5, γ = 2,
K = 0.1, h = 0.001, and the simulation time 5 s.

Fig. 9 Time response of variable x1(t), such that γ = 2,
K = 0.1, α = 0.9, h = 0.001, and the simulation time 5 s.

Fig. 10 The graph of variable x2(t) corresponding to γ = 2,
K = 0.1, α = 0.9, h = 0.001, and the simulation time 5 s.

In Figs. 1–4 the results are presented for the following
values m = 10, γ = 2, K = 0.1, α = 0.9. In Figs. 5–8
we depicted the results for m = 0.5, γ = 2, K = 0.1 and
various values of α. In Figs. 9–12 we have the following
values γ = 2, K = 0.1, α = 0.9 and various values of pa-
rameter m. In all results we used the simulation time 5 s,
h = 0.001 and the following initial conditions: x1(0) = 1,
x2(0) = 0.1, x3(0) = 1, and x4(0) = 0.5. The results

clearly show that by keeping the parameters constant and

by varying alpha we obtain different results. Besides, for

alpha constant and varying the mass we get different be-

haviors of the time response of variables. The reported

results illustrate that the fractional approach is more suit-

able to describe the complex dynamics of the investigated

model.
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Fig. 11 The graph of x3(t) for parameters γ = 2, K = 0.1,
α = 0.9, h = 0.001, and the simulation time 5 s.

Fig. 12 Time response of variable x4(t), for γ = 2, K = 0.1,
α = 0.9, h = 0.001, and the simulation time 5 s.
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