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SUMMARY

We consider a multipurpose n-step network with cross resistors that is a profound problem that has not been
resolved before. This network contains a number of different types of resistor network model. This problem
is resolved by three steps: First of all, we simplify a complex graphics into a simple equivalent model; next,
we use Kirchhoff’s laws to analyse the network and establish a nonlinear difference equation; and finally, we
construct the method of equivalent transformation to obtain the general solution of the nonlinear difference
equation. In this paper, we created a new concept of negative resistance for the needs of the equivalent
conversion and obtain two general resistance formulae of a multipurpose ladder network of cross resistors.
As applications, several interesting specific results are produced. In particular, an n-step impedance LC
network is discussed. Our method and the results are suitable for the research of complex impedance
network as well. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Resistor network is an important and useful model in applications of the modern natural science. The
computation of the two-point resistance in networks is a classical problem in circuit theory and graph
theory, which has been researched for more than 170 years [1–4]. The computation of resistances is
relevant to a wide range of problems ranging from science and technology to engineering [5–38].
However, it is usually very difficult to obtain the exact resistance in complex resistor networks [7–29];
the construction of and research on the models of complex networks therefore make sense for theories
and applications.

The main progress of research methods in resistor networks basically has several different
approaches, such as Kirchhoff’s laws [1], the lattice Green’s function technique [7–12, 35], the
Laplacian approach [13–18], the recursion-transform method [25–28], the equivalent transformation
methods [4] and a method of nodal potentials [29]. Thus, many resistor networks have been
resolved by these methods.

However, there are still some complex resistor networks unresolved because of the complexity of
the structure conditions of the network in real life. Figure 1 is called a multipurpose n-step network
of cross resistors, which has seven different resistors, and the right boundary is a single resistor R0.
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This is a profound problem which has not been resolved before. Because the seven resistors are
arbitrary, the network contains a number of different types of resistor network model, such as the
regular ladder network [4] and the triangle ladder network. As is known to all, the two-port network
is well studied and the transfer matrix approach is frequently applied for such problems [39, 40].

In this paper, we focus on the computation of resistance between two arbitrary nodes Ak and Bk by
means of the equivalent transformation methods [4] as shown in Figure 1. This problem is resolved by
three steps. The equivalent transformation methods split the derivation into three parts. The first part
simplifies a complex graphics into a simple equivalent model. The second part creates a nonlinear
difference equation model by using Kirchhoff’s laws. The third part constructs the method of
equivalent transformation to obtain the general solution of the nonlinear difference equation. In
addition, we created a new concept of negative resistance for the needs of the equivalent conversion,
and two general resistance formulae are derived. Because the multipurpose n-step network has seven
arbitrary resistors, when we consider the particular values of the different resistors, several different
types of resistor network model are produced automatically. Thus, we obtain several interesting new
results by means of reducing the general formula. At the same time, the resistance results are
applied to the complex impedance network. As is well known, the research of complex impedance
network is more difficult than that of the resistor network because the equivalent impedance has
many different properties from equivalent resistance. From previous studies of the equivalent
impedance, we find that the results of the equivalent complex impedance are always curious and
nonlinear [14,21,30,37]. Thus, complex impedance is an important problem worthy of study. In the
lower part of the paper, we study the characteristics of the equivalent impedance of the LC network
by the equivalent resistance formula.

The organization of this paper is as follows: In section 2, we present two exact formulae of
resistance between two nodes in a multipurpose n-step network of cross resistors. In section 3, we
set up an equivalent model by the Kirchhoff’s laws. In section 4, we prove the resistance formulae
by solving the nonlinear difference equation. In section 5, we deduce several specific results by the
general formula. In section 6, we study the characteristics of the equivalent impedance of the LC
network. Section 7 gives a summary and discussion of the method and results.

2. TWO GENERAL RESULTS

We call Figure 1 a general n-step network with cross resistors. This network has seven different
resistors, and the right boundary is a load resistor R0 which is different from other resistors (we
simply call it as an arbitrary boundary because it is located at the right edge). Assuming that Ak is
the kth node at the edge of A0An and Bk is the kth node at the edge of B0Bn, we have two main
results as follows:

Case 1.
The equivalent resistance between two nodes An and Bn in the n-step network with cross resistors with
anarbitrary right boundary can be written as

Figure 1. A multipurpose n-step network of cross resistors, which has seven different resistors, and the right
boundary is a load resistor R0.
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RAnBn nð Þ ¼ λ� αβ
Fn þ R0 � λð ÞFn�1

Fnþ1 þ R0 � λð ÞFn

� �
: (1)

where

Fn ¼ αn � βn

α� β
; λ ¼ b

d
r0 (2)

and

αβ ¼ bc� ad

d2

� �
r0 ¼

r0 r2r3
rþr3þr2

þ r4r5
r4þr1þr5

� �

r0 þ r2 rþr3ð Þ
rþr3þr2

þ r5 r1þr4ð Þ
r4þr1þr5

0
@

1
A

2

; (3)

and

α ¼ 1
2d

cþ br0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� br0ð Þ2 þ 4adr0

q� �
; β ¼ 1

2d
cþ br0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� br0ð Þ2 þ 4adr0

q� �
(4)

with

a ¼ r1r þ r2r5
r2 þ r5

þ r3r4
r3 þ r4

� �
r þ r1ð Þ;

b ¼ r2 r þ r3ð Þ r1 þ r4þr5ð Þ þ r5 r4þr1ð Þ r þ r3 þ r2ð Þ
r2 þ r5ð Þ r3 þ r4ð Þ ;

c ¼ aþ r0
r3 r1 þ r5ð Þ r þ r2 þ r4ð Þ þ r4 r þ r2ð Þ r1 þ r3 þ r5ð Þ

r2 þ r5ð Þ r3 þ r4ð Þ ;

d ¼ bþ r0
r4þr1 þ r5ð Þ r þ r3 þ r2ð Þ

r2 þ r5ð Þ r3 þ r4ð Þ :

(5)

Case 2.
The equivalent resistance between any two nodes Ak and Bk in the n-step network of cross resistors
with an arbitrary right boundary can be written as

RAkBk ¼
1

Rright kð Þ þ
1

Rleft n� kð Þ �
1
r0

� ��1

; (6)

or

RAkBk ¼
r0Rr kð ÞRl n� kð Þ

r0 Rr kð Þ þ Rl n� kð Þ½ � � Rr kð ÞRl n� kð Þ : (7)

where

Rleft n� kð Þ ¼ λ� αβ
Fn�k þ r0 � λð ÞFn�k�1

Fn�kþ1 þ r0 � λð ÞFn�k

� �
; (8)

Rright kð Þ ¼ λ� αβ
Fk þ R0 � λð ÞFk�1

Fkþ1 þ R0 � λð ÞFk

� �
: (9)

3. EQUIVALENT MODEL AND RECURSIVE EQUATION

According to the structure characteristics of Figure 1, assuming that the equivalent resistance between
two nodes An and Bn in the n-step network is Rn, the resistance in the (n � 1)-step network corresponds
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to the resistance Rn� 1. Thus, from Figure 1, we obtain an equivalent circuit model as shown in
Figure 2.

Next, we use Kirchhoff’s law to find the recursive relation between Rn and Rn� 1. Assuming that the
electric current I is constant and goes from the input node An to the output node Bn, we denote the
branch currents in all segments of the network as shown in Figure 2. Using Kirchhoff’s laws [1,4]
to analyse the resistor network, the nodes’ current equations and the meshes’ voltage equations can
be achieved from Figure 2.

In Figure 2, by Kirchhoff’s law, the meshes’ voltage equations can be written as

I5r2 þ I7r5 � I3r0 ¼ 0;

I1r þ I6r3 � I5r2 ¼ 0;

I6r3 þ I8r4 � I2Rn�1 ¼ 0;

I1r þ I2Rn�1 þ I4r1 � I3r0 ¼ 0:

(10)

By Kirchhoff’s law, the nodes’ current equations can be written as

I1 þ I3 þ I5 ¼ I and I1 ¼ I2 þ I6;

I3 þ I4 þ I7 ¼ I and I2 þ I8 ¼ I4:
(11)

Solving the eight equations mentioned in the preceding texts, we finally obtain after some algebra
and reduce the relation

I3
I
¼ aþ bRn�1

cþ dRn�1
; (12)

where a , b , c ,d are given by (5). Because Rn=U/I= I3r0/I, substituting in (12) gives

Rn ¼ aþ bRn�1

cþ dRn�1
r0: (13)

Formula ((13)) is a key recurrence formula we are looking for, which belongs to the nonlinear
difference equation. Next, we will study its general solution.

4. EQUIVALENT TRANSFORMATION AND SOLUTION

4.1. Derivation of result 1

We adopt the method of variable substitution to solve the nonlinear difference equation (13), assuming
that there is sequence {xn} and it satisfies the following relation:

Figure 2. Equivalent circuit model of a two-terminal network with the current parameters.
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Rn ¼ xnþ1

xn
� c
d
: (14)

We appoint the initial term x0 = 1; from (14), we have

x0 ¼ 1; x1 ¼ R0 þ c
d
: (15)

Substituting (14) and its recursive formula Rn� 1 into (13), we obtain

xnþ1 ¼ cþ br0
d

� �
xn � bc� adð Þr0

d2
xn�1 (16)

Supposing that α and β are the roots of the characteristic equation for xk, solving Eqn (16), we obtain
(4). Thus, from (16), we obtain

xnþ1 ¼ αþ βð Þxn � αβxn�1: (17)

Solving Eqn (17), we obtain the general solution (one may refer to [4])

xn ¼ 1
α� β

x1 � βx0ð Þαn � x1 � αx0ð Þβn½ �: (18)

Considering the initial term conditions in (15), we have

xn ¼ 1
α� β

R0 þ c
d
� β

� �
αn � R0 þ c

d
� α

� �
βn

h i
: (19)

From Eqns (16) and (17), we obtain

αþ β � c
d
¼ cþ br0

d
� c
d
¼ b

d
r0 ¼ λ: (20)

Then, substituting Eqn (20) into Eqn (19) yields

xn ¼ 1
α� β

R0 þ α� λð Þαn � R0 þ β � λð Þβn½ �: (21)

Substituting Eqn (21) and its recursive formula xn + 1 into Eqn (14) gives

Rn ¼ R0 þ α� λð Þαnþ1 � R0 þ β � λð Þβnþ1

R0 þ α� λð Þαn � R0 þ β � λð Þβn � c
d
: (22)

From Eqn (20), we have c/d=α+ β� λ; substituting to Eqn (22) yields

Rn ¼ λ� αβ
R0 þ α� λð Þαn�1 � R0 þ β � λð Þβn�1

R0 þ α� λð Þαn � R0 þ β � λð Þβn
� �

; (23)

where Eqn (4) is used. From Eqns (16) and (17), we have αβ = r0(bc�ad)/d2; thus, substituting Eqn (5)
to αβ, Eqn (3) is derived. When we define Fn= (αn� βn)/(α� β), Eqn (23) reduces to Eqn (1). At this
point, formula (1) is proved.

4.2. Derivation of result 2

4.2.1. Research ideas and methods. We created a new concept of negative resistance elements for the
needs of the equivalent conversion, namely, we convert r0 to be three resistors in parallel, which are
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two r0 and an �r0 as shown in Figure 3. According to the calculation method of parallel resistors, we
have 1

r0
þ 1

�r0
þ 1

r0
¼ 1

r0
; obviously, the introduction of �r0 is a very good method.

When we compute the resistance between two arbitrary nodes Ak and Bk, making use of Figure 3, we
can convert Figure 1 into Figure 4.

According to the equivalent model of Figure 4, we obtain equivalent resistance between any two
nodes Ak and Bk by means of the calculation of the parallel resistors,

1
RAkBk

¼ 1
Rright kð Þ þ

1
Rleft n� kð Þ �

1
r0
; (24)

where Rright(k) and Rleft(n� k) are given by (8) and (9) in terms of formula (1). Thus, (6) is proved.
Next, from (6), we immediately obtain (7) after the simple calculation.

Note that the idea of negative resistance elements is a great creation, which, resolving a profound
resistance problem, is very interesting. In particular, when k= n, from (8), we have Rleft= r0; thus,
from (6), we have RAnBn ¼ R0 nð Þ which shows Eqn (1) included in Eqn (6).

5. SPECIAL CASES AND COMPARISONS

Case 1.
In Figure 1, when r3 = r4 = r5 = r2, from Eqn (5), we have

a ¼ r1r þ r2 r þ r1ð Þ; b ¼ r2 þ 3
4
r1 þ rð Þ þ r1r

2r2
;

c ¼ aþ r0b; d ¼ bþ r0 1þ 2r2 r þ r1ð Þ þ rr1
4r22

� �
:

(25)

Then, from Eqn (4), we have

α ¼ 1
2d

cþ br0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4adr0

p� �
; β ¼ 1

2d
cþ br0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4adr0

p� �
; (26)

Figure 4. Equivalent conversion model of resistor network.

Figure 3. A resistor is equivalent to three resistors in parallel.
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and

λ ¼ 4r22 þ 3 r1 þ rð Þr2 þ 2r1r
� �

r2r0
r2 4r22 þ 3 r1 þ rð Þr2 þ 2r1r
� �þ r0 r1 þ 2r2ð Þ r þ 2r2ð Þ :

Thus, from Eqn (1), we have

RAnBn ¼ λ� r0 bc� adð Þ
d2

Fn þ R0 � λð ÞFn�1

Fnþ1 þ R0 � λð ÞFn

� �
: (27)

where Fn= (αn� βn)/(α� β) defined in Eqn (2).

Case 2.
In Figure 1, when r1 = r2 = r3 = r4 = r5 = r, from Eqn (5), we have

a ¼ 3r2; b ¼ 3r; c ¼ 3r r þ r0ð Þ; d ¼ 3
4

r þ 3r0ð Þ; (28)

and from Eqn (4), we have

α ¼ 2r
4r þ 3r0

r þ 2r0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4r þ 3r0ð Þr0

p� �
;

β ¼ 2r
4r þ 3r0

r þ 2r0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4r þ 3r0ð Þr0

p� �
:

(29)

Thus, from Eqn (1), we have

RAnBn ¼ λ� 2rr0
4r þ 3r0

� �2 Fn þ R0 � λð ÞFn�1

Fnþ1 þ R0 � λð ÞFn

� �
: (30)

where Fn is defined in Eqn (2) and λ=4r0r/(4r+3r0) is deduced from Eqn (2).

Case 3.
When r3→∞, the cross network degrades into a three-triangular resistor network as shown in Figure 5.

When r3→∞, from Eqn (5), we have

a ¼ r1r þ r2r5
r2 þ r5

þ r4

� �
r þ r1ð Þ; b ¼ r4þr1ð Þ þ r2r5

r2 þ r5

c ¼ aþ r0
r1 þ r5ð Þ r þ r2 þ r4ð Þ þ r4 r þ r2ð Þ

r2 þ r5
; d ¼ bþ r0

r4þr1 þ r5
r2 þ r5

� � (31)

Figure 5. A multipurpose n-step network with three-triangle resistors, which has seven different resistors,
and the right boundary is a load resistor R0.
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Substituting Eqn (31) into Eqn (1), we obtain the resistance formula RAnBn (Eqn (1)).
In particular, when r3→∞, r1 = r2 = r4 = r5 = r, from Eqn (5), we have

a ¼ 4r2; b ¼ 5
2
r; c ¼ 4r r þ r0ð Þ; d ¼ 1

2
5r þ 3r0ð Þ: (32)

From Eqn (4), we have

α ¼ r
2 5r þ 3r0ð Þ 8r þ 13r0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8r þ 3r0ð Þ2 þ 32 5r þ 3r0ð Þr0

q� �
;

β ¼ r
2 5r þ 3r0ð Þ 8r þ 13r0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8r þ 3r0ð Þ2 þ 32 5r þ 3r0ð Þr0

q� �
:

(33)

Thus, from Eqn (1), we have

RAnBn ¼ λ� 4rr0
5r þ 3r0

� �2 Fn þ R0 � λð ÞFn�1

Fnþ1 þ R0 � λð ÞFn

� �
: (34)

where λ=5r0r/(5r+3r0) and Fn is defined in Eqn (2).

Case 4.
When r3 , r5→∞ and r4 = 0, the cross network degrades into a two-triangular ladder resistor network as
shown in Figure 6. In the following, we reduce (1) to be a simple result.

When r4 = 0 and r3 = r5 =∞, from Eqn (5), we obtain

a ¼ r1r þ r2 r þ r1ð Þ; b ¼ r1 þ r2; c ¼ r1 þ r0ð Þ r þ r2ð Þ þ rr2; d ¼ r0 þ r1 þ r2: (35)

Thus,

λ ¼ b
d
r0 ¼ r1 þ r2

r0 þ r1 þ r2

� �
r0; (36)

and

α ¼
r0 r2 þ r1ð Þ þ cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 r2 þ r1ð Þ þ c½ �2 � 4r20r

2
2

q
2 r0 þ r2 þ r1ð Þ ;

β ¼
r0 r2 þ r1ð Þ þ c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 r2 þ r1ð Þ þ c½ �2 � 4r20r

2
2

q
2 r0 þ r2 þ r1ð Þ

(37)

Figure 6. Ann-step triangular ladder network with arbitrary right boundary.
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where c is given by Eqn (35) and λ is given by Eqn (36). Thus, formula (1) reduces to

RAnBn ¼ λ� r0r2
r0 þ r1 þ r2

� �2 Fn þ R0 � λð ÞFn�1

Fnþ1 þ R0 � λð ÞFn

� �
; (38)

Case 5.
When rk→ ∞ (k=2, 3, 4, 5), the n-step network of cross resistors degrades into a rectangular n-step
ladder network as shown in Figure 7. Taking limits r2→∞ to Eqns (36)–(38), we have

λ ¼ lim
r2→∞

r1 þ r2
r0 þ r1 þ r2

r0 ¼ r0 (39)

and

α ¼ 2r0 þ r þ r1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ r1ð Þ 4r0 þ r þ r1ð Þp
2

; β ¼ 2r0 þ r þ r1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ r1ð Þ 4r0 þ r þ r1ð Þp
2

: (40)

Thus,

Rn ¼ r0 � r20
Fn þ R0 � r0ð ÞFn�1

Fnþ1 þ R0 � r0ð ÞFn

� �
: (41)

The network in Figure 7 has been resolved by [4]; comparing (41) with the result in [4], we find that
the two results are completely the same, but their methods are different.

Case 6.
In Figure 1, when R0 = br0/d, from (1) and (2), we have

RAnBn nð Þ ¼ b
d
r0 �

r0 r2r3
rþr3þr2

þ r4r5
r4þr1þr5

� �

r0 þ r2 rþr3ð Þ
rþr3þr2

þ r5 r1þr4ð Þ
r4þr1þr5

0
@

1
A

2

Fn

Fnþ1
: (42)

where b and d are defined in Eqn (5).

Case 7.
When n→∞, from (4), we have 0< β/α<1; thus,

lim
n→∞

β
α

� �n

¼ lim
n→∞

cþ br0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� br0ð Þ2 þ 4adr0

q

cþ br0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� br0ð Þ2 þ 4adr0

q
0
B@

1
CA

n

¼ 0; (43)

Figure 7. Ann-step ladder resistor network with arbitrary right boundary.
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From Eqn (1), we have

RAnBn ∞ð Þ ¼ λ� β: (44)

Substituting Eqn (4) into (44) yields

RAnBn ∞ð Þ ¼ 1
2d

br0 � cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� br0ð Þ2 þ 4adr0

q� �
: (45)

Result (45) shows that formula (1) is bounded in the case of n→∞.

Case 8.
When R0 = λ� β, from Eqn (22), we immediately obtain

RAnBn nð Þ ¼ λ� β: (46)

Notice that we find that Eqn (46) is the same as Eqn (44), but their meanings are different from each
other. Equation (46) is the characteristic resistance of the network, but Eqn (44) is the limiting
resistance. When the load resistance satisfies the characteristic value, the equivalent resistance is a
constant that equals limiting resistance.

6. EQUIVALENT IMPEDANCE OF THE N-STEP LC NETWORK

The research method and conclusion of this article are also applicable to the complex impedance
network; we can obtain the equivalent impedance formula of the complex impedance network if we
use the variable substitution method. We assume that the elements of rk(k=0, 1, 2, 3, 4, 5) are
composed of inductor, capacitor and resistor, then we can obtain the equivalent complex impedance
by making use formula (1). In the following, we will study the LC network.

In Figure 1, consider an n-step impedance LC network; from formula (1), we can obtain the
equivalent impedance of an n-step LC network. Assuming that the impedance elements in the
network are r1 = r= iωL,r3 ¼ r4 ¼ r5 ¼ r2 ¼ 1

iωC and r0 ¼ R0 ¼ 1
iωC0

as shown in Figure 8, where ω
is the alternating current frequency, the equivalent complex impedance from (1) is given by

Figure 8. Ann-step impedance LC subnetwork.
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ZAnBn

r0
¼ 2h1 hþ 1ð Þ

2h1 þ 1ð Þhþ 2 h1 þ 1ð Þ �
2h1

2h1 þ 1ð Þhþ 2 h1 þ 1ð Þ
� �2

� 2h1 þ 1ð Þhþ 2 h1 þ 1ð Þ½ � δn � ρnð Þ þ hþ 2ð Þ δn�1 � ρn�1
	 


2h1 þ 1ð Þhþ 2 h1 þ 1ð Þ½ � δnþ1 � ρnþ1
	 
þ hþ 2ð Þ δn � ρnð Þ

(47)

where

h ¼ r
r2

¼ �ω2LC; h1 ¼ r2
r0

¼ r2
R0

¼ C0

C
; (48)

δ ¼ α
r0

¼
2h1 hh1 þ hþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 h1 þ 1ð Þ2 þ 2h h1 þ 1ð Þ

q� �

2 1þ hð Þh1 þ 2þ hð Þ ;

ρ ¼ β
r0

¼
2h1 hh1 þ hþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 h1 þ 1ð Þ2 þ 2h h1 þ 1ð Þ

q� �

2 1þ hð Þh1 þ 2þ hð Þ :

(49)

Substituting Eqn (48) into Eqn (49), we obtain

iZAnBn ¼
2 1� ω2LCð Þ

ωg
� 4C0

ωg2
� g δn � ρnð Þ þ C 2� ω2LCð Þ δn�1 � ρn�1

	 

g δnþ1 � ρnþ1
	 
þ C 2� ω2LCð Þ δn � ρnð Þ ; (50)

where

g ¼ C 2h1 þ 1ð Þhþ 2 h1 þ 1ð Þ½ � ¼ 2 C0 þ Cð Þ � 2C0 þ Cð Þω2LC;

and δ ¼
2C0 1� ω2L C0 þ Cð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2L C0 þ Cð Þ½ �2 � 1

q� �

2 C0 þ Cð Þ � 2C0 þ Cð Þω2LC
;

ρ ¼
2C0 1� ω2L C0 þ Cð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2L C0 þ Cð Þ½ �2 � 1

q� �

2 C0 þ Cð Þ � 2C0 þ Cð Þω2LC
:

(51)

It is clear that there are three parameters in the complex impedance; from Eqn (41), we should
discuss three cases. By Eqn (48), we have

h2(h1 + 1)2 + 2h(h1 + 1) =ω2L(C0 +C)[ω2L(C0 +C)�2].

When ω2>2/[L(C0 +C)], there are δ , ρ∈R; the complex impedance is Eqn (50). There are five
parameters (such as C0 ,C ,L ,ω , n) in the complex impedance. In Eqn (50), the 3D graphic of the
complex impedance changes with ω and n as shown in Figure 9. Figure 9 shows that the complex
impedance of Eqn (50) is gradually decreasing with the increase of ω and n when ω2>2/[L(C0 +C)].
These situations do not appear oscillation phenomenon; they only gradually change.

When ω2 ¼ 2
L C0þCð Þ, there are hh1 + h+1= �ω2L(C+C0) + 1= �1, then δ= ρ=�(C0 +C)/C0 and

lim
ρ→δ

δn � ρn

δ� ρ
¼ nδn�1: (52)

Thus, from (50) and (52), we have

iZAnBn ¼
C0 þ C
ωC2

0

1� 2C
C0 þ C

þ C0 þ Cð Þn� C n� 1ð Þ
C0 þ Cð Þ nþ 1ð Þ � Cn

� �
: (53)
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Figure 9. A 3D graph showing the impedance changes with ω (ω∈[8.2,30]) and n in the case of C0 = 0.2,
C = 0.1 and L = 0.1.

Figure 10. A 3D graph showing the impedance changes with ω and n in the case of C0 = 0.2 and C = 0.1.

Figure 11. A 3D graph showing the impedance changes with ω and n in the case of C0 = 0.2, C = 0.1 and
L = 0.1.
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There are four parameters (such as C0 ,C ,ω , n) in the complex impedance; the 3D graphic of the
complex impedance changes with ω and n as shown in Figure 10. Figure 10 shows that the complex
impedance of Eqn (53) is gradually changing with the increase of ω when ω2 = 2/[L(C0 +C)]. But
the case is different from the cases of Figure 9.

When ω2<2/[L(C0 +C)], there are δ , ρ∈Z; applying Eqn (48) to Eqn (49), we have

δ ¼ 2h1
2 1þ hð Þh1 þ 2þ hð Þ cosθ þ i sinθð Þ; ρ ¼ 2h1

2 1þ hð Þh1 þ 2þ hð Þ cosθ � i sinθð Þ (54)

where θ= arccos(hh1 + h+1)= arccos[1�ω2L(C0 +C)]. Applying Eqn (54) to Eqn (47), we have

ZAnBn ¼
2h1r0

2h1 þ 1ð Þhþ 2 h1 þ 1ð Þ hþ 1� 2h1 sin nθð Þ þ hþ 2ð Þ sin n� 1ð Þθ
2h1 sin nþ 1ð Þθ þ hþ 2ð Þ sin nθð Þ

� �
: (55)

Figure 12. The impedance oscillatorily (with resonance) varying with ω, with setting C0 = 0.2, C = 0.1,
L = 0.1 and n = 10. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 13. Magnified graph from Figure 13, showing the obvious oscillation features, with C0 = 0.2, C = 0.1,
L = 0.1 and n = 10. [Colour figure can be viewed at wileyonlinelibrary.com]
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Substituting Eqn (48) into Eqn (55), we obtain

iZAnBn ¼
2
g

1� ω2LC � 2C0 sin nθð Þ þ C 2� ω2LCð Þ sin n� 1ð Þθ
2C0 sin nþ 1ð Þθ þ C 2� ω2LCð Þ sin nθð Þ

� �
; (56)

where g=ω[2(C0 +C)�ω2LC(2C0 +C)].
We set C0 = 0.2 ,C=0.1 and L=0.1; the 3D graphic of the complex impedance changes with ω and

n as shown in Figure 11. Figure 11 shows that impedance has resonance and oscillation. For clearly
seeing the characteristics, we draw the 2D graphs. For example, settingC0 = 0.2 ,C=0.1,L=0.1 and
n = 10 and n = 20, the complex impedance changes with the alternating current frequency ω as
shown in Figures 12–15.

Figure 14. The impedance oscillatorily (with resonance) varying with ω, with setting C0 = 0.2, C = 0.1,
L = 0.1 and n = 20. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 15. Magnified graph from Figure 15, showing the obvious oscillation features, with C0 = 0.2, C = 0.1,
L = 0.1 and n = 20. [Colour figure can be viewed at wileyonlinelibrary.com]
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7. SUMMARY AND DISCUSSION

Complex resistor network with multiple parameters is a difficult problem, which is difficult to compute
its resistance if there is no approach of innovation. Transform methods established in this paper solve
an n-step complex network of cross resistors, which has never been solved before. The method of
solving this problem mainly includes three steps. The first is to establish an equivalent network
model; the second is the application of Kirchhoff’s theorem to find the equivalent resistance of
recursive relations; and finally, the third is adopting the transform method to give the general
solution of differential equation. We obtain a concise conclusion of (1), although the network
contains eight independent parameters. Further, we created a new concept of negative resistance
elements for the needs of the equivalent conversion as shown in Figure 3. The negative resistance is
a new concept which can be efficiently to solve some complex problems of resistor network. So, we
obtained formula (6). As applications, a number of interesting results are deduced by the general
formula when we take some parameters into special values. In particular, the research method and
conclusion of this article are also applicable to the complex impedance network; we can obtain the
equivalent impedance formula of the complex impedance network if we use variable substitution
method. Meanwhile, the resonance behaviour is an interesting finding. For example, we consider an
LC impedance network; the characteristics of resonance and oscillatory are discovered. Clearly, the
complex impedance network is different from the resistor network. This somewhat curious result
suggests the possibility of practical applications of our formulae to resonant circuits.

At the end of this paper, we propose a profound problem based on the previous research in the
article [13–28, 37, 38]: how to derive the resistance of an m × n network of cross resistors as shown in
Figure 16. We look forward to the solution of the problem.

ACKNOWLEDGEMENTS

This work was supported by funding from the Natural Science Foundation of Jiangsu Province
(no. BK20161278).

REFERENCES

1. Kirchhoff G. Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung
galvanischer Ströme geführt wird. Annals of Physical Chemistry 1847; 72:497–508.

2. Belevitch V. Classical network theory, Holden-Day, San Francisco, 1968.
3. Desoer Ch., Kuh E. Basic circuit theory, McGraw-Hill, 1969.
4. Tan Zhi-Zhong, Resistance network model. (Xidian Univ. Press, China, Xi’an). (2011).
5. Klein DJ, Randi M. Resistance distance. Journal of Mathematical Chemistry 1993; 12:8195.
6. Xiao WJ, Gutman I. Resistance distance and Laplacian spectrum. Theoretical Chemistry Accounts 2003;

110:284–289.

Figure 16. A 5 × 7 resistor network model in which a two-cross resistor is embedded in the rectangular
network.

1956 Z.-Z. TAN, J.H. ASAD AND M.Q. OWAIDAT

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:1942–1957
DOI: 10.1002/cta



7. Cserti J. Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors.
American Journal of Physics 2000; 68:896–906.

8. Cserti J, David G, PirothA. Perturbation of infinite networks of resistors.American Journal of Physics 2002; 70:153–159.
9. Cserti J, Szechenyi G, David G. Uniform tiling with electrical resistors. Journal of Physics A: Mathematical and

Theoretical 2011; 44:215201.
10. Asad JH. Exact evaluation of the resistance in an infinite face-centered cubic network. Journal of Statistical Physics

2013; 150:1177–1182.
11. Asad JH. Infinite simple 3D cubic network of identical capacitors. Modern Physics Letters B 2013; 27:151350112.
12. Asad JH, Diab AA, Hijjawi RS, Khalifeh JM. Infinite face-centered-cubic network of identical resistors: application

to lattice Green’s function. European Physical Journal Plus 2013; 128(1):1–5.
13. Wu FY. Theory of resistor networks: the two-point resistance. Journal of Physics A: Mathematical and General

2004; 37:6653–6673.
14. Tzeng WJ, Wu FY. Theory of impedance networks: the two-point impedance and LC resonances. Journal of Physics

A: Mathematical and General 2006; 39:8579–8591.
15. Izmailian NS, Huang M-C. Asymptotic expansion for the resistance between two maximum separated nodes on a

M×N resistor network. Physical Review E 2010; 82:011125.
16. Izmailian NS, Kenna R, Wu FY. The two-point resistance of a resistor network: a new formulation and application to

the cobweb network. Journal of Physics A: Mathematical and Theoretical 2014; 47:035003.
17. Izmailian NS, Kenna R. A generalised formulation of the Laplacian approach to resistor networks. Journal of

Statistical Mechanics 2014; 09:1742–5468 P09016.
18. Essam J. W., Izmailyan N. Sh., Kenna Ralph, Tan Zhi-Zhong. Royal Society open Science 2015; 2:140420. https://

doi.org/10.1098/rsos.140420.
19. Tan Z-Z, Zhou L, Yang J-H. The equivalent resistance of a 3×n cobweb network and its conjecture of an m×n

cobweb network. Journal of Physics A: Mathematical and Theoretical 2013; 46:195202.
20. Tan Z-Z, Zhou L, Luo D-F. Resistance and capacitance of 4×n cobweb network and two conjectures. International

Journal of Circuit Theory and Applications 2015; 43:329–341.
21. Tan Z-Z. Theory on resistance of m×n cobweb network and its application. International Journal of Circuit Theory

and Applications 2015; 34:1687–1702.
22. Tan Z-Z, Essam JW, Wu FY. Two-point resistance of a resistor network embedded on a globe. Physical Review E

2014; 90:012130.
23. Essam JW, Tan Z-Z, Wu FY. Resistance between two nodes in general position on an m×n fan network. Physical

Review E 2014; 90:032130.
24. Tan Z-Z, Fang J-H. Two-point resistance of a cobweb network with a 2r boundary. Communications in Theoretical

Physics 2015; 63:36–44.
25. Tan Z-Z. Recursion–transform approach to compute the resistance of a resistor network with an arbitrary boundary.

Chinese Physics B 2015; 24:020503.
26. Tan Z-Z. Recursion–transform method for computing resistance of the complex resistor network with three arbitrary

boundaries. Physical Review E 2015; 91:052122.
27. Tan Z-Z. Recursion–transform method to a non-regular m×n cobweb with an arbitrary longitude. Scientific Reports

2015; 5:11 266. https://doi.org/10.1038/srep11266.
28. Tan Z-Z. Two-point resistance of a non-regular cylindrical network with a zero resistor axis and two arbitrary

boundaries. Communications in Theoretical Physics 2017; 67(3):280–288.
29. Kagan M. On equivalent resistance of electrical circuits. American Journal of Physics 2015; 83:53–63.
30. Gabelli J, Fève G, Berroir J-M, Plaçais B, Cavanna A, Etienne B, Jin Y, Glattli DC. Violation of Kirchhoff’s laws for

a coherent RC circuit. Science 2006; 313:499–502.
31. Tan Z-Z, Zhang Q-H. Formulae of resistance between two corner nodes on a common edge of the m×n rectangular

network. International Journal of Circuit Theory and Applications 2015; 43:944–958.
32. Whan CB, Lobb CJ. Complex dynamical behavior in RCL shunted Josephson tunnel junctions. Physical Review E

1996; 53:405.
33. Zhuang J, Yu G-R, Nakayama K. A series RCL circuit theory for analyzing non-steady-state water uptake of maize

plants. Scientific Reports 2015; 4:6720. https://doi.org/10.1038/srep 06720.
34. Tan Z-Z. A universal formula of the n-th power of 2×2 matrix and its applications. Journal of Nantong University

2012; 11:87–94.
35. Giordano S. Disordered lattice networks: general theory and simulations. International Journal of Circuit Theory and

Applications 2005; 33:519–540.
36. Bianco B, Giordano S. Electrical characterisation of linear and non-linear random networks and mixtures.

International Journal of Circuit Theory and Applications 2003; 31:199–218.
37. Tan Z-Z. Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC

network. Chinese Physics B 2016; 25:050504.
38. Tan Z-Z, Zhang Q-H. Calculation of the equivalent resistance and impedance of the cylindrical network based on RT

method. Acta Physica Sinica 2017; 66(7):070501.
39. Mlynek P, Misurec J, Koutny M, Silhavy P. Two-port network transfer function for power line topology modeling.

Radioengineering 2012; 21:356–363.
40. Nagashima HN, Onody RN, Faria RM. AC transport studies in polymers by resistor-network and transfer-matrix

approaches: application to polyaniline. Physical Review B 1999; 59:905.

RESISTANCE FORMULAE OF A MULTIPURPOSE N-STEP NETWORK 1957

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:1942–1957
DOI: 10.1002/cta

https://doi.org/10.1098/rsos.140420
https://doi.org/10.1098/rsos.140420
https://doi.org/10.1038/srep11266
https://doi.org/10.1038/srep 06720

