
Eur. Phys. J. Appl. Phys. (2014) 68: 10102 DOI: 10.1051/epjap/2014140229

The two-point capacitance of infinite triangular
and honeycomb networks

Mohammad Q. Owaidat, Ra’ad S. Hijjawi, Jihad H. Asad, and Jamil M. Khalifeh



Eur. Phys. J. Appl. Phys. (2014) 68: 10102
DOI: 10.1051/epjap/2014140229

THE EUROPEAN
PHYSICAL JOURNAL

APPLIED PHYSICS

Regular Article

The two-point capacitance of infinite triangular
and honeycomb networks

Mohammad Q. Owaidat1,a, Ra’ad S. Hijjawi2, Jihad H. Asad3, and Jamil M. Khalifeh4

1 Department of Physics, AL-Hussein Bin Talal University, P.O. Box 20, Ma’an 71111, Jordan
2 Department of Physics, Mutah University, Karak 61710, Jordan
3 Department of Physics, College of Arts and Science, Palestine Technical University, P.O. Box 7, Tulkarm 30, Palestine
4 Department of Physics, Jordan University, Amman 11942, Jordan

Received: 28 May 2014 / Received in final form: 25 August 2014 / Accepted: 2 September 2014
Published online: 10 October 2014 – c© EDP Sciences 2014

Abstract. The capacitance between arbitrary two sites (vertices) in infinite triangular and honeycomb
networks is studied by using Green’s function. Recurrence formulas for capacitance between arbitrary sites
of the triangular lattice are obtained. The capacitance for the honeycomb lattice is shown to be expressed
in terms of the one for the triangular lattice.

1 Introduction

In the electrical circuit theory, one of the basic and inter-
esting problems is the determination of the effective resis-
tance in infinite resistor networks. Several techniques have
been developed to study this problem, such as superpo-
sition of current distribution [1,2], random walks [3,4],
lattice Green’s function [5]. The later is the most suit-
able approach because it can be employed for any infinite
perfect lattice structure of resistors [6,7] and perturbed
lattices cases [8–13].

Wu [14] considered the problem of two-point
resistance for finite lattices. He obtained an expression
for the effective resistance between arbitrary two nodes
in terms of the eigenvalues and eigenvectors of the real
symmetric Laplacian matrix associated with the lattice.
Tzeng and Wu [15] later extended the formulation of ref-
erence [14] to finite impedance networks. The Laplacian
matrix associated with the impedance networks is sym-
metric matrix and generally complex elements.

Another interesting problem in electrical circuit
analysis is the computation of the two-point capacitance in
infinite capacitor networks. Based on the lattice Green’s
function method, some recent studies on the evaluation
of two-point capacitance of perfect and perturbed regu-
lar lattices were carried out in previous works [16–21].
The capacitor electrical network can systematically be
treated by the Laplacian operator of the difference equa-
tions governed by Kirchhoff’s first law (conservation of
electric charge) and electrical charge/voltage relationship.
Then the lattice Green’s function corresponding to the dis-
crete Laplacian operator can be related to the capacitance

a e-mail: owaidat@ahu.edu.jo

between two arbitrary nodes in an infinite capacitor net-
work. The lattice Green’s function for the triangular and
honeycomb lattices was investigated by Horiguchi [22].
He showed that the lattice Green’s function for the trian-
gular lattice is expressed in terms of the complete elliptic
integrals of the first and second kind, and for the honey-
comb lattice is shown to be expressed in terms of the one
for the triangular lattice.

In this paper we apply the lattice Green’s function
approach [5,16,17] to the infinite triangular and honey-
comb networks, and determine the capacitance between
any two nodes in the networks. Here, we use the orthogo-
nal Cartesian coordinates system [22] (one axis is horizon-
tal and other is vertical as shown in Figs. 1 and 2), instead
of a triangle coordinate system that usually used in the
triangle lattice analysis. The advantages of the orthogonal
Cartesian coordinates system used in this paper are:

(i) Some recurrence formulas for capacitances are derived
from that for the lattice Green’s function derived by
Horiguchi [22]. With the aid of that formulas one can
calculate the effective capacitance between the origin
and arbitrary lattice site.

(ii) It is easier to follow for triangular lattice compared to
other coordinate systems.

The paper is arranged as follows. In Section 2, the two
point capacitance function for an infinite triangular lattice
is studied and some recurrence formulas for capacitances
are obtained. In Section 3, the two point capacitance
functions for an infinite honeycomb lattice are presented.
A mapping between the capacitance of honeycomb net-
work and that of triangular network is shown. A brief
conclusion is given in Section 4.
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Fig. 1. The capacitor network of the triangular lattice.

Fig. 2. The capacitor network of the honeycomb lattice.

2 Infinite triangular capacitor network

Consider an infinite triangular lattice of equal capaci-
tances C as shown in Figure 1. Let r = �a + mb be
the lattice site: �a is the horizontal axis and mb is the
vertical axis, where �+m is an even integer. If the nearest
neighbor distance is chosen to be equal 1, then a = 1

2 and
b =

√
3
2 .

Following the references [5,16,17], we evaluate the
effective capacitance between the sites r1 and r2. Assume
that a charge Q enters at r1 from a source outside the
lattice and leaves at r2. Thus, the charge distribution at
site r can be written as:

Q(r) = Q(δ(r, r1) − δ(r, r2)). (1)

Let the electric potential at site r is denoted by V (r).
According to Kirchhoff’s first rule and electrical

charge/voltage relationship, we have:

Q(r) =
∑

Δ

C(V (r) − V (r + Δ)), (2)

where Δ = ±2a, a ± b,−a ± b.
Assuming periodic boundary conditions, the potential

and charge are given in terms of their Fourier transforms
as:

V (r) = �−1[V (k)] =
A0

(2π)2

∫ π/a

−π/a

∫ π/b

−π/b

V (k)eik.rdk,

(3)

Q(r) = �−1[Q(k)] =
A0

(2π)2

∫ π/a

−π/a

∫ π/b

−π/b

Q(k)eik.rdk,

(4)
where k is the wavevector in the Fourier space and is
limited to the first Brillouin zone [23–26] and A0 = ab
is area of the unit cell, the Brillouin zone is a rectangle
with sides 2π/a and 2π/b along the directions of a and b,
respectively, and dk = dkadkb. Using equations (3)
and (4) in (2) gives:

L(k)V (k) = −Q(k)/C, (5)

where L(k) is the Fourier transform of the triangular
Laplacian operator L(r), given by:

L(k) = −2(3 − cos 2k · a − 2 cosk · a cosk · b). (6)

The lattice Green’s function can be given by its Fourier
transform as:

G(r, r′) = �−1[G(k)] =

ab

(2π)2

∫ π/a

−π/a

∫ π/b

−π/b

G(k)eik(r−r′)dkadkb, (7)

where G(k) is defined by:

G(k) = −L−1(k) =
1

2(3 − cos 2k · a − 2 cosk · a cosk · b)
.

(8)
The capacitance between the sites r1 and r2 is given by
the ratio:

C(r1, r2) =
Q

V (r1) − V (r2)
. (9)

Using equations (1), (3), (5), (7) and (9), writing r2 −
r1 = �a + mb and changing the variables k · a = θ1,
k · b = θ2, the Green’s function for the triangular lattice
and the capacitance between the origin and node (�,m)
can be obtained as:

G(�,m) =
1

4π2

∫ π

−π

dθ1

×
∫ π

−π

dθ2
cos �θ1 cos mθ2

2(3 − cos 2θ1 − 2 cos θ1 cos θ2)
,

(10)
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C(�,m) =
C

1
4π2

∫ π

−π
dθ1

∫ π

−π
dθ2

1−cos �θ1 cosmθ2
3−cos 2θ1−2 cos θ1 cos θ2

.

(11)

From the symmetry of the network: C(±1,±1) =
C(±2, 0), one can easily obtain the capacitance between
nearest neighbor points, the result is C(±1,±1) =
C(±2, 0) = 3C.

In general the capacitance between the origin and any
lattice point (�,m) can be evaluated numerically from
equation (11). It is shown in Appendix A, the capacitance
C(�, 0) along �a axis can be calculated analytically as:

see equation (12) at the bottom of this page.

It is simple to evaluate this integral for a given �.
Several analytical examples are given below:

Example 1. The effective capacitance between the sites
(0, 0) and (4, 0) is computed from equation (12) as:

C(4, 0) =
πC

∫ π/6

0
32 sin2 ydy

=
3πC

8π − 12
√

3
. (13)

Example 2. The capacitance between (0, 0) and (8, 0) is
calculated to be:

C(8, 0) =
πC

∫ π/6

0
2(46 sin6 y − 45 sin4 y + 43 sin2 y)dy

=
3πC

928π − 1680
√

3
, (14)

Example 3. The capacitance C(10, 0) is given by:

see equation (15) at the bottom of this page.

From the lattice symmetry the capacitance is un-
changed under the rotation by an angle nπ/3, n =
1, 2, 3, 4, 5 of the coordinate axes around the origin
(see Fig. 1):

C(�a,mb) = C
(
�a cos

nπ

3
− mb sin

nπ

3
, �a sin

nπ

3

+mb cos
nπ

3

)
, (16a)

and under the inversion on the �a axes and mb axes:

C(�a,mb) = C(�a,−mb) = C(−�a,mb). (16b)

Using equation (16a) for n = 5, the capacitance C(�a,mb)
for mb > 3�a can be written in terms of the capacitance

for mb < 3�a as follows:

C(�a,mb) = C

(
1
2
�a +

√
3

2
mb,

√
3

2
�a − 1

2
mb

)
. (17)

Thus, one can only determine the capacitances between
the origin and unfilled lattice points shown in Figure 1.
The lattice Green’s function for the triangular lattice with
the nearest interaction is given by [22]:

G(t; �,m) =
1

(2π)2

∫ π

−π

dθ1

×
∫ π

−π

dθ2
cos �θ1 cos mθ2

t − cos 2θ1 − 2 cos θ1 cos θ2
. (18)

Comparing equation (11) with (18), we have:

C(�,m) =
C

G(3; 0, 0) − G(3; �,m)
. (19)

In reference [22], Horiguchi showed that if t is real and
t > 3, the lattice Green’s functions G(t, �, 0) for � = 0, 2
can be expressed in terms of the complete elliptic integrals
of the first kind:

G(t; 0, 0) =
1
2π

gK(k), (20a)

G(t; 2, 0) =
t

6π
gK(k) − 1

3
, (20b)

where

g =
8

[(2t + 3)1/2 − 1]3/2[(2t + 3)1/2 + 3]1/2
, (21a)

k =
4(2t + 3)1/4

[(2t + 3)1/2 − 1]3/2[(2t + 3)1/2 + 3]1/2
, (21b)

and K(k) is the complete elliptic integral of the first kind:

K(k) =
∫ π/2

0

dθ

(1 − k2 sin2 θ)1/2
. (22)

Substituting equations (20a) and (20b) into (19) (with
t = 3), again the capacitance between adjacent lattice
points is C(2, 0) = 3C.

C(�, 0) =
πC

∫ π/6

0

∑ �
2−1
m=0 (−1)m+2 2�(�−m−1)!

m!(�−2m)! (4 sin y)�−2m−2
∑ �

2−m−1
n=0

1
22n sin2n y

dy
(12)

C(10, 0) =
πC

∫ π/6

0
2(48 sin8 y − (6)46 sin6 y + (11)44 sin4 y − (6)42 sin2 y + 1)dy

=
3πC

11249π − 20400
√

3
(15)
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2.1 Recurrence formulas

Horiguchi [22] obtained the recurrence formulas for the
Green’s function G(t; �,m) for an infinite triangular lat-
tice. Using these results with equation (19), we obtain the
following recurrence formulas for the capacitance:

� + 2
C(� + 4, 0)

=
16(� + 1)

C(� + 2, 0)
− 30�

C(�, 0)

+
16(� − 1)

C(� − 2, 0)
− 16(� − 2)

C(� − 4, 0)
, (23a)

where � is even and greater than or equal to 2.

1
C(� + 1, 1)

=
3

C(�, 0)
− 1

2C(� + 2, 0)

− 1
2C(� − 2, 0)

− 1
C(� − 1, 1)

(23b)

where � is even and greater than or equal to 2.

1
C(�,m)

=
6

C(� − 1,m − 1)
− 1

C(� + 1,m − 1)

− 1
C(� − 3,m − 1)

− 1
C(�,m − 2)

− 1
C(� − 2,m)

− 1
C(� − 2,m − 2)

(23c)

where � ≥ 4 and is odd or even integer depend on m, and
m ≥ 2.

Using equation (17), C(�,m) for m > 3� can be ex-
pressed in terms of the capacitance form < 3�:

C(�,m) = C

(
1
2
(� + 3m),

1
2
(� − m)

)
. (23d)

For � = m, the above equation becomes:

C(�, �) = C(2�, 0) for all �. (23e)

Knowing the exact values of C(0, 0) = ∞, C(2, 0) and
C(4, 0), the two – node capacitance can be computed
exactly by using the above recurrence relations. Some
results are listed in Table 1.

3 Infinite honeycomb capacitor network

In this section, we follow reference [5] to calculate the
capacitance in an infinite honeycomb network of identical
capacitances C.

The unit cell of the honeycomb network has two lattice
sites labeled by α = 1, 2 as shown in Figure 2. We assume
that the lattice site 1 is at the origin, and then the position
of a unit cell can be specified by the position vector r =
�a + mb, where �a is the horizontal axis and mb is the
vertical axis and � + m is an even integer. If the nearest
neighbor distance is chosen to be equal 2, then a =

√
3

and b = 1.

Table 1. Capacitance C(�, m) in units of C in infinite
triangular network.

�, m C(�, m)/C �, m C(�, m)/C
0, 0 ∞ 1, 1 3
2, 0 3 2, 2 2.16755
4, 0 2.16755 3, 3 1.86493
6, 0 1.86493 4, 4 1.69736
8, 0 1.69736 5, 5 1.58685
10, 0 1.58685 6, 6 1.50673
12, 0 1.50673 7, 7 1.44504
14, 0 1.44504 8, 8 1.39555
16, 0 1.39555 9, 9 1.35463
18, 0 1.35463 10, 10 1.32001
20, 0 1.32001 1, 3 1.94822
22, 0 1.29018 1, 5 1.65292
24, 0 1.26409 3, 1 2.29363
0, 2 2.29363 5, 1 1.94822
0, 4 1.77686 7, 1 1.75408
0, 6 1.56919 4, 2 1.94822
0, 8 1.44899 6, 2 1.77686
0, 10 1.36773 8, 2 1.65292
0, 12 1.30779 9, 3 1.56919
0, 14 1.26108 5, 3 1.75408
0, 16 1.22322 7, 3 1.65292

Let the potentials and the charges at site r in each
unit cell are denoted by Vα(r) and Qα(r) (with α = 1, 2),
respectively. According to Kirchhoff’s first rule and elec-
trical charge/voltage relationship, the charges Q1(r) and
Q2(r) at site r are given by:

Q1(r) =
∑

Δ1

C(V1(r) − V2(r + Δ1)), (24a)

Q2(r) =
∑

Δ2

C(V2(r) − V1(r + Δ2)), (24b)

where Δ1 = −2b,±a + b and Δ2 = 2b,±a − b.
Again the general expressions for the inverse Fourier

transforms of the potentials and charges are given by:

Vα(r) =
ab

(2π)2

∫ π/a

−π/a

∫ π/b

−π/b

Vα(k)eik.rdkadkb, (25a)

Qα(r) =
ab

(2π)2

∫ π/a

−π/a

∫ π/b

−π/b

Qα(k)eik.rdkadkb. (25b)

Thus, using the above equations, equations (24a)
and (24b) can be written as:

L(k)
[

V1(k)
V2(k)

]
= − 1

C

[
Q1(k)
Q2(k)

]
, (26)

where L(k)(2 by 2 matrix) is Fourier transform of
Laplacian matrix of the honeycomb network:

see equation (27) in the next page.

As usual the Green’s function G(k) can be calculated by
inverting L(k) to be:

see equation (28) in the next page.
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L(k) =
[ −3 e−2ikb + ei(ka+kb) + e−i(ka−kb)

e2ikb + e−i(ka+kb) + ei(ka−kb) −3

]
(27)

G(k) =
1

D(k)

[
3 e−2ikb + ei(ka+kb) + e−i(ka−kb)

e2ikb + e−i(ka+kb) + ei(ka−kb) 3

]
(28)

C12(�,m) =
C

1
4π2

∫ π

−π
dθ1

∫ π

−π
dθ2

3−cos(�θ1+(m+2)θ2)−cos((�−1)θ1+(m−1)θ2)−cos((�+1)θ1+(m−1)θ2)
3−cos 2θ1−2 cos θ1 cos 3θ2

(35)

where D(k) = 2(3 − cos 2ka − 2 coska cos 3kb) is the
determinant of matrix L(k). Thus, equation (26)
becomes [

V1(k)
V2(k)

]
=

1
C

G(k)
[

Q1(k)
Q2(k)

]
. (29)

Since the unit cell contains two lattice sites numbered by
1 and 2, there are four kinds of capacitances between any
two sites r1 and r2: C11(r1, r2), C12(r1, r2), C21(r1, r2)
and C22(r1, r2). From the lattice symmetry, C22(r1, r2) =
C11(r1, r2) and C21(r1, r2) = C12(r2, r1).

To calculate the capacitance between the same kind of
sites 1 and 1, C11(r1, r2), the charge distributions at sites
1 and 2 at r are:

Q1(r) = Q(δr,r1 − δr,r2), Q2(r) = 0. (30)

The capacitance between the same kind of sites 1 and 1 is
given by:

C11(r1, r2) =
Q

V1(r1) − V1(r2)
. (31)

Using equations (25a), (25b), (29) and (30), after writing
r2 − r1 = �a + mb and changing the variables k · a = θ1,
k · b = θ2, the capacitance between the origin and node
(�,m) is given by:

C11(�,m) =
C

1
(2π)2

∫ π

−π

∫ π

−π
3(1−cos(�θ1+mθ2))dθ1dθ2
(3−cos 2θ1−2 cos θ1 cos 3θ2)

. (32)

Now, to calculate the capacitance between the different
kinds of vertices 1 and 2, C12(r1, r2), the charge distribu-
tions at sites 1 and 2 at r are:

Q1(r) = Qδr,r1 , Q2(r) = −Qδr,r2 . (33)

The capacitance between 1, 2-type points, C12(r1, r2) is
given by:

C12(r1, r2) =
Q

V1(r1) − V2(r2)
. (34)

Following the same procedures of C11(r1, r2), the capaci-
tance C12(r1, r2) can be obtained as:

see equation (35) at the top of this page.

The equivalent capacitance between first neighbors nodes
(the capacitance between point 1 at (0, 0) and 2 at (0, 0))

Table 2. Capacitances C11(�, m) and C12(�, m) in units of C
in infinite honeycomb network.

�, m C11(�, m)/C �, m C12(�, m)/C
0, 0 ∞ 0, 0 ∞
2, 0 1 1, 1 3/2
4, 0 0.72252 3, 1 0.81256
6, 0 0.62164 0, 4 0.90690
8, 0 0.56579 4, 4 0.68373
10, 0 0.52895 2, 4 0.81256
12, 0 0.50224 0, −2 3/2
14, 0 0.48168 3, 1 0.81256
16, 0 0.46518 5, 1 0.66188
18, 0 0.45145 7, 1 0.58981
1, 3 1 1, 7 0.70890
3, 3 0.76454 2, −2 0.90689
6, 6 0.59229 4, −2 0.70888
2, 6 0.72252 6, −2 0.61739

can be easily obtained from equation (35). From symme-
try of the lattice: C12(1, 1) = C12(−1, 1) = C12(0,−2)
and using equation (35) this capacitance is 3C/2. Also the
equivalent capacitance, C11(2, 0) between second nearest
neighbors nodes can be calculated from equation (32) in
similar way, this capacitance is C.

The capacitance C12(�,m) can be written in terms of
C11(�,m) as:

1
C12(�,m)

=
1

3C11(�,m + 2)
+

1
3C11(� − 1,m − 1)

+
1

3C11(� + 1,m − 1)
. (36)

It is well known in the literature the honeycomb lattice
is the dual lattice of a triangular lattice. Therefore, the
capacitances C11(�,m) and C12(�,m) for the honeycomb
lattice can be expressed in terms of the capacitances for
the triangular lattice:

C11(�,m) =
1
3
Ctrai

(
�,

1
3
m

)
, (37)

1
C12(�,m)

=
1

Ctrai(�, 1
3 (m + 2))

+
1

Ctrai(� + 1, 1
3 (m − 1))

+
1

Ctrai(� − 1, 1
3 (m − 1))

. (38)
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For derivation these results we have substituted θ2 =
θ′
2/3 into equations (32) and (35) then we have used the

following integration property:

1
c

∫ cb

ca

f
(x

c

)
dx =

∫ b

a

f(x)dx. (39)

Thus, from equations (37) and (38) the two-point capac-
itances on the honeycomb network are obtained from the
knowledge of the one on the triangular lattice. Some
results are given in Table 2.

4 Conclusion

In this paper using the lattice Green’s function method
[5,16,17] we calculated the capacitance for the infinite
triangular and honeycomb networks lattices of identical
capacitors. The orthogonal Cartesian coordinates system
is used instead of a triangle coordinate system. We derived
recurrence relations for the capacitance of a triangular lat-
tice. We derived explicit expressions for the capacitances
between two arbitrary lattice points in honeycomb lattice
in terms of the capacitances on a triangular lattice.
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Appendix A: The expression of the
capacitance C(l,0) along la axis
for a triangular lattice

Starting from equation (19) for the capacitance C(�, 0)
along �a axis we have:

C(�, 0) =
C

I�
, (A1)

where

I� =
1

4π2

∫ π

−π

∫ π

−π

(1 − cos �θ1)dθ1dθ2
3 − cos 2θ1 − 2 cos θ1 cos θ2

, (A2)

and � ≥ 2, and an even integer.
Performing the integral over θ2 using the residue

method: ∫ π

−π

dθ2
a − b cos θ2

=
2π√

a2 − b2
. (A3)

Hence, the integral I� becomes:

I� =
∫ π

0

dθ1
2π

1 − cos �θ1

sin θ1
√

4 − cos2 θ1
. (A4)

The function T�(x) = cos �θ1 is known as the Chebyshev
polynomials of type I [27], where x = cos θ1. The power-
series representation of T�(x) is given by:

T�(cos θ1) = cos �θ1 =
�

2

�/2∑

m=0

(−1)m (� − m − 1)!
m!(� − 2m)!

×(2 cos θ1)�−2m. (A5)
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C(�, 0) =
C

∫ π/6

0
dy
π

∑ �
2−1
m=0 (−1)m+2 2�(�−m−1)!

m!(�−2m)! (4 sin y)�−2m−2
∑ �

2−m−1
n=0

1
22n sin2n y

(A8)

Let cos θ1 = 2 sin y the integral I� becomes:

I� =
∫ π/6

0

dy

2π

�
∑ �

2−1
m=0 (−1)m+1 (�−m−1)!

m!(�−2m)! (4 sin y)�−2m

1 − 4 sin2 y
.

(A6)
Hence, the capacitance C(�, 0) is:

C(�, 0) =
C

∫ π/6

0
dy
2π

�
� �

2 −1
m=0 (−1)m+1 (�−m−1)!

m!(�−2m)! (4 sin y)�−2m

1−4 sin2 y

.

(A7)
By writing 1

1−4 sin2 y
= (2 sin y)−2

(2 sin y)−2−1 = −x 1
1−x , where x =

(2 sin y)−2 and expanding 1
1−x in Taylor series about x =

0, we have:

1
1 − 4 sin2 y

= (−1)+1
∑

n=0

(2 sin y)−2n−2.

Equation (A7) can be written as:

C(�, 0) =

C
� π/6
0

dy
π

� �
2−1
m=0(−1)m+2 2�(�−m−1)!

m!(�−2m)!

�
n 22n(4 sin y)�−2m−2n−2

.

Note that m in the summation is positive integer from
zero to �

2 − 1 (not the site m). The integrand in the above
equation is a polynomial of sin y. Therefore, the upper
limit of n in the summation can be determined by:

� − 2m − 2n − 2 ≥ 0 or n ≤ �

2
− m − 1.

Finally, the expression for C(�, 0) in equation (A7) can be
written as:

See equation (A8) at the top of this page.
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