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MOTION OF A SPHERICAL PARTICLE IN A ROTATING 

PARABOLA USING FRACTIONAL LAGRANGIAN 
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       In this work, the fractional Lagrangian of a particle moving in a rotating 

parabola is used to obtain the fractional Euler- Lagrange equations of motion where 

derivatives within it are given in Caputo fractional derivative. The obtained 

fractional Euler- Lagrange equations are solved numerically by applying the 

Bernstein operational matrices with Tau method. The results obtained are very good 

and when the order of derivative closes to 1, they are in good agreement with those 

obtained in Ref. [10] using Multi step- Differential Transformation Method (Ms- 

DTM). 
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1. Introduction 

 

As it is well known from literature many techniques can be used to solve 

systems in classical mechanics. Two famous techniques are commonly used and 

give us similar results. The first technique (Newtonian mechanics) is based on the 

concept 

of force, while the second one (Lagrangian and Hamiltonian mechanics) is energy 

dependent technique [1, 2]. A wide range of physical systems have been modeled 

by these techniques especially the second technique, and as a result the equations 

of motion were derived. One of these interesting systems studied is the motion of 

a particle in a rotating parabola [2]. 

In classical mathematics, we deal with derivatives and integrals with integer 

order. The extension to any order is a branch of mathematics in which it is called 

Fractional calculus. Fractional calculus owes it origin to a question (nearly before 

300 years) about the possibility of taking derivative to a non- integer order. For a 

long time it is considered as a pure branch of mathematics with no applications in 
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real life, but it has been found that it is useful and powerful [3].  Nowadays 

fractional calculus plays an important role in many applications in sciences and 

engineering, and its application is spreading nearly in all branches of science and 

engineering especially where they appear in real systems [4]. In recent years, 

fractional calculus finds a wide range of applications in classical mechanics, 

where Lagrangian and Hamiltonian methods are used to study several systems. 

They were fractionalized and then the fractional Euler- Lagrange’s equations or 

even the Fractional Hamilton’s equations were obtained as seen in many works 

[5-7]. These equations contain right and left fractional derivatives. The analytical 

solution of the fractional equations obtained cannot be easily obtained, and as a 

result we seek numerical solution for them. In previous works we studied 

numerically these Fractional equations for many physical systems of certain 

interests. See for example [8, 9], and references within it. Now, we survey the 

Lagrangian of a spherical particle moving in a rotating parabola with Caputo 

fractional order.Various phenomena exist within the environment where a 

particle's motion can be observed on them, e.g. centrifugation, centrifugal filters, 

and industrial hopper. Motion surface possesses various shapes especially for 

rotating application as it can be circular, parabolic or conical, respectively. 

Analytical and numerical solutions can be of great use to analyze the motion of 

particles on these surfaces, as an example see [10] and references in it. 

The structure of this work is as follows: In sec. 2, some definitions are listed 

briefly for definitions of fractional calculus. In sec. 3, the studied system is 

described classically and fractionally in details.  In sec. 4, we present the 

approximate solutions based on the Bernstein polynomials, and finally we close 

the paper with conclusion in section 5. 

 

2. Mathematical Tools 

 

In this section, we only recall necessary definitions that are used in the next 

sections. We start from Riemann-Liouville integrals. 

Definition 2.1. The left and right Riemann-Liouville fractional integrals are 

defined, respectively as follows [4, 11, 12] 
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Next, we present definitions of fractional differential operators in Caputo sense by 

using the operators (1) and (2). 

  Definition 2.2. The left and right Caputo fractional derivatives are defined, 

respectively as follows [4, 11, 12] 
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where  1n n n     . If  n n   then 
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3. Classical and Fractional Descriptions of the Physical Model 

 

To give a classical description of the model, we consider a parabola with a shape 

defined by  
2crz   [2, 10]. Let us assume that a spherical particle slides along its 

surface. The following assumptions are considered for the motion of the particle: 

the particle is in equilibrium, rotating in a circle of radius R , and finally, the 

surface is rotating about its vertical symmetry axis with angular velocity w , as 

indicated in Figure 1 below [2, 10]. 

 

  

 

 

 

 

 

 

 

 

 
 

Fig. 1. Schematic view of a spherical particle on a rotating parabolic surface 

 

 Here we are going to apply the cylindrical coordinates system ),,( zr  to describe 

the motion of the particle. Thus, the kinetic and potential energy of the particle 

respectively become: 

)(
2

1 2222 zrrmT    ,                                                       (5) 

mgzV  .                                                                                  (6) 

As a result we have the following constraints: 2 ,z cr  

wt                                                                                    (7) 

and the derivatives of the these constraints are: 2 ,z cr r  

w .                                                                        (8) 
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Making use of the above equations the classical Lagrangian can be written as: 

2222222 )4(
2

1
mgcrwrrrcrmVTL   .                              (9) 

Now, the fractional form of Eq. (9) in terms of Caputo fractional derivative is: 
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Thus, we get the fractional Euler Lagrange equation of motion as: 
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It is important to indicate that Bourdin [13] derived some conditions that are 

sufficient to make one ensure that the fractional Euler- Lagrange equation admits 

a solution. Referring to  Bourdin’s paper [13] we make sure that in our case the 

fractional Euler- Lagrangian equation satisfies the conditions introduced in his 

paper (see for more details the Theorem 1 in 13,pp. 2-3).  

Here we have one generalized coordinate rq  . Thus, we conclude: 
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In Ref. [14] it was considered that: 
222 wgc .                                                                (13) 

As a result the Eq. (12) reads: 
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As 1 , then Eq. (14) reduces to the classical Euler- Lagrange equation. 

In the next section, we are aiming to obtain the numerical solution for the 

Fractional Euler- Lagrange equation (14) for some initial conditions. 

 

4. Numerical Solution Method and the Simulation Results 

 

   In this section, we propose the approximate analytical solution for the problem 

(14) with 0 1  . We consider the initial conditions as follows 

0( ) ,r a r                                                                       (15) 

1)( rar  .                                                                         (16) 

   Recently, we used the Bernstein operational matrices (BOM) of Caputo 

derivative, Riemann-Liouville fractional integral and product for solving some 

kinds of fractional differential equations and fractional optimal control problems 

[15-19]. Now, we apply the BOM method to solve the problem (14)-(16).  

 

4.1. Primary concepts 

 

Referring to Ref. [20], we can see details of the proposed concepts in here. 
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Also, we denote the operational matrix for the product of the vector c  based on 

basis ( )m t  by Ĉ and define it as: 

ˆ( ) ( ) ( ) .T T T

m m mc t t t C   
                                                    (19) 

On the other hand, the BOM of the standard derivative D , left Riemann-Liouville 

fractional integral LRLF
 and right Caputo fractional derivative RCD

 are introduced as 

follows  
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4.2. BOM for solving the proposed model 

 

   By using (17), we apply the following approximation: 
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where  1n n n    . 

By (23), (15) , (21) and (24) we can get  
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Now, we can approximate the problem (14) and (15) as follows 
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We observe that from (26)-(28) the problem (14) and (15) is reduced to: 
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Also, by (25) and (20) we can use the following approximation for the initial 

condition (16): 
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Now, by applying the Tau method (see for more details the subsection 6.4.4 of 

[21, pp. 367]) for (29), we obtain the following algebraic equations: 
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Finally, the equations (31) with (30) produce a system of 1m  algebraic 

equations and 1m  variables , 0, ,i i m  . For solving this system, we use the 

Newton's method [22-25]. Then, from (25) we obtain the approximation for ( )r t . 
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Now, let 
01, 0, 1, 1a b r      and 

1 0r  . We can see the behaviors of ( )r t for 

1,1.5, 2c   and 0.7,0.8,0.9,1   in figures 2-8. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A plot of ( )r t for 1c   and 0.7,0.8,0.9,1  . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A plot of ( )r t for 1.5c   and 0.7,0.8,0.9,1  . 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. A plot of ( )r t for 2c   and 0.7,0.8,0.9,1  . 
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Fig. 5. A plot of ( )r t for 1,1.5, 2c   and 0.7  . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. A plot of ( )r t for 1,1.5, 2c   and 0.8  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. A plot of ( )r t for 1,1.5, 2c   and 0.9  . 
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Fig. 8. A plot of ( )r t
 
for 1,1.5, 2c   and 1  . 

 

5. Conclusions 

 

      In this work, we have studied the motion of a spherical particle in a rotating 

parabola using fractional Lagrangian. For this aim, we used the derivatives in 

Caputo sense. We have applied the BOM for solving the proposed fractional 

model. The results show the approximate solutions close to the solutions for 

1  when   approaches to 1 and m  be fixed.  

As shown in the above figures we plot the position of the particle r(t) against t in 

the period [0, 1] for 0.7,0.8,0.9,1  . It is clear from our figures that for 

1 (the classical case) the BOM is in a good agreement with results obtained by 

Ms- DTM used in Ref. [9] especially for the period of t from [0, 1].  

Finally, it is of worth to mention that similar approaches have been used and 

applied in elasticity and thermoelasticity [25- 27]. 
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