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1. Introduction

The lattice Green function (LGF) is defined as [1]:

G(E) =
Ω

(2π)d

∫
1BZ

F (k)

E − E(k)
dk, (1.1)

where E(k) is a dispersion relation, F (k) is an appropri-
ate function with a general expression F (k) = e ik(r−r

′)

where r and r′ represent lattice sites, and it is a solu-
tion of the homogeneous Helmholtz equation, Ω is the
volume of the crystal in real space, d is the dimension,
and 1BZ denotes that the integration is restricted to the
first Brillouin zone [1, 2].

The LGF is a basic function in the study of the solid
state physics and condensed matter [3]. Green was
the first physicist who established the basic concepts
of Green’s function (GF) in the potential theory, and
his work was focused on solving Laplace’s and Poisson’s
equations with different boundary conditions. The use
of GF method plays an important role in many-body
problems [4], especially in problems of solid state physics
where an enormous progress has been realized. In the
mathematical problem of quantum theory which consists
of solving linear operator equations with given boundary
conditions, GF constitutes the natural language to study
boundary conditions.

Nowadays, GF is one of the most important concepts
in many branches of physics, as many quantities in solid
state physics can be expressed in terms of the LGF. In the
following there are some examples: statistical model of
ferromagnetism such as the Ising model [5], the Heisen-
berg model [6], spherical model [7], random walk the-
ory [8, 9], diffusion [10], band structure [11], and in recent
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years it becomes an important tool in analyzing infinite
electric networks [12–26].

The LGF for several structure lattices has been widely
studied during the second half of the last century.
The LGF for the rectangular lattice has been investigated
by Katsura and Inawashiro [27]; they used the Mellin–
Barnes type integral. Recurrence relation, which gives
the LGF along the diagonal direction from a couple of
values of complete elliptic integrals of the first and sec-
ond kinds for the rectangular and square lattices, has
been derived by Morita [28].

The LGF for simple cubic (sc) lattice at the ori-
gin G(0, 0, 0) has been investigated by many authors:
Joyce [29] expressedG(0, 0, 0) in terms of the complete el-
liptic integrals of the first kind, Horiguchi [30] expressed
G(1, 0, 0) as a sum of simple integrals of the complete
elliptic integrals of the first kind and evaluated it nu-
merically, Katsura et al. [31, 32] investigated the LGF
for many lattices, and finally, Glasser and Boersma [33]
showed that G(l,m, n) can be expressed rationally in
terms of G(0, 0, 0).

The LGF for the face centered cubic (fcc) lattice was
studied well by Iwata [34], he expressed G(0, 0, 0) in a
compact form as a product of complete elliptic integrals
of the first kind. The LGF at any lattice site G(l,m, n)
was studied by Mano [35]; G(l,m, n) is expressed in terms
of linear combinations of complete elliptic integrals of
the first and second kind. In their paper Glasser and
Boersma [33] expressed the LGF for fcc lattice rationally
in terms of the known value of G(0, 0, 0).

Finally, Hijjawi et al. [36–39] evaluated analytically
and numerically GF, density of states, phase shift, and
scattering cross-section for different lattices.

In this paper we report on the single impurity LGF.
The paper is organized as follows: Sect. 2 is devoted to

the general definition of the diagonal LGF and its form
inside and outside the band for anisotropic fcc lattice in
terms of the complete elliptic integrals of the first kind.

(52)
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Elliptic integrals were studied well by many authors [40].
This section also contains the formulae for the density
of states, phase shift and scattering cross-section for a
point defect case. In Sect. 3 we present the results and
discussion.

2. The anisotropic fcc lattice Green function

In this section we are going to study the anisotropic fcc
lattice. As it is known if we measure any physical quanti-
ties (such as conductivity) and always obtaining the same
result irrespective of the direction then we have isotropic
sample, but if the measured physical quantities differ
with orientation then we are talking about anisotropic
sample.

The GF is usually represented by a matrix operator
with diagonal elements and non-diagonal. Each site of
the lattice represents a state, so the elements of the ma-
trix takes the form G(r, r′) where r and r′ are two dif-
ferent lattice sites.

The diagonal GF for the anisotropic fcc lattice with
nearest neighbor interaction is defined as [41–47]:

G0(E) = G0(L,L;E) =
1

π3

π∫
0

π∫
0

π∫
0

dkxdky dkz

×(E − a1 cos(kx) cos(ky)− a2 cos(kx) cos(kz)

−a3 cos(ky) cos(kz))−1 (2.1)
where E > 2a1 + a3.

We shall consider the interactions between the nearest
neighbors a1 in xy, a2 in xz cubic planes and the inter-
actions between the nearest neighbors a3 in yz planes.

For the anisotropic fcc lattice diagonal GF means that
r = r′, so in this case F (k) = 1, and we may write
G0(L,L;E) = G0(E), so this is due to that the right
hand side of the above equation is independent of L.

Integrating the above equation and using the method
of analytic continuation [44–46], the diagonal GF outside
the band is real and has the form (for a1 = a2):

G0(E) =
4

π2(E + a3)
K(k+)K(k−), (2.2)

where E > 2a1 + a3, and k2±=
1
2 [(1∓ 4

√
a3
a21
E(1 + a3

a21
E)

/(E+a3)
2−
√
(E + a3)2 − 4a3

a21
E
√
(E + a3)2 − 4(1 + a3

a21
E)

/(E + a3)
2].

The GF outside the band is real, and we have a bound
state, while inside the band GF is imaginary and they
can be written as (see Appendix A):

G0(E)=
4

π2(E + a3)
K(k+)K(k−), E>2a1 + a3, (2.3)

or

G0(E) =
2

π2(E + a3)
[(X2

+ + 1)(X2
− + 1)]

−1
4

×(K(v+)K(u−) +K(v−)K(u+) + i[K(v+)K(u+)

−K(v−)K(u−)]), −(2a1 − a3) < E < 0, (2.4)
where

X∓ =

√
−E

(E + a3)2

×
(
−

√√√√[(E + a3)2 − 4a3
a21
E
] [

4(1 + a3
a21
E)− (E + a3)2

]
−E

∓4

√
a3
a21

(
1 +

a3
a21
E

))
(2.5)

and

v2± =
1

2

(
1±

√
X2
−

X2
− + 1

)
, (2.6)

u2± =
1

2

(
1±

√
X2

+

X2
+ + 1

)
. (2.7)

Now the density of states (DOS) is defined as:

DOS(E) =
1

π
ImG. (2.8)

DOS0(E) =
2

π3(E + a3)

[(
X2
− + 1

) (
X2

+ + 1
)]−1

4

[K(v+)K(u+)−K(v−)K(u−)],

−(2a1 − a3) < E < 0), (2.8b)
where K(v±) and K(u±) are the complete elliptic inte-
grals of the first kind.

Consider the case of a tight-binding Hamilto-
nian (TBH) whose perfect periodicity is destroyed due to
the presence of the point defect at the L site. This situa-
tion can be thought of physically as arising by substitut-
ing the host atom at the L-site by a foreign atom [1, 47]
having a level lying ε higher than the common level of
the host atoms (L). Normally, this atom is close to the
host in the same series of the periodic table.

Thus, our diagonal GF of anisotropic fcc lattice for the
single impurity case can be written as:
for the case where E > 2a1 + a3 (outside the band)

G0(E) =
4K(k+)K(k−)

π2(E + a3)− 4εK(k+)K(k−)
, (2.9a)

while for the case of −(2a1 − a3) < E < 0 (inside the
band)

G0(E) =
{π2

2
(E + a3)[(X

2
+ + 1)(X2

− + 1)]
1
4

[K(v+)K(u−) +K(v−)K(u+) + i(K(v+)K(u+)

−K(v−)K(u−))]− ε[K2(v+) +K2(v−)][K
2(u+)

+K2(u−)]
}
/
{
[
π2

2
(E + a3)((X

2
+ + 1)(X2

− + 1))
1
4

−ε(K(v+)K(u−) +K(v−)K(u+))]
2

+ε′2[K(v+)K(u+)−K(v−)K(u−)]
2
}
. (2.9b)

The corresponding DOS can be written as

DOS(E) =
[π
2
(E + a3)[(X

2
+ + 1)(X2

− + 1)]
1
4
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×(K(v+)K(u+)−K(v−)K(u−))
]
/
{[π2

2
(E + a3)

((X2
+ + 1)(X2

− + 1))
1
4 − ε(K(v+)K(u−)

+K(v−)K(u+))
]2

+ ε′2[K(v+)K(u+)

−K(v−)K(u−)]
2
}

with − (2a1 − a3)<E<0. (2.10)
The S-wave phase shift (i.e, δ0) is defined as the shift

in the phase of the wave function due to the presence of
the impurity potential, and it is defined in terms of LGF
as [46]:

tan δ0 =
ImG0(E)

1
ε′ − ReG0(E)

. (2.11)

Here, ReG0(E) and ImG0(E) refer to the real and imag-
inary parts of the GF inside the band respectively. After
some mathematical manipulations, we obtain

tan δ0 = K(v+)K(u+)−K(v−)K(u−)(π2(E + a3)[(X
2
+ + 1)(X2

− + 1)]
1
4

2ε

−(K(v+)K(u−) +K(v−)K(u+))
)−1

. (2.12)

The cross-section (i.e., σ) is defined as [46]:

σ =
4π

P 2

[ImG0(E)]2

−
[
ReG0(E)− 1

ε

]2
+ [ImG0(E)]2

. (2.13)

Here, P refers to the electron momentum.
Therefore, the cross-section becomes

σ =
4π

P 2
[K(v+)K(u+)−K(v−)K(u−)]

2

/
{[
K(v+)K(u−) +K(v−)K(u+)

−
π2(E + a3)[(X

2
+ + 1)(X2

− + 1)]
1
4

2ε

]2
+[K(v+)K(u+)−K(v−)K(u−)]

2
}
. (2.14)

2.1. Special cases
The following special cases are given:

1. When a1 = a2 = a3 = 1, we recover the fcc lattice.

2. When a1 = 1 and a3 = 0

The diagonal GF outside the band has the form

G0(E) =
4

π2E
K2(k), (2.15)

with |E| > 2, and

k2 =
1

2

(
1−

√
1− 4

E2

)
. (2.16)

The GF outside and inside the band can be written as
(see Appendix A):

G0(E)=


4

π2EK
2(k), |E| > 2,

1
π2 (2K(u+)K(u−)

+ i[K2(u+)−K2(u−)]), −2<E<0,
(2.17)

where

X+ = X− =

(
−
√

4− E2

E2

)
, (2.18)

u2± = v2± =
1

2

(
1±

√
1− E2

4

)
. (2.19)

Therefore, the DOS is

DOS =
1

π3
[K2(u+)−K2(u−)], −2 < E < 0, (2.20)

where K(v±) and K(u±) are the complete elliptic inte-
grals of the first kind.

Thus, our diagonal GF of anisotropic face centered cu-
bic lattice for the single impurity case can be written as

G0(E)=



4K2(k)
π2E

4 −ε′K2(k)
, E>2,

{π2[2K(u+)K(u−)

+ i(K2(u+)−K2(u−))]

− ε′[K2(u+) +K2(u−)]
2}

/[π2 − 2ε′K(u+)K(u−)]
2

+ ε′2[K2(u+)−K2(u−)]
2, − 2<E<0.

(2.21)

The corresponding DOS can be written as
DOS(E) =

π(K2(u+)−K2(u−))

[π2 − 2εK(u+)K(u−)]2 + ε2[K2(u+)−K2(u−)]2
,

−2 < E < 0. (2.22)
The S-wave phase shift, δ0, is

tan δ0 =
K2(u+)−K2(u−)
π2

ε − 2K(u+)K(u−)
. (2.23)

The cross-section, σ, is
σ = (2.24)

4π

P 2

[K2(u+)−K2(u−)]
2

−
[
2K(u+)K(u−)− π2

ε

]2
+ [K2(u+)−K2(u−)]2

.

3. Results and discussion

Our results for the anisotropic fcc lattice are shown
in Figs. 1–9. Figures 1, 2 show real and imaginary parts
of GF for the pure lattice. The figures show logarithmic
behavior. Figure 3 shows the DOS for the pure lattice.
The DOS has the same behavior as above apart from a
constant. The figure shows that the function is symmet-
ric (even function).

Figure 4 shows the DOS for the anisotropic fcc lat-
tice with single impurity for different potential strengths
ε(-0.6, -0.3, 0.0, 0.3, and 0.6). For ε = 0.0 it falls
off exponentially. The peak value varies with the po-
tential strengths and reaches its maximum at ε = 0.3,
also the divergence of the density of states removed by
adding such impurities. Figure 5 shows the DOS in three-
dimensions with one axis representing potential strengths
ε varying between −1 and 1 (arbitrary units) whereas the
second axis is energy scale varying between −1 and 1 as
indicated in the formalism.
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Fig. 1. Real part GF for the perfect anisotropic fcc lat-
tice.

Fig. 2. Imaginary part GF for the perfect anisotropic
fcc lattice.

Fig. 3. The DOS for the perfect anisotropic fcc lattice.

Fig. 4. The DOS for the anisotropic fcc lattice with
single impurity for different potential strengths ε (−0.6,
−0.3, 0.0, 0.3, and 0.6).

Fig. 5. Three-dimensional DOS for the anisotropic
fcc lattice with single impurity for different potential
strengths ε varying between −1 and 1 (arbitrary units).

The phase shift (i.e, δ0) is defined as the shift in the
phase of the wave function due to the presence of the
impurity potential.

Figure 6 displays δ0 for the anisotropic fcc lattice with
single impurity for different potential strengths ε(-0.6, -
0.3, 0.0, 0.3, and 0.6). For ε = 0.0, δ0 vanishes as po-
tential is turned off (perfect lattice). The phase shift
is always negative for all negative potential strengths ε.
In the range between ε = 0.00 and ε = 0.3, δ0 is positive.
In the range where ε varies between 0.3 and 1.0 we have
discontinuity as shown in Fig. 6, δ0 displays into two re-
gions around the discontinuity point, right hand region
is negative and it increases if ε increases, the left hand
region is positive and it decreases if ε increases (discon-
tinuity point moves to the left).

Fig. 6. The phase shift, δ0, for the anisotropic fcc
lattice with single impurity for different potential
strengths ε (−0.6, −0.3, 0.0, 0.3, and 0.6).

Figure 7 shows the phase shift in three dimensions for
the anisotropic fcc lattice with single impurity for dif-
ferent potential strengths ε varying between −1 and 1
(arbitrary units).

The cross-section (i.e., σ) is defined as the area an im-
purity atom presents to the incident electron.
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Fig. 7. The phase shift, δ0, in three dimensions for the
anisotropic fcc lattice with single impurity for different
potential strengths ε varying between −1 and 1 (arbi-
trary units).

Fig. 8. The cross section, σ, for the anisotropic fcc lat-
tice with single impurity for different potential strengths
ε (−0.6, −0.3, 0.0, 0.3, and 0.6).

Fig. 9. The cross section, σ, in three dimensions for
the anisotropic fcc lattice with single impurity for dif-
ferent potential strengths ε varying between −1 and 1
(arbitrary units).

Figure 8 shows the cross-section for single substitu-
tional impurity with different potential strength ε, the
peak value varies with the potential strength and reaches
its maximum for all values ε > 0.3, in the range where
ε varies between 0.0 and 0.3 the peak value increases if
ε increases, in the range between ε = 0.0 and −1.0 the
peak value increases if ε decreases. The values are all
positive since σ can be viewed as a sort of probability.
It is related to some physical quantities such as the con-
ductivity in metals.

Figure 9 shows the cross-section in three dimensions
for the anisotropic fcc lattice with single impurity for
different potential strengths ε varying between −1 and 1
(arbitrary units).

Appendix A

Derivation of GF for the fcc lattice
inside the band

In this Appendix we derive an expression for the GF
inside the band in order to calculate the DOS which is
related to some important physical quantities in terms of
the complete elliptic integral of the first kind. The GF
for the anisotropic fcc lattice outside the band is given
by [10–16]:

G0(E) =
4

π2(E + a3)
K(k+)K(k−), E > 2a1 + a3, (A.1)

where

k2± =
1

2

1∓ 4

√
a3
a21
E
(
1 + a3

a21
E
)

(E + a3)2

−

√
(E + a3)2 − 4a3

a21
E

√
(E + a3)2 − 4

(
1 + a3

a21
E
)

(E + a3)2

(A.2)

or in the range E enclosed between −(2a1 − a3) and 0

k2± =
1

2
(1 + Z∓), −(2a1 − a3) < E < 0, (A.3)

where
Z∓ = iX∓ (A.4)

X∓ =

√
−E

(E + a3)2

×

−
√√√√[(E + a3)2 − 4a3

a21
E
] [

4
(
1 + a3

a21
E
)
− (E + a3)2

]
−E

∓4

√
a3
a21

(
1 +

a3
a21
E

))
. (A.5)

The complete elliptic integral of the first kind is ex-
pressed as
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K(k) =
π

2
2F1

(
1

2
,
1

2
, 1, k2

)
(A.6)

where 2F1

(
1
2 ,

1
2 , 1, k

2
)

is the Gauss hypergeometric
function.

Substituting (A.6) in (A.1) we have

G0(E) =
2F1

(
1
2 ,

1
2 ; 1; k

2
+

)
2F1

(
1
2 ,

1
2 ; 1; k

2
−
)

E + a3
(A.7)

Using the following transformations [19]:

2F1

(
1

2
,
1

2
; 1;

1 + Z∓
2

)
=

Γ
(
1
2

)(
Γ
(
3
4

))2 2F1

(
1

4
,
1

4
;
1

2
;Z2
∓

)

+2Z∓
Γ
(
1
2

)(
Γ
(
1
4

))2 2F1

(
3

4
,
3

4
;
3

2
;Z2
∓

)
(A.8)

with

2F1(a, b; c;Z
2
∓) =

(1− Z2
∓)
−a

2F1

(
a, c− b; c;

Z2
∓

Z2
∓ − 1

)
(A.9)

2Γ
(
1
2

)(
Γ
(
3
4

))2 2F1

(
1

4
,
1

4
;
1

2
;

Z2
∓

Z2
∓ − 1

)
=

2F1

(
1

2
,
1

2
; 1;

1

2

(
1 +

√
Z2
∓

Z2
∓ − 1

))

+2F1

(
1

2
,
1

2
; 1;

1

2

(
1−

√
Z2
∓

Z2
∓ − 1

))
, (A.10)

2Γ
(
− 1

2

)[
Γ
(
1
4

)]2
√

Z2
∓

Z2
∓ − 1

2F1

(
3

4
,
3

4
;
3

2
;

Z2
∓

Z2
∓ − 1

)
=

2F1

(
1

2
,
1

2
; 1;

1

2

(
1−

√
Z2
∓

Z2
∓ − 1

))

−2F1

(
1

2
,
1

2
; 1;

1

2

(
1 +

√
Z2
∓

Z2
∓ − 1

))
. (A.11)

Substituting (A.8), (A.9),(A.10), and (A.11) in (A.7),
then we obtain

G0(E) =
1

2(E + a3)
[(X2

+ + 1)(X2
− + 1)]

−1
4

×(K(v+)K(u−) +K(v−)K(u+) + i(K(v+)K(u+)

−K(v−)K(u−))), (A.12)
where

v2± =
1

2

(
1±

√
X2
−

X2
− + 1

)
. (A.13)

u2± =
1

2

(
1±

√
X2

+

X2
+ + 1

)
. (A.14)

If we have a single impurity then GF is defined as [1]:

G(E) =
G0(L,L,E)

1− εG0(L,L,E)
. (A.15)

After some mathematical manipulation Eq. (A.15)
becomes

G(E) =
{π2

2
(E + a3)[(X

2
+ + 1)(X2

− + 1)]
1
4

×[K(v+)K(u−) +K(v−)K(u+) + i(K(v+)K(u+)

−K(v−)K(u−))]− ε [K2(v+) +K2(v−)][K
2(u+)

+K2(u−)]
}
/
{[π2

2
(E + a3)

[
(X2

+ + 1)(X2
− + 1)

] 1
4

−ε′(K(v+)K(u−) +K(v−)K(u+))
]2

+ε2
[
K(v+)K(u+)−K(v−)K(u−))

]2}
. (A.16)

Thus, the S-phase shift, and scattering cross-section can
be evaluated in terms of complete elliptic integrals of the
first kind as shown in the text.
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