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Abstract In this manuscript, we investigated the
fractional thin elastic system. We studied the obtained
fractional Euler-Lagrange’s equations of the system
numerically. Thenumerical study is basedonGrünwald
–Letnikov approach, which is power series expansion
of the generating function. We present an illustrative
example of the proposed numerical model of the sys-
tem.
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1 Introduction

Fractional calculus and fractional dynamics started to
play an important role in revealing the hidden aspects
of the complex systems [1–3] and are undergoing rapid
developments with more and more persuasive applica-
tions in the real world [4–10].

Fractional calculus has been used widely in clas-
sical mechanics as well as in other areas. For exam-
ple, in his works, Riewe [11,12] used the fractional
calculus to obtain a formalism that can be applied for
conservative and non-conservative systems, where one
can obtain fractional Lagrangian and fractional Hamil-
tonian equations of motion these systems. For some
other approaches, the readers can see, for example,
Refs. [13–16] and the references therein.

Numerical analysis of fractional differential equa-
tions appeared in many researches [17–19]. For exam-
ple, recently, Podlubny [20] and Podlubny et al. [21]
introduce how to numerically solve differential equa-
tions by using the matrix form representation. In a
recent works, we used the decomposition method in
studying the fractional Lagrange and Hamilton equa-
tions of motion for different physical systems [22–25].
As it is known, the thin elastica model which is under
investigation in this work is a flexible cantilevered rod.
This name was suggested by Euler [26], who was the
first to completely solve the planar, static problem. A
detailed mathematical history of the elastica was given
by Levien [27]. The importance of this model comes
from the fact that it represents nonlinear vibrations
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which include both torsional and bending modes. We
notice that many works have been carried out on this
elastic model with different boundaries (see for exam-
ple Refs. [28–31] and the references therein).

In this line of taught, we believe that the numerical
solutions of the fractional Lagrange’s equations of a
thin elastica will reveal new aspects of the non-locality
of this system.

The fractional variational principle plays an impor-
tant role in many areas from science and engineering.
Fractional Euler-Lagrange equations are new fromboth
mathematical and applied viewpoints. Both exact and
numerical solutions contain richer information than the
corresponding ones. Therefore, by modeling the clas-
sical Lagrangian of thin elastica with fractional deriv-
atives, we have a class of new solutions. After that, we
can easily construct a real thin elastica model corre-
sponding to the new fractional Euler-Lagrange equa-
tions. Perhaps, this is one of the major advantages of
fractional calculus versus the classical one: We can
build new real world phenomena by using the non-
local fractional differential operators, and we are not
violating any existing laws based on classical calculus
approach.

This work is organized as follows: In Sect. 2, the
basic definitions of fractional derivatives are discussed
briefly, and the fractional thin elastica model is pre-
sented. In Sect. 3, the numerical analysis of the corre-
sponding fractional Euler-Lagrange’s equations is car-
ried out. The paper closes with concluding remarks.

2 The basic tools and the system

Below, we briefly present the definitions of the left
and right derivatives and integrals (see for more details
[1,2,9,10]).

The left Riemann–Liouville fractional derivative
(LRLFD) reads

aD
α
x f (x)= 1

�(n−α)

(
d

dx

)n x∫
a

f (τ )

(x−τ)α−n+1 dτ (1)

The expression of the right Riemann–Liouville frac-
tional derivative is given by

xD
α
x f (x) = 1

� (n − α)

(
− d

dx

)n b∫
x

f (τ )

(τ − x)α−n+1 dτ

(2)

Fig. 1 Thin elastic: a un-deformed, b bending, c torsional, d
non-local (involving both bending and torsional [34])

The leftRiemann–Liouville fractional integral (LRLFI)
is defined as follows

aI
α
t x(t) = 1

�(α)

t∫
a

(t − τ)α−1x(τ )dτ (3)

Finally, the right Riemann–Liouville fractional integral
(RRLFI) has the form

tI
α
b x(t) = 1

�(α)

b∫
t

(τ − t)α−1x(τ )dτ (4)

Here, α is the order of the derivative such that n − 1 ≤
α ≤ n is not equal to zero. If α is an integer, these
derivatives become the usual ones.

Our physical system (i.e., thin elastic) is shown in
Fig. 1 below. The dynamics of this system was studied
by Cusumano [26].

The free vibration of the above linear system
involves both bending and torsional modes. As shown
in Cusumano [33] work, if non linear effects are
included, then complicated dynamics results including
chaos are occurred.

The kinetic and potential energies of the system are
given as [34]:

T = m

2

[
(q2)

2 (
q ′
1

)2 + (
q ′
2

)2] + J

2

(
q ′
1

)2
. (5)

V = 1

2

[
k1 (q1)

2 + k2 (q2)
2
]
. (6)
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The prime sign means the differentiation with respect
to τ . Here, q1 is a generalized coordinate represent-
ing the rotational motion which is due to the torsional
motion of the elastic, while q2 is a generalized coordi-
nate representing the rectilinear deflection which is due
to the bending motion of the elastica. Now, we make
the following notations

x =
√

Jk1
m

q1, y = √
k1q2, t =

√
k1
m

τ. (7)

Thus, the classical Lagrangian equation takes the fol-
lowing form:

L = 1

2

(
1+ ∈ y2

)
ẋ2 + 1

2
ẏ2 − 1

2

(
p2x2 + y2

)
. (8)

where

∈= m

Jk1
,

and

p =
√

k2/J

k1/m
,

the ratio of the frequencies of the torsional x − mode
to the bending y − mode.

The dot means the differentiation with respect to
time t .We recall the classicalEuler-Lagrange equations
of motion as [34]:(
1+ ∈ y2

)
ẍ + 2 ∈ y ẏẋ + p2x = 0. (9)

ÿ − ∈ ẋ2y + y = 0. (10)

In order to investigate the hidden aspects of the dynam-
ics of this system, we write down the fractional coun-
terpart of the classical Lagrangian given in Eq. (8) as

LF = 1

2

(
1+ ∈ y2

) (
aD

α
t x

)2 + 1

2

(
aD

α
t y

)2

−1

2

(
p2x2 + y2

)
. (11)

Thus, the corresponding fractional Euler-Lagrange
equations read as:

∂L

∂q
+ tD

α
b

∂L

∂aDα
t q

+ aD
β
t

∂L

∂t D
β
b q

= 0, (12)

where q is a generalized coordinate.
Applying Eq. (12) to our fractional Lagrangian

equation for both x and y, respectively, we conclude

−p2x + tD
α
b

[(
1+ ∈ y2

) (
aD

α
t x

)] = 0 (13)

and

∈ y
(
aD

α
t x

)2 − y + tD
α
b aD

α
t y = 0 (14)

We notice that as α → 1, the above two frac-
tional Euler-Lagrange equations reduced to the clas-
sical Euler-Lagrange equations of motion.

In the following, we construct the fractional Hamil-
tonian as itwas introduced in [35]. SinceourLagrangian
depends on two generalized coordinates, we introduce
the following four generalized momenta:

Pα,x = ∂L

∂aDα
t x

=
(
1+ ∈ y2

) (
aD

α
t x

)
,

Pα,y = ∂L

∂aDα
t y

= aD
α
t y. (15)

So, the fractional Hamiltonian function reads:

H = Pα,x aD
α
t x + Pα,y aD

α
t y − L

= 1

2

(
Pα,x

)2
1+ ∈ y2

+ 1

2

(
Pα,y

)2 + 1

2

(
p2x2 + y2

)
.

(16)

As a result, the Hamilton’s equations of motion are
obtained as:

Pα,x

1+ ∈ y2
= aD

α
t x,

therefore

Pα,y = aD
α
t y. (17)

By using

∂H

∂x
= tD

α
b Pα,x (18)

we recovered (13).
Using the fact that ∂H

∂y = tDα
b Pα,y , we get

y − ∈ y(
1+ ∈ y2

)2
(
Pα,x

)2 = tD
α
b Pα,y (19)

which reduces to the equation (14).
Again as α, β → 1, the fractional Hamilton’s equa-

tions reduced to the classical Hamilton’s equations of
motion.
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3 Numerical method and the simulation results

Our aim, now, is to solve the above fractional Euler-
Lagrange’s equations numerically. We recall that
Riemann–Liouville fractional derivative is equivalent
to the Grünwald–Letnikov derivative for a wide class
of the functions if the following condition is satisfied
f ∈ C (n)[a, b],
f (k)(a) = 0, (k = 0, . . . , n − 1) for (n − 1<α<n).

For the numerical solution of the fractional- order
Eqs. (13) and (14), we use the decomposition to its
canonical form with the substitutions of x ≡ x1
and y ≡ x2. We used a set four initial conditions:
x1(0) ≡ x(0), x2(0) ≡ y(0) and x3(0) ≡ aDα

t x(0),
x4(0) ≡ aDα

t y(0). Instead of left and right side
Riemann–Liouville fractional derivatives (1) and (2)
in the set of Eqs. (13) and (14), the left and right
Grünwald-Letnikov derivatives can be used. This is due
to the fact that the left and right Grünwald-Letnikov
derivatives are equivalent to the left and right side
Riemann–Liouville fractional derivatives for a wide
class of functions [10]. Considering this approach, the
time interval [a, b] is discretized by (N +1) equal grid
points, where N = (b − a)/h. Thus, we obtain the
following formula for discrete equivalents of left and
right fractional derivatives:

aD
α
t xk = h−α

k∑
i=0

ci xk−i , k = 0, . . . , N , (20)

tD
α
b xk = h−α

N−k∑
i=0

ci xk+i , k = N , . . . , 0, (21)

respectively, where xk ≈ x(tk) and tk = kh. The bino-
mial coefficients ci , i = 1, 2, 3, . . . can be calculated
according to relation

ci =
(
1 − 1 + α

i

)
ci−1 (22)

for c0 = 1. Then, the general numerical solution of the
fractional nonlinear differential equation with left side
derivative (initial value problem) in the form [21–25]
becomes

aD
α
t x(t) = f (x(t), t). (23)

Under the initial conditions: x (k)(0) = x (k)
0 , k =

0, 1, . . ., n − 1, where n − 1 < α < n, it can be

Fig. 2 Simulation result for various order α, p = 1, ∈ = 0.5
and time 1s

expressed for discrete time tk = kh in the following
form

x(tk) = f (x(tk), tk)h
α −

k∑
i=m

ci x(tk−i ), (24)

where m = 0 if we do not use a short memory princi-
ple, otherwise, it can be related to the memory length.
Similarly, it can be derived as a solution for an equation
with right side fractional derivative.

The simulation results are given below. In Fig. 2, x(t)
and y(t) are plotted for α = 1, 0.95, 0.9, 0.85, 0.8,
0.7, 0.5 with p = 1,∈= 0.5 and time 1 second. The
Fig. 3 depicts the graphs of x(t) and y(t) for α =
1, 0.95, 0.9, 0.85, 0.8, 0.7 corresponding to p = 2,∈
= 0.2 and the time 1s. In the Fig. 4, we show the graphs
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Fig. 3 Simulation result for various order α, p = 2,∈ = 0.1
and time 1s

of x(t) and y(t) for α = 1, 0.95, 0.9, 0.85, 0.8, 0.7
and p = 3,∈= 0.5 corresponding to the time of one
second. Initial conditions in all simulation experiments
were x(0) = 1 and y(0) = 1.

The behaviors of the numerical solution of fractional
Euler-Lagrange equations are different from various
values of α and the other parameters p and ∈. One
of the most unexpected behavior is the one shown in
Fig. 4. As we can see, we may observe the oscillations
for variable y(t).

When we take into account the fractional order of
the fractional differential equation, we have one more
degree of freedom. In this way, it is possible to have
more flexible models and it gives an opportunity to bet-
ter adjust the dynamical properties of the real system.
On the other hand, when we consider fractional order

Fig. 4 Simulation result for various order α, p = 3,∈ = 0.5
and time 1s

derivative in the model, we deal with the memory of
the model because of kernel type in the fractional order
derivative and integral.

4 Conclusion

Numerical analysis of fractional differential equations
is an efficient tool, especially in real world problem. In
this paper, we investigated the numerical solutions of
the Euler-Lagrange equations of a mechanical system
called thin elastica. The simulation result for various
order ofα, p,∈ and timeone second is shown inFigs. 2,
3 and 4. It is clear from the figures that the behaviors of
the fractionalEuler-Lagrange equation stronglydepend
on the order of the fractional derivative. For each graph,
weprovided the classical solution of the equations (α =
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102 D. Baleanu et al.

1) in addition to some different cases for α less than
one.

Finally, it is clear from the figures that the numerical
solution to the fractional Euler-Lagrange equations is
more suitable. It enables us to obtain the classical case
(i.e., α = 1) in addition to fractional order of α. In
this way, we demonstrate the main advantages of the
fractional order derivative in the model. Besides, we
have calculated the corresponding fractional Hamilton
equations.
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