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Abstract:    Considerable progress has been made recently in the development of techniques to determine exactly two-point 
resistances in networks of various topologies. In particular, a general resistance formula of a non-regular m×n resistor network 
with an arbitrary boundary is determined by the recursion-transform (RT) method. However, research on the complex impedance 
network is more difficult than that on the resistor network, and it is a problem worthy of study since the equivalent impedance has 
many different properties from equivalent resistance. In this study, the equivalent impedance of a non-regular m×n RLC network 
with an arbitrary boundary is studied based on the resistance formula, and the oscillation characteristics and resonance properties 
of the equivalent impedance are discovered. In the RLC network, it is found that our formula leads to the occurrence of resonances 
at the boundary condition holding a series of specific values with an external alternating current source. This curious result  
suggests the possibility of practical applications of our formula to resonant circuits. 
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1  Introduction 
 

A classic problem in electric circuit theory 
studied by numerous researchers for more than 170 
years is the computation of the resistance between 
two arbitrary nodes in a resistor network. This prob-
lem has existed since the German scientist Kirchhoff 
described the node current law and the circuit voltage 
law in 1845 (Kirchhoff, 1847). Resistor networks 
have been widely studied and simulated as models for 
many scientific and engineering problems (Kirkpat-
rick, 1973; Klein and Randić, 1993; Xiao and Gutman, 
2003). In physics and probability theory, mean field 

theory investigates the behavior of large and complex 
stochastic models by studying a simpler model such 
as a finite disordered network. A large number of 
small interacting individual components which in-
teract with each other are considered in such models. 
The effect of all the other individuals on any given 
individual is approximated by a single averaged effect. 
Therefore, a many-body problem has been reduced to 
a one-body problem. Mean field theory has been 
widely used in statistical mechanics, condensed sys-
tem research of complex systems, magnetism, struc-
ture transition, and other fields (Georges et al., 1996; 
Chamberlin, 2000; Chitra and Kotliar, 2000; Haule, 
2007; Baule et al., 2013; Bao et al., 2014). Obviously, 
the construction of the models of resistor networks 
and the research on them make sense both for theory 
and application. 
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As is clear from previous work on two-point re-
sistance, it is usually very difficult to obtain the exact 
resistance in a complex m×n resistor network (Cserti, 
2000; Bianco and Giordano, 2003; Wu, 2004; 
Giordano, 2005; Tzeng and Wu, 2006; Izmailian and 
Huang, 2010; Asad, 2013a; 2013b; Asad et al., 2013; 
Izmailian et al., 2014; Izmailian and Kenna, 2014). 
For the explicit computation of two-point resistances 
in a resistor network, Cserti (2000) evaluated the 
two-point resistance using the lattice Green’s function. 
His study was confined to mainly regular lattices of 
an infinite size, and was applied to many regular in-
finite resistor and capacitance networks (Bianco and 
Giordano, 2003; Giordano, 2005; Asad et al., 2013). 
Wu (2004) proposed a different approach and derived 
an expression for two-point resistance in arbitrarily 
finite or infinite lattices in terms of the eigenvalues 
and eigenvectors of the Laplacian matrix. Laplacian 
analysis has also been extended to impedance net-
works after a slight modification of the formulas 
(Tzeng and Wu, 2006). The Laplacian method has 
been used to solve various types of resistance net-
works with all kinds of geometry. As well as the pre-
vious cases (Wu, 2004; Tzeng and Wu, 2006), there 
are the recent Tan-Zhou-Yang conjecture (Tan et al., 
2013; Izmailian et al., 2014), a globe network (Izma-
ilian and Kenna, 2014), and a hammock network 
(Essam et al., 2015). For applications, Chair (2012; 
2014a; 2014b) researched several resistor networks 
using the Laplacian method, and several new re-
sistance results were obtained. In recent years, a new 
method, Tan’s recursion-transform (RT) method, was 
proposed (Tan, 2011; 2015a; 2015b; 2015c), which 
makes it easy to resolve the problem of non-regular 
lattices with an arbitrary boundary (Tan, 2011; 2017; 
Tan et al., 2013; 2014; Essam et al., 2014; Tan and 
Fang, 2015; Tan and Zhang, 2015; 2017; Zhou et al., 
2017). Using the RT method to compute the equiva-
lent resistance relies on only one matrix along one 
direction, and the resistance is expressed by single 
summation. In particular, the RT method can be used 
to solve a resistor network with one or two arbitrary 
boundaries (Tan, 2015a; 2015b; 2015c). 

Research on a complex impedance network is 
more difficult than that on a resistor network, because 
the equivalent impedance has many different proper-
ties from equivalent resistance. From previous work 
on the equivalent impedance, the results of the 

equivalent complex impedance are always curious 
and nonlinear (Whan and Lobb, 1996; Gabelli et al., 
2006; Tzeng and Wu, 2006; Tan and Zhang, 2015; 
2017). Thus, complex impedance is a problem worthy 
of study. In this study, we investigate the equivalent 
impedance of a non-regular m×n rectangular RLC 
network with an arbitrary boundary based on the 
resistance formula obtained but not resolved before 
(Tan, 2015a). The non-regular m×n rectangular re-
sistor network with an arbitrary boundary is shown in 
Fig. 1. Here m and n are the grid numbers in the ver-
tical and horizontal directions, respectively; r0 and r 
are resistors in the vertical and horizontal directions, 
respectively. Considering grid elements r and r0 as the 
impedances, we focus on researching the equivalent 
impedance Zm×n(d1, d2) in the complex impedance 
network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First, we consider the equivalent resistance 

formula of a non-regular m×n rectangular resistor 
network. Assume that A0 is the origin of the coordi-
nate system, and the left edge acts as the y axis and the 
bottom edge acts as the x axis. Denote nodes of the 
network by coordinates (x, y). The equivalent re-
sistance between any two nodes d1(x1, y1) and d2(x2, y2) 
in the m×n resistor network can be expressed as (Tan, 
2015a) 
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Fig. 1  An m×n resistor network with an arbitrary right
boundary and null resistors on the bottom 
Intersections in the horizontal and vertical directions are resis-
tors r and r0 except for the bottom and the right boundaries 
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In particular, when d1=(0, y1) and d2=(0, y2), two 

nodes defined as Ap(0, p) and Aq(0, q) are at the left 
edge, 
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2015a), Eq. (11) can be rewritten as 
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As is well known, if the resistors are replaced by 

the arbitrary complex impedances, the impedance 
characteristics will be very complex. In this study, the 
peculiarity of the equivalent impedance in an m×n 
RLC network with an arbitrary boundary is re-
searched from Eq. (12), and novel results are found. 

 
 

2  Impedance of the m×n RLC network 

2.1  Impedance formula of the RLC network 

In Fig. 1, the grid elements are arbitrary and can 
be either a resistor or an impedance. If the grid ele-
ments are complex impedances, the model is called an 
m×n complex impedance network, and its segment 
grid of the RLC network is shown in Fig. 2. Assuming 

that the alternating current (AC) frequency is ω, we 
have the following mapping relations: 
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where i2=−1. Using Eq. (12), the equivalent imped-
ance of an m×n complex RLC network is obtained. 
Substituting Eq. (13) into Eq. (12), the general for-
mula of the equivalent impedance between any two 
nodes Ap and Aq on the left boundary of an m×n RLC 
network can be written as 
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where function fn(λi, h1) is defined as 
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The characteristics of the equivalent impedance 

Zm×n(Ap, Aq) are determined by the function fn(λi, h1). 
Thus, we will first study the characteristics of the 
function fn(λi, h1). 

As Eq. (15) is the plural, it is more valuable and 
can be applied more readily. Although the impedance 
sub-network in Fig. 2 is quite complicated, Eqs. (15) 
and (16) are simple. Many properties of the equiva-
lent impedance can be derived from Eq. (16). 
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2.2  Results of special conditions 

If 1+h−hcosθi=−1, then hsin2(θi/2)=−1, and 
λi=−1 is obtained from Eq. (9). Substituting it into 
Eq. (17), there is 
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In this case, from Eq. (16) we derive 
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(20) 
Substituting Eq. (18) into Eq. (20), we obtain 
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where rk (k=0,1) is defined in Eq. (13). 

If h1=1, from Eq. (20) we obtain 
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Namely, when Eq. (19) is established, some special 
results can be obtained from Eq. (16). 

In particular, if R=R0=∞ and L=L0=0, h=C0/C is 
obtained. Then Fig. 1 is called an m×n capacitance 
network. The equivalent capacitance is known as 
Cn↔1/(iωCn), and then the equivalent capacitance 
can be obtained easily from Eq. (15). 

Eq. (15) is concise and significant but compli-
cated for understanding the essential meaning of the 

RLC network, for which one needs to consider the 
special conditions of the parameters R, L, and C to 
find their application values. In special applications, 
one can obtain the readable results if the impedance 
parameters are special. The usefulness of Eq. (15) is 
best illustrated by applications. One application is 
given below. 

 
 

3  Impedance of the m×n LC network 
 

Considering an m×n impedance LC network, the 
equivalent impedance of a non-regular m×n LC net-
work can be obtained from Eq. (15). 

3.1  Impedance formula of the LC network 

Assume that the impedance elements in the 
horizontal and vertical directions in the lattice (Fig. 3) 
are r=iωL, r0=1/(iωC), respectively, and the imped-
ance elements on the right boundary are r1=iωL+ 
1/(iωC). The equivalent impedances between any two 
nodes Ap and Aq on the left boundary of a non-regular 
m×n LC network are given by 
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where h=r/r0=−ω

2LC, h1=−ω
2LC+C/C1, and λi is 

worthy of discussion as h is negative. If 1+h−hcosθi= 
−1, there is λi=−1. By using h=r/r0=−ω

2LC, we obtain 
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Fig. 2  Segment grids of the RLC network 
(a) The segment grid except for the bottom and the right edges;
(b) The segment grid adjacent to the right boundary 

Fig. 3  Segment grids of the LC network 
(a) The segment grid except for the right edge; (b) The seg-
ment grid adjacent to right boundary except for the bottom
edge 
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In this case, we obtain 
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Therefore, when Eq. (24) is established, many 

special results can be obtained from Eq. (23). 

3.2  Analysis of three cases 

In the case of 1[ sin( / 2)]iLC   , 
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Therefore, when 1[ sin( / 2)]iLC   , by us-

ing Eqs. (9) and (24), λi=cosi+isini is obtained with 
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In the case of 1[ sin( / 2)]kLC      
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(30) 

3.3  Circuit resonance conditions 

An important feature of the complex impedance 
network is that its circuit can resonate under certain 
conditions. This is completely different from the  
resistor network. For example, when sin[(n+1)i]+ 
(h1−1)sin(ni)=0, we have 
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Substituting h1=−ω

2LC+C/C1 into Eq. (31), there is 
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If Eq. (32) holds, Eqs. (29) and (30) are in res-

onance. In the case of ω2LC=1, the 3D graphics are 
shown (Fig. 4) to clarify the specific relationship 
among h1, i, and n. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 shows that there are many h1 that can meet 

Eq. (32). That is to say, a situation, in which the ef-
fective impedance (Eq. (30)) between two nodes Ap, 
Aq diverges and the network is in resonance, can occur 
at specific frequencies ω in an AC circuit. Since L1 
and C1 are the right boundary elements which can be 
controlled artificially, L1 and C1 can be adjusted to 
lead to the result of a resonance circuit. In other words, 
the external boundary conditions will affect the circuit 
resonance conditions. In these cases, the boundary 
condition of h1 with the frequency ω of an external 
AC source can bring in resonance in the LC circuit, 
which can be calculated from Eq. (32). The result 

Fig. 4  The 3D graphics of h1 with the changes of i and n
under the condition of circuit resonance (1≤i≤m=50,
n≤100) 
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suggests the possibility of practical applications to 
resonant circuits. 

3.4  Semi-infinite LC network 

When 1[ sin( / 2)]iLC   , λi and i  are real 

numbers, and 1 0i i      (Eq. (9)). Therefore, if 

n→∞, Eq. (16) yields 
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From Eq. (23), we obtain 
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Eq. (34) is the equivalent impedance of the 
semi-infinite m×n LC network. 

 
 

4  Impedance of the 2×n LC network 

4.1  Impedance formula of a 2×n LC network 

Studies of the complex impedance networks are 
usually very complicated. To reveal more character-
istics of the impedance network, a simple model 
(Fig. 5) is studied first. 

In Fig. 5, assuming the AC frequency is ω, the 
general equivalent impedance of a 2×n LC network 
with an arbitrary capacitance can be deduced from 
Eq. (23) to 
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where θi=(2i−1)π/5 (i=1, 2), and fn(λi, h1) is defined in 

Eq. (16) with λi=1+h−hcosθi+
2(1 cos ) 1ih h     

and h=−ω2LC, h1=C/C1. 
Since θ1=π/5, θ2=3π/5, from Eqs. (35)–(37) we 

obtain 
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Eqs. (38)–(40) are the general formulas of the 
2×n impedance LC network and can be applied in a 
variety of situations. However, Eqs. (38)–(40) are not 
enough to understand the meaning and characteristics 
of networks. So, the amplitude-frequency character-
istics and the resonance characteristics of fn(λi, h1) 
should be considered and researched. 

4.2  Amplitude-frequency characteristics 

Setting n=10, the 3D graphics of the complex 
impedance function fn(λ1, h1) are shown in Figs. 6 and 
7. Fig. 6 shows oscillation characteristics and reso-
nance properties of fn(λ1, h1) when ω2LC≤11, while 
Fig. 7 shows that fn(λ1, h1) gradually increases with 
the increase of ω2LC when ω2LC≥csc2(π/10). 

Fig. 5  The 2×n LC network with an arbitrary right
boundary 
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Figs. 6 and 7 express the overall situation, and 

2D graphics are needed to obtain clear characteristics. 
Setting n=10 and h1=0.5, 4, the complex impedance 
function fn(λ1, h1) changes in an oscillatory manner 
with the change of ω (Figs. 8 and 9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Trends of curves in Figs. 8 and 9 are non- 

periodic but periodic-like. 
In particular, following the same steps men-

tioned above, the 3D graphics of amplitude-frequency 
characteristics of fn(λ2, h1) can be obtained. To make 
the study concise, the 3D graphics of amplitude- 
frequency characteristics of fn(λ2, h1) are omitted. 

4.3 Analysis of impedance under different  
conditions 

Case 1: When LC >csc(π/10), there is 

1 0i i     . When n→∞, substituting Eq. (33) 

into Eqs. (38)–(40), we have 
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Case 2: When LC =csc(π/10) with λ1=−1, 
Eq. (25) is obtained, and then from Eqs. (38)–(40) we 
obtain 

Fig. 6  The 3D graphics of the function fn(λ1, h1) with the
changes of ω and h1 (ω

2LC≤11) 

Fig. 7  The 3D graphics of the function fn(λ1, h1) with the
changes of ω and h1 (ω

2LC>11) 

f n
(λ

1,
 h

1)

Fig. 8  The curve of the function fn(λ1, h1) with the change
of ω2LC (h1=0.5, n=10) 

Fig. 9  The curve of the function fn(λ1, h1) with the change
of ω2LC (h1=4, n=10) 
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(46) 

Case 3: When csc(3π/10)< LC <csc(π/10), 

λ1=cos1+isin1 is obtained with 
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From Eq. (28) we obtain 
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From Eqs. (38)–(40) we obtain 
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(51) 

When studying the characteristics of Eq. (48), it 
is found that the characteristics of Z2×n(A, D), Z2×n(A, 
B), and Z2×n(B, D) change unsteadily with the change 
of n and h1. 

Case 4: When LC =csc(3π/10) with λ2=−1, 
Eq. (25) is obtained, and then from Eqs. (49)–(51) we 
obtain 
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where λ1=cos1+isin1 with 
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Case 5: When LC <csc(3π/10), there are 

λ1=cos1+isin1, 1=arccos(1−2ω2LCsin2(π/10)), λ2= 
cos2+isin2, and 2=arccos(1−2ω2LCsin2(3π/10)). 
From Eqs. (49)–(51) we obtain 

 

2

1 1 1

1 1 1

2 1 2

2 1 2

2 5 2 5( , ) 1
i 10

sin( ) ( 1)sin[( 1) ]

sin[( 1) ] ( 1)sin( )

sin( ) ( 1)sin[( 1) ]5 2 5
,

10 sin[( 1) ] ( 1)sin( )

nZ A D
C

n h n

n h n

n h n

n h n


 

 
 

 


  


   
     

   
      

  (56) 



Tan et al. / Front Inform Technol Electron Eng   2017 18(12):2070-2081 2078

2

1 1 1

1 1 1

2 1 2

2 1 2

1 5 5( , ) 1
i 10

sin( ) ( 1)sin[( 1) ]

sin[( 1) ] ( 1)sin( )
sin( ) ( 1)sin[( 1) ]5 5

,
10 sin[( 1) ] ( 1)sin( )

nZ A B
C

n h n

n h n
n h n

n h n


 

 
 

 


  


   
    

   
      

  (57) 

2

1 1 1

1 1 1

2 1 2

2 1 2

1 5 5( , ) 1
i 10

sin( ) ( 1)sin[( 1) ]

sin[( 1) ] ( 1)sin( )

sin( ) ( 1)sin[( 1) ]5 5
.

10 sin[( 1) ] ( 1)sin( )

nZ B D
C

n h n

n h n

n h n

n h n


 

 
 

 


  


   
    

   
      

   (58) 

 
The above equations are the personalized for-

mulas under different conditions. It is shown that the 
analysis formulas of the equivalent complex imped-
ance in the LC network are indeed complicated. 

4.4  Impedance features under different conditions 

An important feature of the complex impedance 
network is that its circuit can produce oscillation and 
resonance phenomena, which are completely differ-
ent from the resistor network. Eqs. (49)–(51), 
(52)–(54), and (56)–(58) are nonlinear because 
Eq. (48) is nonlinear. The nonlinearity of Eq. (48) is 
illustrated above. The oscillation and resonance 
phenomena will be revealed by the 3D graphics of 
ZAD(n). Setting ω2LC=0.5, 1, 5, and 20, Figs. 10–13 
are obtained. 

Figs. 10–13 express the overall situation. To 
obtain clear characteristics, 2D graphics are needed. 
Setting ω2LC=0.5, 1, and 5, and h1=0.5, 1, and 2, the 
2D graphics of the complex impedances Z2×n(A, D) 
are shown in Figs. 14–17. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Case 1: When ω2LC=0.5 and h1=0.5, the com-
plex impedance Z2×n(A, D) changes unsteadily with 
the change of n (Fig. 14). 

Case 2: When ω2LC=1 and h1=0.5, the complex 
impedance Z2×n(A, D) changes periodically with the 
change of n (Fig. 15). 

Case 3: When ω2LC=1 and h1=1, the complex 
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Fig. 10  The 3D graphics of the impedance ZAD(n) with the
changes of h1 and n (ω2LC=0.5) 
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Fig. 11  The 3D graphics of the impedance ZAD(n) with the
changes of h1 and n (ω2LC=1) 

Fig. 12  The 3D graphics of the impedance ZAD(n) with the
changes of h1 and n (ω2LC=5) 

Fig. 13  The 3D graphics of the impedance ZAD(n) with the
changes of h1 and n (ω2LC=20) 
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impedance Z2×n(A, D) resonates periodically with the 
change of n (Fig. 16). From Fig. 16 it can be found 
that the complex impedances of Z2×n(A, D) are in 
resonance. 

Case 4: When ω2LC=5 and h1=2, the complex 
impedance Z2×n(A, D) changes nonlinearly with the 
change of n (Fig. 17). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

5  Summary and discussion 
 
The study of a complex impedance network is 

more complex than that of a resistor network, because 
the equivalent complex impedance is related to the 
frequency of the input circuit. Tzeng and Wu (2006) 
researched the problem of complex impedance of the 
arbitrary LC network with a free boundary, and  
obtained the equivalent complex impedance between 
arbitrary two nodes in the two-dimensional m×n LC 
network, which is expressed by double summation 
using the Laplacian matrix method. 

In this study, we have investigated the equivalent 
impedance between two nodes Ap and Aq of a non- 
regular rectangular m×n impedance network with an 
arbitrary boundary, and the results were expressed by 
a single summation. Besides, the arbitrary boundary 
is different from the free boundary and has never been 
resolved before. The advantage of the arbitrary 
boundary is that it can be artificially controlled to 
design the control circuit, but it is impossible for a 
free boundary. This study is based on the resistance 
formula obtained by Tan (2015a), and the analysis of 
oscillation characteristics and resonance properties is 
based mainly on the element r1 on the right edge 
(Eq. (28)), which differs from the analysis of Tzeng 
and Wu (2006). Three cases have been presented: the 
general m×n RLC network, the general m×n LC 
network, and finally the specific 2×n LC network. In 
the first two cases, the equivalent impedance has been 
expressed in a one summation formula, while in the 
third case the result was written in a compact form. 

In the RLC network, the formula leads to the 
occurrence of resonances when the boundary  
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Fig. 16  The resonance properties of the impedance Z2×n(A,
D) with the change of n (h1=1, ω2LC=1) 
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Fig. 17  The oscillation properties of the impedance Z2×n(A,
D) with the change of n (h1=2, ω2LC=5) 

Fig. 15  The oscillation properties of the impedance Z2×n(A,
D) with the change of n (h1=0.5, ω2LC=1) 

50

40

30

20

10

0

–10

–20

–30

–40

–50
0              20               40               60              80             100

n

Fig. 14  The oscillation properties of the impedance Z2×n(A,
D) with the change of n (h1=0.5, ω2LC=0.5) 
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condition holding a series of special values with an 
external AC source. This result suggests the possibil-
ity of practical applications of the formula to resonant  
circuits. 

The characteristics of the equivalent impedances 
are determined by the function fn(λi, h1) which is  
defined as Eq. (16). When R=R0=∞ and L=L0=0, we 
obtained an m×n capacitance network and its equiv-
alent capacitance is Cn↔1/(iωCn), which can be  
deduced from Eq. (15). 

As a next step, an m×n impedance LC network 
has been considered. Its equivalent impedance was 
obtained by Eq. (23). An important property of the 
complex impedance network is the circuit resonance. 
This phenomenon was illustrated in the 3D graphics 
(Fig. 4). 

Finally, the 2×n LC network has been studied 
and the features of the amplitude-frequency charac-
teristics of the function fn(λi, h1) were illustrated 
(Figs. 6 and 7). Two 2D graphics (Figs. 8 and 9) were 
obtained for specified values of n and h1. The com-
plex impedance function fn(λi, h1) changes with the 
change of ω. 

In the last part of this work, four 3D graphics and 
four 2D graphics of the impedance of Z2×n(A, D) have 
been shown. 

In particular, this study has shown that the 
equivalent impedance Z2×n(A, D) increases gradually 
with the increase of ω when the value of ω2LC is 
sufficiently large (ω2LC>csc2(π/10)) except for the 
condition of n≤2, where there is no oscillation 
(Fig. 13) (such as ω2LC=20). 

This study has also shown that the equivalent 
impedance has many different properties from 
equivalent resistance, and properties of oscillation 
and resonances suggest the possibility of practical 
applications of the formulas. 
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