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Sensory hair cells of amphibians exhibit spontaneous activity in their hair bundles and membrane potentials,
reflecting two distinct active amplification mechanisms employed in these peripheral mechanosensors. We
use a two-compartment model of the bullfrog’s saccular hair cell to study how the interaction between its
mechanical and electrical compartments affects the emergence of distinct dynamical regimes, and the role of
this interaction in shaping the response of the hair cell to weak mechanical stimuli. The model employs a
Hodgkin-Huxley-type system for the basolateral electrical compartment and a nonlinear hair bundle oscillator
for the mechanical compartment, which are coupled bidirectionally. In the model, forward coupling is provided
by the mechanoelectrical transduction current, flowing from the hair bundle to the cell soma. Backward coupling
is due to reverse electromechanical transduction, whereby variations of the membrane potential affect adaptation
processes in the hair bundle. We isolate oscillation regions in the parameter space of the model and show that
bidirectional coupling affects significantly the dynamics of the cell. In particular, self-sustained oscillations of the
hair bundles and membrane potential can result from bidirectional coupling, and the coherence of spontaneous
oscillations can be maximized by tuning the coupling strength. Consistent with previous experimental work,
the model demonstrates that dynamical regimes of the hair bundle change in response to variations in the
conductances of basolateral ion channels. We show that sensitivity of the hair cell to weak mechanical stimuli can
be maximized by varying coupling strength, and that stochasticity of the hair bundle compartment is a limiting
factor of the sensitivity.
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I. INTRODUCTION

Sensory hair cells are mechanoreceptors transducing me-
chanical stimuli to electrical signals in auditory and vestibular
periphery in vertebrates. The detecting element is located in
the hair bundle, a ciliated structure on the apical side of the
cell, which possesses mechanically gated ion channels: they
open or close in response to deflection of the hair bundle. In
this way deflection of the hair bundle is transferred to a flow of
positively charged ions (mostly potassium) which depolarize
the cell body. Exquisite sensitivity, frequency selectivity, and
compressive nonlinearity are pronounced characteristics of
sensory hair cells [1–4]. These characteristics are due to active
processes in the machinery of both nonmammalian [5,6] and
mammalian hair cells [7] (see Ref. [8] for a recent review). In
particular, in some low-frequency nonmammalian hair cells,
these active processes may result in spontaneous oscillations of
the hair bundles [9], which enhances sensitivity and selectivity
of the hair cell [10] and may result in collective phenomenon
of otoacoustic emission [11,12].

Spontaneous hair bundle oscillations are inherently noisy
due to several sources of randomness, which limits sensitivity
and selectivity of the hair bundle to weak mechanical stimuli
[13]. In bullfrog sacculus, free-standing hair bundles exhibit
a diverse range of stochastic self-sustained oscillations, such
as periodic, spiking, or bursting [9,14,15]. The frequency of
these oscillations ranges from 5 to 50 Hz, and their amplitude
can be as large as 80 nm [9]. Spontaneous hair bundle
oscillations require two main processes to be in place [10].
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First is the negative differential stiffness of the hair bundle
stemming from the phenomenon of gating compliance of
mechanoelectrical transduction (MET) channels [16] leading
to mechanical instability of the hair bundle for small (few
nm) displacements [17]. Second is the adaptation processes,
which include active forces that are generated by calcium-
controlled molecular motors, which shift the instability regions
of negative stiffness [17–20]. Several studies suggested that
the hair bundle may operate on the verge of Andronov-Hopf
bifurcation, which provide the hair cell with giant sensitivity
and sharp selectivity, along with the compressive nonlinearity
[3,4,21,22]. Several models were developed to account for
these observations [9,13,15,23–25], which reproduced well
the details of spontaneous hair bundle oscillations and their
dependence on parameters, e.g., concentration of calcium ions
and a mechanical load.

Randomness of individual hair bundle oscillations can be
reduced in a system of coupled cells, resulting in higher
amplification and sharper response [26–28]. Furthermore, in
the bullfrog sacculus, mechanical coupling of a hair bundle
via an overlaying otolithic membrane suppresses spontaneous
oscillations [29,30], and the amplification mechanism may be
rooted in the phenomenon of amplitude death as suggested by
a recent modeling study [31,32].

Variations of the membrane potential affect the hair bundle
dynamics and the mechano-electrical transduction. Earlier
studies documented the so-called reverse electromechanical
transduction in which voltage and hair bundle fluctuations
recorded simultaneously were correlated. Hair bundles de-
flect in response to somatic electrical stimulation [29,33].
Inhibition of basolateral potassium currents results in drastic
changes in spontaneous dynamics of the hair bundle [34].
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In low-frequency nonmammalian hair cells whereby Ca2+
ions controls slow adaptation process, the membrane potential
variations are likely affect the driving force of Ca2+ and
thus mediate the adaptation processes. We note, however,
that a recent study showed that a mechanism of adaptation
in high-frequency mammalian auditory hair cell is calcium
independent [35].

Nonmammalian hair cells show oscillatory electrical re-
sponses and use electrical resonance as a tuning mechanism
[36,37]. Furthermore, spontaneous self-sustained voltage os-
cillations were documented in saccular hair cells in frogs
[38–40]. In particular, Rutherford and Roberts [40] docu-
mented diverse voltage oscillatory patterns in semi-intact
preparation of bullfrog sacculus and correlated these patterns
with the proportion of basolateral ionic currents. These os-
cillations were reflected in oscillatory excitatory postsynaptic
potentials of afferent neurites and were able to trigger action
potentials. The relatively large amplitude of the hair cell
membrane potential oscillations (14–75 mV) [40] suggests
that they may affect the hair bundle dynamics via reverse
electromechanical transduction. In support, a recent study
documented drastic changes of the hair bundle dynamics
upon blockage of basolateral potassium ionic currents [34].
Nevertheless, the role of these electrical oscillations and bidi-
rectional coupling in shaping the spontaneous and response
dynamics of the hair cell are still unknown. Partially this is
due to experimental difficulties in simultaneous recording of
the hair bundle displacement and the membrane potential,
which calls for a modeling approach. From the nonlinear
dynamics perspective, the hair cell can be represented as
two bidirectionally coupled nonlinear oscillators. First is the
mechanical oscillator residing in the hair bundle, characterized
by essential stochastic dynamics stemming from several noise
sources [13]. Second is the electrical oscillator associated with
the basolateral membrane, whose stochasticity is mainly due
to noisy input via the MET ionic current from the hair bundle
[41].

Previous efforts in modeling of nonmammalian hair cell
dynamics were mostly devoted to either the hair bundle
(cited above) or to the dynamics of the membrane potential
[38,39,42–44]. A linear resonator model for the electrical
oscillations coupled with the hair bundle dynamics was used
in Ref. [45] to explain a possible mechanism of self-tuning
of the hair cell to Andronov-Hopf bifurcation. A deterministic
model of weakly coupled nonlinear mechanical and electrical
compartments was studied in Ref. [46] showing that the
electrical oscillator may enhance amplification and nonlinear
compression in the vicinity of Andronov-Hopf bifurcation. A
model of a linear electrical resonator coupled bidirectionally
to stochastic hair bundle oscillator was used in Ref. [47] to
predict that higher quality voltage oscillations may enhance
coherence of mechanical hair bundle oscillations.

Here we develop a two-compartment model for bullfrog
saccular hair cells, an experimental system which was studied
in detail for decades in many experimental laboratories. The
model is based on previously published data and modeling
of mechanical and electrical compartments, it incorporates
nonlinear dynamics of both the hair bundle and the membrane
potential as well as forward mechanoelectrical and reverse
electromechanical transduction mechanisms. We study deter-
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FIG. 1. (Color online) Schematic diagram of a hair cell high-
lighting the main components used in modeling. The hair bundle
is composed of an array of stereocilia arranged in rows of increasing
height. Neighboring stereocilia are linked by fine filaments, called
the tip links. The hair bundle is immersed in potassium ion-rich
endolymph, whereas the basolateral membrane of the hair cell is
in contact with perilymph, characterized by a low potassium and
a high sodium ion concentration. Mechanoelectrical transduction
(MET) channels located on stereocilia open or close in response
to deflection of the hair bundle, which stresses or relaxes the tip links.
The myosin molecular motors anchored to the insertion plaque near
MET channels contribute to adaptation. The basolateral membrane
of the cell contains several types of ion channels, associated with
specific ionic currents. Two sets of ionic currents are shown. First,
inward currents include the voltage gated calcium current (ICa), mixed
sodium and potassium h-type current (Ih), and leak current (IL).
Second, outward currents include the [Ca2+]-regulated potassium BK
current (IBK) with its steady IBKS and transient IBKT components,
delayed rectifier potassium current (IDRK), and inwardly rectifier
potassium current (IK1).

ministic and stochastic dynamics of the model as well as effects
of bidirectional coupling on the sensitivity and selectivity
of the cell to external mechanical stimuli. Some preliminary
results were reported in a conference proceedings [48].

II. MODEL AND METHODS

Figure 1 sketches a two-compartment model of the hair
cell. We term these compartments mechanical, referring to
the hair bundle, and electrical, corresponding to the cell
soma or basolateral cell membrane. Both compartments are
assumed to be at the same potential. A displacement of the
hair bundle triggers opening or closing of mechanoelectrical
transduction (MET) channels, resulting in variation of the
MET current [49]. The MET current constitutes the forward,
mechanical→electrical, coupling. Variation of the membrane
potential may influence MET machinery in several ways.
Ca2+ influx through MET channels changes in response to
voltage variations, thus affecting various adaptation processes,
e.g., the dynamics of myosin motors [18,50]. It may also
affect tension in the intracellular element in series with
tip link [33,51]. Furthermore, voltage variations may affect
directly the dynamical state of MET channels [51]. Our
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model assumes the first scenario, mentioned above, in which
changes in [Ca2+] near molecular motors in response to voltage
variations alter the force produced by these motors. This
electromechanical transduction (EMT) [52] constitutes the
backward, electrical→mechanical coupling in the model.

For the hair bundle (mechanical compartment) we adopted
a model proposed in Ref. [13]. The hair bundle is treated as a
single structure subjected to elastic forces, forces exerted by
MET channels, forces exerted by myosin motors, and random
forces. The overdamped motion of the hair bundle is described
by two coupled Langevin equations (1): for the position of
the hair bundle, X, and for the projection of the position of
molecular motors on the horizontal axis, Xa(t):

λ
dX

dt
= −KGS(X − Xa − DPo) − KSPX

+Fext(t) + ε
√

2kBT λη(t),
(1)

λa
dXa

dt
= KGS(X − Xa − DPo)

−Fmax(1 − SPo) + ε
√

2kBTaλaηa(t).

Positive displacement of the hair bundle, X > 0, results in
opening of MET channels and corresponds to deflection to the
right in Fig. 1. Positive displacement of the molecular motors,
Xa > 0, corresponds to the downward sliding of motors along
the actin core. In the first equation of Eqs. (1), Fext(t) stands for
the external stimulus force, KSP = 0.6 mN/m is the combined
stiffness of the stereocilia base and of the external mechanical
load, KGS = 0.75 mN/m is the gating springs stiffness, D =
60.9 nm is the gating swing, i.e., the displacement generated
by opening of the MET channel, and λ = 2.8 μNs/m and
λa = 10.0 μNs/m are the drag coefficients of the hair bundle
and molecular motors, respectively. The open probability of
MET channels, Po(X,Xa), is given by

Po(X,Xa) = 1

1 + Ae−(X−Xa)KGSD/(NkBT )
, (2)

with A = e[�G+KGSD2/(2N)]/(kBT ), where N = 50 is the number
of MET channels and �G = 10kBT is the free energy
difference between closed and open state of the MET channel,
T = 300 K is the temperature, and Ta = 1.5T is an effective
temperature of the motors. The second equation of Eqs. (1)
describes adaptation dynamics: the first term refers to the
so-called slipping adaptation, and the second term represents
a Ca2+-dependent climbing adaptation, i.e., the maximal force
the motors can generate at given [Ca2+]. Noise terms η(t)
and ηa(t) are two uncorrelated Gaussian white noise sources
which represent the Brownian motion of the hair bundle in
the viscous endolymph, cluttering of ion channels, and the
stochastic binding and unbinding of molecular motors along
actin filaments [13]. Dimensionless parameter ε takes two
values: 0 for the deterministic case, and 1 for full noise
strength. The control parameters of the hair bundle model are
Ca2+-feedback strength, S, and the maximal force generated
by the motors when [Ca2+] vanishes, Fmax. Deterministic and
stochastic dynamics of the hair bundle model was studied in
details in Refs. [13,24,53,54].

Electrical compartment was modelled with a Hodgkin-
Huxley-type system which was discussed in detail in Ref. [44].

It includes six ionic currents (Fig. 1) quantified in recent
experimental studies of bullfrog saccular hair cells [38,40].
The inwardly rectifier potassium current IK1 (K1) has steady
state half activation potential V1/2 = −110 mV and reversal
potential Ek = −95 mV and deactivates for potentials positive
to V0 = −55 mV. The so-called BK current is a Ca2+
and voltage-regulated potassium current has a steady and
a transient components IKBS,T with V1/2 = −61.6 mV. The
noninactivating delayed-rectifier potassium current, IDRK, has
V1/2 = −48.3 mV. Four inward currents are: a voltage-gated
Ca2+ current, ICa, with V1/2 = −55 mV; cation h-type current,
Ih, with V1/2 = −87 mV; leak current, IL; and MET current,
IMET. The membrane potential is given by

Cm
dV

dt
= −IK1 − IBKS − IBKT − IDRK − Ih

−ICa − IL − IMET, (3)

accompanied by equations for the gating variable and in-
tracellular [Ca2+] totaling 12 coupled differential equations.
A detailed description of these equations and parameters
is provided in Ref. [44] and given in the Appendix. The
maximum conductances for BK and K1 currents were used
as control parameters.

In Eq. (3) the inward mechanoelectrical transduction
current, IMET,

IMET = gMETPo(X,Xa)V, (4)

serves as the forward coupling between mechanical and
electrical compartments, and the MET conductance, gMET,
is the forward coupling strength. Positive deflection of the
hair bundle leading to the MET channel opening results in
depolarization of the cell.

To introduce the backward coupling, we sought to find
a relation between the membrane potential and calcium
concentration near myosin motor sites. The stall force, Fa ,
of the motors is calcium dependent and is approximated by a
linear relation, Fa = Fmax[1 − SPo(X,Xa)], where the calcium
feedback strength S is defined as [13,24]

S = − [Ca2+]M
Fmax

dFa

d[Ca2+]
. (5)

[Ca2+]M is the Ca2+ concentration near the motor sites, which
varies upon changing the membrane potential: more negative
V results in a larger driving force on Ca2+, leading to larger
values of [Ca2+]M and consequently to larger values of calcium
feedback strength, S. The dependence of [Ca2+]M versus V is
calculated using the current Goldman-Hodgkin-Katz equation,

[Ca2+]M = γ [Ca2+]ext
βV

1 − eβV
, β = 2qe

kBT
, (6)

where [Ca2+]ext is extracellular Ca2+ concentration, γ is a
dimensionless constant, and qe is elementary charge. If S0 is
the calcium feedback strength at a reference potential, V0, and
[Ca2+]M0 is the Ca2+ concentration at motor sites at V0, then
S for any V can be written as

S = [Ca2+]M
[Ca2+]M0

S0. (7)
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Then using (6) we obtain

S(V ) = S0
V

V0

1 − eβV0

1 − eβV
. (8)

In the following the reference membrane potential V0 was set
at V0 = −55 mV as in Refs. [9,13]. For voltage variations in
the range −80 to −30 mV, S(V ) in Eq. (7) can be linearized
around V0,

S(V ) = S0

[
1 +

(
1 − βV0

1 − e−βV0

)
V − V0

V0

]
, (9)

where the prefactor 1 − βV0

1−e−βV0
= 0.9386. In order to scale the

effect of the membrane potential we introduce a dimensionless
parameter α which accounts for the backward coupling
strength in our model,

S(V ) = S0

[
1 + α

V − V0

V0

]
. (10)

Hyperpolarization of the cell below the reference potential,
V0, leads to an increase of the calcium feedback strength, S.
This corresponds to increase of [Ca2+]M , resulting in closure
of MET channels. Depolarization of the cell above V0 results
in decrease of S.

Equations (4) and (10) provide bidirectional coupling
between the hair bundle dynamics (1) and the membrane
potential (3). To conclude, the hair cell system is described by
14 differential equations. Its two compartments are coupled
bidirectionally via Eqs. (4) and (10). Noise terms are included
in the mechanical compartment only (1), as experimental
studies showed that the MET current (4) is responsible for
most of the fluctuations in saccular hair cells [41].

Bifurcation analysis of the deterministic model was carried
out using the continuation software package CONTENT [55].
Numerical simulations were carried out using the Runge-
Kutta method. To characterize synchronous dynamics of the
deterministic compartments we have calculated a relative
phase of compartments as follows. We extracted sequences of
times of local minima for the hair bundle position, tx(j ), and
for the membrane potential, tv(k). The relative phase is then
calculated by colocating the time of the hair bundle local j th
minimum within the time interval of two consecutive minima
of the membrane potential. Hence the relative phase is given
by

ϕ(j ) = tx(j ) − tv(k)

tv(k + 1) − tv(k)
, tv(k) < tx(j ) < tv(k + 1). (11)

A circle map is then constructed, ϕ(j + 1) = 
[ϕ(j )] [see
Figs. 3(c) and 3(d)]. A sequence of fixed points in the
circle map refers to a synchronous regime. A quasiperiodic
regime corresponds to invariant curves in the map and can be
distinguished from chaos by calculating the largest Lyapunov
exponent (LE), which is 0 for quasiperiodic regimes and has
positive values for chaos. The largest LE was calculated as in
Ref. [44].

In the presence of noise the model equations were inte-
grated using an Euler-Maruyama scheme with a fixed time
step of 10−4 s [56]. Spontaneous stochastic dynamics was
characterized by the power spectral densities (PSDs) of the hair
bundle displacement and of the membrane potential, calculated

from long (600 s) time series using the Welch periodogram
method with Hamming window [57]. The quality factor, Q, of
stochastic oscillations was estimated from the corresponding
PSD as Q = fp/�fp, where fp is the peak frequency and �fp

is the width of this peak at half maximal power.
Input-output relations of the stochastic model (ε = 1) in

response to the external stimulus force, Fext, were char-
acterized by two frequency-dependent sensitivity functions:
“mechanical,” χM , and “electrical,” χV . For a sinusoidal
external force,

Fext(t) = F0 cos(2πfst), (12)

these sensitivity functions are defined as in Refs. [6,13,44,60],

χM (fs) = |X̃(fs)|/F0, χV (fs) = |Ṽ (fs)|/F0, (13)

where fs and F0 are the stimulus frequency and amplitude,
respectively; |X̃(fs)| and |Ṽ (fs)| are the magnitudes of the first
Fourier harmonic of the time-dependent ensemble averages of
the hair bundle position, 〈X(t)〉, and of the membrane potential,
〈V (t)〉. These time-dependent means were calculated by
averaging an ensemble of 103 realizations of X(t) and V (t)
over 500 periods of external sinusoidal force. In the linear
response regime, i.e., for weak stimulus, F0 � 1 pN, we used
broad-band noise stimulation as in Ref. [44]. In this method
Fext = s(t), where s(t) is band-limited Gaussian noise with
the variance σ 2

s and cutoff frequency, fc. The PSD of the
stimulus is Gss(f ) = σ 2

s /(2fc) for frequencies within [0 ,fc]
and 0 otherwise. In the following we used fc = 200 Hz. The
sensitivity functions are then defined as [57]

χM (f ) = |GsX(f )|
Gss(f )

, χV (f ) = |GsV (f )|
Gss(f )

, (14)

where GsX(f ) is the cross-spectral densities between the
stimulus and the hair bundle position, and GsV (f ) is the
cross-spectral density between the stimulus and the membrane
potential. An obvious advantage of this method is that it allows
estimation of sensitivity functions at all frequencies within the
stimulus band at once for a given parameter setting, avoiding
variation of the frequency of a sinusoidal force [44]. Figure 8
shows that both methods of sensitivity estimation coincide.

III. RESULTS

We study the role of voltage oscillations and coupling
in spontaneous and response dynamics of the hair cell. We
minimized the number of control parameters in the model
by choosing those which result in pronounced change in the
dynamics and can be controlled in an experiment. For mechan-
ical compartment, we considered two fixed sets of parameters:
(1) S0 = 1.13, Fmax = 55 pN, at which the hair bundle is at
stable equilibrium, but close to the Andronov-Hopf bifurcation
[13], and (2) S0 = 0.66, Fmax = 50.2 pN, at which the hair
bundle is at a stable limit cycle, oscillating at a frequency
of 8.5 Hz. Those regimes are observed for uncoupled hair
bundle, when the EMT coupling strength α = 0. Experimental
studies have documented diverse voltage oscillatory patterns
in bullfrog saccular hair cells which were correlated to
distinct proportions of basolateral ion currents [40]. For
example, large-amplitude oscillating cells are characterized
by a larger fraction of K1 and a smaller fraction of BK
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FIG. 2. (Color online) Dynamical regimes of the deterministic model for the case when the mechanical compartment is in a stable
equilibrium state when uncoupled; S0 = 1.13, Fmax = 55 pN. (a), (b) Lines of Andronov-Hopf bifurcation on the parameter plane (b, gK1) for
indicated values of the coupling strengths (gMET and α). In panel (a), gMET = 0.5 nS; in panel (b), α = 1.0. (c) Andronov-Hopf bifurcation
lines on the parameter plane (gMET,α) for b = 0.01, gK1 = 1 nS, and other parameters being the same as in panels (a) and (b). Filled labeled
circles correspond to the panels (a1)–(a3), (b1)–(b3), and (c1)–(c3). Each panel (a1)–(a3) and (b1)–(b3) shows time traces of the hair bundle
position X(t) (upper trace) and the membrane potential V (t) (lower trace) for the parameters corresponding to the filled circles in panels (a)
and (b). Upper traces in panels (c1)–(c3) show the open probability of MET channels, Po. Dashed red line on lower traces in panels (a1)–(a3),
(b1)–(b3), and (c1)–(c3) shows the reference voltage V0 = −55 mV. Coupling strengths were fixed at α = 1, gMET = 0.5 nS for (a1)–(a3) and
α = 1, gMET = 0.1 nS for (b1)–(b3).

currents. On the other hand, quiescent cells are correlated
with a smaller fraction of K1 and a larger fraction of BK
currents. Furthermore, oscillations in a quiescent cell can
be induced by blocking BK currents [38,40]. Consequently,
the parameters gK1 and b, which control the strengths of K1
and BK currents, were chosen as control parameters for the
electrical compartment as in Ref. [44]. The experimentally
reported range of the MET conductance, gMET, is from 0.08
to 2.48 nS. Furthermore, MET channels can be blocked as in
Ref. [40]. We therefore used gMET as another control parameter
for the strength of the forward mechanoelectrical coupling.
Finally, a free parameter α was used to scale the backward
electromechanical coupling.

The results are organized as follows. First, we describe
deterministic dynamics of the hair cell system, concentrating
on the effect of basolateral currents and coupling strengths
on the onset of oscillations and their synchrony. Second, we
study stochastic dynamics of the model when the hair bundle
is subjected to fluctuations. Finally, we describe the response
of the hair cell to weak mechanical forcing.

A. Deterministic dynamics

In the deterministic case ε = 0 and Fext = 0 in the me-
chanical compartment [Eqs. (1)]. We start with the case of
a nonoscillating hair bundle. Lines of Andronov-Hopf (AH)
bifurcation shown in Figs. 2(a) and 2(b) isolate the oscillation

region on the parameter plane (b, gK1) of the hair cell system.
Within this region both the hair bundle and the membrane
potential show oscillations [panels (a2), (a3), (b1)–(b3), and
(c2) in Fig. 2]. Although the shape of the oscillation region is
similar to that of the uncoupled electrical compartment [44],
its size changes significantly with variation of the coupling
strengths, α and gMET.

An increase of the backward coupling, α, results in expan-
sion of oscillation region towards smaller values of BK and K1
current strength [Fig. 2(a)]. For example, for α = 0.1 [solid
black curve in Fig. 2(a)] and small values of b and gK1, the cell
is at equilibrium with the potential V larger than the reference
potential for the hair bundle (V0 = −55 mV). An increase in
α [e.g., dotted red curve in Fig. 2(a)] causes a decrease in
[Ca2+] near molecular motors in the hair bundle via a decrease
in the feedback parameter S (10), leading to the opening of
MET channels and onset of hair bundle oscillations. This in
turn activates oscillations in the electrical compartment due to
forward coupling. The amplitude of oscillations becomes large
for strong hyperpolarization of the cell [panel (b3) in Fig. 2],
observed for large enough values of gK1.

An increase of the forward coupling, gMET, leads to an
increase of the inward MET current, which depolarizes the cell,
and so larger values of conductances of outward K currents are
required to stabilize the cell at an equilibrium. This explains
the expansion of the oscillation region with the increase of the
MET conductance, gMET, as shown in Fig. 2(b).
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An important observation from Fig. 2 is that mechanical
oscillations of the hair bundle are strongly influenced by the
basolateral ionic currents. For example, an initially quiescent
hair bundle at point A1 on Fig. 2(a) can oscillate [panels (a2)
and (a3)] if BK currents are blocked, which corresponds to
a decrease of the parameter b. Diverse oscillation patterns
shown in panels (b1)–(b3) of Fig. 2 are observed for small
strength of BK currents (small b). For the uncoupled electrical
compartment these transitions were studied in detail in
Ref. [44]. For fixed values of coupling strengths [Fig. 2(b)],
the increase of the K1 current strength causes the membrane
potential to depart from a low-amplitude oscillation [panel
(b1)] to larger amplitude bursting oscillations, which have
large and slow hyperpolarization excursions due to the h
current, Ih [panel (b2)] [44]. Because of backward coupling the
hair bundle also exhibits bursting patterns. We note, however,
that this mechanical bursting differs from recently reported
multimodal hair bundle oscillations [15] as in the latter work
bursting was solely due to hair bundle dynamics, while in our
case, it is the result of the backward electromechanical drive
from the membrane potential. Further increase in gK1 results
in a sequence of spike-adding bifurcations [44], in which the
number of spikes per burst progressively decreases, ultimately
leading to slow spiking oscillations [panel (b3)] and finally to
a hyperpolarized rest potential at which the MET channels are
in almost closed state.

The effect of coupling strength on the cell’s dynamics is
further illustrated in Fig. 2(c) where both compartments were
at stable equilibrium in the absence of coupling (α = gMET =
0). The oscillating region on the parameter plane (gMET, α)
is bounded by AH bifurcation lines. For chosen parameters,
below the lower bifurcation line in Fig. 2(c), the MET channels
are in an almost closed state and the rest membrane potential
is above the reference potential of the hair bundle, V > V0

[panel (c1), Fig. 2]. For a fixed value of gMET an increase in
the backward coupling α results in oscillations of mechanical
and consequently electrical compartments [panel (c2), Fig. 2],
as explained above. Crossing the upper bifurcation line in
Fig. 2(c) corresponds to the transition when MET channels are
permanently in the open state, leading to a large MET current
which puts the cell potential in a depolarized rest state [panel
(c3)].

Next, we consider the effects of coupling on mechanical
and electrical dynamics when both compartments are oscil-
lating when uncoupled. The parameters of the hair bundle
compartment were set at S0 = 0.66 and Fmax = 50.18 pN,
resulting in stable limit cycle oscillations at 8.5 Hz, while
the conductances of K1 and BK currents were varied within
the oscillation region of the uncoupled (gMET = 0) electrical
compartment.

Bidirectional coupling leads to synchronization of self-
sustained oscillators [58], which was quantified using circle
maps built from time sequences of local extrema in the hair
bundle position X(t) and the membrane potential V (t). Stable
fixed points in such maps indicate phase-locked synchronous
dynamics of the model compartments. Quasiperiodic dynam-
ics is reflected by continuous lines in the map [see, e.g.
Fig. 3(c)]. The coupling strength resulting in phase and fre-
quency locking depends on frequency detuning of interacting
oscillators. Figure 3 shows the results of coupling strengths

sweeping for representative examples of weakly and strongly
detuned mechanical and electrical compartments. Weakly
detuned compartments [Fig. 3(a)] are phase locked for rather
small values of MET conductance, so that for gMET > 0.1 nS
the hair bundle motion and the voltage variations are phase
and frequency locked across large regions of the backward
coupling strength, α. Smaller coupling results in multiple
synchronization regions separated by regions quasiperiodic
motion [white areas in Fig. 3(a)] and small regions of chaos
[black areas in Fig. 3(a)]. Figure 3(b) exemplifies the case of
large detuning when the uncoupled electrical compartment
is in the regime of large-amplitude low-frequency spiking
oscillations resulting by raising K1 current conductance and
lowering the BK current conductance. For small values of
BK current strength, b, the uncoupled electrical compartment
demonstrates structurally unstable dynamics for increasing
values of gK1 with sequences of spike-adding bifurcations
in bursting oscillations [44]. Effective backward coupling is
strong in this case, resulting in extensive chaotic regions and
absence of quasiperiodicity [Fig. 3(b)], which is consistent
with the dynamics of a supercritical circle map [58]. Similar
to the case of weak detuning, starting with gMET = 0.3 nS
compartments are phase locked across for the entire range of
backward coupling strength, α. The oscillation region on the
coupling strengths’ parameter plane (gMET, α) is bounded by
the AH bifurcation line, which indicates oscillation quenching
[58], so that beyond this line both compartments are at rest
with MET channels in an open state and a depolarized rest
membrane potential.

B. Stochastic spontaneous dynamics

In the hair cell model noise enters into the hair bundle
compartment when the parameter ε = 1. Noise could induce
hair bundle oscillations even when the cell is in nonoscillating
deterministic regimes. This is demonstrated in Fig. 4, which
should be compared with its deterministic counterpart in Fig.
2(c). In the absence of backward electromechanical coupling
(α = 0) the cell is at stable equilibrium. Noise induces sporadic
oscillations of the hair bundle followed by voltage variations
due to MET current [panel (a1), Fig. 4]. These noise-induced
oscillations are characterized by a broad peaks in the PSDs of
mechanical and electrical compartments [dashed red lines in
Fig. 4(b) and 4(c)], notably centered at distinct frequencies.
An increase of α moves the system into the oscillation region
[see Fig. 2(c)]. As a result, oscillations of both compartments
become more coherent as seen in time traces of panel (a2) in
Fig. 4. Corresponding PSDs show sharp narrow peaks at the
same frequencies in both compartments [solid green lines in
Figs. 4(b) and 4(c)]. Further increase of backward coupling
strength α beyond the oscillation region ceases oscillations
[panel (a3) in Fig. 4]. The quality of oscillations in both
compartments is maximal in the middle of the oscillation
region bounded by AH bifurcation lines in Fig. 2(c).

The coherence of stochastic oscillations depends crucially
on the parameters of the electrical compartment, as variation of
basolateral ionic currents strength can promote self-sustained
oscillations of an initially quiescent cell [see Fig. 2(a)].
Figure 5 demonstrates that blocking of BK currents may result
in dramatic increase of oscillation coherence. For large BK
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FIG. 3. Synchronization of the hair cell model compartments. (a), (b) Regions of synchronization (dark gray), quasiperiodic motion (white),
chaotic (black), and quiescent (patterned) on the coupling strengths’ parameter plane (gMET, α). The parameters of the hair bundle compartment
are fixed at S0 = 0.66, Fmax = 50.18 pN in both panels. In panel (a) the parameters of electrical compartment, gK1 = 10 nS and b = 0.1,
resulted in 9 Hz small-amplitude voltage oscillations in the absence of coupling, gMET = 0. In panel (b), gK1 = 25 nS and b = 0.01 resulted in
large-amplitude spiking oscillations at a lower frequency of 4.5 Hz. Filled black labeled circles in panels (a) and (b) correspond to circle maps
shown in panels (c) and (d). (c), (d) Circle maps, ϕi+1 = 
(ϕi), for the marked points in panels (a) and (b). Filled large circles indicate 1:1
phase locked regimes, corresponding to points A2 and B2 in panels (a) and (b). Lines in the circle map in panel (c) and complicated structures
in panel (d) refer to quasiperiodic and chaotic oscillations, corresponding to points A1 and B1 in panels (a) and (b), respectively.

current strength (b = 1) the cell was in a quiescent state [traces
(a1) in Fig. 2]. Noise induces noncoherent oscillations in both
compartments [panel (a1) in Fig. 5], which are characterized
by wide peaks in corresponding PSDs [dashed black lines in
Figs. 5(b) and 5(c)]. A decrease in b, corresponding to blocking
of BK currents, leads to large-amplitude coherent oscillations
[panel (a2) in Fig. 5] reflected by large and narrow peaks in
the PSDs [solid red lines in Figs. 5(b) and 5(c)].

We now turn to the case when both cells’ compartments
are oscillating at similar natural frequencies when uncou-
pled, referring to the deterministic case shown in Fig. 3(a).
With noise added, the mechanical compartment represents
a low-quality oscillator, coupled to a noiseless electrical
compartment, potentially a high-quality oscillator. According
to the theory of coupled self-sustained stochastic oscillators,
bidirectional coupling of such distinct oscillators may improve

(a1)

(a2)

(a3)

(b) (c)

FIG. 4. (Color online) Stochastic spontaneous dynamics of an initially quiescent hair cell system for different values of the backward
coupling strength, α. The parameters of the hair bundle compartment are S0 = 1.13, Fmax = 55 pN; and b = 0.01, gK1 = 1 nS for the electrical
compartment; the forward coupling strength, gMET = 1 nS. (a1)–(a3): Time traces for the hair bundle position, X(t), and the membrane potential,
V (t); α = 0 in (a1), α = 1 in (a2), and α = 2.4 in (a3). These parameter values are the same as in Fig. 2(c). (b), (c) Power spectral densities
(PSDs) of the hair bundle position (b) and of the membrane potential (c).
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FIG. 5. (Color online) Stochastic spontaneous dynamics of the hair cell system for two values of BK current strength. The parameters
of the mechanical compartment are S0 = 1.13, Fmax = 55 pN, and gK1 = 1 nS, for the electrical compartment; the coupling strengths are
gMET = 0.5 nS, α = 0.5. (a1)–(a2): Time traces for the hair bundle position, X(t), and the membrane potential, V (t); b = 1 for (a1), b = 0.02
for (a2). (b), (c) PSDs of the hair bundle position (b) and of the membrane potential (c).

their coherence if the coupling strength from low-noise to
high-noise oscillators is larger than that from a high-noise
to low-noise oscillator [58,59]. Backward electromechanical
coupling from a high-quality somatic oscillator to a low-
quality noisy hair bundle oscillator may then improve overall
quality of oscillations. On the other hand, forward mechano-
electrical coupling brings stochasticity from the mechanical
compartment to the electrical compartment, which could
presumably worsen oscillations quality. The example shown
in Fig. 6 demonstrates this effect. For a fixed small forward
coupling strength, gMET, the increase of backward coupling
strength, α, leads to narrower peaks in the PSDs [Figs. 6(a)
and 6(b)]. This increase in the coherence of the the oscillations
is quantified by the quality factor as shown in Figs. 6(c) and
6(d). The effect becomes less pronounced for larger values

of gMET and disappears for gMET = 0.5 nS. As predicted
by the theory, oscillation coherence decreases with increase
of forward coupling, gMET: quality factors of mechanical
and electrical oscillations decrease when gMET increases, as
shown in Fig. 6(e). We note that while the backward coupling
strength is a rather artificial parameter, the strength of MET
current, i.e., the strength of forward coupling, can be altered
in an experiment by blocking the inward MET current as
in Ref. [34].

Finally we consider two highly detuned oscillating com-
partments as shown in Fig. 3(b). For weak forward coupling,
compartments show distinct stochastic dynamics: the hair
bundle oscillates at 10 Hz, while the membrane potential
shows large-amplitude, low-frequency intermittency between
spikes and bursts at 4.5 Hz [Fig. 7(a1)]. Figure 7(b) shows two

(a)

(c) (d) (e)

(b)

FIG. 6. (Color online) Effect of coupling on a spontaneously oscillating hair cell with closely tuned compartments. The parameters of the
mechanical compartment are S0 = 0.66, Fmax = 50.18 pN, and b = 0.1, gK1 = 10 nS, for the electrical compartment. (a), (b) PSDs of the hair
bundle position (a) and of the membrane potential (b) for gMET = 0.05 and indicated values of backward coupling strength, α. (c), (d) Quality
factor of the hair bundle oscillations [QX , panel (c)] and of the membrane potential [QV , panel (d)] versus α for the indicated values of forward
mechanoelectrical coupling strength, gMET (dotted, dashed, and solid lines). (e) Quality factors of mechanical (solid black curve) and electrical
(dashed red curve) oscillations versus gMET for the fixed α = 1.
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FIG. 7. (Color online) Frequency locking of detuned hair cell compartments. The parameters are S0 = 0.66, Fmax = 50.18 pN, and b = 0.01,
gK1 = 25 nS; backward coupling strength, α = 0.2. (a1)–(a2): Time traces for the hair bundle position, X(t) (black lines), and the membrane
potential, V (t) for small [gMET = 0.015 nS, (a1)] and strong [gMET = 0.3 nS, (a2)] coupling. (b), (c) PSDs of the hair bundle position (dashed
black lines) and of the membrane potential (solid red lines) corresponding to time traces in panel (a1) and (a2).

distinct peaks in their corresponding PSDs. With increased
forward coupling, oscillations in both compartments become
synchronous [Fig. 7(b)] with frequencies locked at 7.5 Hz, as
indicated by PSDs of both compartments, shown in Fig. 7(c),
peaked at this frequency.

C. Response dynamics

Input-output relations of the hair cell system were probed
with two types of external mechanical forces: sinusoidal,
Fext(t) = F0 sin(2πfst), and broad-band Gaussian noise, as
explained in Methods. The sensitivity functions estimated
for weak mechanical stimuli were peaked at the natural
frequencies of the cell’s compartments. Figure 8 shows a
representative example of sensitivity functions for the case
when both deterministic compartments were not oscillating
when uncoupled (cf. Fig. 4 for spontaneous dynamics). With
no backward coupling, α = 0, the sensitivity functions are
broad, centered at distinct frequencies [Figs. 8(a) and 8(b)].
Transition to the oscillating region for α = 1 is characterized
by higher and sharper sensitivity functions, peaking at the same
frequency. Further increase of backward coupling strength
moves the system closer to the upper bound of the oscillation
region [Fig. 2(c)] and thus decreases the sensitivity of both
compartments. Similar behavior of the sensitivity is observed
for varying forward coupling, gMET, and fixed α. Sensitivity

over the whole frequency domain is maximal for intermediate
values of coupling strengths in the middle of oscillation region
in Fig. 2(c). Approaching the AH bifurcation lines turns the
system more susceptible to internal noise, which worsens its
sensitivity to the external mechanical force.

For large-amplitude stimuli the response of the hair cell be-
comes nonlinear. In particular the hair bundle demonstrates the
phenomenon of compressive nonlinearity [6,13,60], whereby
sensitivity is enhanced for weak stimuli and suppressed for
strong stimuli. Figure 8(c) demonstrates that the compressive
nonlinearity is preserved for the hair cell system with coupled
mechanical and electrical compartments. In particular, the hair
bundle sensitivity shows qualitatively the same dependence
versus the stimulus amplitude as reported before for the hair
cell model with fixed membrane potential [13]: the response
is linear for weak, F0 < 1 pN, and very large, F0 > 100 pN,
stimulus amplitude and is nonlinear for intermediate values.
The sensitivity of the electrical compartment does not saturate
for large F0, and the response continues to be nonlinear.

Variations of basolateral ionic currents strength affect
significantly the response dynamics of the hair cell. Figure 9
shows the sensitivity functions of a cell which was initially
nonoscillating (cf. Fig. 5). For relatively strong BK currents
(b = 1) when spontaneous activity of the cell is solely due to
noise-induced oscillations of the hair bundle, the sensitivities

(a) (b) (c)

FIG. 8. (Color online) Sensitivity of the hair cell system for different values of the backward coupling strength, α. The parameters of the
hair cell compartments are S0 = 1.13, Fmax = 55 pN; b = 0.01, gK1 = 1 nS. The forward coupling strength is gMET = 1 nS. (a), (b) Sensitivity
of the hair bundle (χM , a) and of the membrane potential (χV , b) to noise stimulus with the standard deviation, F0 = 1 pN for the indicated
values of the backward coupling strength α. For comparison, filled red (dark gray) circles show the sensitivities calculated for sinusoidal
external force with the amplitude F0 = 0.5 pN. (c) Sensitivity functions for the hair bundle and the membrane potential versus the amplitude
of sinusoidal stimulus at stimulus frequency, fs = 15 Hz for α = 1.
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(a)

(b)

FIG. 9. (Color online) Sensitivity functions of the hair cell sys-
tem for the indicated values of BK current strengths. The parameters
are the same as in Fig. 5, except that external broad-band Gaussian
noise stimulus with the standard deviation F0 = 1 pN is applied to the
mechanical compartment. (a) Sensitivity function of the hair bundle,
χM . (b) Sensitivity function of the somatic potential, χV .

of both compartments attain low values and are characterized
by broad frequency distributions (solid black lines in Fig. 9).
Suppressing of BK currents (b = 0.02) renders the cell in
an oscillation region, boosting its sensitivity and frequency
selectivity, as evidenced by sharp sensitivity functions of both
compartments (dashed red lines in Fig. 9).

Cells with detuned oscillatory mechanical and electrical
compartments show a general response trend, exemplified in
Fig. 10. For a weak coupling, the sensitivity functions show
two main peaks corresponding to natural frequencies of the
hair bundle and the membrane potential [solid green lines
in Figs. 10(a) and 10(b)]. The increase of forward coupling
strength, gMET, leads to frequency locking (cf. Fig. 7), resulting

in larger and sharper sensitivity functions [dashed black lines
in Figs. 10(a) and 10(b)]. Further increase of coupling strength
moves the cell out of the oscillation region [see Fig. 3(b)],
which results in suppression of the sensitivity function [dotted
red lines in Figs. 10(a) and 10(b)]. For the somatic potential
the maximal sensitivity across the whole frequency band thus
becomes a nonmonotonous function of the MET conductance,
taking its maximum at intermediate values of gMET, as shown
in Fig. 10(c). The effect is observed for large enough values of
backward coupling strength, α, as well as for cells with closely
tuned compartments. We note that the MET conductance can
be altered in an experiment [34], so that this model prediction
can be verified in an experiment.

We note that for a sensor composed of two unidirectionally
coupled linear cascades it is expected that the response
at the output of the second cascade would increase with
the coupling strength between cascades, as more stimulus
power entering the first cascade will become available for
the second cascade [57]. This tendency is indeed observed in
the hair cell model for small coupling strengths. However,
besides a transformed stimulus, the MET current, which
is proportional to gMET, brings to the somatic electrical
compartment stochastic variability from the noisy hair bundle
as well. This variability is then fed back to the mechanical
compartment by backward electromechanical transduction,
which suppresses the sensitivity for strong enough coupling
strengths [Fig. 10(c)].

IV. CONCLUSIONS

We studied spontaneous and response dynamics of a
hair cell model which incorporates a nonlinear stochastic
hair bundle oscillator and a Hodgkin-Huxley-type system of
basolateral ionic currents. We focused in particular on the
role of bidirectional mechanoelectrical and electromechanical
coupling between these two compartments and on the role
of voltage dynamics on the emergence of oscillations, their
coherence, and amplification properties of the cell.

We have isolated oscillation regions bounded by the lines
of Andronov-Hopf bifurcations in the parameter space of
the model. Our results show that the hair bundle alters its
dynamical state in response to membrane potential variations,
and that changes in forward and backward coupling strengths

FIG. 10. (Color online) Effect of coupling strengths on sensitivity functions. The parameters of the cell’s compartment, S0, Fmax, b, and
gK1, are the same as in Fig. 7. External broad-band Gaussian noise stimulus with the standard deviation F0 = 1 pN is applied to the mechanical
compartment. (a), (b) Sensitivity functions of the hair bundle, χM , and of the somatic potential, χV , for α = 1 and indicated values of gMET.
(c) Maximal value of the sensitivity function of somatic potential across the whole frequency band versus gMET for the indicated values of
backward coupling strength, α.
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may revert nonoscillating hair bundle to oscillatory ones,
and vice versa. Furthermore, oscillatory hair cells exhibit
spiking, bursting, and chaotic patterns in response to variations
of coupling strengths and of conductances of basolateral
ionic currents. Even for a relatively weak forward coupling
(gMET > 0.1 nS) oscillations of hair bundles and membrane
potential are synchronized. For large coupling strengths
oscillation quenching takes place, at which mechanoelectrical
transduction channels are mostly in the open state while the
cell is depolarized. Thus, a balance between these coupling
strengths is needed in order to keep the cell in self-sustained
oscillatory states.

The model has a limitation in that it does not demonstrate
the specific bursting pattern observed for free-standing hair
bundles [15,34]. These multimodal oscillations are charac-
terized by large and extremely slow negative excursions of
the hair bundle, which disappear when the hair bundle is
loaded. Such multimodal dynamics require an additional slow
variable in the hair bundle model, e.g., slow modulation of the
gating spring stiffness proposed in Ref. [15]. The hair bundle
model which is used here does not include this additional slow
variable. Rather, it assumes a stimulation fiber attached to the
hair bundle and thus an external mechanical load [13]. Conse-
quently, a bursting pattern generated by the model [panel (b2),
Fig. 2] is solely due to strong backward electromechanical
coupling, whereby bursting of the membrane potential drives
the hair bundle dynamics.

Spontaneous dynamics of the hair cell is inherently noisy
mainly due to fluctuations of the hair bundle compartment
[41]. In the model stochastic terms were incorporated in the
hair bundle compartment which fed a fluctuating mechano-
electrical transduction current to the electrical compartment.
The coherence of mechanical and electrical spontaneous
oscillations depends crucially on the coupling strengths and on
the conductances of the basolateral ionic currents. In particular
the model predicts that for weak forward mechanoelectrical
coupling (small values of gMET) the coherence of spontaneous
oscillations can be enhanced by backward electromechanical
coupling (Fig. 6). Our results indicate that spontaneous noisy
oscillations of hair bundles routinely reported in experimental
studies can result from nonlinear interaction of mechanical and
electrical compartments of the hair cell. This is supported by a
recent experimental study where drastic changes of hair bundle
oscillations in response to basolateral ion channel blockage
were reported [34]. The model shows qualitative agreement
with these experimental observations, exemplified in Fig. 11.
Blocking of the calcium-activated potassium channels (BK)
and the delayed rectifier potassium current (DRK) activates
large-amplitude low-frequency voltage oscillations, causing
high-frequency mechanical oscillations to slow down and
increases their amplitude [Fig. 11(a)]. An initially quiescent
hair bundle [Fig. 11(b)] starts oscillating when the cell
becomes depolarized upon blockage of BK and DRK ion
currents. Alongside these observations, our model shows
that blocking of calcium-activated potassium channels alone
induces large-amplitude coherent oscillations as shown in Fig.
5, enhancing the coherence of oscillations, and renders the cell
more sensitive and frequency selective (see Fig. 9).

The main characteristics of the active hair bundle, such as
compressive nonlinearity and frequency selectivity, are repro-

(a)

(b)

FIG. 11. (Color online) Effect of ion channels blockers on spon-
taneous oscillations of the hair bundle in the model. Black traces
show the original dynamics of the hair bundle, while red traces show
the dynamics after two types of ionic currents, the calcium-activated
potassium current (IBK) and the delayed rectifier current (IDRK), were
blocked. The strength of IBK is controlled by the parameter b, and
IDRK is controlled by the parameter DRK in Eq. (A4). Higher values of
these parameters correspond to larger currents. The parameter values
are for panel (a) S0 = 0.9, Fmax = 75 pN, gK1 = 7.5 nS, gL = 0,
α = 1.6, gMET = 0.1 nS, and for panel (b) S0 = 1.4, Fmax = 55 pN,
gK1 = 7.5 nS, gL = 0, α = 1.6, gMET = 0.1 nS.

duced by the two-compartment model. Both compartments
showed frequency selectivity, sensitivity, and compressive
nonlinearity for incoming mechanical stimuli with amplitudes
greater than 1 pN. However, while the mechanical hair bundle
showed saturated response for stimuli greater than 100 pN, the
electrical compartment sustained its compressive response for
large (>100 pN) stimuli. An important issue of the exponent of
nonlinear compression [60] was not studied here. In particular,
an interesting question of how the exponent of nonlinear
compression depends on the coupling strengths and detuning
of the cell compartments will be addressed elsewhere. In
this respect we refer to the theoretical study [46], where this
question was addressed in a deterministic hair cell model for
the case of weak coupling.

Noise is the limiting factor of the hair bundle sensitivity
[13,60]. We find that the sensitivity to weak stimuli can
be maximized by adjusting the interaction between hair cell
compartments. For a cell whose uncoupled compartments are
at equilibrium, the sensitivity can be maximized in the middle
of oscillatory region bounded by the lines of Andronov-Hopf
bifurcations [Figs. 2(c) and 8]. That is, variation of both the
forward and backward coupling can maximize the sensitivity.
However, for a cell with oscillating uncoupled compartments
the maximal sensitivity depends nonmonotonously on the
MET conductance in the presence of backward electro-
mechanical coupling (see, e.g., Fig. 10), while the reverse
electromechanical transduction degrades the sensitivity. This
shows that stochastic hair bundle oscillations limit sensitivity
of the hair cell.
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APPENDIX: MEMBRANE POTENTIAL MODEL

The membrane potential is given by

Cm
dV

dt
= −IK1 − IBKS − IBKT − IDRK − Ih − ICa

−IL − IMET, (A1)

where Cm = 10 pF is the membrane capacitance. Equations
for each individual current are given below.

The inwardly rectifier current (IK1) [38] is given by

IK1 = gK1[0.7 mK1f(V ) + 0.3 mK1s(V )](V + 95),

τK1f,s
dmK1f,s

dt
= kmK1∞ − mK1f,s,

mK1∞ = {1 + exp[(V + 110)/11]}−1, (A2)

τK1f = 0.7 exp[−(V + 120)/43.8] + 0.04,

τK1s = 14.1 exp[−(V + 120)/28] + 0.04,

where gK1 is the maximum conductance, and used as a control
parameter.

The cation h current (Ih) [38] is given by

Ih = gh
[
3m2

h(1 − mh) + m3
h

]
(V + 45),

τh
dmh

dt
= mh∞ − mh,

(A3)
mh∞ = {1 + exp[(V + 87)/16.7]}−1,

τh = 63.7 + 135.7 exp

[
−

(
V + 91.4

21.2

)2]
,

where gh = 2.2 nS is the maximal conductance.
The delayed rectifier current (IDRK) [61] is given by

IDRK = DRK PDRK
V F 2

RT

0.112 − 0.002 e−FV/RT

1 − e−FV/RT
m2

DRK,

τDRK
dmDRK

dt
= mDRK∞ − mDRK,

mDRK∞ = {1 + exp[(V + 48.3)/4.19]}−1/2 ,
(A4)

τDRK = (αDRK + βDRK)−1 ,

αDRK = (3.2 e−V/20.9 + 3)−1

βDRK = (1467 eV/5.96 + 9)−1,

where PDRK = 2.4 × 10−14 L/s is the maximum permeability,
and F and R are the Faraday and universal gas constants,
respectively. The parameter DRK = 1 was kept fixed in this
study, except for Fig. 11.

The voltage-gated Ca2+ current (ICa) [61] is given by

ICa = gCam
3
Ca(V − 42.5),

τCa
dmCa

dt
= mCa∞ − mCa,

(A5)
mCa∞ = {1 + exp[−(V + 55)/12.2]}−1,

τCa = 0.046 + 0.325 exp

[
−

(
V + 77

51.67

)2]
,

where gCa = 1.2 nS.

The Ca2+-activated potassium current (BK) has a steady
(BKS) and a transient (BKT) component [38]:

IBKS=bPBKS
VF 2

RT

0.112−0.002 e−FV/RT

1−e−FV/RT
(O2+O3),

(A6)

IBKT=bPBKT
VF 2

RT

0.112−0.002 e−FV/RT

1−e−FV/RT
(O2+O3) hBKT,

where PBKS = 2 × 10−13 L/s, and PBKT = 14 × 10−13 L/s
are the BK currents’ respective maximum permeabilities.
Dimensionless parameter b was used to control the strength of
the BK currents. IBKS has an an additional inactivation gate,
whose dynamics are described by [38]

τBKT
dhBKT

dt
= hBKT∞ − hBKT,

hBKT∞ = [1 + exp((V + 61.6)/3.65)]−1, (A7)

τBKT = 2.1 + 9.4 exp{−[(V + 66.9)/17.7]2}.

The kinetic scheme of BK currents and [Ca2+] dynamics [62]
is given by

dC1

dt
= k1[Ca2+]C0 + k−2C1 − (k−1 + k2[Ca2+])C1,

dC2

dt
= k2[Ca2+]C1 + αcO2 − (k−2 + βc)C2,

dO2

dt
= βcC2 + k−3O3 − (αc + k3[Ca2+])O2, (A8)

dO3

dt
= k3[Ca2+]O2 − k−3O3,

d[Ca2+]

dt
= −0.00061ICa − 2800[Ca2+],

where C0 = 1 − (C1 + C2 + O2 + O3), kj = k−j /

[kj (0)e−δj
FV
RT ], j = 1,2,3, and αc = αc(0)e

V
VA . The channel

opening rate constant was set to βc = 2500 s−1. The rest of the
parameters in Eq. (A8) are the same as in Ref. [62]: k1(0) = 6
μM, k2(0) = 45 μM, k3(0) = 20 μM; k−1 = 300 s−1,
k−2 = 5000 s−1, k−3 = 1500 s−1; αc(0) = 450 s−1, and
VA = 33 mV. The constants δ1 = δ3 = 0.2, and δ2 = 0.

The leak current (IL) is given by

IL = gL V, (A9)

where gL = 0.1 nS.
The mechanoelectrical transduction current (IMET) is given

by

IMET = gMET Po(X,Xa) V, (A10)

where the maximum conductance of MET channels gMET serve
as the forward coupling strength and the open probability of
MET channels, Po(X,Xa), is given by Eq. (2). In Eqs. (A9) and
(A10) the reversal potential of MET and leak currents were set
to 0 mV as in Ref. [42].
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[3] A. J. Hudspeth, F. Jülicher, and P. Martin, J. Neurophysiol. 104,

1219 (2010).
[4] T. Reichenbach and A. Hudspeth, Rep. Prog. Phys. 77, 076601

(2014).
[5] G. A. Manley, J. Neurophysiol. 86, 541 (2001).
[6] P. Martin and A. Hudspeth, Proc. Natl. Acad. Sci. USA 98,

14386 (2001).
[7] R. Fettiplace and C. Hackney, Nat. Rev. Neurosci. 7, 19 (2006).
[8] A. Hudspeth, Nat. Rev. Neurosci. 15, 600 (2014).
[9] P. Martin, D. Bozovic, Y. Choe, and A. Hudspeth, J. Neurosci.

23, 4533 (2003).
[10] P. Martin and A. Hudspeth, Proc. Natl. Acad. Sci. USA 96,

14306 (1999).
[11] G. A. Manley and L. Gallo, J. Acoust. Soc. Am. 102, 1049

(1997).
[12] M. Gelfand, O. Piro, M. O. Magnasco, and A. Hudspeth, PloS

ONE 5, e11116 (2010).
[13] B. Nadrowski, P. Martin, and F. Jülicher, Proc. Natl. Acad. Sci.
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[24] J. Tinevez, F. Jülicher, and P. Martin, Biophys. J. 93, 4053

(2007).
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