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The perturbation of a uniformly tiled resistor network by adding an edge (a resistor)
to the network is considered. The two-point resistance on the perturbed tiling in terms

of that on the perfect tiling is obtained using Green’s function. Some theoretical re-

sults are presented for an infinite modified square lattice. These results are confirmed
experimentally by constructing an actual resistor lattice of size 13× 13.
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1. Introduction

One of the most important and interesting problems in electric circuit theory is

the computation of the equivalent resistance between any pair of nodes in a resis-

tor electrical network, which is a classic problem in electric circuit theory studied

∗Corresponding author.
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by numerous authors for more than 170 years.1 An old analysis method is the

Kirchhoff’s laws1 that can be applied in principle to any resistor network, however,

with increasing the size of the network solving the problem becomes difficult to

analyze. Several techniques have been developed to solve this problem for infinite

networks.2–7 The most elegant and efficient method to study this problem is based

on the lattice Green’s function, which has been introduced for perfect resistor net-

works6,7 and for perturbed networks.8 Following these pioneering works, numerous

studies of the resistance and capacitance problems had been published.9–22

Wu23 established a theorem to evaluate the two-node resistance on a finite reg-

ular resistor network using the Laplacian approach. The Laplacian method has

resolved a variety of resistor networks with all kinds of geometry after a slight

modification of the formulation.24–28 In recent years, a new Recursion–Transform

(RT) method is created by Tan,29 which is an alternative direct approach to cal-

culate the resistances of the resistor networks, and express the resistance directly

in a single summation. With the further development of the RT method, many re-

sistor networks of various topologies are resolved, such as a cobweb model,30–35

a globe network,35,36 a fan network,34 and a resistor network with arbitrary

boundaries.37,38

In previous work,11 using the lattice Green’s function technique,8 the effective

resistance of a perturbed lattice is obtained by the insertion of an extra resistance

connected between any pairs of nodes in the perfect lattice in which each unit cell

has only one lattice point. In this paper, we extend the formulation of Ref. 11 to

the perturbed tiling of d-dimensional space with resistors in which each unit cell

has any number of lattice sites. Figure 1 shows a perturbed modified square lattice

as an example for the perturbed tiling in two dimensions.

2. Two-Point Resistance on the Perturbed Tiling

In this section, we determine the two-point resistance on the perturbed tiling that

is obtained by connecting an additional resistor between any two nodes in the

perfect uniform tiling. First, we recall some definitions and formulae that we use in

this paper.

Consider an infinite perfect lattice structure of resistors that is a uniform tiling

of d-dimensional space with identical resistances R. The lattice points are given by

ri = i1a1 + i2a2 + · · · + idad, where a1,a2, . . . ,ad are the unit cell vectors in the

d-dimensional space and i1, i2, . . . , id are arbitrary integers. Assume that in each

unit cell there are s lattice sites labeled by α = 1, 2, . . . , s. If riα = {ri;α} denotes

any lattice point, then Iiα = I(riα) = Iα(ri) and Viα = V (riα) = Vα(ri) denote the

current and potential at point riα, respectively. Also, the current and potential can

be represented in Dirac notation as

Iα(ri) = 〈iα|I〉, Vα(ri) = 〈iα|V 〉, (1)

where |I〉, |V 〉 and |iα〉 are associated vectors with the current, the potential

and the lattice point riα, respectively. It is supposed that |iα〉 forms a complete
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orthonormal set:

〈iα|jβ〉 = δijδαβ ,
∑
iα

|iα〉〈iα| = 1. (2)

In the same way as in Ref. 8, the resistance between sites riα and rjβ in the perfect

tiled lattice can be obtained as

R0
αβ(i, j) = R

(
G0
αα(i, i) +G0

ββ(j, j)−G0
αβ(i, j)−G0

βα(j, i)
)
, (3)

where G0
αβ(i, j) = G0

αβ(ri, rj) ≡ 〈iα|G0|jβ〉 is the lattice Green’s function for the

perfect tiled network.

Now if an additional resistor of resistance Radd is introduced between two ar-

bitrary sites {ri0 ;α0} and{rj0 ;β0} in a perfect periodic lattice of equal resistances

R, then the current due to this resistor at site {ri;µ} is given by

δIµ(i) = δii0δµα0

(
Vα0(i0)− Vβ0(j0)

Radd

)
+ δij0δµβ0

(
Vβ0

(j0)− Vα0
(i0)

Radd

)
. (4)

Using Eqs. (1) and (2), the above equation can be written as

δIµ(i)R = 〈iµ|Ladd|V 〉, (5)

where the Ladd is the perturbation operator and given by

Ladd =
R

Radd
(|i0α0〉 − |j0β0〉)(〈i0α0| − 〈j0β0|). (6)

According to Ohm’s and Kirchhoff’s laws, the current at site {ri;µ} in the perturbed

tiled lattice is given by

Iµ(i) =
−L0Vµ(i)

R
+ δIµ(i). (7)

Equation (7) can be written as

L|V 〉 = −R|I〉, (8)

where L is the Laplacian matrix for the perturbed tiled lattice:

L = L0 − Ladd. (9)

As usual, the Green’s function for the perturbed tiled lattice (G = −L−1) is related

to the Green’s function for the perfect uniform tiling (G0 = −(L0)−1) through the

Dyson’s equation39:

G = G0 +G0LaddG. (10)

The Dyson’s equation can be solved for G by iteration, one obtains an infinite

geometric series

G = G0 −G0LaddG
0 +G0LaddG

0LaddG
0 −G0LaddG

0LaddG
0LaddG

0 + · · · .
(11)
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The sum of the geometric series in the above equation, after inserting Ladd given

in Eq. (6), is

G = G0 − RG0(|i0α0〉 − |j0β0〉)(〈i0α0| − 〈j0β0|)G0

Radd +R(〈i0α0| − 〈j0β0|)G0(|i0α0〉 − |j0β0〉)
. (12)

Multiplying the left-hand side by 〈iα| and the right-hand side by |jβ〉 of Eq. (12)

yields

Gαβ(i, j)

= G0
αβ(i, j)

−
R(G0

αα0
(i, i0)−G0

αβ0
(i, j0))(G0

α0β
(i0, j)−G0

β0β
(j0, j))

Radd +R(G0
α0α0

(i0, i0) +G0
β0β0

(j0, j0)−G0
α0β0

(i0, j0)−G0
β0α0

(j0, i0))
.

(13)

Following the same procedures of the perfect tiled lattice,7 the resistance between

lattice points riα and rjβ in the perturbed tilled lattice can be obtained as

Rαβ(i, j) =
Vα(i)− Vβ(j)

I
= R(Gαα(i, i) +Gββ(j, j)−Gαβ(i, j)−Gβα(j, i)).

(14)

Substituting Eq. (13) into (14) and using (3) yields

Rαβ(i, j) = R0
αβ(i, j)−

(R0
αα0

(i, i0) +R0
ββ0

(j, j0)−R0
αβ0

(i, j0)−R0
βα0

(j, i0))2

4(Radd +R0
α0β0

(i0, j0))
.

(15)

This is the main result for the two-point resistance on and infinite perturbed tilings

(i.e., adding one resistor to the perfect uniform tiling) in which each unit cell has

any number of lattice sites. It is worth mentioning that our result Eq. (15) differs

from Eq. (27) in Ref. 8 by the fact that in this paper we added a resistor to the

perfect lattice with more than one type site while in Ref. 8 a resistor was removed

from the perfect lattice with only one type site in each unit cell.

3. Results and Discussion

3.1. Theoretical results

In this section, we present some results for modified square lattices. The modified

square lattice is a uniform tiling of the plane as shown in Fig. 1. The unit cell

has four lattice points labeled by α = A,B,C,D and its vectors are a1 and a2.

The two-point resistance on the infinite perfect modified square network of equal

resistances R can be computed using the general lattice Green’s function approach

given in Ref. 7 (see Appendix A).

On the perturbed modified square network, the resistance can be determined

from Eq. (15). As an example, consider Radd = R is placed between the sites
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addR

Fig. 1. A modified square lattice resistor network with an additional resistor.

Table 1. Theoretical and experimental values of the resistances Rαβ(ri = 0, rj) (in unit of R)

between {ri = 0;α} and {rj ;β} in the perfect and perturbed modified square lattices of resistors

of value R. The additional resistor Radd = R is placed between the sites {0;A} and {0;C} in
the perfect lattice. The theoretical values are for the infinite perfect and perturbed lattices, and

the experimental values are for the 13 × 13 perturbed lattice. The values in parentheses are the

deviations from the infinite lattice values.

Theoretical results Experimental results

Rαβ(ri = 0, rj)
(in terms of R)

Infinite perfect
lattice

Infinite perturbed
lattice

13× 13 perturbed
network

RAB (0,0) 0.329577 0.299877 0.302269 (0.8%)
RAC (0,0) 0.409155 0.290355 0.293573 (1.11%)

RAD (0,0) 0.329577 0.299877 0.304841 (1.66%)

RBC (0,0) 0.329577 0.299877 0.304841 (1.66%)
RBD (0,0) 0.409155 0.409155 0.415333 (1.79%)

RCD (0,0) 0.329577 0.299877 0.302269 (0.8%)

RAA (2,0) 0.5494132 0.525079 0.548583 (4.48%)
RAA (3,0) 0.613075 0.587067 0.777328 (32.41%)

{ri0 = 0; α0 = A} and {rj0 = 0;β0 = C} in the perfect network. We calculated

the resistance Rαβ(ri = 0, rj) in units of R between the origin {ri = 0;α} and

node {rj ;β}, and displaced them in Table 1. One can see from the table that the

resistance between the lattice points {0;A} and {r;β} in the perturbed lattice is

smaller than that between them in the corresponding perfect lattice. This is very

obvious from the negativity of second term in Eq. (15).

3.2. Experimental results

To experimentally study our results, we constructed a finite perturbed modified

square network of size (13 × 13) using 1 − kΩ(±10%) resistors. We measured the
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mean resistance of the individual resistors of the network and find R = 0.988 kΩ.

Hence, the value of the individual resistance is R = 0.988 kΩ.

We performed resistance measurements Rαβ(ri = 0, rj) between the origin {ri =

0;α} and site {rj ;β} in the perturbed network. Table 1 displays our experimental

measurements and compares them to the theoretical results for the infinite network,

normalized by the individual resistance R = 0.988 kΩ.

It can be seen in the table that the theoretical and the experimental results are

in good agreement near the network origin, but become worse as one of the sites

gets closer to the boundaries of the finite network. This discrepancy is due to the

finite size of the experimental network, which causes the effective resistances to be

larger than the values for an infinite network.

4. Conclusion

In this work, we extended the Green’s function approach8,11 to study the two-

point resistance on a perturbed network that is obtained by adding a resistor to

any perfect lattice structure which is a uniform tiling of d-dimensional space. We

presented some theoretical values of the resistance of the infinite perfect and per-

turbed modified square networks. The theoretical results for perturbed network are

verified experimentally by constructing a real finite network of resistors. We found

the theoretical and experimental results to be consistent within the estimated error

bounds.
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Appendix A. Two-Point Resistance on the Perfect Modified

Square Lattice

In this Appendix, we compute the two-point resistance on the perfect modified

square lattice using general Green’s function method introduced by Cserti et al.7

Applying Kirchhoff’s junction rule to lattice points {ri;α = A,B,C,D} and using

Ohm’s law, the currents at these lattice points can be written as

IA(r) =
VA(r)− VB(r)

R
+
VA(r)− VB(r− a1)

R
+
VA(r)− VC(r− a1)

R

+
VA(r)− VC(r− a2)

R
+
VA(r)− VD(r)

R
+
VA(r)− VD(r− a2)

R
, (A.1)

IB(r) =
VB(r)− VA(r)

R
+
VB(r)− VA(r + a1)

R
+
VB(r)− VC(r)

R

+
VB(r)− VC(r− a2)

R
+
VB(r)− VD(r + a1)

R
+
VB(r)− VD(r− a2)

R
,

(A.2)
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IC(r) =
VC(r)− VA(r + a1)

R
+
VC(r)− VA(r + a2)

R
+
VC(r)− VB(r)

R

+
VC(r)− VB(r + a2)

R
+
VC(r)− VD(r)

R
+
VC(r)− VD(r + a1)

R
, (A.3)

ID(r) =
VD(r)− VA(r)

R
+
VD(r)− VA(r + a2)

R
+
VD(r)− VB(r− a1)

R

+
VD(r)− VB(r + a2)

R
+
VD(r)− VC(r)

R
+
VD(r)− VC(r− a1)

R
. (A.4)

Assuming periodic boundary conditions, the discrete Fourier transforms of the po-

tentials and currents are defined as

Vα(k) =
∑
r

Vα(r)e−ik.r, Iα(k) =
∑
r

Iα(r)e−ik.r, (A.5)

where k is the wave vector in the Fourier space and is limited to the first Brillouin

zone. The general expressions for the inverse Fourier transform are given by

Vα(r) =
A0

(2π)2

∫ π/a1

−π/a1

∫ π/a2

−π/a2
Vα(k)eik.rdk1dk2, (A.6)

Iα(r) =
A0

(2π)2

∫ π/a1

−π/a1

∫ π/a2

−π/a2
Iα(k)eik.rdk1dk2. (A.7)

Substituting Eqs. (A.6) and (A.7) into (A.1)–(A.4) and making the transformation

θi = k · ai(i = 1, 2) yields

L0V = −RI, (A.8)

where

L0(θ1, θ2) =


−6 1 + e−iθ1 e−iθ1 + e−iθ2 1 + e−iθ2

1 + eiθ1 −6 1 + e−iθ2 eiθ1 + e−iθ2

eiθ1 + eiθ2 1 + eiθ2 −6 1 + eiθ1

1 + eiθ2 e−iθ1 + eiθ2 1 + e−iθ1 −6

 (A.9)

is the Fourier transform of the Laplacian matrix for the perfect lattice. The lattice

Green’s function can be calculated from the definition:

G0 = −L−1
0 . (A.10)

Now, the resistance between any two sites on perfect modified square lattice can

be calculated from the following expression

R0
αβ(`1, `2) = R

∫ π

−π

dθ1
2π

∫ π

−π

dθ2
2π

{
G0
αα(θ1, θ2)−G0

αβe
−i(`1θ1+`2θ2)

+G0
ββ(θ1, θ2)−G0

βαe
i(`1θ1+`2θ2)

}
. (A.11)

Some values of the resistances the origin {ri = 0;α} and site {rj ;β} are displayed

in Table 1.
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